Knowledge

Talk:Equivalent series resistance

Source 📝

347:(see Figure 8) But, the leakage resistance is in megaohms and the ohmic resistance is in milliohms. I am starting to see where the differences over ESR are coming from. When a circuit designer (at least the ones I know) discusses ESR (in a capacitor or inductor), he/she almost exclusively refers to the metallic ohmic resistances, which are small resistances (typ. below 1 Ω). ESR is properly the real component of Z=R+jX of whatever device is being analyzed, and that can be a whole bunch of R L and C's. The distinction between the two uses of ESR probably lies in the application how the cap and coil are used. The metallic resistance are significant in some applications. F'rinstance, the metallic resistance of a coil is important to power supply design, the metallic resistance of a tantalum capacitor is important in certain amplifier designs, because it is actually used as a resistor in the frequency compensation to create a zero. And at the frequencies of these applications, this metallic resistance is the only significant component of ESR. Once the circuit reaches frequencies where the other resistances significantly affect Z, the metallic resistance has insignificant effect on the ESR. It is a rare circuit where all resistive components of ESR are important, so the unimportant elements are very often neglected in the discussion of ESR in a circuit. 770:
something in the way of background knowledge that I can help with here. Q factor pertains to resonant circuits. As it happens, in the average resonant circuit, the Q of the capacitor will be many times higher than the Q of the inductor. The inductor Q therefore is the determining factor in the design. Both L and C have Qfactors as well as ESRs, Q and R being inversely related at a fixed F. In non-resonant pulse circuits there is no F to use in a calculation, so there is no Q either. In pulse circuits such as power supplies the ESR matters both in C and L. Core losses in the L increase the ESR at high frequencies. The key term here is LOSS, alternating current goes through, gets turned into heat by the losses, kind of equivalent to a resistance!
731:
not necessarily a series resistance either. "Q" factor is also a function of frequency. Inductors have DC resistance spec'ed because when they saturate, they turn into resistors, or worse fuses, and also to power rate them. DCR is an important spec for SMPS because significant current is in the inductor, Q factor isn't. This DCR value is the value of the ESR element when shown in circuit diagrams. I think this naming convention is historical. Calling it DCR must be intuitive because it's measured with an ohmmeter. Have I beaten this dead horse enough?
222: 191: 851:"You can see that the energy required to 'pump up' the core by moving from P1 to P2 is more than that which it returns when going from P2 to P3. This is evocatively termed inelastic behavior. You could look at this another way by thinking about the 'back emf' which opposed the initial increase in coil current. The emf generated is always proportional to the change in flux; but the flux changes less on the 'way down' than it does going up." 253: 243: 857:
actual inductor, effectively setting a minimum current needed between switching cycles in order to get real work done by the coil. Similarly a magnetizing inductance needs to be satisfied before magnetic flux can become usefully stored in the core, effectively demanding current each cycle. This current per cycle and the voltage across the inductor amounts to power used by the magnetizing inductance.
821:
occur in a reactance. At the same time you will be telling me whether my edits are nonsense as suggested. Light-current will of course feign incomprehension, apparently to string us along as entertainment. I am sure you have better things to do, but there can be nothing less worthwhile than keeping up this conversation indefinitely. I think that after this we will both be more cautious.
637:
losses in series with an ideal inductor? Both coils and capacitors have ESR and Q ratings, the two are inseperable. A drawing could be added to expand this, but it is futile since there is also a merge tag. If you are intent on merging it there is no point in making it too big to fit back into the capacitor article. How about picking one of these incompatable tags and removing the other?
867:
So eddy current is a function of frequency as well, so I don't think it is going to be represented as a resistive element. However if the circuit is linearized around an operating point and the frequency of operation is fixed, then the eddy current could be represented as a resistive element. I think
820:
Snafflekid. Would you now kindly arrive at an answer to the question? Does hysteresis in inductor cores represent a loss equivalent to a resistance or not? Here is an equation showing that a loss in Watts applies ( Ph = Kh×f×Bn watts m-3 ) from the reference above. A loss of power of course cannot
625:
Does Meggar have any more details on the application of ESR to circuits in general?. I'm not familiar with this particular use of the term. Could Meggar also say how this measurement is done? As I said I think the term Q covers it for coils-- unless youre talking about dc resistance which is not the
841:
Actually power can be expended in a reactive element–when it is switching. In a cap, i=C(dv/dt). say you are switching a voltage difference across a cap repeatedly, f=1/dt, you can rewrite this, i = C*Δv*f and since the cap is seeing this voltage, Δv, across it, P = Δv*i = C*Δv^2*f. (It's the main
730:
You are correct (BTW that's what I do, switch-mode power supply ICs). Some background--"Q" of an inductor is important in resonant circuits, because the "R" that is part of the "Q" could be two or three R's, has frequency dependence and does not lend itself to the concept of lumped elements and is
636:
Yes, the ESR is not the DC resistance. I did put up the entry about hysteresis and eddy current losses adding to the DC resistance. Do you see that small equivilent circuit in dashed lines under the quote in the above link? The one showing an equivilent resistor representing the sum of the various
409:
I suppose that the author may have been thinking about why an isolation transformer is used - to isolate the Earth reference from the chassis so that a fault current to Earth will be very small. So, in this broad sense, you could say that the isolation transformer limits the fault current. This,
856:
So I think why hysteresis is represented by an inductor in parallel with the ideal inductor is that it represents this opposition to the change in coil current when the coil current changes direction. Any current built up in this inductive element needs to be removed before current will enter the
720:
It seems that ESR is used in the SMPS world to describe the non idealites of inductors. OK. In other circuits however the term Q is exclusively used. If we mention ESRs narrow applicability to electronic power supplies, I suppose I could drop my objection to its use for certain types (not all) of
434:
Interesting idea but I don't think so. Basically this hysteresis uses a bit of energy each time the direction of the current changes in the coil. Power = energy x freq. so the power demanded by this hysteresis increases with frequency of current direction change. Maybe this power could be somehow
769:
Snafflekid did not say that. Once he conciders the matter a bit he will recall that both hystereses and eddy current losses (and skin effect) all add to the DC resistance to make for higher equivalent series resistance, as you would yourself if you read the article in that link. Perhaps there is
683:
I recommend that the page be turned into a disambiguation page, because ESR refers to both capacitors and inductors. I know that inductors are not spec'ed in terms of ESR, but it is still correct to speak of the ESR in an inductor, in circuit analysis. A redirect just to
537:
No, it isn't (as I already pointed out in the case of "more details"). Tell me what is currently here and in need of cleanup. If nothing, or nothing that cannot be easily fixed, go find the proper tag to add here and remove the cleanup tag, or I will.
461:
All practical inductors exhibit losses due to the resistance of the wire or absorption by materials within the magnetic field surrounding it. It is possible to model these losses as a resistance, R, in series with a perfect or loss free inductance
842:
source of power use in CMOS logic, charging and discharging the gate capacitances.) The similar principle applies to inductors, but with switching currents. P= v*Δi = L*Δi^2*f. I wish I knew more about the Kh term, but anyway the equation shows
445:
after putting my thinking cap on I remembered that the hysteresis is represented by magnetizing inductance, which is in parallel with the coil. The magnetizing inductance requires magnetizing current. So no, hysteresis is not reflected in ESR.
435:
represented as a frequency dependent resistance, but it is not to my knowledge. The resistances that are part of the Q factor are all small-signal resistances, and this would be a large-signal resistance, which is definitely not part of DCR.
754:
I posed a question here quite some time ago about how eddy current losses and hysteresis losses manifest themselves in incresed ESr for cored inductors. No reply has been forthcoming. The article still has this statement included even tho'
153: 797:
I do believe that eddy current is represented by a resistive lossy element, but I don't think hysteresis is. Though I think that a discussion of either on the ESR page is not very useful. Better on transformer or inductor,
1031: 389:
There won't be a reference for that. A standard isolating transformer will have a low ESR to keep output voltage steady with load changes. On short circuit it will burn out unless protected by a fuse.
988:
links to various blogs and sites selling esr meters and low esr components rather than describing the technical aspects of esr. So I am deleting all the currents links and adding another one.
862:"In any resistive circuit the power is proportional to the square of the applied voltage. The induced voltage is itself proportional to f×B and so the eddy losses are proportional to f^2B^2." 749: 147: 420: 835: 814: 789: 763: 370: 1027: 496: 487: 429: 403: 383: 439: 1035: 759:
has agreed that it is nonsense. Can some one give a quote of how these phenomena are represented in ESR please? Otherwise I will remove offending statement.--
868:
this whole subject requires painful excruciating preciseness so that we are always talking about the same thing. Too easy to mean one thing and say another.
414: 312: 708: 44: 576: 542: 520: 492:
As far as I know, ESR is not quoted for inductors. What is quoted is the Q. I believe ESR is limited to capacitors- unless someone else knows different!--
1026:
No. Internal resistance is |Z| (equivalent resistance) measured at 1 kHz. And ESR is measured at 100 kHz and it does not make much sense for batteries.
872: 802: 351: 897:
Core losses are modelled by including a resistance, and associated losses are accounted for by considering the core mu as a complex variable. mu bar.
450: 825: 779: 714: 664: 641: 393: 603: 470: 1020: 168: 1055: 1002: 302: 135: 744: 725: 701: 678: 651: 630: 620: 79: 365: 338: 1060: 735: 692: 345: 1050: 974: 647:
I ve looked at the link quite carefully, but I cant see the diagram to which you refer. Could you say exactly where it is please?--
710:. ESR isn't a term, only an abbreviation. The full phrase is used for many things. ESR is also a common spec for quartz crystals. 997: 279: 129: 566: 530: 510: 85: 125: 274:
on Knowledge. If you would like to participate, you can choose to edit the article attached to this page, or visit the
30: 275: 266: 227: 175: 688:
is too simplistic IMO. I can do this, in the free time I have between my 3 chip projects and 2 grad classes, ugh.
616:
There isnt really enough meat in this subject at the moment to sustain a separate article I feel. Any thoughts?--
99: 785:
Why not give an equation relating eddy current and hysteresis loss to ESR then. Then we can get it over with!--
104: 20: 379:. I have never heard this one before. Does anyone have any references please before I alter this statement??-- 74: 202: 24: 141: 506:
Page needs some serious work I feel. Coiuld do with a diagram or two and a bit more detail. Any offers?--
65: 611: 329: 658: 477: 465: 190: 109: 979: 878: 993: 208: 883:
OK heres what Ive got on this from Power Electronics 2nd ed, B.W. Williams, Macmillan, 1992
411: 572:
I don't see any real problem with the tag; cleanup is just one factor affecting quality.
8: 1008: 55: 971: 832: 811: 786: 760: 741: 722: 698: 675: 648: 627: 617: 589: 563: 527: 507: 493: 484: 426: 400: 380: 362: 335: 258: 70: 573: 539: 517: 278:, where you can join the project and see a list of open tasks. Leave messages at the 51: 989: 552: 501: 161: 1016: 869: 799: 756: 732: 689: 447: 436: 348: 334:
How does leakage thro' the dielectric of a capacitor affect its ESR, I wonder??--
831:
Do I detect a sign of slight impatience here Meggar? (Its a virtue you know!)--
1044: 526:
Clean up is covered under my mention of 'serious work' & 'more details'--
697:
No I disagree!. ESR is NEVER referrred to WRT inductors. Give me a quote!.--
822: 776: 711: 661: 638: 600: 467: 425:
I dont know about this one. Does hysteresis of a core affect coils esr?--
390: 271: 1012: 479:
only quotes resistive losses in inductors. It doesnt mention the term
270:, an attempt to provide a standard approach to writing articles about 685: 399:
Yeah. thats what I thought. but I thought I'd check-- just in case!--
810:
I tend to agree with you so can we alter the text to reflect this?--
558:
you will see that it refers to the article as being of insufficient
252: 242: 221: 846:
as a function of frequency. Excellent link BTW. Quoting the site:
775:
I don't know about Snafflekid but I am finding this tedious.
967:
Notice that ESR is not mentioned but Q and tan delta are!!!
562:. Its the name of the tag thats wrong, not my usage of it.-- 750:
Persistent error? about hysteresis and eddy current losses
421:
Is hysteresis reflected in increases esr for inductors?
371:
Isolating transformer- is this statement really true??
160: 886:
Because of core losses, a coil can be represented by
248: 15: 1007:Can we say that the quoted ESR of a battery is its 516:Adding diagrams and more detail is not "cleanup". 1042: 599:work - cleanup, as in what you do to a mess. -- 585:Usually this sort of request is what people use 33:for general discussion of the article's subject. 674:is. Thats what Ive been saying about coils!-- 174: 914:For a transformer, the parallel eq cct is 188: 943:series and parallel ccts are eqivalent so: 893:b) a parallel Rp,Lp cct for a transformer. 956:where tan delta is the core loss factor 1028:2A00:1370:8184:1765:72E6:8B99:A6F6:5EB0 670:Yes I see it. ESR is not mentioned but 1043: 548:If you actually read the cleanup tag: 375:An isolating transformer uses its ESR 890:a) a series Ls - Rs cct for inductors 595:for. "Cleanup" is generally used for 410:however has nothing to do with ESR. 357:Oh yes. Nearly forgot. What are the 184: 1003:Battery ESR and internal resistance 964:So pick the bones out of that lot! 207:It is of interest to the following 23:for discussing improvements to the 13: 1056:Mid-importance electronic articles 904:Z = Rs + jwLs = jw(mubar)cN^2 ohms 14: 1072: 960:tan delta = Rs/wLs = WLp/Rp = 1/Q 287:Knowledge:WikiProject Electronics 1061:WikiProject Electronics articles 290:Template:WikiProject Electronics 251: 241: 220: 189: 45:Click here to start a new topic. 1051:Start-Class electronic articles 740:Yes I submit. Enough already!-- 307:This article has been rated as 652:04:59, 27 September 2005 (UTC) 642:04:42, 27 September 2005 (UTC) 631:21:21, 25 September 2005 (UTC) 621:06:36, 25 September 2005 (UTC) 604:03:20, 29 September 2005 (UTC) 577:19:50, 25 September 2005 (UTC) 567:14:23, 25 September 2005 (UTC) 543:17:01, 23 September 2005 (UTC) 531:16:36, 23 September 2005 (UTC) 521:15:58, 23 September 2005 (UTC) 511:15:07, 23 September 2005 (UTC) 497:06:39, 25 September 2005 (UTC) 488:21:23, 25 September 2005 (UTC) 471:01:57, 21 September 2005 (UTC) 430:21:12, 20 September 2005 (UTC) 415:13:14, 20 September 2005 (UTC) 404:11:48, 20 September 2005 (UTC) 394:05:05, 20 September 2005 (UTC) 384:04:33, 20 September 2005 (UTC) 366:04:29, 12 September 2005 (UTC) 339:04:26, 12 September 2005 (UTC) 1: 1036:19:04, 11 November 2022 (UTC) 1021:20:50, 5 September 2018 (UTC) 937:= 1/(Lp/cN^2) - 1/(jRp/wcN^2) 42:Put new text under old text. 975:08:51, 19 October 2005 (UTC) 900:Series equ cct of inductor: 873:01:01, 22 October 2005 (UTC) 836:03:54, 21 October 2005 (UTC) 826:03:47, 21 October 2005 (UTC) 815:18:34, 18 October 2005 (UTC) 803:17:17, 18 October 2005 (UTC) 790:15:17, 18 October 2005 (UTC) 780:06:42, 18 October 2005 (UTC) 764:04:51, 18 October 2005 (UTC) 745:16:55, 14 October 2005 (UTC) 736:06:48, 14 October 2005 (UTC) 726:00:42, 14 October 2005 (UTC) 715:03:00, 13 October 2005 (UTC) 702:02:19, 13 October 2005 (UTC) 693:22:17, 12 October 2005 (UTC) 679:06:28, 10 October 2005 (UTC) 665:06:17, 10 October 2005 (UTC) 451:16:53, 14 October 2005 (UTC) 440:07:23, 14 October 2005 (UTC) 352:17:38, 14 October 2005 (UTC) 25:Equivalent series resistance 7: 950:sub s/u'sub s = mu'sub p/mu 657:Here is a link to the .gif 50:New to Knowledge? Welcome! 10: 1077: 908:where mu(bar) = mu' - j mu 313:project's importance scale 998:10:01, 20 July 2013 (UTC) 306: 236: 215: 80:Be welcoming to newcomers 264:This article is part of 721:inductor application.-- 267:WikiProject Electronics 864: 853: 197:This article is rated 75:avoid personal attacks 926:1/mu = 1/mu' - 1/(jmu 919:1/Z = 1/Rp + 1/(jwLp) 910:=Ls/cN^2 - j Rs/wcN^2 860: 849: 100:Neutral point of view 707:There are some here 361:affecting the ESR?-- 105:No original research 1009:internal resistance 293:electronic articles 612:Merge or redirect? 259:Electronics portal 203:content assessment 86:dispute resolution 47: 952:sub p = tan delta 330:ESR in capacitors 327: 326: 323: 322: 319: 318: 280:project talk page 183: 182: 66:Assume good faith 43: 1068: 594: 588: 557: 551: 377:to limit current 295: 294: 291: 288: 285: 261: 256: 255: 245: 238: 237: 232: 224: 217: 216: 200: 194: 193: 185: 179: 178: 164: 95:Article policies 16: 1076: 1075: 1071: 1070: 1069: 1067: 1066: 1065: 1041: 1040: 1005: 982: 881: 757:User:Snafflekid 752: 614: 592: 586: 555: 549: 504: 423: 412:Alfred Centauri 373: 332: 292: 289: 286: 283: 282: 257: 250: 230: 201:on Knowledge's 198: 121: 116: 115: 114: 91: 61: 12: 11: 5: 1074: 1064: 1063: 1058: 1053: 1039: 1038: 1004: 1001: 981: 980:External links 978: 945: 944: 940: 939: 922: 921: 906: 905: 895: 894: 891: 880: 879:Book quotation 877: 876: 875: 859: 858: 848: 847: 829: 828: 808: 807: 806: 805: 783: 782: 772: 771: 751: 748: 718: 717: 668: 667: 645: 644: 626:same as ESR -- 613: 610: 609: 608: 607: 606: 580: 579: 546: 545: 524: 523: 503: 500: 474: 473: 456: 454: 453: 422: 419: 418: 417: 397: 396: 372: 369: 355: 354: 344:Yes, it does. 331: 328: 325: 324: 321: 320: 317: 316: 309:Mid-importance 305: 299: 298: 296: 263: 262: 246: 234: 233: 231:Mid‑importance 225: 213: 212: 206: 195: 181: 180: 118: 117: 113: 112: 107: 102: 93: 92: 90: 89: 82: 77: 68: 62: 60: 59: 48: 39: 38: 35: 34: 28: 9: 6: 4: 3: 2: 1073: 1062: 1059: 1057: 1054: 1052: 1049: 1048: 1046: 1037: 1033: 1029: 1025: 1024: 1023: 1022: 1018: 1014: 1010: 1000: 999: 995: 991: 987: 986:external link 977: 976: 973: 972:Light current 968: 965: 962: 961: 957: 954: 953: 951: 942: 941: 938: 935: 934: 933: 932: 930: 929: 920: 917: 916: 915: 912: 911: 903: 902: 901: 898: 892: 889: 888: 887: 884: 874: 871: 866: 865: 863: 855: 854: 852: 845: 844:power density 840: 839: 838: 837: 834: 833:Light current 827: 824: 819: 818: 817: 816: 813: 812:Light current 804: 801: 796: 795: 794: 793: 792: 791: 788: 787:Light current 781: 778: 774: 773: 768: 767: 766: 765: 762: 761:Light current 758: 747: 746: 743: 742:Light current 738: 737: 734: 728: 727: 724: 723:Light current 716: 713: 709: 706: 705: 704: 703: 700: 699:Light current 695: 694: 691: 687: 681: 680: 677: 676:Light current 673: 666: 663: 659: 656: 655: 654: 653: 650: 649:Light current 643: 640: 635: 634: 633: 632: 629: 628:Light current 623: 622: 619: 618:Light current 605: 602: 598: 591: 584: 583: 582: 581: 578: 575: 571: 570: 569: 568: 565: 564:Light current 561: 554: 544: 541: 536: 535: 534: 532: 529: 528:Light current 522: 519: 515: 514: 513: 512: 509: 508:Light current 499: 498: 495: 494:Light current 490: 489: 486: 485:Light current 482: 478: 472: 469: 466: 463: 459: 458: 457: 452: 449: 444: 443: 442: 441: 438: 432: 431: 428: 427:Light current 416: 413: 408: 407: 406: 405: 402: 401:Light current 395: 392: 388: 387: 386: 385: 382: 381:Light current 378: 368: 367: 364: 363:Light current 360: 359:other factors 353: 350: 346: 343: 342: 341: 340: 337: 336:Light current 314: 310: 304: 301: 300: 297: 281: 277: 273: 269: 268: 260: 254: 249: 247: 244: 240: 239: 235: 229: 226: 223: 219: 218: 214: 210: 204: 196: 192: 187: 186: 177: 173: 170: 167: 163: 159: 155: 152: 149: 146: 143: 140: 137: 134: 131: 127: 124: 123:Find sources: 120: 119: 111: 110:Verifiability 108: 106: 103: 101: 98: 97: 96: 87: 83: 81: 78: 76: 72: 69: 67: 64: 63: 57: 53: 52:Learn to edit 49: 46: 41: 40: 37: 36: 32: 26: 22: 18: 17: 1006: 985: 983: 969: 966: 963: 959: 958: 955: 949: 947: 946: 936: 931: 927: 925: 923: 918: 913: 909: 907: 899: 896: 885: 882: 861: 850: 843: 830: 809: 784: 753: 739: 729: 719: 696: 682: 671: 669: 646: 624: 615: 596: 574:Gene Nygaard 559: 547: 540:Gene Nygaard 525: 518:Gene Nygaard 505: 491: 480: 475: 460: 455: 433: 424: 398: 376: 374: 358: 356: 333: 308: 276:project page 265: 209:WikiProjects 171: 165: 157: 150: 144: 138: 132: 122: 94: 19:This is the 284:Electronics 272:electronics 228:Electronics 199:Start-class 148:free images 31:not a forum 1045:Categories 870:Snafflekid 800:Snafflekid 733:Snafflekid 690:Snafflekid 448:Snafflekid 437:Snafflekid 349:Snafflekid 984:Artcle's 686:capacitor 590:expansion 476:THis ref 88:if needed 71:Be polite 21:talk page 597:remedial 502:Clean up 56:get help 29:This is 27:article. 560:quality 553:cleanup 311:on the 154:WP refs 142:scholar 823:Meggar 777:Meggar 712:Meggar 662:Meggar 639:Meggar 601:Beland 468:Meggar 464:- From 391:Meggar 205:scale. 126:Google 1013:Rod57 990:R!j!n 169:JSTOR 130:books 84:Seek 1032:talk 1017:talk 1011:? - 994:talk 162:FENS 136:news 73:and 924:So 798:IMO 481:ESR 303:Mid 176:TWL 1047:: 1034:) 1019:) 996:) 970:-- 948:mu 660:. 593:}} 587:{{ 556:}} 550:{{ 533:] 483:-- 462:L. 156:) 54:; 1030:( 1015:( 992:( 928:) 672:Q 315:. 211:: 172:· 166:· 158:· 151:· 145:· 139:· 133:· 128:( 58:.

Index

talk page
Equivalent series resistance
not a forum
Click here to start a new topic.
Learn to edit
get help
Assume good faith
Be polite
avoid personal attacks
Be welcoming to newcomers
dispute resolution
Neutral point of view
No original research
Verifiability
Google
books
news
scholar
free images
WP refs
FENS
JSTOR
TWL

content assessment
WikiProjects
WikiProject icon
Electronics
WikiProject icon
icon

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.