Knowledge

Ring (mathematics)

Source πŸ“

1851: 15769: 18108:: the multiplication in the Burnside ring is formed by writing the tensor product of two permutation modules as a permutation module. The ring structure allows a formal way of subtracting one action from another. Since the Burnside ring is contained as a finite index subring of the representation ring, one can pass easily from one to the other by extending the coefficients from integers to the rational numbers. 8801: 3572: 8576: 3912: 9144: 8311: 4002:, then some consequences include the lack of existence of infinite direct sums of rings, and that proper direct summands of rings are not subrings. They conclude that "in many, maybe most, branches of ring theory the requirement of the existence of a unity element is not sensible, and therefore unacceptable." 3618:
in 1892 and published in 1897. In 19th century German, the word "Ring" could mean "association", which is still used today in English in a limited sense (for example, spy ring), so if that were the etymology then it would be similar to the way "group" entered mathematics by being a non-technical word
13925:
A remark: localization is no help in proving a global existence. One instance of this is that if two modules are isomorphic at all prime ideals, it does not follow that they are isomorphic. (One way to explain this is that the localization allows one to view a module as a sheaf over prime ideals and
18128:
or "Green ring". The representation ring's additive group is the free abelian group whose basis are the indecomposable modules and whose addition corresponds to the direct sum. Expressing a module in terms of the basis is finding an indecomposable decomposition of the module. The multiplication is
14969:
and completion has been among the most important aspects that distinguish modern commutative ring theory from the classical one developed by the likes of Noether. Pathological examples found by Nagata led to the reexamination of the roles of Noetherian rings and motivated, among other things, the
8999: 3173: 18103:
whose basis is the set of transitive actions of the group and whose addition is the disjoint union of the action. Expressing an action in terms of the basis is decomposing an action into its transitive constituents. The multiplication is easily expressed in terms of the
6032: 19290: 11502: 6604: 3640: 2238: 8796:{\displaystyle R/{\textstyle \bigcap _{i=1}^{n}{{\mathfrak {a}}_{i}}}\simeq \prod _{i=1}^{n}{R/{\mathfrak {a}}_{i}},\qquad x{\bmod {\textstyle \bigcap _{i=1}^{n}{\mathfrak {a}}_{i}}}\mapsto (x{\bmod {\mathfrak {a}}}_{1},\ldots ,x{\bmod {\mathfrak {a}}}_{n}).} 11203: 7822: 4010:
rather than the direct sum. However, his main argument is that rings without a multiplicative identity are not totally associative, in the sense that they do not contain the product of any finite sequence of ring elements, including the empty sequence.
8043: 13839: 9571: 1812:
The additive group of a ring is the underlying set equipped with only the operation of addition. Although the definition requires that the additive group be abelian, this can be inferred from the other ring axioms. The proof makes use of the
18496: 18713:
with a single object. It is therefore natural to consider arbitrary preadditive categories to be generalizations of rings. And indeed, many definitions and theorems originally given for rings can be translated to this more general context.
15389:. The most important integral domains are principal ideal domains, PIDs for short, and fields. A principal ideal domain is an integral domain in which every ideal is principal. An important class of integral domains that contain a PID is a 10825:
as a subring. A formal power series ring does not have the universal property of a polynomial ring; a series may not converge after a substitution. The important advantage of a formal power series ring over a polynomial ring is that it is
7262: 19208: 3530: 17954: 3463: 3399: 3335: 7918:
in the ring and the second minus the additive inverse in the module. Using this and denoting repeated addition by a multiplication by a positive integer allows identifying abelian groups with modules over the ring of integers.
3274: 17701: 10995: 11921: 7891:
Although similarly defined, the theory of modules is much more complicated than that of vector space, mainly, because, unlike vector spaces, modules are not characterized (up to an isomorphism) by a single invariant (the
1728:
In the terminology of this article, a ring is defined to have a multiplicative identity, while a structure with the same axiomatic definition but without the requirement for a multiplicative identity is instead called a
3986:
in the definition of "ring", especially in advanced books by notable authors such as Artin, Bourbaki, Eisenbud, and Lang. There are also books published as late as 2022 that use the term without the requirement for a
9242: 3623:). Specifically, in a ring of algebraic integers, all high powers of an algebraic integer can be written as an integral combination of a fixed set of lower powers, and thus the powers "cycle back". For instance, if 15209: 13660: 2677: 2621: 16923: 4855: 3024: 17399:(by using the addition operation), with extra structure: namely, ring multiplication. In the same way, there are other mathematical objects which may be considered as rings with extra structure. For example: 16718: 15417: 2479: 8497: 2423: 16157: 10814: 9146:
as a direct sum of abelian groups (because for abelian groups finite products are the same as direct sums). Clearly the direct sum of such ideals also defines a product of rings that is isomorphic to 
16413: 10148: 19123: 19042: 13396: 8557: 11337: 3050: 2010: 16293:-algebra is a central simple algebra over its center. In this section, a central simple algebra is assumed to have finite dimension. Also, we mostly fix the base field; thus, an algebra refers to a 13920: 13755: 15349: 11057: 5910: 19213: 11386: 10537: 16479: 15527: 2521: 19002: 18955: 18366: 8048: 7670: 7123: 6450: 6445: 3907:{\displaystyle {\begin{aligned}a^{3}&=4a-1,\\a^{4}&=4a^{2}-a,\\a^{5}&=-a^{2}+16a-4,\\a^{6}&=16a^{2}-8a+1,\\a^{7}&=-8a^{2}+65a-16,\\\vdots \ &\qquad \vdots \end{aligned}}} 3645: 17320: 2960: 19351: 16620: 13090: 17797: 12017: 9139:{\displaystyle R={\mathfrak {a}}_{1}\oplus \cdots \oplus {\mathfrak {a}}_{n},\quad {\mathfrak {a}}_{i}{\mathfrak {a}}_{j}=0,i\neq j,\quad {\mathfrak {a}}_{i}^{2}\subseteq {\mathfrak {a}}_{i}} 2146: 14158: 2282: 3619:
for "collection of related things". According to Harvey Cohn, Hilbert used the term for a ring that had the property of "circling directly back" to an element of itself (in the sense of an
15658: 7526: 6930: 251: 19083: 13328: 9357: 5006: 2800: 12811: 10369: 9877: 6714: 4331: 2907: 2717: 2558: 2319: 15155: 14746: 13533: 7446: 3219: 543: 15716: 10411: 7404: 6781: 4751:
be the set of all continuous functions on the real line that vanish outside a bounded interval that depends on the function, with addition as usual but with multiplication defined as
4020:
to include a requirement for a multiplicative identity: "unital ring", "unitary ring", "unit ring", "ring with unity", "ring with identity", "ring with a unit", or "ring with 1".
1817:", and does not work in a rng. (For a rng, omitting the axiom of commutativity of addition leaves it inferable from the remaining rng assumptions only for elements that are products: 11097: 12352: 7665: 18008: 14566: 6882: 12943: 9276: 8306:{\displaystyle {\begin{aligned}&(r_{1},s_{1})+(r_{2},s_{2})=(r_{1}+r_{2},s_{1}+s_{2})\\&(r_{1},s_{1})\cdot (r_{2},s_{2})=(r_{1}\cdot r_{2},s_{1}\cdot s_{2})\end{aligned}}} 4937: 19448: 13223: 10438: 9691: 8990: 8959: 8928: 8897: 8848: 18859: 14925: 14836: 14341: 13187: 13158: 13044: 12972: 12320: 8436: 17510: 16664: 14869: 14235: 13866: 12893: 11667: 4687: 4368: 2839: 496: 459: 13122: 11837: 10575: 2870: 1145:
Examples of commutative rings include the set of integers with their standard addition and multiplication, the set of polynomials with their addition and multiplication, the
16823: 16766: 16232: 15573: 15277: 15084: 14377: 9970: 5594: 5565: 5532: 4732: 4283: 3998:
Gardner and Wiegandt assert that, when dealing with several objects in the category of rings (as opposed to working with a fixed ring), if one requires all rings to have a
2746: 1895: 18251: 17731: 17445: 14796: 14770: 14495: 14469: 14445: 14407: 14286: 12113: 10313: 9809: 9413: 6675: 5503: 5477: 5435: 4649: 4254: 4192: 205: 12540: 3606:'s notion of ideal number) and "module" and studied their properties. Dedekind did not use the term "ring" and did not define the concept of a ring in a general setting. 17211: 17094: 18361: 14653: 18754:
is an algebraic structure that satisfies all of the ring axioms except the associative property and the existence of a multiplicative identity. A notable example is a
14602: 6239: 1838:
There are a few authors who use the term "ring" to refer to structures in which there is no requirement for multiplication to be associative. For these authors, every
14197: 13448: 13016: 12644: 12592: 7118: 6323: 6268: 16543: 14058: 14013: 13701: 12750: 12685: 11378: 10688: 10046: 9729: 9645: 6294: 17164: 14965:, which says, roughly, that a complete local ring tends to look like a formal power series ring or a quotient of it. On the other hand, the interaction between the 12060: 15887:
Every module over a division ring is a free module (has a basis); consequently, much of linear algebra can be carried out over a division ring instead of a field.
15776:
In algebraic geometry, UFDs arise because of smoothness. More precisely, a point in a variety (over a perfect field) is smooth if the local ring at the point is a
10739: 4149: 19671:
Poonen claims that "the natural extension of associativity demands that rings should contain an empty product, so it is natural to require rings to have a 
19132: 12493: 6197:
For commutative rings, the ideals generalize the classical notion of divisibility and decomposition of an integer into prime numbers in algebra. A proper ideal
5208: 9161: 13767: 3995:
does not require unit elements in rings. In a research article, the authors often specify which definition of ring they use in the beginning of that article.
3468: 17861: 16048:
Any module over a semisimple ring is semisimple. (Proof: A free module over a semisimple ring is semisimple and any module is a quotient of a free module.)
4014:
Authors who follow either convention for the use of the term "ring" may use one of the following terms to refer to objects satisfying the other convention:
3404: 3340: 3279: 3224: 4758: 17599: 10926: 10694:. In particular, many local problems in algebraic geometry may be attacked through the study of the generators of an ideal in a polynomial ring. (cf. 11852: 4023:
to omit a requirement for a multiplicative identity: "rng" or "pseudo-ring", although the latter may be confusing because it also has other meanings.
16037: 3963:
gave a modern axiomatic definition of commutative rings (with and without 1) and developed the foundations of commutative ring theory in her paper
15876:. Any centralizer in a division ring is also a division ring. In particular, the center of a division ring is a field. It turned out that every 18030:. To know each individual integral homology group is essentially the same as knowing each individual integral cohomology group, because of the 1064: 13548: 6178:
Rings are often studied with special conditions set upon their ideals. For example, a ring in which there is no strictly increasing infinite
648: 15183: 9309:(orthogonal). Again, one can reverse the construction. Namely, if one is given a partition of 1 in orthogonal central idempotents, then let 18010:
of a space, and indeed these were defined first, as a useful tool for distinguishing between certain pairs of topological spaces, like the
2626: 15459: 2573: 18758:. There exists some structure theory for such algebras that generalizes the analogous results for Lie algebras and associative algebras. 18718:
between preadditive categories generalize the concept of ring homomorphism, and ideals in additive categories can be defined as sets of
17232: 16852: 16565:, a central simple algebra is the matrix ring of a division ring; thus, each similarity class is represented by a unique division ring. 2965: 18193:. In particular, the algebraic geometry of the Stanley–Reisner ring was used to characterize the numbers of faces in each dimension of 16623: 16673: 2428: 8448: 2375: 10747: 16349: 16088: 3168:{\displaystyle \operatorname {M} _{2}(F)=\left\{\left.{\begin{pmatrix}a&b\\c&d\end{pmatrix}}\right|\ a,b,c,d\in F\right\}.} 10283:
The substitution is a special case of the universal property of a polynomial ring. The property states: given a ring homomorphism
10054: 7621:. This operation is commonly denoted by juxtaposition and called multiplication. The axioms of modules are the following: for all 1272:
equipped with two binary operations + (addition) and β‹… (multiplication) satisfying the following three sets of axioms, called the
19088: 19007: 13346: 8502: 11273: 18150: 12066: 6027:{\displaystyle r_{1}x_{1}+\cdots +r_{n}x_{n}\quad {\textrm {such}}\;{\textrm {that}}\;r_{i}\in R\;{\textrm {and}}\;x_{i}\in I,} 4539: 19285:{\displaystyle C^{\operatorname {op} }\to \mathbf {Rings} {\stackrel {\textrm {forgetful}}{\longrightarrow }}\mathbf {Sets} .} 11497:{\displaystyle \operatorname {End} _{R}(U)\simeq \prod _{i=1}^{r}\operatorname {M} _{m_{i}}(\operatorname {End} _{R}(U_{i})).} 1908: 21225: 21116: 21008: 20990: 20918: 20867: 20799: 20672: 20520: 20419: 20400: 3602:
defined the concept of the ring of integers of a number field. In this context, he introduced the terms "ideal" (inspired by
20309: 15286: 11000: 6599:{\displaystyle {\begin{aligned}&f(a+b)=f(a)\ddagger f(b)\\&f(a\cdot b)=f(a)*f(b)\\&f(1_{R})=1_{S}\end{aligned}}} 4707:
as a result). There is a natural way to enlarge it to a ring, by including negative numbers to produce the ring of integers
2015:
The axioms of a ring were elaborated as a generalization of familiar properties of addition and multiplication of integers.
10487: 5507:
contains 1, which is the multiplicative identity of the larger rings). On the other hand, the subset of even integers
105: 16418: 2486: 20594:. Carus Mathematical Monographs. Vol. 15. With an afterword by Lance W. Small. Mathematical Association of America. 18960: 18913: 2233:{\displaystyle \mathbb {Z} /4\mathbb {Z} =\left\{{\overline {0}},{\overline {1}},{\overline {2}},{\overline {3}}\right\}} 18686:, is an isomorphism of rings. In this sense, therefore, any ring can be viewed as the endomorphism ring of some abelian 18189:. This ring reflects many of the combinatorial properties of the simplicial complex, so it is of particular interest in 15024:
is the unique ring homomorphism. Just as in the group case, every ring can be represented as a quotient of a free ring.
2914: 1105:. (Some authors define rings without requiring a multiplicative identity and instead call the structure defined above a 19328: 16591: 13056: 1057: 17738: 11936: 21532: 21493: 21373: 21343: 21323: 21253: 21194: 21055: 20944: 20895: 20833: 20773: 20751: 20729: 20700: 20618: 20599: 20558: 19467:, such that the ring axiom diagrams commute up to homotopy. In practice, it is common to define a ring spectrum as a 15891: 14097: 2247: 641: 593: 19876: 15890:
The study of conjugacy classes figures prominently in the classical theory of division rings; see, for example, the
18228: 16581: 15596: 10631:(theorem of zeros) states that there is a natural one-to-one correspondence between the set of all prime ideals in 7478: 5188: 19768: 6905: 215: 21616: 20904: 19485: 19047: 14254: 13249: 9312: 4950: 2767: 12755: 11198:{\displaystyle \operatorname {End} _{R}(\oplus _{1}^{n}U)\to \operatorname {M} _{n}(S),\quad f\mapsto (f_{ij}).} 10326: 9825: 6684: 6175:
if it is nonzero and it has no proper nonzero two-sided ideals. A commutative simple ring is precisely a field.
4302: 2877: 2687: 2528: 2289: 21584: 21550: 20577: 20282: 17528: 15881: 15095: 14658: 13454: 7817:{\displaystyle {\begin{aligned}&a(x+y)=ax+ay\\&(a+b)x=ax+bx\\&1x=x\\&(ab)x=a(bx)\end{aligned}}} 7409: 4607: 3185: 1195: 510: 20078: 15663: 13871: 13706: 10374: 7362: 6732: 4610:(depending on the context). In fact, many rings that appear in analysis are noncommutative. For example, most 21638: 21555: 21525: 21108: 20791: 18031: 16721: 6976: 1050: 18129:
the tensor product. When the algebra is semisimple, the representation ring is just the character ring from
12325: 4865:
has the property of a multiplicative identity, but it is not a function and hence is not an element of 
19948: 19915: 17969: 16562: 16182: 14502: 11508: 10628: 6859: 6191: 6081:
if it is both a left ideal and right ideal. A one-sided or two-sided ideal is then an additive subgroup of
3982:
for a "ring". Starting in the 1960s, it became increasingly common to see books including the existence of
3951:
in 1915, but his axioms were stricter than those in the modern definition. For instance, he required every
1138:. The simplest commutative rings are those that admit division by non-zero elements; such rings are called 634: 501: 18730:
Algebraists have defined structures more general than rings by weakening or dropping some of ring axioms.
12909: 9247: 4890: 20692: 19525: 19415: 17415:
such that the scalar multiplication is compatible with the ring multiplication. For instance, the set of
15828: 15390: 13192: 10416: 9650: 8964: 8933: 8902: 8808: 5221: 3992: 919: 351: 31: 17: 8853: 4046:
The prototypical example is the ring of integers with the two operations of addition and multiplication.
21499: 21485: 20859: 18820: 18220: 18096: 16320: 15852: 15354: 14898: 14809: 14314: 13935: 13163: 13131: 13020: 12948: 12285: 111: 17477: 16640: 14845: 14202: 13844: 12816: 11632: 8398: 4658: 4344: 3975:
Fraenkel's axioms for a "ring" included that of a multiplicative identity, whereas Noether's did not.
2814: 472: 435: 126: 19125:(multiplicative identity) satisfying the usual ring axioms. Equivalently, a ring object is an object 18887: 13970:
viewed as endomorphisms to automorphisms and is universal with respect to this property. (Of course,
13103: 11717: 10553: 9566:{\displaystyle R=\left\{a_{n}t^{n}+a_{n-1}t^{n-1}+\dots +a_{1}t+a_{0}\mid n\geq 0,a_{j}\in R\right\}} 8570: 5805: 4403: 2848: 1780:. Rings that also satisfy commutativity for multiplication (such as the ring of integers) are called 21017:
Ballieu, R. (1947). "Anneaux finis; systèmes hypercomplexes de rang trois sur un corps commutatif".
18026:
were later defined in terms of homology groups in a way which is roughly analogous to the dual of a
16795: 16738: 16204: 15534: 15249: 13092:
This is the reason for the terminology "localization". The field of fractions of an integral domain
20429: 18212: 18186: 17804: 17124: 15999: 15816: 15064: 14357: 14082: 12444:
of an integral domain to an arbitrary ring and modules. Given a (not necessarily commutative) ring
12020: 10899: 10702: 9940: 7893: 5684: 5574: 5545: 5512: 4712: 4263: 2726: 1875: 1150: 586: 389: 339: 18491:{\displaystyle {\begin{aligned}&(f+g)(x)=f(x)+g(x)\\&(f\cdot g)(x)=f(g(x)),\end{aligned}}} 18234: 17714: 17428: 14998:
consists of polynomials with integral coefficients in noncommuting variables that are elements of
14779: 14753: 14478: 14452: 14414: 14390: 14269: 12076: 10286: 9788: 6900:(that is, right-cancelable morphism) of rings need not be surjective. For example, the unique map 6658: 5486: 5451: 5418: 4632: 4237: 4175: 4035: 188: 21593: 19615: 19505: 19500: 18190: 15402: 14962: 12498: 12138: 8372: 8011: 7589: 6186:. A ring in which there is no strictly decreasing infinite chain of left ideals is called a left 1579: 1131: 1010: 398: 132: 91: 19846: 17179: 17062: 10864:
forms a ring with the entry-wise addition and the usual matrix multiplication. It is called the
7257:{\displaystyle {\begin{aligned}&(a+I)+(b+I)=(a+b)+I,\\&(a+I)(b+I)=(ab)+I.\end{aligned}}} 4542:. It is a commutative ring if the elliptic curve is defined over a field of characteristic zero. 4505:. The operations in this ring are addition and composition of endomorphisms. More generally, if 3978:
Most or all books on algebra up to around 1960 followed Noether's convention of not requiring a
20587: 19886: 16264: 15834: 14615: 12437: 11541: 9883: 7897: 6950: 6819: 5236: 4167: 3956: 1802: 726: 682: 555: 406: 357: 138: 21220:, Interscience Tracts in Pure and Applied Mathematics, vol. 13, Interscience Publishers, 21050:, Encyclopedia of Mathematics and its Applications, vol. 57, Cambridge University Press, 20431:
Applications algΓ©briques de la cohomologie des groupes, I, II, SΓ©minaire Henri Cartan, 1950/51
20292: 18742:
is the same as a ring, except that the existence of a multiplicative identity is not assumed.
14571: 10819:
together with multiplication and addition that mimic those for convergent series. It contains
6212: 6107:. Similarly, one can consider the right ideal or the two-sided ideal generated by a subset of 21131: 20319: 17057: 15784: 15758: 14346: 14167: 13409: 12977: 12605: 12553: 11926: 7569: 6299: 6244: 3179: 1250: 1183: 1098: 21313: 21184: 20270: 16484: 16251:
happens to be a field, then this is equivalent to the usual definition in field theory (cf.
14022: 13977: 13665: 12714: 12649: 11353: 10923:
As in linear algebra, a matrix ring may be canonically interpreted as an endomorphism ring:
10634: 9998: 9696: 9591: 9366:
is not a sum of orthogonal central idempotents, then their direct sum is isomorphic to 
6273: 21643: 21350: 21235: 20928: 20809: 20710: 20541: 19304: 18710: 18699: 18262: 18064: 17813: 17800: 17129: 16481:
the similarity is an equivalence relation. The similarity classes with the multiplication
16015: 15382: 12025: 7551: 6942: 5769: 5292: 4862: 4436: 4399: 4064: 3620: 1839: 1094: 997: 989: 961: 956: 947: 904: 846: 279: 153: 20817: 19203:{\displaystyle h_{R}=\operatorname {Hom} (-,R):C^{\operatorname {op} }\to \mathbf {Sets} } 18702:). In essence, the most general form of a ring, is the endomorphism group of some abelian 10707: 4699:
with respect to addition – for instance, there is no natural number which can be added to
8: 19694: 19406: 18751: 18194: 18170: 18166: 18125: 18105: 18088: 17830: 17404: 16949: 16252: 15869: 15846: 12126: 10578: 8366:
with the above operations of addition and multiplication and the multiplicative identity
7994: 7828: 7565: 7061: 7011: 6371:. This latter formulation illustrates the idea of ideals as generalizations of elements. 5833: 5440: 5329: 5246: 4692: 4552: 4163: 4152: 4057: 4050: 3038: 1806: 1209:
The conceptualization of rings spanned the 1870s to the 1920s, with key contributions by
1191: 1139: 1119: 1015: 1005: 856: 756: 748: 739: 674: 670: 561: 369: 320: 265: 159: 145: 73: 41: 14982:
The most general way to construct a ring is by specifying generators and relations. Let
14840:
It is again a field since the field operations extend to the completion. The subring of
13834:{\displaystyle 0\to M'_{\mathfrak {m}}\to M_{\mathfrak {m}}\to M''_{\mathfrak {m}}\to 0} 4093: 21572: 21464: 21412: 21289: 21279: 21243: 21156: 21044: 19520: 19472: 19398: 18276:– where rather than a vector space over a field, one has a "vector space over a ring". 18182: 18162: 18134: 18100: 18019: 17554: 16073: 15906: 15880:
domain (in particular finite division ring) is a field; in particular commutative (the
15868:
is a ring such that every non-zero element is a unit. A commutative division ring is a
15777: 12459: 12441: 10898:
to itself forms a ring with addition that is of function and multiplication that is of
9378: 9151: 6784: 5228: 5193: 4479: 4288: 4229: 3525:{\displaystyle BA=\left({\begin{smallmatrix}1&0\\0&0\end{smallmatrix}}\right);} 2138: 1763:
below, many authors apply the term "ring" without requiring a multiplicative identity.
1238: 1135: 770: 574: 17949:{\displaystyle H^{*}(X,\mathbb {Z} )=\bigoplus _{i=0}^{\infty }H^{i}(X,\mathbb {Z} ),} 3458:{\displaystyle AB=\left({\begin{smallmatrix}0&0\\0&1\end{smallmatrix}}\right)} 3394:{\displaystyle B=\left({\begin{smallmatrix}0&1\\0&0\end{smallmatrix}}\right),} 21528: 21509: 21489: 21468: 21416: 21369: 21339: 21319: 21300: 21249: 21221: 21190: 21148: 21112: 21051: 21004: 20986: 20940: 20914: 20891: 20863: 20842: 20829: 20795: 20769: 20747: 20725: 20696: 20686: 20668: 20614: 20595: 20573: 20554: 20516: 20415: 20396: 19552: 19547: 19495: 18865: 18296: 18224: 18206: 18146: 18076: 18072: 17846: 17471: 16585: 16198: 15925: 15918: 15420:. The theorem may be illustrated by the following application to linear algebra. Let 15216: 15212: 15166: 14961:
A complete ring has much simpler structure than a commutative ring. This owns to the
14954: 12902:
with respect to the complement of a prime ideal (or a union of prime ideals) in 
11842: 11537: 10847: 10445: 9749: 8025: 7847:. This is not only a change of notation, as the last axiom of right modules (that is 6387: 6380: 6190:. It is a somewhat surprising fact that a left Artinian ring is left Noetherian (the 5155: 4489: 4295: 3595: 3330:{\displaystyle A=\left({\begin{smallmatrix}0&1\\1&0\end{smallmatrix}}\right)} 2055: 1786:. Books on commutative algebra or algebraic geometry often adopt the convention that 1419: 1266: 690: 615: 412: 177: 118: 8805:
A "finite" direct product may also be viewed as a direct sum of ideals. Namely, let
21602: 21564: 21505: 21456: 21404: 21392: 21213: 21140: 21077: 20813: 20682: 20496: 20484: 20472: 19490: 18715: 18130: 18043: 18023: 17558: 17542: 17463: 16021: 15840: 15804: 15456:
factors into powers of distinct irreducible polynomials (that is, prime elements):
15406: 14966: 12145: 11619: 11245: 9374: 7978: 7915: 6627: 5177: 3948: 3599: 3575: 3269:{\displaystyle \left({\begin{smallmatrix}1&0\\0&1\end{smallmatrix}}\right)} 2107: 1782: 1736: 1588: 1463: 1242: 1218: 1210: 1187: 1154: 1123: 1102: 841: 694: 621: 607: 421: 363: 326: 99: 85: 21338:, Graduate Studies in Mathermatics, vol. 145, American Mathematical Society, 21205: 10695: 866: 30:
This article is about the algebraic structure. For other uses in mathematics, see
21333: 21231: 21180: 21126: 20924: 20908: 20805: 20706: 20660: 20644: 20628: 20537: 19601: 19572: 19461: 18891: 18158: 17853: 16927: 16235: 16007: 15931: 15810: 15386: 15358: 13931: 13244: 11512: 9739: 9581: 9394: 6183: 6135: 4696: 4443:, forms a ring with matrix addition and matrix multiplication as operations. For 4080: 3591: 3566: 3034: 1767: 1234: 1226: 1199: 1146: 933: 927: 914: 894: 885: 851: 788: 722: 383: 333: 171: 17696:{\displaystyle \lambda ^{n}(x+y)=\sum _{0}^{n}\lambda ^{i}(x)\lambda ^{n-i}(y).} 16189:
Semisimplicity is closely related to separability. A unital associative algebra
13938:
amounts to making some morphisms isomorphisms. An element in a commutative ring
10990:{\displaystyle \operatorname {End} _{R}(R^{n})\simeq \operatorname {M} _{n}(R).} 10856:
be a ring (not necessarily commutative). The set of all square matrices of size
9576:
forms a commutative ring with the usual addition and multiplication, containing
9373:
An important application of an infinite direct product is the construction of a
7618: 6991:, on the other hand, is not always an ideal, but it is always a subring of  6179: 3487: 3423: 3356: 3295: 3234: 20529: 20468: 19611: 18154: 17964: 17817: 17591: 17385: 17023: 16939: 16083: 15898: 15157:
then the resulting ring will be the usual polynomial ring with coefficients in
14971: 14303: 12149: 11916:{\displaystyle {\overline {\mathbf {F} }}_{p}=\varinjlim \mathbf {F} _{p^{m}}.} 7045: 6164:
form an ideal of the integers, and this ideal is generated by the integer 
4625: 4611: 4007: 1863: 975: 714: 702: 427: 21408: 17357:
is the ring of integers, then we recover the previous example (by identifying
16930:
generalize the notion of central simple algebras to a commutative local ring.
15418:
structure theorem for finitely generated modules over a principal ideal domain
4744:(which has all of the axioms of a ring excluding that of an additive inverse). 4049:
The rational, real and complex numbers are commutative rings of a type called
21632: 21424: 21361: 21357: 21152: 21100: 21082: 21065: 20913:, Die Grundlehren der mathematischen Wissenschaften, vol. 33, Springer, 20761: 20739: 20717: 20456: 19684:
Some other authors such as Lang further require a zero divisor to be nonzero.
19654: 19576: 19542: 19468: 19402: 18739: 18092: 17396: 16069: 15945: 15935:
is a ring that is semisimple as a left module (or right module) over itself.
15902: 15865: 15792: 15730: 15590: 15394: 13051: 12130: 10831: 7585: 7041: 7035: 6187: 5599: 5399:
can be equipped with operations making it a ring such that the inclusion map
4475: 4380: 3615: 1730: 1382: 1340: 1284: 1230: 1214: 1168: 1090: 861: 826: 783: 568: 464: 79: 20878: 15872:. A prominent example of a division ring that is not a field is the ring of 4521:-linear maps forms a ring, also called the endomorphism ring and denoted by 1093:
with respect to the addition operator, and the multiplication operator is
21440: 21263: 21167: 19596: 19591: 19586: 19581: 19537: 19510: 18584: 18273: 18121: 18068: 18027: 17408: 17381: 17222: 17221:
whose supports (the sets of points at which the functions are nonzero) are
16546: 16029: 15410: 15378: 14801: 11846: 10459:
to itself; the addition and the multiplication are those of functions. Let
7568:) by generalizing from multiplication of vectors with elements of a field ( 7561: 6826: 5125: 5061:
As a special case, one can define nonnegative integer powers of an element
4407: 4003: 3960: 3952: 3603: 1754: 1222: 1035: 966: 800: 730: 600: 375: 271: 21607: 21588: 21522:
Rings and things and a fine array of twentieth century associative algebra
19635:
This means that each operation is defined and produces a unique result in
18038:, which is analogous to the observation that one can multiply pointwise a 15002:. A free ring satisfies the universal property: any function from the set 10178:
be a polynomial in one variable, that is, an element in a polynomial ring
7572:) to multiplication with elements of a ring. More precisely, given a ring 20746:. Graduate Texts in Mathematics. Vol. 131 (2nd ed.). Springer. 20210: 19557: 19378: 18755: 18035: 17960: 17226: 16631: 16282: 16033: 15978: 15949: 15398: 15393:(UFD), an integral domain in which every nonunit element is a product of 12152:) of rings is defined as follows. Suppose we are given a family of rings 10865: 10843: 9237:{\displaystyle 1=e_{1}+\cdots +e_{n},\quad e_{i}\in {\mathfrak {a}}_{i}.} 6897: 6618: 6206: 6172: 4752: 4574: 4510: 4006:
makes the counterargument that the natural notion for rings would be the
3579: 3553: 1127: 1118:
Whether a ring is commutative has profound implications on its behavior.
1025: 1020: 909: 899: 873: 678: 662: 580: 291: 165: 47: 21293: 21267: 8384:. The same construction also works for an arbitrary family of rings: if 7885:, if left multiplication (by ring elements) is used for a right module. 6194:). The integers, however, form a Noetherian ring which is not Artinian. 3970: 1157:
of a number field. Examples of noncommutative rings include the ring of
21576: 21460: 21174:. Vol. 2: Seminumerical Algorithms (3rd ed.). Addison–Wesley. 21160: 20783: 19567: 18117: 17342: 17341:. The subring consisting of elements with finite support is called the 15873: 15822: 13047: 10827: 9382: 5444: 4560: 1179: 1130:. Its development has been greatly influenced by problems and ideas of 775: 718: 345: 19658:
is used if existence of a multiplicative identity is not assumed. See
18722:
closed under addition and under composition with arbitrary morphisms.
15204:{\displaystyle S\mapsto {\text{the free ring generated by the set }}S} 13332:
The most important properties of localization are the following: when
4587:
as basis. Multiplication is defined by the rules that the elements of
21543: 21039: 20794:, vol. 211 (Revised third ed.), New York: Springer-Verlag, 20508: 20183: 18528:, and function composition is denoted from right to left. Therefore, 18140: 18034:. However, the advantage of the cohomology groups is that there is a 15374: 14987: 6631: 5181: 4391: 4197: 2672:{\displaystyle {\overline {3}}\cdot {\overline {3}}={\overline {1}}.} 2089: 1798: 1030: 836: 793: 761: 305: 210: 21568: 21444: 21144: 21129:(1945), "Structure theory of algebraic algebras of bounded degree", 21003:, Mathematics and its Applications, Chichester: Ellis Horwood Ltd., 20985:, Mathematics and its Applications, Chichester: Ellis Horwood Ltd., 17565: 7330:. It is surjective and satisfies the following universal property: 6134:
are left ideals and right ideals, respectively; they are called the
2616:{\displaystyle {\overline {2}}\cdot {\overline {3}}={\overline {2}}} 2023:
Some basic properties of a ring follow immediately from the axioms:
1245:. They later proved useful in other branches of mathematics such as 20171: 19606: 19562: 19515: 18767: 18719: 18169:
to study geometric concepts in terms of ring-theoretic properties.
17803:. The notion plays a central rule in the algebraic approach to the 16580:
is a finite field or an algebraically closed field (more generally
15787:
that describes the relationship between rings, domains and fields:
9748:
is also an integral domain; its field of fractions is the field of
4741: 1859: 1797:
In a ring, multiplicative inverses are not required to exist. A non
1246: 1203: 831: 698: 299: 285: 21284: 20348: 19652:
The existence of 1 is not assumed by some authors; here, the term
16918:{\displaystyle H^{2}\left(\operatorname {Gal} (F/k),k^{*}\right).} 15413:, where an "ideal" admits prime factorization, fails to be a PID. 6609:
If one is working with rngs, then the third condition is dropped.
4850:{\displaystyle (f*g)(x)=\int _{-\infty }^{\infty }f(y)g(x-y)\,dy.} 3019:{\displaystyle -{\overline {3}}={\overline {-3}}={\overline {1}}.} 1757:
with the usual + and β‹… is a rng, but not a ring. As explained in
21395:(1915). "Über die Teiler der Null und die Zerlegung von Ringen". 20258: 20222: 18529: 17834: 13959: 7888:
Basic examples of modules are ideals, including the ring itself.
6156:. For example, the set of all positive and negative multiples of 5318: 5304: 1855: 710: 706: 183: 67: 20246: 20234: 19903: 16713:{\displaystyle \operatorname {Br} (k)=\mathbb {Q} /\mathbb {Z} } 15768: 10481:. The universal property says that this map extends uniquely to 2474:{\displaystyle {\overline {3}}+{\overline {3}}={\overline {2}}.} 19710: 18011: 15416:
Among theorems concerning a PID, the most important one is the
8492:{\displaystyle {\mathfrak {a}}_{1},\cdots ,{\mathfrak {a}}_{n}} 6423:
that preserves the ring operations; namely, such that, for all
2721:
is a ring: each axiom follows from the corresponding axiom for
2418:{\displaystyle {\overline {2}}+{\overline {3}}={\overline {1}}} 1900: 1870:
The most familiar example of a ring is the set of all integers
1479: 765: 16323:
states any automorphism of a central simple algebra is inner.
16152:{\textstyle \prod _{i=1}^{r}\operatorname {M} _{n_{i}}(D_{i})} 10809:{\displaystyle \sum _{0}^{\infty }a_{i}t^{i},\quad a_{i}\in R} 10448:
satisfies the universal property and so is a polynomial ring.
1850: 20159: 19722: 18660:. It is in fact true that this association of any element of 18532:
to any abelian group, is a ring. Conversely, given any ring,
18095:
which uses a ring to describe the various ways the group can
18063:
The ring structure in cohomology provides the foundation for
18015: 16408:{\displaystyle A\otimes _{k}k_{n}\approx B\otimes _{k}k_{m}.} 14345:
The completion can in this case be constructed also from the
12898:
The localization is frequently applied to a commutative ring
10471:
defines a constant function, giving rise to the homomorphism
8770: 8739: 8685: 7997:. In particular, every ring is an algebra over the integers. 7105: 6168:. In fact, every ideal of the ring of integers is principal. 5824:; they (each individually) generate a subring of the center. 5678:
is the smallest positive integer such that this occurs, then
21368:. Graduate Texts in Mathematics. Vol. 28–29. Springer. 20858:. Cambridge Studies in Advanced Mathematics (2nd ed.). 12169:
running over positive integers, say, and ring homomorphisms
10143:{\displaystyle k\to k,\,f\mapsto f\left(t^{2},t^{3}\right).} 7298:
As with a quotient group, there is a canonical homomorphism
3571: 20089: 19966: 19891: 19118:{\displaystyle \operatorname {pt} {\stackrel {1}{\to }}\,R} 19037:{\displaystyle \operatorname {pt} {\stackrel {0}{\to }}\,R} 18099:
on a finite set. The Burnside ring's additive group is the
14160:
it is a commutative ring. The canonical homomorphisms from
13391:{\displaystyle {\mathfrak {p}}\mapsto {\mathfrak {p}}\left} 8552:{\displaystyle {\mathfrak {a}}_{i}+{\mathfrak {a}}_{j}=(1)} 8037:
can be equipped with the following natural ring structure:
3085: 1745: 21032:
An Introduction to Rings and Modules with K-Theory in View
20724:. Graduate Texts in Mathematics. Vol. 189. Springer. 20536:. Graduate Texts in Mathematics. Vol. 150. Springer. 20297: 18591:, that "factor through" right (or left) multiplication of 16258: 11332:{\displaystyle U=\bigoplus _{i=1}^{r}U_{i}^{\oplus m_{i}}} 8438:
is a ring with componentwise addition and multiplication.
7922:
Any ring homomorphism induces a structure of a module: if
1742: 21589:"From Numbers to Rings: The Early History of Ring Theory" 21318:, Lecture Notes in Mathematics, vol. 585, Springer, 21248:. Graduate Texts in Mathematics. Vol. 88. Springer. 20768:. Problem Books in Mathematics (2nd ed.). Springer. 20534:
Commutative algebra with a view toward algebraic geometry
20325: 19977: 19791: 18173:
studies maps between the subrings of the function field.
17840: 17824: 17561:, and in either case one would obtain a topological ring. 17553:
matrices over the real numbers could be given either the
5605:
An intersection of subrings is a subring. Given a subset
5321:
if any one of the following equivalent conditions holds:
1770:, ring multiplication is not required to be commutative: 20036: 19938: 19936: 19803: 15593:, each of which is isomorphic to the module of the form 5812:. The center is the centralizer of the entire ring  5239:; in this case the inverse is unique, and is denoted by 2005:{\displaystyle \dots ,-5,-4,-3,-2,-1,0,1,2,3,4,5,\dots } 21307:, Graduate Texts in Mathematics, vol. 67, Springer 20572:. Chapman & Hall/CRC Pure and Applied Mathematics. 20395:(2nd ed.). Cambridge: Cambridge University Press. 20135: 19129:
equipped with a factorization of its functor of points
14990:(that is, free algebra over the integers) with the set 13655:{\displaystyle 0\to M'\left\to M\left\to M''\left\to 0} 5287:
consists of the set of all invertible matrices of size
4465:
not the zero ring), this matrix ring is noncommutative.
20200: 20198: 20147: 20024: 20012: 20000: 19471:
in a good category of spectra such as the category of
18111: 16955:
is a group homomorphism from the multiplicative group
16091: 15344:{\displaystyle (x\otimes u)(y\otimes v)=xy\otimes uv.} 14977: 13398:
is a bijection between the set of all prime ideals in
12329: 11052:{\displaystyle f:\oplus _{1}^{n}U\to \oplus _{1}^{n}U} 8856: 8689: 8589: 8401: 3947:
The first axiomatic definition of a ring was given by
3092: 1801:
commutative ring in which every nonzero element has a
1101:
over the addition operation, and has a multiplicative
20633:
American Mathematical Society Colloquium Publications
20111: 20048: 19933: 19853: 19418: 19331: 19216: 19135: 19091: 19050: 19010: 18963: 18916: 18823: 18364: 18237: 17972: 17864: 17741: 17717: 17602: 17480: 17431: 17235: 17182: 17132: 17065: 16855: 16798: 16741: 16676: 16643: 16594: 16487: 16421: 16352: 16207: 15666: 15599: 15537: 15462: 15289: 15252: 15186: 15098: 15067: 14901: 14848: 14812: 14782: 14756: 14661: 14618: 14574: 14505: 14481: 14455: 14417: 14393: 14360: 14317: 14272: 14205: 14170: 14100: 14025: 13980: 13874: 13847: 13770: 13709: 13668: 13551: 13457: 13412: 13349: 13252: 13195: 13166: 13134: 13106: 13059: 13023: 12980: 12951: 12912: 12819: 12758: 12717: 12652: 12608: 12556: 12501: 12462: 12328: 12288: 12079: 12028: 11939: 11855: 11720: 11635: 11389: 11356: 11276: 11100: 11003: 10929: 10750: 10710: 10637: 10556: 10532:{\displaystyle R\to S,\quad f\mapsto {\overline {f}}} 10490: 10419: 10377: 10329: 10289: 10057: 10001: 9943: 9828: 9791: 9699: 9653: 9594: 9416: 9315: 9250: 9164: 9002: 8967: 8936: 8905: 8811: 8579: 8505: 8451: 8046: 7668: 7481: 7412: 7365: 7121: 6908: 6862: 6735: 6687: 6661: 6448: 6302: 6276: 6247: 6215: 5913: 5577: 5548: 5515: 5489: 5454: 5421: 5350:
a ring with the same multiplicative identity as 
5196: 5136:
in the ring such that there exists a nonzero element
4953: 4893: 4761: 4715: 4661: 4635: 4347: 4305: 4266: 4240: 4178: 4096: 3643: 3471: 3407: 3343: 3282: 3227: 3188: 3053: 2968: 2917: 2880: 2851: 2817: 2770: 2729: 2690: 2629: 2576: 2531: 2489: 2431: 2378: 2292: 2250: 2149: 1911: 1878: 1225:. Rings were first formalized as a generalization of 717:, but they may also be non-numerical objects such as 513: 475: 438: 218: 191: 21553:(1996). "The Genesis of the Abstract Ring Concept". 21429:
Jahresbericht der Deutschen Mathematiker-Vereinigung
21427:(1897). "Die Theorie der algebraischen ZahlkΓΆrper". 20360: 19988: 19827: 19779: 19749: 19739: 19737: 18810:(since it no longer follows from the other axioms). 18176: 17545:
or any other product in the category). For example,
16474:{\displaystyle k_{n}\otimes _{k}k_{m}\simeq k_{nm},} 15772:
Hierarchy of several classes of rings with examples.
15522:{\displaystyle q=p_{1}^{e_{1}}\ldots p_{s}^{e_{s}}.} 11669:
defined as follows: it is the disjoint union of all
11548:
is equivalent to the category of right modules over
10837: 6998:
To give a ring homomorphism from a commutative ring
6099:
is a left ideal, called the left ideal generated by
5655:. It can be generated through addition of copies of 5249:
under ring multiplication; this group is denoted by
3532:
this example shows that the ring is noncommutative.
2516:{\displaystyle {\overline {x}}\cdot {\overline {y}}} 1739: 1081:is a set endowed with two binary operations called 27:
Algebraic structure with addition and multiplication
20195: 20123: 20060: 19865: 18997:{\displaystyle R\times R\;{\stackrel {m}{\to }}\,R} 18950:{\displaystyle R\times R\;{\stackrel {a}{\to }}\,R} 18790:is a commutative monoid, and adding the axiom that 18157:contained in the function field and containing the 18153:. The points of an algebraic variety correspond to 13160:is the same as the residue field of the local ring 12115:where the limit runs over all the coordinate rings 5816:. Elements or subsets of the center are said to be 21186:Mathematical Handbook for Scientists and Engineers 21043: 20649:American Mathematical Society Mathematical Surveys 20100: 19815: 19442: 19345: 19284: 19202: 19117: 19077: 19036: 18996: 18949: 18853: 18490: 18245: 18141:Function field of an irreducible algebraic variety 18002: 17948: 17791: 17725: 17695: 17504: 17439: 17315:{\displaystyle (f*g)(t)=\sum _{s\in G}f(s)g(t-s).} 17314: 17205: 17158: 17088: 16917: 16817: 16760: 16712: 16658: 16614: 16537: 16473: 16407: 16226: 16151: 16036:, but it is not semisimple. The same holds for a 15710: 15652: 15567: 15521: 15424:be a finite-dimensional vector space over a field 15343: 15271: 15203: 15149: 15078: 14919: 14863: 14830: 14790: 14764: 14740: 14647: 14596: 14560: 14489: 14463: 14439: 14401: 14371: 14335: 14280: 14229: 14191: 14152: 14052: 14007: 13914: 13860: 13833: 13749: 13695: 13654: 13527: 13442: 13390: 13322: 13217: 13181: 13152: 13116: 13084: 13038: 13010: 12966: 12937: 12887: 12805: 12744: 12679: 12638: 12586: 12534: 12487: 12346: 12314: 12107: 12054: 12011: 11915: 11831: 11661: 11496: 11372: 11331: 11197: 11051: 10989: 10808: 10733: 10682: 10569: 10531: 10432: 10405: 10363: 10307: 10142: 10040: 9964: 9871: 9803: 9723: 9685: 9639: 9565: 9351: 9270: 9236: 9138: 8984: 8953: 8922: 8891: 8842: 8795: 8551: 8491: 8430: 8305: 7816: 7520: 7440: 7398: 7256: 6924: 6876: 6775: 6708: 6669: 6598: 6317: 6288: 6262: 6233: 6026: 5588: 5559: 5526: 5497: 5471: 5443:of real numbers and also a subring of the ring of 5429: 5202: 5000: 4931: 4849: 4726: 4681: 4643: 4362: 4325: 4277: 4248: 4186: 4143: 3906: 3539:, commutative or not, and any nonnegative integer 3524: 3457: 3393: 3329: 3268: 3213: 3167: 3018: 2955:{\displaystyle -{\overline {x}}={\overline {-x}}.} 2954: 2901: 2864: 2833: 2794: 2740: 2711: 2671: 2615: 2552: 2515: 2473: 2417: 2313: 2276: 2232: 2004: 1889: 537: 490: 453: 245: 199: 21335:The K-book: An Introduction to Algebraic K-theory 21093:Handbook of Mathematics and Computational Science 20998: 20980: 20611:Abstract Algebra: an Introduction, Second Edition 20337: 19734: 19659: 19346:{\displaystyle \operatorname {Spec} \mathbb {Z} } 18200: 17780: 17767: 17225:. It is a field with the multiplication given by 17199: 17189: 17149: 17139: 17082: 17072: 16615:{\displaystyle \operatorname {Br} (\mathbb {R} )} 13085:{\displaystyle {\mathfrak {p}}R_{\mathfrak {p}}.} 12045: 12035: 12005: 11995: 11956: 11946: 10997:This is a special case of the following fact: If 10727: 10717: 10230:in that ring. The result of substituting zero to 3923:is going to be an integral linear combination of 3590:The study of rings originated from the theory of 1111: 21630: 21504: 21484:Bronshtein, I. N. and Semendyayev, K. A. (2004) 20999:Balcerzyk, StanisΕ‚aw; JΓ³zefiak, Tadeusz (1989), 20981:Balcerzyk, StanisΕ‚aw; JΓ³zefiak, Tadeusz (1989), 20841: 19728: 17792:{\displaystyle \lambda ^{n}(x)={\binom {x}{n}},} 16038:ring of differential operators in many variables 15223:(and it is often called the free ring functor.) 14608:in the prime factorization of a nonzero integer 13946:-module. Thus, categorically, a localization of 12012:{\displaystyle k(\!(t)\!)=\varinjlim t^{-m}k\!]} 11714:A polynomial ring in infinitely many variables: 11566:correspond in one-to-one to two-sided ideals in 10585:. The resulting map is injective if and only if 9403:(called a variable) and a commutative ring  3614:The term "Zahlring" (number ring) was coined by 21615: 21001:Dimension, multiplicity and homological methods 20903: 20567: 20467: 20276: 20095: 19972: 18774:) is obtained by weakening the assumption that 18272:-module is a generalization of the notion of a 16837:.) If the extension is finite and Galois, then 15757:and the above decomposition corresponds to the 15180:In the category-theoretic terms, the formation 14153:{\displaystyle {\hat {R}}=\varprojlim R/I^{n};} 11583: 9377:of rings (see below). Another application is a 9158:has the above decomposition. Then we can write 5540:and thus does not qualify as a subring of  4653:with the usual operations is not a ring, since 4398:becomes a ring if we define addition to be the 3276:is the multiplicative identity of the ring. If 2277:{\displaystyle {\overline {x}}+{\overline {y}}} 2030:The additive inverse of each element is unique. 1753:) with a missing "i". For example, the set of 1723: 21500:History of ring theory at the MacTutor Archive 21029: 15283:-algebra with multiplication characterized by 15027:Now, we can impose relations among symbols in 14249:is a Noetherian local ring with maximal ideal 10701:There are some other related constructions. A 9150:. Equivalently, the above can be done through 6798:be a commutative ring of prime characteristic 4597:and multiply together as they do in the group 4211:be a ring. Then the set of all functions from 21356: 21090: 21046:Skew Fields: Theory of General Division Rings 20962: 19983: 18335:, the following rules may be used to compute 18185:has an associated face ring, also called its 17390: 15653:{\displaystyle k/\left(p_{i}^{k_{j}}\right).} 14257:. The construction is especially useful when 12546:; that is, the homomorphism maps elements in 7521:{\displaystyle {\overline {f}}:R/\ker f\to S} 7022:(which in particular gives a structure of an 5151:. A right zero divisor is defined similarly. 4170:defined on the real line forms a commutative 3221:satisfies the above ring axioms. The element 2132: 1058: 642: 20551:Contemporary Abstract Algebra, Sixth Edition 18877: 18848: 18824: 18552:is an abelian group. Furthermore, for every 17833:can be fruitfully analyzed in terms of some 15141: 15105: 13942:may be thought of as an endomorphism of any 13542:with partial ordering given by divisibility. 13124:is a prime ideal of a commutative ring  8573:says there is a canonical ring isomorphism: 6925:{\displaystyle \mathbb {Z} \to \mathbb {Q} } 5220:. One example of an idempotent element is a 697:satisfying properties analogous to those of 246:{\displaystyle 0=\mathbb {Z} /1\mathbb {Z} } 21524:. Mathematical Surveys and Monographs, 65. 19078:{\displaystyle R\;{\stackrel {i}{\to }}\,R} 18782:is an abelian group to the assumption that 18082: 13323:{\displaystyle M\left=R\left\otimes _{R}M.} 9772:is a unique factorization domain. Finally, 9352:{\displaystyle {\mathfrak {a}}_{i}=Re_{i},} 6622:if there exists an inverse homomorphism to 6103:; it is the smallest left ideal containing 5277:is the ring of all square matrices of size 5001:{\displaystyle P_{n}=\prod _{i=1}^{n}a_{i}} 3971:Multiplicative identity and the term "ring" 3178:With the operations of matrix addition and 3028: 2795:{\displaystyle \mathbb {Z} /4\mathbb {Z} ,} 21063: 20956:Introduction to Foundations of Mathematics 20608: 20393:Galois Theory and Its Algebraic Background 20042: 19054: 18973: 18926: 18872: 18861:with ordinary addition and multiplication; 17531:as maps between topological spaces (where 15725:) has a basis in which the restriction of 13966:-modules to itself that sends elements of 12806:{\displaystyle r/f^{n},\,r\in R,\,n\geq 0} 12594:and, moreover, any ring homomorphism from 12422:For an example of a projective limit, see 10364:{\displaystyle {\overline {\phi }}:R\to S} 9872:{\displaystyle R\to S,\quad f\mapsto f(x)} 6983:. The kernel is a two-sided ideal of  6709:{\displaystyle \mathbb {Z} /4\mathbb {Z} } 6138:left ideals and right ideals generated by 6004: 5996: 5979: 5971: 5176:. One example of a nilpotent element is a 4326:{\displaystyle {\widehat {\mathbb {Z} }},} 2902:{\displaystyle \mathbb {Z} /4\mathbb {Z} } 2841:which is consistent with the notation for 2712:{\displaystyle \mathbb {Z} /4\mathbb {Z} } 2553:{\displaystyle \mathbb {Z} /4\mathbb {Z} } 2314:{\displaystyle \mathbb {Z} /4\mathbb {Z} } 2099:contains the zero ring as a subring, then 1866:, form the prototypical example of a ring. 1065: 1051: 649: 635: 21606: 21283: 21081: 20853: 20681: 19339: 19314:-schemes. One example is the ring scheme 19111: 19071: 19030: 18990: 18943: 18572:, by right (or left) distributivity. Let 18239: 17993: 17936: 17885: 17719: 17433: 17115:is the least degree of a nonzero term in 16706: 16696: 16646: 16605: 15585:-module. The structure theorem then says 15363: 15150:{\displaystyle E=\{xy-yx\mid x,y\in X\},} 15069: 14904: 14851: 14815: 14784: 14758: 14741:{\displaystyle |m/n|_{p}=|m|_{p}/|n|_{p}} 14483: 14457: 14395: 14362: 14320: 14274: 13528:{\displaystyle R\left=\varinjlim R\left,} 12793: 12780: 10094: 9980:; it is the same thing as the subring of 9819:, one can consider the ring homomorphism 7896:). In particular, not all modules have a 7441:{\displaystyle f={\overline {f}}\circ p.} 7010:is the same as to give a structure of an 6971:, the set of all elements mapped to 0 by 6918: 6910: 6864: 6702: 6689: 6663: 6626:(that is, a ring homomorphism that is an 5582: 5550: 5520: 5491: 5456: 5423: 4837: 4740:) form an algebraic structure known as a 4717: 4666: 4637: 4350: 4310: 4268: 4242: 4200:addition and multiplication of functions. 4180: 3214:{\displaystyle \operatorname {M} _{2}(F)} 2895: 2882: 2785: 2772: 2731: 2705: 2692: 2546: 2533: 2307: 2294: 2164: 2151: 1880: 538:{\displaystyle \mathbb {Z} (p^{\infty })} 515: 478: 441: 239: 226: 193: 21477: 21391: 21311: 21178: 21125: 20659: 20643: 20627: 20586: 20528: 20513:Basic algebra: groups, rings, and fields 20495: 20483: 20366: 20354: 20240: 20189: 20177: 20153: 20141: 20018: 20006: 19954: 19921: 19909: 19897: 19716: 17820:that is compatible with ring operations. 15767: 15711:{\displaystyle p_{i}(t)=t-\lambda _{i},} 15195:the free ring generated by the set  14931:Similarly, the formal power series ring 14237:The latter homomorphism is injective if 13915:{\displaystyle 0\to M'\to M\to M''\to 0} 13750:{\displaystyle 0\to M'\to M\to M''\to 0} 11067:may be written as a matrix with entries 10902:; it is called the endomorphism ring of 10406:{\displaystyle {\overline {\phi }}(t)=x} 10323:there exists a unique ring homomorphism 10153:In other words, it is the subalgebra of 7399:{\displaystyle {\overline {f}}:R/I\to S} 6776:{\displaystyle R\to R,x\mapsto uxu^{-1}} 5792:that commute with every element in  4383:, the ring generated by Hecke operators. 3570: 2088:has only one element, and is called the 1849: 1591:with respect to addition, meaning that: 32:Ring (disambiguation) Β§ Mathematics 21583: 21549: 21538:ItΓ΄, K. editor (1986) "Rings." Β§368 in 21439: 21423: 21030:Berrick, A. J.; Keating, M. E. (2000). 21016: 20963:Zariski, Oscar; Samuel, Pierre (1958). 20548: 20390: 20066: 20030: 19942: 19871: 19859: 19839: 18071:, intersection theory on manifolds and 17337:is the least element in the support of 16259:Central simple algebra and Brauer group 15397:(an element is prime if it generates a 14264:The basic example is the completion of 12137:Any commutative ring is the colimit of 9811:be commutative rings. Given an element 9766:is a unique factorization domain, then 7465:, invoking the universal property with 6854:, there are a unique ring homomorphism 5699:is never zero for any positive integer 5621:is the intersection of all subrings of 4414: 4335:the (infinite) product of the rings of 3942: 1700:In notation, the multiplication symbol 709:. Ring elements may be numbers such as 14: 21631: 21540:Encyclopedic Dictionary of Mathematics 21331: 21262: 21241: 21212: 21099: 20983:Commutative Noetherian and Krull rings 20953: 20934: 20885: 20744:A first course in noncommutative rings 20315: 20129: 20117: 20106: 20054: 19785: 19755: 18745: 17841:Cohomology ring of a topological space 17825:Some examples of the ubiquity of rings 15929:is a direct sum of simple modules. A 15829:unique factorization domains 13926:a sheaf is inherently a local notion.) 12347:{\displaystyle \textstyle \prod R_{i}} 12067:function field of an algebraic variety 10690:and the set of closed subvarieties of 10627:be an algebraically closed field. The 10592:Given a non-constant monic polynomial 10048:denotes the image of the homomorphism 7359:, then there is a unique homomorphism 7006:with image contained in the center of 5536:does not contain the identity element 4878: 4540:endomorphism ring of an elliptic curve 4219:forms a ring, which is commutative if 2804:and this element is often denoted by " 2033:The multiplicative identity is unique. 1237:and rings of invariants that occur in 21299: 21166: 21139:(4), Annals of Mathematics: 695–707, 20973: 20876: 20667:. Vol. 1 (2nd ed.). Dover. 20455: 20448: 20437: 20427: 20343: 20264: 20252: 19994: 19833: 19821: 19639:for each ordered pair of elements of 18299:(see above). Note that, essentially, 18003:{\displaystyle H_{i}(X,\mathbb {Z} )} 16277:-algebra is central if its center is 15442:a linear map with minimal polynomial 15088:then the resulting ring will be over 15031:by taking a quotient. Explicitly, if 14748:). It defines a distance function on 14561:{\displaystyle |n|_{p}=p^{-v_{p}(n)}} 12019:(it is the field of fractions of the 11562:. In particular, two-sided ideals in 11091:, resulting in the ring isomorphism: 9693:forms a commutative ring, containing 8961:are rings though not subrings). Then 6877:{\displaystyle \mathbb {Z} \mapsto R} 5119: 21488:, 4th ed. New York: Springer-Verlag 21203: 21038: 20823: 20782: 20568:Gardner, J.W.; Wiegandt, R. (2003). 20507: 20409: 20331: 20303: 20288: 20228: 20216: 20204: 20165: 19882: 19809: 19769:"Non-associative rings and algebras" 19743: 19693:Such a central idempotent is called 19310:is a ring object in the category of 18560:, right (or left) multiplication by 17172:and a totally ordered abelian group 15385:. A commutative domain is called an 15238:be algebras over a commutative ring 14241:is a Noetherian integral domain and 12938:{\displaystyle S=R-{\mathfrak {p}},} 12495:together with the ring homomorphism 12440:generalizes the construction of the 9359:which are two-sided ideals. If each 9271:{\displaystyle {\mathfrak {a}}_{i},} 7914:, where the first minus denotes the 6641:The function that maps each integer 4932:{\displaystyle (a_{1},\dots ,a_{n})} 4450:, this matrix ring is isomorphic to 4040: 2058:with respect to multiplication) and 1482:under multiplication, meaning that: 106:Free product of associative algebras 21516:(5th ed.), New York: Macmillan 21091:Harris, J. W.; Stocker, H. (1998). 20760: 20738: 20716: 20477:Introduction to commutative algebra 20279:, Theorem 10.17 and its corollaries 19797: 19443:{\displaystyle \mu :X\wedge X\to X} 18112:Representation ring of a group ring 17034:consisting of zero and all nonzero 16961:to a totally ordered abelian group 16622:has order 2 (a special case of the 15912: 15817:integrally closed domains 15211:is the left adjoint functor of the 15047:is called the ring with generators 14978:Rings with generators and relations 13850: 13816: 13801: 13783: 13406:and the set of all prime ideals in 13362: 13352: 13218:{\displaystyle k({\mathfrak {p}}).} 13204: 13173: 13145: 13109: 13073: 13062: 13030: 12958: 12927: 11676:'s modulo the equivalence relation 10444:. For example, choosing a basis, a 10433:{\displaystyle {\overline {\phi }}} 9686:{\displaystyle t_{1},\ldots ,t_{n}} 9319: 9254: 9220: 9125: 9103: 9067: 9053: 9035: 9012: 8985:{\displaystyle {\mathfrak {a}}_{i}} 8971: 8954:{\displaystyle {\mathfrak {a}}_{i}} 8940: 8923:{\displaystyle {\mathfrak {a}}_{i}} 8909: 8892:{\textstyle R_{i}\to R=\prod R_{i}} 8843:{\displaystyle R_{i},1\leq i\leq n} 8775: 8744: 8714: 8665: 8615: 8526: 8509: 8478: 8455: 7660:is an abelian group under addition. 6839:is the set of all automorphisms of 6718:("quotient ring" is defined below). 6171:Like a group, a ring is said to be 5703:, and those rings are said to have 5325:the addition and multiplication of 4287:It is a subring of the ring of all 4036:Associative algebra Β§ Examples 3543:, the square matrices of dimension 2762:may be considered as an element of 1858:, along with the two operations of 1112:Β§ Variations on the definition 24: 21542:, 2nd ed., Vol. 2. Cambridge, MA: 21384: 20766:Exercises in classical ring theory 18211:Every ring can be thought of as a 17911: 17771: 16297:-algebra. The matrix ring of size 16114: 15737:is algebraically closed, then all 15452:is a unique factorization domain, 15165:(It is also the same thing as the 15161:in variables that are elements of 13235:-module, then the localization of 11437: 11142: 10963: 10761: 10614:is a product of linear factors in 10455:be the ring of all functions from 9920:. Because of this, the polynomial 9388: 6783:is a ring homomorphism, called an 6653:) is a homomorphism from the ring 5904:, that is, the set of finite sums 5245:. The set of units of a ring is a 4802: 4797: 3190: 3055: 2562:is the remainder when the integer 2323:is the remainder when the integer 2018: 527: 25: 21655: 20879:"A primer of commutative algebra" 19355:, which for any commutative ring 18854:{\displaystyle \{0,1,2,\ldots \}} 18725: 18694:-group, it is meant a group with 18261:on an abelian group is simply an 18177:Face ring of a simplicial complex 17322:It also comes with the valuation 17213:be the set of all functions from 16933: 16545:form an abelian group called the 15998:is semisimple if and only if the 15835:principal ideal domains 15780:. A regular local ring is a UFD. 14920:{\displaystyle \mathbb {Z} _{p}.} 14831:{\displaystyle \mathbb {Q} _{p}.} 14336:{\displaystyle \mathbb {Z} _{p}.} 13340:a multiplicatively closed subset 13182:{\displaystyle R_{\mathfrak {p}}} 13153:{\displaystyle R/{\mathfrak {p}}} 13128:, then the field of fractions of 13039:{\displaystyle R_{\mathfrak {p}}} 12967:{\displaystyle R_{\mathfrak {p}}} 12752:consists of elements of the form 12315:{\displaystyle \varprojlim R_{i}} 11595:be a sequence of rings such that 10838:Matrix ring and endomorphism ring 8431:{\textstyle \prod _{i\in I}R_{i}} 8005: 7903:The axioms of modules imply that 7839:are defined similarly by writing 7348:is a ring homomorphism such that 5776:. More generally, given a subset 4873: 4402:of sets and multiplication to be 4029: 3486: 3422: 3355: 3294: 3233: 594:Noncommutative algebraic geometry 20905:van der Waerden, Bartel Leendert 20414:, New York: Dover Publications, 20079:"Associative rings and algebras" 19847:"The development of Ring Theory" 19392: 19275: 19272: 19269: 19266: 19243: 19240: 19237: 19234: 19231: 19196: 19193: 19190: 19187: 17505:{\displaystyle +:R\times R\to R} 16659:{\displaystyle \mathbb {Q} _{p}} 16582:quasi-algebraically closed field 16289:-algebra is a field, any simple 16170:is a positive integer, and each 16055:, the following are equivalent: 15859: 15853:algebraically closed fields 14864:{\displaystyle \mathbb {Q} _{p}} 14612:into prime numbers (we also put 14230:{\displaystyle R\to {\hat {R}}.} 13861:{\displaystyle {\mathfrak {m}},} 12888:{\displaystyle R\left=R/(tf-1).} 11893: 11860: 11662:{\displaystyle \varinjlim R_{i}} 10741:consists of formal power series 9647:of all polynomials in variables 8000: 7044:is analogous to the notion of a 7029: 6182:of left ideals is called a left 5439:of integers is a subring of the 4682:{\displaystyle (\mathbb {N} ,+)} 4363:{\displaystyle \mathbb {Z} _{p}} 2834:{\displaystyle {\overline {x}},} 2754:is an integer, the remainder of 2027:The additive identity is unique. 1735: 1704:is often omitted, in which case 491:{\displaystyle \mathbb {Q} _{p}} 454:{\displaystyle \mathbb {Z} _{p}} 21445:"Idealtheorie in Ringbereichen" 21268:"Why all rings should have a 1" 21172:The Art of Computer Programming 20647:(1943). "The Theory of Rings". 20371: 20071: 19687: 19678: 19665: 19486:Algebra over a commutative ring 19412:together with a multiplication 19210:through the category of rings: 18307:is the set of all morphisms of 18257:). The monoid action of a ring 17852:one can associate its integral 16285:. Since the center of a simple 15718:then such a cyclic module (for 15401:.) The fundamental question in 14072:be a commutative ring, and let 13841:is exact for any maximal ideal 13117:{\displaystyle {\mathfrak {p}}} 12431: 12424: 11832:{\displaystyle R=\varinjlim R.} 11166: 10789: 10570:{\displaystyle {\overline {f}}} 10512: 10463:be the identity function. Each 9850: 9580:as a subring. It is called the 9203: 9099: 9049: 8899:the inclusions with the images 8680: 7609:to every pair of an element of 7528:that gives an isomorphism from 6937:An algebra homomorphism from a 6886:and a unique ring homomorphism 6439:the following identities hold: 6374: 5963: 5734:commutes with every element in 5722:denote the set of all elements 5184:is necessarily a zero divisor. 4736:The natural numbers (including 4063:is itself a ring as well as an 4058:algebra over a commutative ring 3896: 2865:{\displaystyle {\overline {x}}} 2240:with the following operations: 1845: 1196:rings of differential operators 20954:Wilder, Raymond Louis (1965). 20631:(1964). "Structure of rings". 20609:Hungerford, Thomas W. (1997). 19761: 19729:Mac Lane & Birkhoff (1967) 19646: 19629: 19434: 19294: 19251: 19227: 19183: 19167: 19155: 19099: 19059: 19018: 18978: 18931: 18478: 18475: 18469: 18463: 18454: 18448: 18445: 18433: 18423: 18417: 18408: 18402: 18393: 18387: 18384: 18372: 18201:Category-theoretic description 17997: 17983: 17940: 17926: 17889: 17875: 17758: 17752: 17687: 17681: 17662: 17656: 17625: 17613: 17496: 17474:which makes the addition map ( 17306: 17294: 17288: 17282: 17257: 17251: 17248: 17236: 17200: 17196: 17190: 17186: 17168:More generally, given a field 17150: 17146: 17140: 17136: 17083: 17079: 17073: 17069: 16891: 16877: 16818:{\displaystyle A\otimes _{k}F} 16761:{\displaystyle -\otimes _{k}F} 16689: 16683: 16609: 16601: 16503: 16497: 16494: 16488: 16227:{\displaystyle A\otimes _{k}F} 16146: 16133: 15683: 15677: 15609: 15603: 15568:{\displaystyle t\cdot v=f(v),} 15559: 15553: 15407:ring of (generalized) integers 15405:is on the extent to which the 15317: 15305: 15302: 15290: 15272:{\displaystyle A\otimes _{R}B} 15190: 14728: 14719: 14703: 14694: 14680: 14663: 14629: 14620: 14591: 14585: 14553: 14547: 14516: 14507: 14433: 14425: 14421: 14218: 14209: 14107: 13906: 13895: 13889: 13878: 13825: 13807: 13792: 13774: 13741: 13730: 13724: 13713: 13646: 13614: 13587: 13555: 13357: 13209: 13199: 12879: 12864: 12856: 12850: 12505: 12482: 12466: 12129:of the structure sheaf at the 12102: 12096: 12046: 12042: 12036: 12032: 12006: 12002: 11996: 11992: 11957: 11953: 11947: 11943: 11823: 11778: 11756: 11724: 11488: 11485: 11472: 11456: 11409: 11403: 11189: 11173: 11170: 11160: 11154: 11138: 11135: 11114: 11028: 10981: 10975: 10956: 10943: 10728: 10724: 10718: 10714: 10516: 10503: 10500: 10494: 10394: 10388: 10355: 10352: 10346: 10299: 10098: 10088: 10082: 10076: 10073: 10061: 9959: 9953: 9947: 9866: 9860: 9854: 9841: 9838: 9832: 9426: 9420: 8867: 8787: 8731: 8728: 8546: 8540: 8296: 8244: 8238: 8212: 8206: 8180: 8170: 8118: 8112: 8086: 8080: 8054: 7807: 7798: 7786: 7777: 7729: 7717: 7689: 7677: 7512: 7390: 7238: 7229: 7223: 7211: 7208: 7196: 7177: 7165: 7159: 7147: 7141: 7129: 6914: 6868: 6751: 6739: 6576: 6563: 6552: 6546: 6537: 6531: 6522: 6510: 6499: 6493: 6484: 6478: 6469: 6457: 5788:be the set of all elements in 5631:the subring generated by  5466: 5460: 4926: 4894: 4861:is a rng, but not a ring: the 4834: 4822: 4816: 4810: 4783: 4777: 4774: 4762: 4676: 4662: 4608:ring of differential operators 4138: 4135: 4103: 4100: 3208: 3202: 3073: 3067: 2845:. The additive inverse of any 1287:under addition, meaning that: 685:need not exist. Informally, a 532: 519: 13: 1: 21556:American Mathematical Monthly 21526:American Mathematical Society 21064:Gilmer, R.; Mott, J. (1973). 21034:. Cambridge University Press. 20792:Graduate Texts in Mathematics 20722:Lectures on modules and rings 20383: 20277:Atiyah & Macdonald (1969) 20096:Gardner & Wiegandt (2003) 18032:universal coefficient theorem 17512:) and the multiplication map 17423:matrices over the real field 16849:is canonically isomorphic to 16043: 15242:. Then the tensor product of 15079:{\displaystyle \mathbb {Z} ,} 14372:{\displaystyle \mathbb {Q} .} 14063: 11515:(cf. below) is of this form. 9965:{\displaystyle f\mapsto f(x)} 9782:is a principal ideal domain. 7936:is a ring homomorphism, then 7560:generalizes the concept of a 7112:together with the operations 6951:representation of the algebra 5589:{\displaystyle 2\mathbb {Z} } 5560:{\displaystyle \mathbb {Z} ;} 5527:{\displaystyle 2\mathbb {Z} } 4947:, one can define the product 4883:For each nonnegative integer 4727:{\displaystyle \mathbb {Z} .} 4593:commute with the elements of 4278:{\displaystyle \mathbb {Q} .} 4196:-algebra. The operations are 3965:Idealtheorie in Ringbereichen 3535:More generally, for any ring 2741:{\displaystyle \mathbb {Z} .} 1890:{\displaystyle \mathbb {Z} ,} 1256: 677:: multiplication need not be 21066:"Associative Rings of Order" 20967:. Vol. 1. Van Nostrand. 20854:Matsumura, Hideyuki (1989). 20845:; Birkhoff, Garrett (1967). 19704: 18652:gives rise to a morphism of 18609:be the set of all morphisms 18564:gives rise to a morphism of 18287:be an abelian group and let 18246:{\displaystyle \mathbb {Z} } 18133:, which is more or less the 18050:-multilinear form to get a ( 17726:{\displaystyle \mathbb {Z} } 17440:{\displaystyle \mathbb {R} } 16792:. It consists of such that 16326:Two central simple algebras 15783:The following is a chain of 15039:, then the quotient ring of 14791:{\displaystyle \mathbb {Q} } 14765:{\displaystyle \mathbb {Q} } 14490:{\displaystyle \mathbb {R} } 14464:{\displaystyle \mathbb {Q} } 14440:{\displaystyle x\mapsto |x|} 14402:{\displaystyle \mathbb {Q} } 14298:generated by a prime number 14281:{\displaystyle \mathbb {Z} } 14255:Krull's intersection theorem 13100:at the prime ideal zero. If 12108:{\displaystyle \varinjlim k} 11864: 11584:Limits and colimits of rings 10562: 10524: 10425: 10383: 10335: 10308:{\displaystyle \phi :R\to S} 9804:{\displaystyle R\subseteq S} 9285:are central idempotents and 7487: 7424: 7371: 6725:is a unit element in a ring 6670:{\displaystyle \mathbb {Z} } 6630:), or equivalently if it is 5498:{\displaystyle \mathbb {Z} } 5472:{\displaystyle \mathbb {Z} } 5430:{\displaystyle \mathbb {Z} } 4644:{\displaystyle \mathbb {N} } 4618: 4258:in a quadratic extension of 4249:{\displaystyle \mathbb {Z} } 4187:{\displaystyle \mathbb {R} } 3008: 2995: 2977: 2944: 2926: 2857: 2823: 2661: 2648: 2635: 2608: 2595: 2582: 2508: 2495: 2463: 2450: 2437: 2410: 2397: 2384: 2269: 2256: 2220: 2207: 2194: 2181: 1759: 1724:Variations on the definition 200:{\displaystyle \mathbb {Z} } 7: 21332:Weibel, Charles A. (2013), 21312:Springer, Tonny A. (1977), 21242:Pierce, Richard S. (1982). 20693:University of Chicago Press 20549:Gallian, Joseph A. (2006). 20440:Lie algebras and Lie groups 20219:, Ch. XVII. Proposition 1.1 20180:, p. 122, Theorem 2.10 20083:Encyclopedia of Mathematics 19984:Zariski & Samuel (1958) 19773:Encyclopedia of Mathematics 19526:Simplicial commutative ring 19478: 18761: 18617:, having the property that 18018:, for which the methods of 17395:A ring may be viewed as an 17349:(which makes sense even if 16780:. Its kernel is denoted by 15938: 15905:, is a generalization of a 15882:Wedderburn's little theorem 15391:unique factorization domain 14302:; it is called the ring of 13545:The localization is exact: 12535:{\displaystyle R\to R\left} 12219:are all the identities and 12139:finitely generated subrings 12125:(more succinctly it is the 11849:of the same characteristic 9756:is a Noetherian ring, then 8391:are rings indexed by a set 7894:dimension of a vector space 7605:(associating an element of 6329:is prime if for any ideals 5180:. A nilpotent element in a 3993:Encyclopedia of Mathematics 3585: 2351:, this remainder is either 1794:, to simplify terminology. 1774:need not necessarily equal 352:Unique factorization domain 10: 21660: 21514:A Survey of Modern Algebra 21105:Algebra: A Graduate Course 20890:(2nd ed.), Springer, 20860:Cambridge University Press 20828:(3rd ed.), Springer, 20391:Garling, D. J. H. (2022). 20357:, p. 162, Theorem 3.2 18886:be a category with finite 18817:the non-negative integers 18709:Any ring can be seen as a 18656:: right multiplication by 18221:category of abelian groups 18204: 17391:Rings with extra structure 17379: 17206:{\displaystyle k(\!(G)\!)} 17089:{\displaystyle k(\!(t)\!)} 16937: 16735:, then the base extension 16262: 15916: 15368: 15355:Tensor product of algebras 15352: 15059:as a base ring instead of 15055:. If we used a ring, say, 15043:by the ideal generated by 13936:localization of a category 13336:is a commutative ring and 12703:is a commutative ring and 10841: 9776:is a field if and only if 9588:. More generally, the set 9392: 9381:of a family of rings (cf. 8445:be a commutative ring and 8009: 7549: 7451:For any ring homomorphism 7033: 6957:Given a ring homomorphism 6814:is a ring endomorphism of 6378: 5831: 5643:, the smallest subring of 5613:, the smallest subring of 5302: 5298: 4695:(not all the elements are 4406:. This is an example of a 4232:, the integral closure of 4033: 3609: 3567:Ring theory Β§ History 3564: 3560: 2136: 2133:Example: Integers modulo 4 1766:Although ring addition is 112:Tensor product of algebras 29: 21409:10.1515/crll.1915.145.139 19299:In algebraic geometry, a 18878:Ring object in a category 18644:. It was seen that every 17572:together with operations 17407:is a ring that is also a 17100:comes with the valuation 16281:and is simple if it is a 15892:Cartan–Brauer–Hua theorem 14648:{\displaystyle |0|_{p}=0} 14245:is a proper ideal, or if 13950:with respect to a subset 13538:running over elements in 12602:uniquely factors through 12121:of nonempty open subsets 10629:Hilbert's Nullstellensatz 9924:is often also denoted by 9762:is a Noetherian ring. If 9407:, the set of polynomials 8571:Chinese remainder theorem 7617:) that satisfies certain 7545: 3578:, one of the founders of 2084:is a unit element), then 1089:such that the ring is an 21019:Ann. Soc. Sci. Bruxelles 20463:(2nd ed.). Pearson. 20442:(2nd ed.), Springer 19912:, p. 86, footnote 1 19719:, p. 96, Ch 1, Β§8.1 19622: 19532:Special types of rings: 19085:(additive inverse), and 18910:equipped with morphisms 18137:given a ring structure. 18083:Burnside ring of a group 17829:Many different kinds of 17353:is not commutative). If 17125:formal power series ring 17119:; the valuation ring of 16731:is a field extension of 16563:Artin–Wedderburn theorem 16234:is semisimple for every 16183:Artin–Wedderburn theorem 14604:denotes the exponent of 14597:{\displaystyle v_{p}(n)} 14385:-adic absolute value on 14094:is the projective limit 12711:, then the localization 12021:formal power series ring 11509:Artin–Wedderburn theorem 10900:composition of functions 10703:formal power series ring 10451:To give an example, let 7475:produces a homomorphism 6645:to its remainder modulo 6234:{\displaystyle x,y\in R} 6192:Hopkins–Levitzki theorem 5827: 5210:is an element such that 4428:, the set of all square 3029:Example: 2-by-2 matrices 2103:itself is the zero ring. 1151:affine algebraic variety 390:Formal power series ring 340:Integrally closed domain 21594:Elemente der Mathematik 21486:Handbook of Mathematics 20910:Moderne Algebra. Teil I 20886:Rotman, Joseph (1998), 20856:Commutative Ring Theory 20570:Radical Theory of Rings 20501:Algebra I, Chapters 1–3 19616:discrete valuation ring 19506:Non-associative algebra 19501:Glossary of ring theory 18873:Other ring-like objects 18191:algebraic combinatorics 17466:if its set of elements 17455:as a real vector space. 17365:th coefficient is  15403:algebraic number theory 14963:Cohen structure theorem 14873:consisting of elements 14290:at the principal ideal 14192:{\displaystyle R/I^{n}} 13443:{\displaystyle R\left.} 13096:is the localization of 13011:{\displaystyle R\left.} 12639:{\displaystyle R\left.} 12587:{\displaystyle R\left,} 11703:for sufficiently large 11270:is a division ring. If 9935:. The image of the map 8012:Direct product of rings 7944:by the multiplication: 6945:of a vector space over 6318:{\displaystyle y\in P.} 6263:{\displaystyle xy\in P} 5808:(or commutant) of  5674:times) can be zero. If 5409:is a ring homomorphism. 4424:and any natural number 4372:over all prime numbers 3917:and so on; in general, 2347:is always smaller than 1694:(right distributivity). 1580:multiplicative identity 1132:algebraic number theory 1126:, is a major branch of 683:multiplicative inverses 399:Algebraic number theory 92:Total ring of fractions 21617:van der Waerden, B. L. 21083:10.3792/pja/1195519146 20412:Advanced Number Theory 19973:van der Waerden (1930) 19444: 19347: 19286: 19204: 19119: 19079: 19038: 18998: 18951: 18898:(an empty product). A 18855: 18733: 18595:. In other words, let 18492: 18247: 18065:characteristic classes 18004: 17950: 17915: 17793: 17727: 17697: 17645: 17568:is a commutative ring 17506: 17441: 17361:with the series whose 17316: 17207: 17160: 17090: 16919: 16825:is a matrix ring over 16819: 16762: 16714: 16660: 16616: 16539: 16538:{\displaystyle =\left} 16475: 16409: 16338:if there are integers 16321:Skolem–Noether theorem 16265:Central simple algebra 16228: 16201:if the base extension 16153: 16112: 15955:For any division ring 15841:Euclidean domains 15805:commutative rings 15773: 15712: 15654: 15569: 15523: 15364:Special kinds of rings 15345: 15273: 15205: 15151: 15080: 14921: 14893:is isomorphic to  14865: 14832: 14792: 14774:and the completion of 14766: 14742: 14649: 14598: 14562: 14491: 14465: 14441: 14403: 14373: 14337: 14282: 14231: 14199:induce a homomorphism 14193: 14154: 14054: 14053:{\displaystyle R\left} 14009: 14008:{\displaystyle R\left} 13916: 13862: 13835: 13751: 13697: 13696:{\displaystyle R\left} 13656: 13529: 13444: 13392: 13324: 13219: 13183: 13154: 13118: 13086: 13040: 13012: 12968: 12939: 12889: 12807: 12746: 12745:{\displaystyle R\left} 12681: 12680:{\displaystyle R\left} 12640: 12588: 12536: 12489: 12456:, there exists a ring 12348: 12316: 12109: 12056: 12013: 11917: 11833: 11710:Examples of colimits: 11663: 11498: 11435: 11374: 11373:{\displaystyle U_{i},} 11333: 11303: 11208:Any ring homomorphism 11199: 11053: 10991: 10810: 10765: 10735: 10684: 10683:{\displaystyle k\left} 10602:, there exists a ring 10571: 10533: 10434: 10407: 10365: 10309: 10144: 10042: 10041:{\displaystyle k\left} 9966: 9873: 9805: 9725: 9724:{\displaystyle R\left} 9687: 9641: 9640:{\displaystyle R\left} 9567: 9353: 9272: 9238: 9140: 8986: 8955: 8924: 8893: 8844: 8797: 8710: 8652: 8610: 8553: 8493: 8432: 8307: 7940:is a left module over 7818: 7522: 7442: 7400: 7258: 6926: 6878: 6843:whose restrictions to 6820:Frobenius homomorphism 6777: 6710: 6671: 6600: 6319: 6290: 6289:{\displaystyle x\in P} 6264: 6235: 6142:. The principal ideal 6028: 5663:. It is possible that 5649:characteristic subring 5590: 5561: 5528: 5499: 5473: 5431: 5413:For example, the ring 5237:multiplicative inverse 5204: 5002: 4987: 4933: 4851: 4728: 4683: 4645: 4517:, then the set of all 4364: 4327: 4279: 4250: 4188: 4145: 3957:multiplicative inverse 3908: 3582: 3526: 3459: 3395: 3331: 3270: 3215: 3169: 3020: 2956: 2903: 2866: 2835: 2796: 2742: 2713: 2673: 2617: 2554: 2517: 2475: 2419: 2315: 2278: 2234: 2006: 1891: 1867: 1803:multiplicative inverse 1642:(left distributivity). 556:Noncommutative algebra 539: 492: 455: 407:Algebraic number field 358:Principal ideal domain 247: 201: 139:Frobenius endomorphism 21608:10.1007/s000170050029 21478:Historical references 21132:Annals of Mathematics 20935:Warner, Seth (1965). 20826:Undergraduate algebra 20410:Cohn, Harvey (1980), 19957:, p. 144, axiom 19924:, p. 144, axiom 19445: 19348: 19287: 19205: 19120: 19080: 19044:(additive identity), 19039: 18999: 18952: 18856: 18668:, as a function from 18493: 18248: 18022:are not well-suited. 18005: 17951: 17895: 17801:binomial coefficients 17794: 17728: 17698: 17631: 17507: 17442: 17317: 17208: 17161: 17159:{\displaystyle k\!].} 17091: 17058:formal Laurent series 16920: 16820: 16763: 16715: 16661: 16617: 16540: 16476: 16410: 16229: 16154: 16092: 15959:and positive integer 15811:integral domains 15771: 15759:Jordan canonical form 15713: 15655: 15570: 15524: 15377:ring with no nonzero 15346: 15274: 15206: 15152: 15081: 14994:of symbols, that is, 14938:is the completion of 14922: 14866: 14833: 14793: 14767: 14743: 14650: 14599: 14563: 14492: 14466: 14442: 14404: 14374: 14338: 14283: 14232: 14194: 14155: 14055: 14010: 13962:from the category of 13917: 13863: 13836: 13752: 13698: 13657: 13530: 13445: 13393: 13325: 13220: 13184: 13155: 13119: 13087: 13041: 13013: 12969: 12940: 12890: 12808: 12747: 12682: 12641: 12589: 12537: 12490: 12349: 12317: 12110: 12057: 12055:{\displaystyle k\!].} 12014: 11927:formal Laurent series 11918: 11834: 11664: 11618:. Then the union (or 11499: 11415: 11375: 11334: 11283: 11200: 11054: 10992: 10811: 10751: 10736: 10685: 10572: 10534: 10435: 10408: 10366: 10310: 10145: 10043: 9967: 9874: 9806: 9726: 9688: 9642: 9568: 9354: 9273: 9244:By the conditions on 9239: 9141: 8987: 8956: 8925: 8894: 8845: 8798: 8690: 8632: 8590: 8554: 8494: 8433: 8308: 7966:is commutative or if 7819: 7570:scalar multiplication 7523: 7443: 7401: 7259: 6927: 6879: 6829:of a field extension 6778: 6711: 6679:to the quotient ring 6672: 6601: 6320: 6291: 6265: 6236: 6029: 5850:is a nonempty subset 5800:is a subring of  5764:is a subring of  5668:Β· 1 = 1 + 1 + ... + 1 5591: 5562: 5529: 5500: 5474: 5432: 5205: 5003: 4967: 4934: 4852: 4729: 4684: 4646: 4365: 4328: 4280: 4251: 4189: 4155:with coefficients in 4146: 4083:with coefficients in 4056:A unital associative 3909: 3574: 3527: 3460: 3396: 3332: 3271: 3216: 3180:matrix multiplication 3170: 3021: 2957: 2904: 2867: 2836: 2797: 2743: 2714: 2674: 2618: 2555: 2518: 2476: 2420: 2316: 2279: 2235: 2007: 1892: 1853: 1184:representation theory 540: 493: 456: 248: 202: 21639:Algebraic structures 21621:A History of Algebra 21397:J. Reine Angew. Math 21272:Mathematics Magazine 21245:Associative algebras 21206:"Class field theory" 20824:Lang, Serge (2005), 20691:(Revised ed.), 20592:Noncommutative rings 20553:. Houghton Mifflin. 20428:Serre, J-P. (1950), 19416: 19329: 19214: 19133: 19089: 19048: 19008: 18961: 18914: 18821: 18711:preadditive category 18362: 18235: 18195:simplicial polytopes 18187:Stanley–Reisner ring 18060:)-multilinear form. 17970: 17862: 17831:mathematical objects 17814:totally ordered ring 17805:Riemann–Roch theorem 17739: 17715: 17600: 17478: 17429: 17233: 17180: 17130: 17063: 16853: 16796: 16739: 16674: 16641: 16630:is a nonarchimedean 16624:theorem of Frobenius 16592: 16485: 16419: 16350: 16205: 16181:is a division ring ( 16089: 16006:does not divide the 15729:is represented by a 15664: 15597: 15535: 15460: 15287: 15250: 15184: 15096: 15065: 14899: 14846: 14810: 14780: 14754: 14659: 14616: 14572: 14503: 14479: 14453: 14415: 14391: 14358: 14350:-adic absolute value 14315: 14270: 14261:is a maximal ideal. 14203: 14168: 14098: 14076:be an ideal of  14023: 13978: 13872: 13845: 13768: 13707: 13666: 13549: 13455: 13410: 13347: 13250: 13193: 13164: 13132: 13104: 13057: 13021: 12978: 12949: 12910: 12817: 12756: 12715: 12650: 12606: 12554: 12550:to unit elements in 12499: 12460: 12326: 12286: 12077: 12026: 11937: 11853: 11718: 11633: 11544:of right modules of 11522:and the matrix ring 11387: 11354: 11274: 11098: 11001: 10927: 10748: 10734:{\displaystyle R\!]} 10708: 10635: 10554: 10488: 10417: 10375: 10327: 10287: 10272:, the derivative of 10055: 9999: 9941: 9826: 9789: 9697: 9651: 9592: 9414: 9313: 9248: 9162: 9000: 8965: 8934: 8903: 8854: 8809: 8577: 8503: 8499:be ideals such that 8449: 8399: 8044: 7977:is contained in the 7831:these axioms define 7666: 7552:Module (mathematics) 7479: 7410: 7363: 7119: 6987:. The image of  6943:endomorphism algebra 6906: 6860: 6733: 6685: 6659: 6612:A ring homomorphism 6446: 6300: 6274: 6245: 6213: 6209:if for any elements 5911: 5575: 5546: 5513: 5487: 5452: 5419: 5293:general linear group 5291:, and is called the 5194: 4951: 4891: 4863:Dirac delta function 4759: 4713: 4659: 4633: 4415:Noncommutative rings 4400:symmetric difference 4345: 4303: 4264: 4238: 4176: 4094: 3943:Fraenkel and Noether 3641: 3469: 3405: 3341: 3280: 3225: 3186: 3051: 2966: 2915: 2878: 2849: 2815: 2768: 2727: 2688: 2627: 2574: 2529: 2487: 2429: 2376: 2290: 2248: 2147: 2080:(or more generally, 1909: 1876: 1537:There is an element 1388:There is an element 962:Group with operators 905:Complemented lattice 740:Algebraic structures 671:algebraic structures 562:Noncommutative rings 511: 473: 436: 280:Non-associative ring 216: 189: 146:Algebraic structures 21520:Faith, Carl (1999) 21366:Commutative algebra 20965:Commutative Algebra 20639:(Revised ed.). 20489:AlgΓ¨bre commutative 20322:, Ch 1, Theorem 3.8 20231:, Proposition 1.3.1 20192:, Ch 5. Β§1, Lemma 2 19695:centrally primitive 18752:nonassociative ring 18746:Nonassociative ring 18664:, to a morphism of 18171:Birational geometry 18167:commutative algebra 18165:makes heavy use of 18145:To any irreducible 18126:representation ring 18106:representation ring 18073:algebraic varieties 17405:associative algebra 16965:such that, for any 16305:will be denoted by 16253:separable extension 15977:is semisimple (and 15948:is semisimple (and 15744:'s are of the form 15642: 15589:is a direct sum of 15515: 15490: 13824: 13791: 13757:is exact over  11339:is a direct sum of 11328: 11131: 11045: 11024: 10579:polynomial function 9152:central idempotents 9118: 8024:be rings. Then the 6041:is a left ideal if 5834:Ideal (ring theory) 5705:characteristic zero 5629:, and it is called 5332:to give operations 5281:over a field, then 5224:in linear algebra. 4887:, given a sequence 4879:Products and powers 4806: 4614:are noncommutative. 4390:is a set, then the 4153:formal power series 1192:functional analysis 1120:Commutative algebra 1016:Composition algebra 776:Quasigroup and loop 321:Commutative algebra 160:Associative algebra 42:Algebraic structure 21510:Mac Lane, Saunders 21461:10.1007/bf01464225 21301:Serre, Jean-Pierre 20974:Special references 20877:Milne, J. (2012). 20843:Mac Lane, Saunders 20449:General references 20267:, end of Chapter 7 19900:, pp. 143–145 19521:Spectrum of a ring 19440: 19399:algebraic topology 19343: 19282: 19200: 19115: 19075: 19034: 19004:(multiplication), 18994: 18947: 18890:. Let pt denote a 18851: 18488: 18486: 18268:. Essentially, an 18243: 18229:tensor product of 18183:simplicial complex 18163:algebraic geometry 18149:is associated its 18135:Grothendieck group 18124:is associated its 18101:free abelian group 18091:is associated its 18020:point-set topology 18000: 17946: 17789: 17723: 17693: 17555:Euclidean topology 17502: 17437: 17312: 17278: 17203: 17156: 17086: 17030:is the subring of 16915: 16815: 16758: 16710: 16656: 16612: 16553:and is denoted by 16535: 16471: 16405: 16224: 16149: 16032:over a field is a 15963:, the matrix ring 15907:quaternion algebra 15778:regular local ring 15774: 15708: 15650: 15621: 15565: 15519: 15494: 15469: 15341: 15269: 15201: 15147: 15092:. For example, if 15076: 14917: 14861: 14828: 14788: 14762: 14738: 14645: 14594: 14558: 14487: 14461: 14437: 14399: 14369: 14333: 14278: 14227: 14189: 14150: 14124: 14050: 14005: 13912: 13858: 13831: 13810: 13777: 13747: 13693: 13652: 13525: 13493: 13440: 13388: 13320: 13215: 13189:and is denoted by 13179: 13150: 13114: 13082: 13036: 13008: 12964: 12935: 12885: 12803: 12742: 12699:. For example, if 12677: 12636: 12584: 12532: 12485: 12442:field of fractions 12344: 12343: 12322:is the subring of 12312: 12297: 12105: 12088: 12052: 12009: 11971: 11913: 11886: 11829: 11770: 11659: 11644: 11494: 11370: 11346:-copies of simple 11329: 11304: 11252:is a simple right 11195: 11117: 11063:-linear map, then 11049: 11031: 11010: 10987: 10906:and is denoted by 10894:-linear maps from 10868:and is denoted by 10806: 10731: 10680: 10567: 10529: 10430: 10403: 10361: 10305: 10140: 10038: 9962: 9869: 9801: 9750:rational functions 9721: 9683: 9637: 9563: 9379:restricted product 9349: 9268: 9234: 9136: 9100: 8982: 8951: 8920: 8889: 8840: 8793: 8725: 8627: 8549: 8489: 8428: 8417: 8303: 8301: 7814: 7812: 7613:and an element of 7558:module over a ring 7518: 7438: 7396: 7254: 7252: 6934:is an epimorphism. 6922: 6874: 6785:inner automorphism 6773: 6706: 6667: 6596: 6594: 6315: 6286: 6260: 6231: 6024: 5858:such that for any 5586: 5557: 5524: 5495: 5469: 5427: 5273:. For example, if 5200: 5120:Elements in a ring 4998: 4929: 4847: 4789: 4724: 4679: 4641: 4439:with entries from 4360: 4323: 4296:profinite integers 4289:algebraic integers 4275: 4246: 4230:quadratic integers 4207:be a set, and let 4184: 4144:{\displaystyle R]} 4141: 3904: 3902: 3596:algebraic integers 3594:and the theory of 3583: 3522: 3513: 3512: 3455: 3449: 3448: 3391: 3382: 3381: 3327: 3321: 3320: 3266: 3260: 3259: 3211: 3165: 3117: 3037:with entries in a 3033:The set of 2-by-2 3016: 2952: 2899: 2862: 2831: 2792: 2738: 2709: 2669: 2613: 2550: 2513: 2471: 2415: 2311: 2274: 2230: 2139:Modular arithmetic 2002: 1899:consisting of the 1887: 1868: 1587:Multiplication is 1239:algebraic geometry 1136:algebraic geometry 1107:ring with identity 693:equipped with two 575:Semiprimitive ring 535: 488: 451: 259:Related structures 243: 197: 133:Inner automorphism 119:Ring homomorphisms 21623:, Springer-Verlag 21587:(February 1998). 21506:Birkhoff, Garrett 21227:978-0-88275-228-0 21214:Nagata, Masayoshi 21118:978-0-8218-4799-2 21040:Cohn, Paul Moritz 21010:978-0-13-155623-2 20992:978-0-13-155615-7 20920:978-3-540-56799-8 20869:978-0-521-36764-6 20801:978-0-387-95385-4 20688:Commutative rings 20683:Kaplansky, Irving 20674:978-0-486-47189-1 20522:978-1-85233-587-8 20509:Cohn, Paul Moritz 20479:. Addison–Wesley. 20473:Macdonald, Ian G. 20421:978-0-486-64023-5 20402:978-1-108-83892-4 20377:Serre, p. 44 20255:, Proposition 6.4 20043:Hungerford (1997) 19548:Differential ring 19496:Category of rings 19473:symmetric spectra 19359:returns the ring 19262: 19259: 19108: 19068: 19027: 18987: 18940: 18866:tropical semiring 18716:Additive functors 18583:. Consider those 18297:endomorphism ring 18225:monoidal category 18223:(thought of as a 18207:Category of rings 18147:algebraic variety 18077:Schubert calculus 18024:Cohomology groups 17963:. There are also 17847:topological space 17816:is a ring with a 17778: 17735:is a Ξ»-ring with 17263: 16022:Clifford algebras 16016:Maschke's theorem 15992:, the group ring 15988:and finite group 15926:semisimple module 15919:Semisimple module 15733:. Thus, if, say, 15217:category of rings 15213:forgetful functor 15196: 15167:symmetric algebra 14221: 14164:to the quotients 14117: 14110: 13486: 12945:one often writes 12488:{\displaystyle R} 12425:Β§ Completion 12290: 12081: 11964: 11879: 11867: 11843:algebraic closure 11763: 11637: 11538:Morita equivalent 10890:, the set of all 10848:Endomorphism ring 10565: 10527: 10446:symmetric algebra 10428: 10386: 10338: 10197:is an element in 8402: 7827:When the ring is 7588:equipped with an 7556:The concept of a 7490: 7427: 7374: 7291:is also called a 6847:are the identity. 6616:is said to be an 6381:Ring homomorphism 6001: 5976: 5968: 5692:. In some rings, 5203:{\displaystyle e} 5156:nilpotent element 5008:recursively: let 4490:endomorphism ring 4488:form a ring, the 4317: 4070:. Some examples: 4041:Commutative rings 3891: 3551:form a ring; see 3129: 3011: 2998: 2980: 2947: 2929: 2860: 2826: 2664: 2651: 2638: 2611: 2598: 2585: 2511: 2498: 2466: 2453: 2440: 2413: 2400: 2387: 2272: 2259: 2223: 2210: 2197: 2184: 2056:absorbing element 1783:commutative rings 1420:additive identity 1188:operator algebras 1124:commutative rings 1075: 1074: 695:binary operations 659: 658: 616:Geometric algebra 327:Commutative rings 178:Category of rings 16:(Redirected from 21651: 21624: 21612: 21610: 21580: 21517: 21472: 21436: 21420: 21403:(145): 139–176. 21379: 21348: 21328: 21315:Invariant theory 21308: 21296: 21287: 21259: 21238: 21209: 21200: 21175: 21163: 21127:Jacobson, Nathan 21122: 21096: 21087: 21085: 21070:Proc. Japan Acad 21060: 21049: 21035: 21026: 21013: 20995: 20968: 20959: 20950: 20931: 20900: 20882: 20873: 20850: 20838: 20820: 20779: 20757: 20735: 20713: 20678: 20661:Jacobson, Nathan 20656: 20645:Jacobson, Nathan 20640: 20629:Jacobson, Nathan 20624: 20605: 20583: 20564: 20545: 20525: 20504: 20492: 20480: 20464: 20443: 20434: 20424: 20406: 20378: 20375: 20369: 20364: 20358: 20352: 20346: 20341: 20335: 20329: 20323: 20313: 20307: 20301: 20295: 20286: 20280: 20274: 20268: 20262: 20256: 20250: 20244: 20238: 20232: 20226: 20220: 20214: 20208: 20202: 20193: 20187: 20181: 20175: 20169: 20163: 20157: 20151: 20145: 20139: 20133: 20127: 20121: 20115: 20109: 20104: 20098: 20093: 20087: 20086: 20075: 20069: 20064: 20058: 20052: 20046: 20040: 20034: 20028: 20022: 20016: 20010: 20004: 19998: 19992: 19986: 19981: 19975: 19970: 19964: 19952: 19946: 19940: 19931: 19919: 19913: 19907: 19901: 19895: 19889: 19880: 19874: 19869: 19863: 19857: 19851: 19850: 19843: 19837: 19831: 19825: 19819: 19813: 19807: 19801: 19795: 19789: 19783: 19777: 19776: 19765: 19759: 19753: 19747: 19741: 19732: 19726: 19720: 19714: 19698: 19691: 19685: 19682: 19676: 19674: 19669: 19663: 19650: 19644: 19642: 19638: 19633: 19553:Exponential ring 19491:Categorical ring 19466: 19459: 19449: 19447: 19446: 19441: 19411: 19388: 19384: 19376: 19372: 19358: 19354: 19352: 19350: 19349: 19344: 19342: 19322: 19313: 19309: 19291: 19289: 19288: 19283: 19278: 19264: 19263: 19261: 19260: 19257: 19254: 19249: 19246: 19226: 19225: 19209: 19207: 19206: 19201: 19199: 19182: 19181: 19145: 19144: 19128: 19124: 19122: 19121: 19116: 19110: 19109: 19107: 19102: 19097: 19084: 19082: 19081: 19076: 19070: 19069: 19067: 19062: 19057: 19043: 19041: 19040: 19035: 19029: 19028: 19026: 19021: 19016: 19003: 19001: 19000: 18995: 18989: 18988: 18986: 18981: 18976: 18956: 18954: 18953: 18948: 18942: 18941: 18939: 18934: 18929: 18909: 18905: 18897: 18885: 18860: 18858: 18857: 18852: 18809: 18801: 18789: 18781: 18705: 18700:set of operators 18697: 18693: 18689: 18685: 18671: 18667: 18663: 18659: 18655: 18651: 18647: 18643: 18616: 18612: 18608: 18594: 18590: 18582: 18571: 18563: 18559: 18555: 18551: 18543: 18527: 18523: 18504: 18497: 18495: 18494: 18489: 18487: 18429: 18368: 18354: 18344: 18334: 18326: 18322: 18314: 18310: 18306: 18294: 18286: 18271: 18265: 18260: 18254: 18252: 18250: 18249: 18244: 18242: 18131:character theory 18059: 18049: 18044:multilinear form 18041: 18009: 18007: 18006: 18001: 17996: 17982: 17981: 17955: 17953: 17952: 17947: 17939: 17925: 17924: 17914: 17909: 17888: 17874: 17873: 17851: 17798: 17796: 17795: 17790: 17785: 17784: 17783: 17770: 17751: 17750: 17734: 17732: 17730: 17729: 17724: 17722: 17702: 17700: 17699: 17694: 17680: 17679: 17655: 17654: 17644: 17639: 17612: 17611: 17589: 17585: 17571: 17559:Zariski topology 17552: 17548: 17543:product topology 17540: 17526: 17511: 17509: 17508: 17503: 17469: 17464:topological ring 17461: 17454: 17448: 17446: 17444: 17443: 17438: 17436: 17422: 17418: 17414: 17375: 17364: 17360: 17356: 17352: 17348: 17340: 17336: 17325: 17321: 17319: 17318: 17313: 17277: 17220: 17216: 17212: 17210: 17209: 17204: 17175: 17171: 17165: 17163: 17162: 17157: 17122: 17118: 17114: 17103: 17099: 17095: 17093: 17092: 17087: 17048: 17037: 17033: 17029: 17021: 16990: 16980: 16976: 16970: 16964: 16960: 16954: 16947: 16928:Azumaya algebras 16924: 16922: 16921: 16916: 16911: 16907: 16906: 16905: 16887: 16865: 16864: 16848: 16836: 16832: 16828: 16824: 16822: 16821: 16816: 16811: 16810: 16791: 16779: 16767: 16765: 16764: 16759: 16754: 16753: 16734: 16730: 16719: 16717: 16716: 16711: 16709: 16704: 16699: 16669: 16667: 16665: 16663: 16662: 16657: 16655: 16654: 16649: 16629: 16621: 16619: 16618: 16613: 16608: 16579: 16575: 16560: 16552: 16544: 16542: 16541: 16536: 16534: 16530: 16526: 16525: 16480: 16478: 16477: 16472: 16467: 16466: 16451: 16450: 16441: 16440: 16431: 16430: 16414: 16412: 16411: 16406: 16401: 16400: 16391: 16390: 16375: 16374: 16365: 16364: 16345: 16341: 16333: 16329: 16315: 16304: 16300: 16296: 16292: 16288: 16280: 16276: 16272: 16250: 16246: 16233: 16231: 16230: 16225: 16220: 16219: 16196: 16192: 16180: 16169: 16158: 16156: 16155: 16150: 16145: 16144: 16129: 16128: 16127: 16126: 16111: 16106: 16081: 16067: 16061: 16054: 16013: 16005: 15997: 15991: 15987: 15976: 15962: 15958: 15913:Semisimple rings 15901:, introduced by 15823:GCD domains 15785:class inclusions 15764: 15756: 15743: 15736: 15728: 15724: 15717: 15715: 15714: 15709: 15704: 15703: 15676: 15675: 15659: 15657: 15656: 15651: 15646: 15641: 15640: 15639: 15629: 15616: 15588: 15584: 15578: 15574: 15572: 15571: 15566: 15528: 15526: 15525: 15520: 15514: 15513: 15512: 15502: 15489: 15488: 15487: 15477: 15455: 15451: 15445: 15441: 15427: 15423: 15350: 15348: 15347: 15342: 15282: 15278: 15276: 15275: 15270: 15265: 15264: 15245: 15241: 15237: 15231: 15210: 15208: 15207: 15202: 15197: 15194: 15176: 15172: 15164: 15160: 15156: 15154: 15153: 15148: 15091: 15087: 15085: 15083: 15082: 15077: 15072: 15058: 15054: 15050: 15046: 15042: 15038: 15034: 15030: 15023: 15013: 15010:factors through 15009: 15005: 15001: 14997: 14993: 14985: 14967:integral closure 14951: 14943: 14937: 14928: 14926: 14924: 14923: 14918: 14913: 14912: 14907: 14892: 14884: 14876: 14872: 14870: 14868: 14867: 14862: 14860: 14859: 14854: 14839: 14837: 14835: 14834: 14829: 14824: 14823: 14818: 14799: 14797: 14795: 14794: 14789: 14787: 14773: 14771: 14769: 14768: 14763: 14761: 14747: 14745: 14744: 14739: 14737: 14736: 14731: 14722: 14717: 14712: 14711: 14706: 14697: 14689: 14688: 14683: 14674: 14666: 14654: 14652: 14651: 14646: 14638: 14637: 14632: 14623: 14611: 14607: 14603: 14601: 14600: 14595: 14584: 14583: 14567: 14565: 14564: 14559: 14557: 14556: 14546: 14545: 14525: 14524: 14519: 14510: 14498: 14496: 14494: 14493: 14488: 14486: 14472: 14470: 14468: 14467: 14462: 14460: 14446: 14444: 14443: 14438: 14436: 14428: 14410: 14408: 14406: 14405: 14400: 14398: 14384: 14380: 14378: 14376: 14375: 14370: 14365: 14349: 14344: 14342: 14340: 14339: 14334: 14329: 14328: 14323: 14306: 14301: 14297: 14289: 14287: 14285: 14284: 14279: 14277: 14260: 14252: 14248: 14244: 14240: 14236: 14234: 14233: 14228: 14223: 14222: 14214: 14198: 14196: 14195: 14190: 14188: 14187: 14178: 14163: 14159: 14157: 14156: 14151: 14146: 14145: 14136: 14125: 14112: 14111: 14103: 14093: 14089: 14079: 14075: 14071: 14059: 14057: 14056: 14051: 14049: 14045: 14044: 14019:-modules map to 14018: 14014: 14012: 14011: 14006: 14004: 14000: 13999: 13973: 13969: 13965: 13957: 13953: 13949: 13945: 13941: 13921: 13919: 13918: 13913: 13905: 13888: 13867: 13865: 13864: 13859: 13854: 13853: 13840: 13838: 13837: 13832: 13820: 13819: 13806: 13805: 13804: 13787: 13786: 13760: 13756: 13754: 13753: 13748: 13740: 13723: 13702: 13700: 13699: 13694: 13692: 13688: 13687: 13661: 13659: 13658: 13653: 13645: 13641: 13640: 13624: 13613: 13609: 13608: 13586: 13582: 13581: 13565: 13541: 13537: 13534: 13532: 13531: 13526: 13521: 13517: 13516: 13494: 13481: 13477: 13476: 13449: 13447: 13446: 13441: 13436: 13432: 13431: 13405: 13401: 13397: 13395: 13394: 13389: 13387: 13383: 13382: 13366: 13365: 13356: 13355: 13339: 13335: 13329: 13327: 13326: 13321: 13313: 13312: 13303: 13299: 13298: 13276: 13272: 13271: 13242: 13239:with respect to 13238: 13234: 13230: 13224: 13222: 13221: 13216: 13208: 13207: 13188: 13186: 13185: 13180: 13178: 13177: 13176: 13159: 13157: 13156: 13151: 13149: 13148: 13142: 13127: 13123: 13121: 13120: 13115: 13113: 13112: 13099: 13095: 13091: 13089: 13088: 13083: 13078: 13077: 13076: 13066: 13065: 13045: 13043: 13042: 13037: 13035: 13034: 13033: 13017: 13015: 13014: 13009: 13004: 13000: 12999: 12973: 12971: 12970: 12965: 12963: 12962: 12961: 12944: 12942: 12941: 12936: 12931: 12930: 12905: 12901: 12894: 12892: 12891: 12886: 12863: 12843: 12839: 12838: 12813:(to be precise, 12812: 12810: 12809: 12804: 12776: 12775: 12766: 12751: 12749: 12748: 12743: 12741: 12737: 12736: 12710: 12706: 12702: 12698: 12695:with respect to 12694: 12686: 12684: 12683: 12678: 12676: 12672: 12671: 12645: 12643: 12642: 12637: 12632: 12628: 12627: 12601: 12597: 12593: 12591: 12590: 12585: 12580: 12576: 12575: 12549: 12545: 12541: 12539: 12538: 12533: 12531: 12527: 12526: 12494: 12492: 12491: 12486: 12481: 12480: 12455: 12451: 12447: 12418: 12408: 12388: 12377: 12366: 12353: 12351: 12350: 12345: 12342: 12341: 12321: 12319: 12318: 12313: 12311: 12310: 12298: 12281: 12267: 12247: 12218: 12198: 12188: 12168: 12162: 12146:projective limit 12124: 12120: 12114: 12112: 12111: 12106: 12089: 12072: 12061: 12059: 12058: 12053: 12018: 12016: 12015: 12010: 11988: 11987: 11972: 11932: 11922: 11920: 11919: 11914: 11909: 11908: 11907: 11906: 11896: 11887: 11874: 11873: 11868: 11863: 11858: 11838: 11836: 11835: 11830: 11822: 11821: 11803: 11802: 11790: 11789: 11771: 11749: 11748: 11736: 11735: 11706: 11702: 11695: 11685: 11675: 11668: 11666: 11665: 11660: 11658: 11657: 11645: 11628: 11620:filtered colimit 11617: 11613: 11602:is a subring of 11601: 11594: 11579: 11565: 11561: 11547: 11535: 11521: 11503: 11501: 11500: 11495: 11484: 11483: 11468: 11467: 11452: 11451: 11450: 11449: 11434: 11429: 11399: 11398: 11379: 11377: 11376: 11371: 11366: 11365: 11349: 11345: 11338: 11336: 11335: 11330: 11327: 11326: 11325: 11312: 11302: 11297: 11269: 11255: 11251: 11241: 11217: 11204: 11202: 11201: 11196: 11188: 11187: 11150: 11149: 11130: 11125: 11110: 11109: 11090: 11073: 11066: 11062: 11058: 11056: 11055: 11050: 11044: 11039: 11023: 11018: 10996: 10994: 10993: 10988: 10971: 10970: 10955: 10954: 10939: 10938: 10919: 10905: 10897: 10893: 10889: 10885: 10882:. Given a right 10881: 10863: 10860:with entries in 10859: 10855: 10824: 10815: 10813: 10812: 10807: 10799: 10798: 10785: 10784: 10775: 10774: 10764: 10759: 10740: 10738: 10737: 10732: 10693: 10689: 10687: 10686: 10681: 10679: 10675: 10674: 10673: 10655: 10654: 10626: 10619: 10613: 10609: 10605: 10601: 10595: 10588: 10584: 10576: 10574: 10573: 10568: 10566: 10558: 10549: 10545: 10538: 10536: 10535: 10530: 10528: 10520: 10480: 10470: 10466: 10462: 10458: 10454: 10443: 10439: 10437: 10436: 10431: 10429: 10421: 10412: 10410: 10409: 10404: 10387: 10379: 10370: 10368: 10367: 10362: 10339: 10331: 10322: 10318: 10314: 10312: 10311: 10306: 10279: 10275: 10271: 10260: 10233: 10229: 10226:is divisible by 10225: 10202: 10196: 10181: 10177: 10170: 10164: 10158: 10149: 10147: 10146: 10141: 10136: 10132: 10131: 10130: 10118: 10117: 10047: 10045: 10044: 10039: 10037: 10033: 10032: 10031: 10019: 10018: 9991: 9987: 9983: 9979: 9973: 9971: 9969: 9968: 9963: 9934: 9923: 9919: 9905: 9895: 9878: 9876: 9875: 9870: 9818: 9814: 9810: 9808: 9807: 9802: 9781: 9775: 9771: 9765: 9761: 9755: 9747: 9737: 9730: 9728: 9727: 9722: 9720: 9716: 9715: 9692: 9690: 9689: 9684: 9682: 9681: 9663: 9662: 9646: 9644: 9643: 9638: 9636: 9632: 9631: 9630: 9612: 9611: 9587: 9579: 9572: 9570: 9569: 9564: 9562: 9558: 9551: 9550: 9526: 9525: 9510: 9509: 9491: 9490: 9475: 9474: 9456: 9455: 9446: 9445: 9406: 9402: 9375:projective limit 9369: 9365: 9358: 9356: 9355: 9350: 9345: 9344: 9329: 9328: 9323: 9322: 9308: 9298: 9284: 9277: 9275: 9274: 9269: 9264: 9263: 9258: 9257: 9243: 9241: 9240: 9235: 9230: 9229: 9224: 9223: 9213: 9212: 9199: 9198: 9180: 9179: 9157: 9149: 9145: 9143: 9142: 9137: 9135: 9134: 9129: 9128: 9117: 9112: 9107: 9106: 9077: 9076: 9071: 9070: 9063: 9062: 9057: 9056: 9045: 9044: 9039: 9038: 9022: 9021: 9016: 9015: 8995: 8991: 8989: 8988: 8983: 8981: 8980: 8975: 8974: 8960: 8958: 8957: 8952: 8950: 8949: 8944: 8943: 8929: 8927: 8926: 8921: 8919: 8918: 8913: 8912: 8898: 8896: 8895: 8890: 8888: 8887: 8866: 8865: 8849: 8847: 8846: 8841: 8821: 8820: 8802: 8800: 8799: 8794: 8786: 8785: 8780: 8779: 8778: 8755: 8754: 8749: 8748: 8747: 8727: 8726: 8724: 8723: 8718: 8717: 8709: 8704: 8676: 8675: 8674: 8669: 8668: 8661: 8651: 8646: 8628: 8626: 8625: 8624: 8619: 8618: 8609: 8604: 8587: 8568: 8558: 8556: 8555: 8550: 8536: 8535: 8530: 8529: 8519: 8518: 8513: 8512: 8498: 8496: 8495: 8490: 8488: 8487: 8482: 8481: 8465: 8464: 8459: 8458: 8444: 8437: 8435: 8434: 8429: 8427: 8426: 8416: 8394: 8390: 8383: 8379: 8369: 8365: 8355: 8351: 8335: 8331: 8312: 8310: 8309: 8304: 8302: 8295: 8294: 8282: 8281: 8269: 8268: 8256: 8255: 8237: 8236: 8224: 8223: 8205: 8204: 8192: 8191: 8176: 8169: 8168: 8156: 8155: 8143: 8142: 8130: 8129: 8111: 8110: 8098: 8097: 8079: 8078: 8066: 8065: 8050: 8036: 8023: 8019: 7992: 7988: 7984: 7976: 7965: 7961: 7943: 7939: 7935: 7916:additive inverse 7913: 7884: 7864: 7846: 7842: 7823: 7821: 7820: 7815: 7813: 7773: 7756: 7713: 7672: 7659: 7652: 7648: 7642: 7636: 7632: 7626: 7616: 7612: 7608: 7604: 7583: 7579: 7575: 7541: 7538:to the image of 7537: 7527: 7525: 7524: 7519: 7502: 7491: 7483: 7474: 7464: 7447: 7445: 7444: 7439: 7428: 7420: 7405: 7403: 7402: 7397: 7386: 7375: 7367: 7358: 7347: 7329: 7315: 7290: 7280: 7276: 7263: 7261: 7260: 7255: 7253: 7192: 7125: 7111: 7103: 7090: 7082: 7078: 7066: 7060:and a two-sided 7059: 7048:. Given a ring 7025: 7021: 7017: 7009: 7005: 7001: 6994: 6990: 6986: 6982: 6974: 6970: 6948: 6941:-algebra to the 6940: 6933: 6931: 6929: 6928: 6923: 6921: 6913: 6892: 6885: 6883: 6881: 6880: 6875: 6867: 6853: 6846: 6842: 6838: 6817: 6813: 6812: 6801: 6797: 6790: 6782: 6780: 6779: 6774: 6772: 6771: 6728: 6724: 6717: 6715: 6713: 6712: 6707: 6705: 6697: 6692: 6678: 6676: 6674: 6673: 6668: 6666: 6652: 6648: 6644: 6628:inverse function 6625: 6615: 6605: 6603: 6602: 6597: 6595: 6591: 6590: 6575: 6574: 6558: 6505: 6452: 6438: 6434: 6428: 6422: 6418: 6414: 6410: 6402: 6370: 6360: 6350: 6340: 6334: 6328: 6324: 6322: 6321: 6316: 6295: 6293: 6292: 6287: 6269: 6267: 6266: 6261: 6240: 6238: 6237: 6232: 6204: 6200: 6167: 6163: 6159: 6155: 6147: 6141: 6133: 6127: 6121: 6117: 6110: 6106: 6102: 6098: 6092: 6088: 6084: 6073:is said to be a 6072: 6068: 6058: 6050: 6040: 6033: 6031: 6030: 6025: 6014: 6013: 6003: 6002: 5999: 5989: 5988: 5978: 5977: 5974: 5970: 5969: 5966: 5962: 5961: 5952: 5951: 5933: 5932: 5923: 5922: 5903: 5899: 5895: 5891: 5887: 5883: 5873: 5869: 5865: 5861: 5857: 5853: 5849: 5841: 5823: 5815: 5811: 5803: 5799: 5795: 5791: 5787: 5783: 5779: 5775: 5767: 5763: 5755: 5751: 5747: 5737: 5733: 5729: 5725: 5721: 5713: 5702: 5698: 5691: 5681: 5677: 5673: 5669: 5662: 5658: 5654: 5646: 5642: 5634: 5628: 5625:containing  5624: 5620: 5616: 5612: 5608: 5597: 5595: 5593: 5592: 5587: 5585: 5568: 5566: 5564: 5563: 5558: 5553: 5539: 5535: 5533: 5531: 5530: 5525: 5523: 5506: 5504: 5502: 5501: 5496: 5494: 5481:(in both cases, 5480: 5478: 5476: 5475: 5470: 5459: 5438: 5436: 5434: 5433: 5428: 5426: 5408: 5398: 5392: 5388: 5384: 5374: 5370: 5366: 5362: 5353: 5349: 5345: 5328: 5316: 5312: 5290: 5286: 5280: 5276: 5272: 5261: 5254: 5244: 5234: 5219: 5209: 5207: 5206: 5201: 5178:nilpotent matrix 5175: 5168: 5161: 5150: 5143: 5139: 5135: 5131: 5115: 5104: 5091: 5084: 5071: 5064: 5057: 5046: 5017: 5007: 5005: 5004: 4999: 4997: 4996: 4986: 4981: 4963: 4962: 4946: 4942: 4938: 4936: 4935: 4930: 4925: 4924: 4906: 4905: 4886: 4868: 4860: 4856: 4854: 4853: 4848: 4805: 4800: 4750: 4739: 4735: 4733: 4731: 4730: 4725: 4720: 4706: 4702: 4690: 4688: 4686: 4685: 4680: 4669: 4652: 4650: 4648: 4647: 4642: 4640: 4602: 4596: 4592: 4586: 4580: 4572: 4568: 4558: 4550: 4534: 4520: 4516: 4508: 4504: 4498: 4487: 4473: 4464: 4460: 4453: 4449: 4442: 4435: 4431: 4427: 4423: 4397: 4389: 4375: 4371: 4369: 4367: 4366: 4361: 4359: 4358: 4353: 4338: 4334: 4332: 4330: 4329: 4324: 4319: 4318: 4313: 4308: 4286: 4284: 4282: 4281: 4276: 4271: 4257: 4255: 4253: 4252: 4247: 4245: 4222: 4218: 4214: 4210: 4206: 4195: 4193: 4191: 4190: 4185: 4183: 4158: 4150: 4148: 4147: 4142: 4134: 4133: 4115: 4114: 4086: 4078: 4067: 4062: 4001: 3991:. Likewise, the 3990: 3985: 3981: 3953:non-zero-divisor 3938: 3932: 3926: 3922: 3913: 3911: 3910: 3905: 3903: 3889: 3863: 3862: 3840: 3839: 3808: 3807: 3788: 3787: 3756: 3755: 3736: 3735: 3713: 3712: 3693: 3692: 3657: 3656: 3633: 3600:Richard Dedekind 3592:polynomial rings 3576:Richard Dedekind 3550: 3547:with entries in 3546: 3542: 3538: 3531: 3529: 3528: 3523: 3518: 3514: 3464: 3462: 3461: 3456: 3454: 3450: 3400: 3398: 3397: 3392: 3387: 3383: 3336: 3334: 3333: 3328: 3326: 3322: 3275: 3273: 3272: 3267: 3265: 3261: 3220: 3218: 3217: 3212: 3198: 3197: 3174: 3172: 3171: 3166: 3161: 3157: 3127: 3126: 3122: 3121: 3063: 3062: 3043: 3025: 3023: 3022: 3017: 3012: 3004: 2999: 2994: 2986: 2981: 2973: 2961: 2959: 2958: 2953: 2948: 2943: 2935: 2930: 2922: 2910: 2908: 2906: 2905: 2900: 2898: 2890: 2885: 2871: 2869: 2868: 2863: 2861: 2853: 2844: 2840: 2838: 2837: 2832: 2827: 2819: 2810: 2803: 2801: 2799: 2798: 2793: 2788: 2780: 2775: 2761: 2758:when divided by 2757: 2753: 2749: 2747: 2745: 2744: 2739: 2734: 2720: 2718: 2716: 2715: 2710: 2708: 2700: 2695: 2678: 2676: 2675: 2670: 2665: 2657: 2652: 2644: 2639: 2631: 2622: 2620: 2619: 2614: 2612: 2604: 2599: 2591: 2586: 2578: 2569: 2565: 2561: 2559: 2557: 2556: 2551: 2549: 2541: 2536: 2522: 2520: 2519: 2514: 2512: 2504: 2499: 2491: 2480: 2478: 2477: 2472: 2467: 2459: 2454: 2446: 2441: 2433: 2424: 2422: 2421: 2416: 2414: 2406: 2401: 2393: 2388: 2380: 2372:). For example, 2371: 2360: 2350: 2346: 2336: 2332: 2322: 2320: 2318: 2317: 2312: 2310: 2302: 2297: 2283: 2281: 2280: 2275: 2273: 2265: 2260: 2252: 2239: 2237: 2236: 2231: 2229: 2225: 2224: 2216: 2211: 2203: 2198: 2190: 2185: 2177: 2167: 2159: 2154: 2127: 2117: 2113: 2108:binomial formula 2102: 2098: 2087: 2083: 2079: 2075: 2068: 2053: 2043: 2039: 2036:For any element 2011: 2009: 2008: 2003: 1898: 1896: 1894: 1893: 1888: 1883: 1834: 1816: 1792:commutative ring 1779: 1773: 1752: 1751: 1748: 1747: 1744: 1741: 1719: 1713: 1703: 1693: 1689: 1675: 1641: 1637: 1623: 1577: 1573: 1569: 1565: 1554: 1544: 1540: 1534:is associative). 1533: 1529: 1525: 1511: 1477: 1469: 1464:additive inverse 1461: 1454: 1443: 1439: 1432: 1428: 1417: 1413: 1409: 1405: 1395: 1391: 1380: 1376: 1372: 1362: 1338: 1334: 1330: 1316: 1282: 1271: 1243:invariant theory 1235:polynomial rings 1227:Dedekind domains 1200:cohomology rings 1177: 1166: 1155:ring of integers 1122:, the theory of 1103:identity element 1067: 1060: 1053: 842:Commutative ring 771:Rack and quandle 736: 735: 673:that generalize 651: 644: 637: 622:Operator algebra 608:Clifford algebra 544: 542: 541: 536: 531: 530: 518: 497: 495: 494: 489: 487: 486: 481: 460: 458: 457: 452: 450: 449: 444: 422:Ring of integers 416: 413:Integers modulo 364:Euclidean domain 252: 250: 249: 244: 242: 234: 229: 206: 204: 203: 198: 196: 100:Product of rings 86:Fractional ideal 45: 37: 36: 21: 21659: 21658: 21654: 21653: 21652: 21650: 21649: 21648: 21629: 21628: 21627: 21585:Kleiner, Israel 21569:10.2307/2974935 21551:Kleiner, Israel 21480: 21475: 21387: 21385:Primary sources 21382: 21376: 21346: 21326: 21256: 21228: 21197: 21145:10.2307/1969205 21119: 21058: 21011: 20993: 20976: 20971: 20947: 20921: 20898: 20870: 20836: 20802: 20776: 20754: 20732: 20703: 20675: 20621: 20613:. Brooks/Cole. 20602: 20588:Herstein, I. N. 20580: 20561: 20530:Eisenbud, David 20523: 20469:Atiyah, Michael 20451: 20446: 20422: 20403: 20386: 20381: 20376: 20372: 20367:Jacobson (2009) 20365: 20361: 20355:Jacobson (2009) 20353: 20349: 20342: 20338: 20332:Milne & CFT 20330: 20326: 20314: 20310: 20302: 20298: 20287: 20283: 20275: 20271: 20263: 20259: 20251: 20247: 20241:Eisenbud (1995) 20239: 20235: 20227: 20223: 20215: 20211: 20203: 20196: 20190:Bourbaki (1964) 20188: 20184: 20178:Jacobson (2009) 20176: 20172: 20168:, Theorem 4.5.1 20164: 20160: 20154:Bourbaki (1989) 20152: 20148: 20142:Jacobson (2009) 20140: 20136: 20128: 20124: 20116: 20112: 20105: 20101: 20094: 20090: 20077: 20076: 20072: 20065: 20061: 20053: 20049: 20041: 20037: 20029: 20025: 20019:Eisenbud (1995) 20017: 20013: 20007:Bourbaki (1989) 20005: 20001: 19993: 19989: 19982: 19978: 19971: 19967: 19963: 19955:Fraenkel (1915) 19953: 19949: 19941: 19934: 19930: 19922:Fraenkel (1915) 19920: 19916: 19910:Jacobson (2009) 19908: 19904: 19898:Fraenkel (1915) 19896: 19892: 19881: 19877: 19870: 19866: 19858: 19854: 19845: 19844: 19840: 19832: 19828: 19820: 19816: 19808: 19804: 19796: 19792: 19784: 19780: 19767: 19766: 19762: 19754: 19750: 19742: 19735: 19727: 19723: 19717:Bourbaki (1989) 19715: 19711: 19707: 19702: 19701: 19692: 19688: 19683: 19679: 19672: 19670: 19666: 19660:next subsection 19651: 19647: 19640: 19636: 19634: 19630: 19625: 19620: 19602:Ring of periods 19530: 19481: 19464: 19462:sphere spectrum 19451: 19450:and a unit map 19417: 19414: 19413: 19409: 19395: 19386: 19382: 19374: 19366: 19360: 19356: 19338: 19330: 19327: 19326: 19324: 19321: 19315: 19311: 19307: 19297: 19265: 19256: 19255: 19250: 19248: 19247: 19230: 19221: 19217: 19215: 19212: 19211: 19186: 19177: 19173: 19140: 19136: 19134: 19131: 19130: 19126: 19103: 19098: 19096: 19095: 19090: 19087: 19086: 19063: 19058: 19056: 19055: 19049: 19046: 19045: 19022: 19017: 19015: 19014: 19009: 19006: 19005: 18982: 18977: 18975: 18974: 18962: 18959: 18958: 18935: 18930: 18928: 18927: 18915: 18912: 18911: 18907: 18903: 18895: 18892:terminal object 18883: 18880: 18875: 18822: 18819: 18818: 18807: 18791: 18783: 18775: 18764: 18748: 18736: 18728: 18703: 18695: 18691: 18687: 18679: 18673: 18669: 18665: 18661: 18657: 18653: 18649: 18645: 18618: 18614: 18610: 18602: 18596: 18592: 18588: 18573: 18565: 18561: 18557: 18553: 18545: 18533: 18525: 18524:is addition in 18506: 18502: 18485: 18484: 18427: 18426: 18365: 18363: 18360: 18359: 18346: 18336: 18328: 18324: 18316: 18312: 18308: 18300: 18288: 18280: 18269: 18263: 18258: 18238: 18236: 18233: 18232: 18230: 18209: 18203: 18179: 18161:. The study of 18159:coordinate ring 18155:valuation rings 18143: 18114: 18085: 18079:and much more. 18051: 18047: 18039: 18036:natural product 17992: 17977: 17973: 17971: 17968: 17967: 17965:homology groups 17935: 17920: 17916: 17910: 17899: 17884: 17869: 17865: 17863: 17860: 17859: 17854:cohomology ring 17849: 17843: 17835:associated ring 17827: 17779: 17766: 17765: 17764: 17746: 17742: 17740: 17737: 17736: 17718: 17716: 17713: 17712: 17710: 17669: 17665: 17650: 17646: 17640: 17635: 17607: 17603: 17601: 17598: 17597: 17592:exterior powers 17587: 17573: 17569: 17550: 17546: 17532: 17513: 17479: 17476: 17475: 17467: 17459: 17450: 17432: 17430: 17427: 17426: 17424: 17420: 17416: 17412: 17393: 17388: 17366: 17362: 17358: 17354: 17350: 17346: 17338: 17327: 17323: 17267: 17234: 17231: 17230: 17218: 17214: 17181: 17178: 17177: 17173: 17169: 17131: 17128: 17127: 17120: 17116: 17105: 17101: 17097: 17064: 17061: 17060: 17039: 17035: 17031: 17027: 16992: 16982: 16978: 16972: 16966: 16962: 16956: 16952: 16945: 16942: 16936: 16901: 16897: 16883: 16870: 16866: 16860: 16856: 16854: 16851: 16850: 16838: 16834: 16830: 16826: 16806: 16802: 16797: 16794: 16793: 16781: 16769: 16749: 16745: 16740: 16737: 16736: 16732: 16728: 16705: 16700: 16695: 16675: 16672: 16671: 16650: 16645: 16644: 16642: 16639: 16638: 16636: 16635: 16627: 16626:). Finally, if 16604: 16593: 16590: 16589: 16577: 16569: 16554: 16550: 16521: 16517: 16513: 16509: 16486: 16483: 16482: 16459: 16455: 16446: 16442: 16436: 16432: 16426: 16422: 16420: 16417: 16416: 16396: 16392: 16386: 16382: 16370: 16366: 16360: 16356: 16351: 16348: 16347: 16343: 16339: 16334:are said to be 16331: 16327: 16314: 16306: 16302: 16298: 16294: 16290: 16286: 16278: 16274: 16270: 16267: 16261: 16248: 16238: 16236:field extension 16215: 16211: 16206: 16203: 16202: 16194: 16190: 16179: 16171: 16168: 16160: 16140: 16136: 16122: 16118: 16117: 16113: 16107: 16096: 16090: 16087: 16086: 16079: 16065: 16059: 16052: 16046: 16024:are semisimple. 16011: 16003: 15993: 15989: 15985: 15970: 15964: 15960: 15956: 15941: 15932:semisimple ring 15921: 15915: 15862: 15762: 15754: 15745: 15742: 15738: 15734: 15726: 15723: 15719: 15699: 15695: 15671: 15667: 15665: 15662: 15661: 15635: 15631: 15630: 15625: 15617: 15612: 15598: 15595: 15594: 15586: 15580: 15576: 15536: 15533: 15532: 15508: 15504: 15503: 15498: 15483: 15479: 15478: 15473: 15461: 15458: 15457: 15453: 15447: 15443: 15429: 15425: 15421: 15387:integral domain 15371: 15366: 15361: 15359:Change of rings 15288: 15285: 15284: 15280: 15260: 15256: 15251: 15248: 15247: 15243: 15239: 15233: 15227: 15193: 15185: 15182: 15181: 15174: 15170: 15162: 15158: 15097: 15094: 15093: 15089: 15068: 15066: 15063: 15062: 15060: 15056: 15052: 15048: 15044: 15040: 15036: 15035:is a subset of 15032: 15028: 15015: 15011: 15007: 15003: 14999: 14995: 14991: 14983: 14980: 14945: 14939: 14932: 14908: 14903: 14902: 14900: 14897: 14896: 14894: 14890: 14880: 14878: 14874: 14855: 14850: 14849: 14847: 14844: 14843: 14841: 14819: 14814: 14813: 14811: 14808: 14807: 14805: 14783: 14781: 14778: 14777: 14775: 14757: 14755: 14752: 14751: 14749: 14732: 14727: 14726: 14718: 14713: 14707: 14702: 14701: 14693: 14684: 14679: 14678: 14670: 14662: 14660: 14657: 14656: 14633: 14628: 14627: 14619: 14617: 14614: 14613: 14609: 14605: 14579: 14575: 14573: 14570: 14569: 14541: 14537: 14533: 14529: 14520: 14515: 14514: 14506: 14504: 14501: 14500: 14482: 14480: 14477: 14476: 14474: 14456: 14454: 14451: 14450: 14448: 14432: 14424: 14416: 14413: 14412: 14394: 14392: 14389: 14388: 14386: 14382: 14361: 14359: 14356: 14355: 14353: 14347: 14324: 14319: 14318: 14316: 14313: 14312: 14310: 14309:and is denoted 14304: 14299: 14291: 14273: 14271: 14268: 14267: 14265: 14258: 14250: 14246: 14242: 14238: 14213: 14212: 14204: 14201: 14200: 14183: 14179: 14174: 14169: 14166: 14165: 14161: 14141: 14137: 14132: 14116: 14102: 14101: 14099: 14096: 14095: 14091: 14087: 14077: 14073: 14069: 14066: 14037: 14033: 14029: 14024: 14021: 14020: 14016: 13992: 13988: 13984: 13979: 13976: 13975: 13971: 13967: 13963: 13955: 13951: 13947: 13943: 13939: 13932:category theory 13898: 13881: 13873: 13870: 13869: 13849: 13848: 13846: 13843: 13842: 13815: 13814: 13800: 13799: 13795: 13782: 13781: 13769: 13766: 13765: 13764:Conversely, if 13758: 13733: 13716: 13708: 13705: 13704: 13680: 13676: 13672: 13667: 13664: 13663: 13633: 13629: 13625: 13617: 13601: 13597: 13593: 13574: 13570: 13566: 13558: 13550: 13547: 13546: 13539: 13535: 13509: 13505: 13501: 13485: 13469: 13465: 13461: 13456: 13453: 13452: 13424: 13420: 13416: 13411: 13408: 13407: 13403: 13399: 13375: 13371: 13367: 13361: 13360: 13351: 13350: 13348: 13345: 13344: 13337: 13333: 13308: 13304: 13291: 13287: 13283: 13264: 13260: 13256: 13251: 13248: 13247: 13245:change of rings 13240: 13236: 13232: 13228: 13203: 13202: 13194: 13191: 13190: 13172: 13171: 13167: 13165: 13162: 13161: 13144: 13143: 13138: 13133: 13130: 13129: 13125: 13108: 13107: 13105: 13102: 13101: 13097: 13093: 13072: 13071: 13067: 13061: 13060: 13058: 13055: 13054: 13029: 13028: 13024: 13022: 13019: 13018: 12992: 12988: 12984: 12979: 12976: 12975: 12957: 12956: 12952: 12950: 12947: 12946: 12926: 12925: 12911: 12908: 12907: 12906:. In that case 12903: 12899: 12859: 12831: 12827: 12823: 12818: 12815: 12814: 12771: 12767: 12762: 12757: 12754: 12753: 12729: 12725: 12721: 12716: 12713: 12712: 12708: 12704: 12700: 12696: 12692: 12664: 12660: 12656: 12651: 12648: 12647: 12620: 12616: 12612: 12607: 12604: 12603: 12599: 12598:that "inverts" 12595: 12568: 12564: 12560: 12555: 12552: 12551: 12547: 12543: 12542:that "inverts" 12519: 12515: 12511: 12500: 12497: 12496: 12473: 12469: 12461: 12458: 12457: 12453: 12449: 12445: 12434: 12410: 12407: 12398: 12390: 12387: 12379: 12376: 12368: 12364: 12355: 12337: 12333: 12327: 12324: 12323: 12306: 12302: 12289: 12287: 12284: 12283: 12269: 12266: 12257: 12249: 12246: 12237: 12228: 12220: 12217: 12208: 12200: 12190: 12187: 12178: 12170: 12164: 12161: 12153: 12122: 12116: 12080: 12078: 12075: 12074: 12070: 12027: 12024: 12023: 11980: 11976: 11963: 11938: 11935: 11934: 11930: 11902: 11898: 11897: 11892: 11891: 11878: 11869: 11859: 11857: 11856: 11854: 11851: 11850: 11817: 11813: 11798: 11794: 11785: 11781: 11762: 11744: 11740: 11731: 11727: 11719: 11716: 11715: 11704: 11701: 11697: 11687: 11686:if and only if 11677: 11674: 11670: 11653: 11649: 11636: 11634: 11631: 11630: 11627: 11623: 11615: 11612: 11603: 11600: 11596: 11593: 11589: 11586: 11573: 11567: 11563: 11555: 11549: 11545: 11529: 11523: 11519: 11513:semisimple ring 11479: 11475: 11463: 11459: 11445: 11441: 11440: 11436: 11430: 11419: 11394: 11390: 11388: 11385: 11384: 11361: 11357: 11355: 11352: 11351: 11347: 11344: 11340: 11321: 11317: 11313: 11308: 11298: 11287: 11275: 11272: 11271: 11263: 11257: 11253: 11249: 11235: 11225: 11219: 11209: 11180: 11176: 11145: 11141: 11126: 11121: 11105: 11101: 11099: 11096: 11095: 11084: 11075: 11072: 11068: 11064: 11060: 11040: 11035: 11019: 11014: 11002: 10999: 10998: 10966: 10962: 10950: 10946: 10934: 10930: 10928: 10925: 10924: 10913: 10907: 10903: 10895: 10891: 10887: 10883: 10875: 10869: 10861: 10857: 10853: 10850: 10842:Main articles: 10840: 10820: 10794: 10790: 10780: 10776: 10770: 10766: 10760: 10755: 10749: 10746: 10745: 10709: 10706: 10705: 10691: 10669: 10665: 10650: 10646: 10645: 10641: 10636: 10633: 10632: 10624: 10615: 10611: 10607: 10603: 10597: 10593: 10586: 10582: 10557: 10555: 10552: 10551: 10547: 10543: 10519: 10489: 10486: 10485: 10472: 10468: 10464: 10460: 10456: 10452: 10441: 10420: 10418: 10415: 10414: 10378: 10376: 10373: 10372: 10330: 10328: 10325: 10324: 10320: 10316: 10315:and an element 10288: 10285: 10284: 10277: 10273: 10262: 10235: 10231: 10227: 10204: 10198: 10183: 10179: 10175: 10166: 10160: 10154: 10126: 10122: 10113: 10109: 10108: 10104: 10056: 10053: 10052: 10027: 10023: 10014: 10010: 10009: 10005: 10000: 9997: 9996: 9989: 9985: 9981: 9975: 9942: 9939: 9938: 9936: 9925: 9921: 9907: 9897: 9887: 9827: 9824: 9823: 9816: 9812: 9790: 9787: 9786: 9777: 9773: 9767: 9763: 9757: 9753: 9743: 9740:integral domain 9735: 9711: 9707: 9703: 9698: 9695: 9694: 9677: 9673: 9658: 9654: 9652: 9649: 9648: 9626: 9622: 9607: 9603: 9602: 9598: 9593: 9590: 9589: 9585: 9582:polynomial ring 9577: 9546: 9542: 9521: 9517: 9505: 9501: 9480: 9476: 9464: 9460: 9451: 9447: 9441: 9437: 9436: 9432: 9415: 9412: 9411: 9404: 9400: 9399:Given a symbol 9397: 9395:Polynomial ring 9391: 9389:Polynomial ring 9367: 9364: 9360: 9340: 9336: 9324: 9318: 9317: 9316: 9314: 9311: 9310: 9300: 9295: 9291: 9286: 9283: 9279: 9259: 9253: 9252: 9251: 9249: 9246: 9245: 9225: 9219: 9218: 9217: 9208: 9204: 9194: 9190: 9175: 9171: 9163: 9160: 9159: 9155: 9147: 9130: 9124: 9123: 9122: 9113: 9108: 9102: 9101: 9072: 9066: 9065: 9064: 9058: 9052: 9051: 9050: 9040: 9034: 9033: 9032: 9017: 9011: 9010: 9009: 9001: 8998: 8997: 8993: 8976: 8970: 8969: 8968: 8966: 8963: 8962: 8945: 8939: 8938: 8937: 8935: 8932: 8931: 8930:(in particular 8914: 8908: 8907: 8906: 8904: 8901: 8900: 8883: 8879: 8861: 8857: 8855: 8852: 8851: 8816: 8812: 8810: 8807: 8806: 8781: 8774: 8773: 8769: 8768: 8750: 8743: 8742: 8738: 8737: 8719: 8713: 8712: 8711: 8705: 8694: 8688: 8684: 8670: 8664: 8663: 8662: 8657: 8653: 8647: 8636: 8620: 8614: 8613: 8612: 8611: 8605: 8594: 8588: 8583: 8578: 8575: 8574: 8560: 8531: 8525: 8524: 8523: 8514: 8508: 8507: 8506: 8504: 8501: 8500: 8483: 8477: 8476: 8475: 8460: 8454: 8453: 8452: 8450: 8447: 8446: 8442: 8422: 8418: 8406: 8400: 8397: 8396: 8392: 8389: 8385: 8381: 8377: 8367: 8357: 8353: 8350: 8343: 8337: 8333: 8330: 8323: 8317: 8300: 8299: 8290: 8286: 8277: 8273: 8264: 8260: 8251: 8247: 8232: 8228: 8219: 8215: 8200: 8196: 8187: 8183: 8174: 8173: 8164: 8160: 8151: 8147: 8138: 8134: 8125: 8121: 8106: 8102: 8093: 8089: 8074: 8070: 8061: 8057: 8047: 8045: 8042: 8041: 8028: 8021: 8017: 8014: 8008: 8003: 7990: 7986: 7982: 7967: 7963: 7945: 7941: 7937: 7923: 7904: 7866: 7848: 7844: 7840: 7811: 7810: 7771: 7770: 7754: 7753: 7711: 7710: 7669: 7667: 7664: 7663: 7657: 7650: 7644: 7638: 7634: 7628: 7622: 7614: 7610: 7606: 7592: 7581: 7577: 7573: 7554: 7548: 7539: 7529: 7498: 7482: 7480: 7477: 7476: 7466: 7452: 7419: 7411: 7408: 7407: 7382: 7366: 7364: 7361: 7360: 7349: 7335: 7317: 7299: 7282: 7278: 7268: 7251: 7250: 7190: 7189: 7122: 7120: 7117: 7116: 7109: 7095: 7084: 7083:as subgroup of 7080: 7068: 7064: 7049: 7038: 7032: 7023: 7019: 7015: 7007: 7003: 6999: 6992: 6988: 6984: 6980: 6972: 6958: 6946: 6938: 6917: 6909: 6907: 6904: 6903: 6901: 6887: 6863: 6861: 6858: 6857: 6855: 6851: 6844: 6840: 6830: 6815: 6808: 6803: 6799: 6795: 6788: 6764: 6760: 6734: 6731: 6730: 6726: 6722: 6701: 6693: 6688: 6686: 6683: 6682: 6680: 6662: 6660: 6657: 6656: 6654: 6650: 6646: 6642: 6623: 6613: 6593: 6592: 6586: 6582: 6570: 6566: 6556: 6555: 6503: 6502: 6449: 6447: 6444: 6443: 6436: 6430: 6424: 6420: 6416: 6412: 6404: 6392: 6383: 6377: 6362: 6352: 6351:implies either 6342: 6336: 6330: 6326: 6301: 6298: 6297: 6275: 6272: 6271: 6270:implies either 6246: 6243: 6242: 6214: 6211: 6210: 6202: 6198: 6184:Noetherian ring 6165: 6161: 6157: 6149: 6143: 6139: 6129: 6123: 6119: 6115: 6108: 6104: 6100: 6094: 6090: 6089:is a subset of 6086: 6082: 6075:two-sided ideal 6070: 6060: 6056: 6051:. Similarly, a 6042: 6038: 6009: 6005: 5998: 5997: 5984: 5980: 5973: 5972: 5965: 5964: 5957: 5953: 5947: 5943: 5928: 5924: 5918: 5914: 5912: 5909: 5908: 5901: 5897: 5893: 5889: 5885: 5875: 5874:, the elements 5871: 5867: 5863: 5859: 5855: 5851: 5847: 5839: 5836: 5830: 5821: 5813: 5809: 5801: 5797: 5793: 5789: 5785: 5781: 5777: 5773: 5765: 5757: 5753: 5749: 5739: 5735: 5731: 5727: 5723: 5715: 5711: 5700: 5693: 5689: 5679: 5675: 5671: 5664: 5660: 5656: 5652: 5644: 5640: 5632: 5626: 5622: 5618: 5614: 5610: 5606: 5581: 5576: 5573: 5572: 5570: 5569:one could call 5549: 5547: 5544: 5543: 5541: 5537: 5519: 5514: 5511: 5510: 5508: 5490: 5488: 5485: 5484: 5482: 5455: 5453: 5450: 5449: 5447: 5422: 5420: 5417: 5416: 5414: 5400: 5396: 5390: 5386: 5376: 5372: 5371:, the elements 5368: 5364: 5357: 5351: 5347: 5333: 5326: 5314: 5310: 5307: 5301: 5288: 5282: 5278: 5274: 5263: 5256: 5250: 5240: 5232: 5211: 5195: 5192: 5191: 5170: 5163: 5159: 5145: 5141: 5137: 5133: 5129: 5122: 5106: 5093: 5086: 5073: 5066: 5062: 5048: 5045: 5037: 5027: 5019: 5015: 5009: 4992: 4988: 4982: 4971: 4958: 4954: 4952: 4949: 4948: 4944: 4940: 4920: 4916: 4901: 4897: 4892: 4889: 4888: 4884: 4881: 4876: 4866: 4858: 4801: 4793: 4760: 4757: 4756: 4748: 4737: 4716: 4714: 4711: 4710: 4708: 4704: 4700: 4665: 4660: 4657: 4656: 4654: 4636: 4634: 4631: 4630: 4628: 4626:natural numbers 4621: 4612:Banach algebras 4598: 4594: 4588: 4582: 4578: 4570: 4564: 4559:is a ring, the 4556: 4546: 4528: 4522: 4518: 4514: 4506: 4500: 4492: 4483: 4469: 4462: 4455: 4451: 4444: 4440: 4433: 4429: 4425: 4421: 4417: 4395: 4387: 4373: 4354: 4349: 4348: 4346: 4343: 4342: 4340: 4339:-adic integers 4336: 4309: 4307: 4306: 4304: 4301: 4300: 4298: 4267: 4265: 4262: 4261: 4259: 4241: 4239: 4236: 4235: 4233: 4223:is commutative. 4220: 4216: 4212: 4208: 4204: 4179: 4177: 4174: 4173: 4171: 4162:The set of all 4156: 4129: 4125: 4110: 4106: 4095: 4092: 4091: 4084: 4074: 4065: 4060: 4043: 4038: 4032: 3999: 3988: 3983: 3979: 3973: 3945: 3934: 3928: 3924: 3918: 3901: 3900: 3892: 3883: 3882: 3858: 3854: 3841: 3835: 3831: 3828: 3827: 3803: 3799: 3789: 3783: 3779: 3776: 3775: 3751: 3747: 3737: 3731: 3727: 3724: 3723: 3708: 3704: 3694: 3688: 3684: 3681: 3680: 3658: 3652: 3648: 3644: 3642: 3639: 3638: 3624: 3612: 3588: 3569: 3563: 3548: 3544: 3540: 3536: 3511: 3510: 3505: 3499: 3498: 3493: 3485: 3481: 3470: 3467: 3466: 3447: 3446: 3441: 3435: 3434: 3429: 3421: 3417: 3406: 3403: 3402: 3380: 3379: 3374: 3368: 3367: 3362: 3354: 3350: 3342: 3339: 3338: 3319: 3318: 3313: 3307: 3306: 3301: 3293: 3289: 3281: 3278: 3277: 3258: 3257: 3252: 3246: 3245: 3240: 3232: 3228: 3226: 3223: 3222: 3193: 3189: 3187: 3184: 3183: 3116: 3115: 3110: 3104: 3103: 3098: 3088: 3087: 3084: 3083: 3079: 3058: 3054: 3052: 3049: 3048: 3041: 3035:square matrices 3031: 3003: 2987: 2985: 2972: 2967: 2964: 2963: 2936: 2934: 2921: 2916: 2913: 2912: 2894: 2886: 2881: 2879: 2876: 2875: 2873: 2852: 2850: 2847: 2846: 2842: 2818: 2816: 2813: 2812: 2805: 2784: 2776: 2771: 2769: 2766: 2765: 2763: 2759: 2755: 2751: 2730: 2728: 2725: 2724: 2722: 2704: 2696: 2691: 2689: 2686: 2685: 2683: 2656: 2643: 2630: 2628: 2625: 2624: 2603: 2590: 2577: 2575: 2572: 2571: 2570:. For example, 2567: 2563: 2545: 2537: 2532: 2530: 2527: 2526: 2524: 2503: 2490: 2488: 2485: 2484: 2458: 2445: 2432: 2430: 2427: 2426: 2405: 2392: 2379: 2377: 2374: 2373: 2362: 2352: 2348: 2338: 2334: 2324: 2306: 2298: 2293: 2291: 2288: 2287: 2285: 2264: 2251: 2249: 2246: 2245: 2215: 2202: 2189: 2176: 2175: 2171: 2163: 2155: 2150: 2148: 2145: 2144: 2141: 2135: 2119: 2115: 2111: 2100: 2096: 2085: 2081: 2077: 2073: 2059: 2045: 2041: 2037: 2021: 2019:Some properties 1910: 1907: 1906: 1879: 1877: 1874: 1873: 1871: 1848: 1818: 1814: 1775: 1771: 1738: 1734: 1726: 1715: 1705: 1701: 1691: 1677: 1645: 1639: 1625: 1594: 1575: 1571: 1567: 1556: 1546: 1542: 1538: 1531: 1527: 1513: 1485: 1475: 1467: 1456: 1445: 1441: 1434: 1430: 1426: 1415: 1411: 1407: 1397: 1393: 1389: 1378: 1374: 1364: 1346: 1336: 1332: 1318: 1290: 1280: 1269: 1259: 1172: 1169:square matrices 1158: 1147:coordinate ring 1071: 1042: 1041: 1040: 1011:Non-associative 993: 982: 981: 971: 951: 940: 939: 928:Map of lattices 924: 920:Boolean algebra 915:Heyting algebra 889: 878: 877: 871: 852:Integral domain 816: 805: 804: 798: 752: 723:square matrices 715:complex numbers 655: 626: 625: 558: 548: 547: 526: 522: 514: 512: 509: 508: 482: 477: 476: 474: 471: 470: 445: 440: 439: 437: 434: 433: 414: 384:Polynomial ring 334:Integral domain 323: 313: 312: 238: 230: 225: 217: 214: 213: 192: 190: 187: 186: 172:Involutive ring 57: 46: 40: 35: 28: 23: 22: 15: 12: 11: 5: 21657: 21647: 21646: 21641: 21626: 21625: 21613: 21581: 21563:(5): 417–424. 21547: 21536: 21518: 21502: 21497: 21481: 21479: 21476: 21474: 21473: 21455:(1–2): 24–66. 21437: 21425:Hilbert, David 21421: 21388: 21386: 21383: 21381: 21380: 21374: 21362:Samuel, Pierre 21358:Zariski, Oscar 21354: 21344: 21329: 21324: 21309: 21297: 21260: 21254: 21239: 21226: 21210: 21201: 21195: 21176: 21164: 21123: 21117: 21097: 21088: 21061: 21056: 21036: 21027: 21025:(61): 222–227. 21014: 21009: 20996: 20991: 20977: 20975: 20972: 20970: 20969: 20960: 20951: 20945: 20937:Modern Algebra 20932: 20919: 20901: 20896: 20883: 20874: 20868: 20851: 20849:. AMS Chelsea. 20839: 20834: 20821: 20800: 20780: 20774: 20762:Lam, Tsit Yuen 20758: 20752: 20740:Lam, Tsit Yuen 20736: 20730: 20718:Lam, Tsit Yuen 20714: 20701: 20679: 20673: 20657: 20641: 20625: 20619: 20606: 20600: 20584: 20578: 20565: 20559: 20546: 20526: 20521: 20505: 20493: 20481: 20465: 20457:Artin, Michael 20452: 20450: 20447: 20445: 20444: 20438:Serre (2006), 20435: 20425: 20420: 20407: 20401: 20387: 20385: 20382: 20380: 20379: 20370: 20359: 20347: 20336: 20324: 20308: 20296: 20281: 20269: 20257: 20245: 20243:, Exercise 2.2 20233: 20221: 20209: 20194: 20182: 20170: 20158: 20146: 20134: 20122: 20110: 20099: 20088: 20070: 20067:Garling (2022) 20059: 20047: 20035: 20031:Gallian (2006) 20023: 20011: 19999: 19987: 19976: 19965: 19961: 19947: 19943:Noether (1921) 19932: 19928: 19914: 19902: 19890: 19875: 19872:Hilbert (1897) 19864: 19860:Kleiner (1998) 19852: 19838: 19826: 19814: 19802: 19790: 19778: 19760: 19748: 19733: 19721: 19708: 19706: 19703: 19700: 19699: 19686: 19677: 19664: 19645: 19627: 19626: 19624: 19621: 19619: 19618: 19612:Valuation ring 19609: 19604: 19599: 19594: 19589: 19584: 19579: 19577:artinian rings 19570: 19565: 19560: 19555: 19550: 19545: 19540: 19534: 19529: 19528: 19523: 19518: 19513: 19508: 19503: 19498: 19493: 19488: 19482: 19480: 19477: 19439: 19436: 19433: 19430: 19427: 19424: 19421: 19394: 19391: 19362: 19341: 19337: 19334: 19317: 19296: 19293: 19281: 19277: 19274: 19271: 19268: 19253: 19245: 19242: 19239: 19236: 19233: 19229: 19224: 19220: 19198: 19195: 19192: 19189: 19185: 19180: 19176: 19172: 19169: 19166: 19163: 19160: 19157: 19154: 19151: 19148: 19143: 19139: 19114: 19106: 19101: 19094: 19074: 19066: 19061: 19053: 19033: 19025: 19020: 19013: 18993: 18985: 18980: 18972: 18969: 18966: 18946: 18938: 18933: 18925: 18922: 18919: 18879: 18876: 18874: 18871: 18870: 18869: 18862: 18850: 18847: 18844: 18841: 18838: 18835: 18832: 18829: 18826: 18763: 18760: 18747: 18744: 18735: 18732: 18727: 18726:Generalization 18724: 18675: 18598: 18499: 18498: 18483: 18480: 18477: 18474: 18471: 18468: 18465: 18462: 18459: 18456: 18453: 18450: 18447: 18444: 18441: 18438: 18435: 18432: 18430: 18428: 18425: 18422: 18419: 18416: 18413: 18410: 18407: 18404: 18401: 18398: 18395: 18392: 18389: 18386: 18383: 18380: 18377: 18374: 18371: 18369: 18367: 18241: 18202: 18199: 18178: 18175: 18151:function field 18142: 18139: 18113: 18110: 18084: 18081: 17999: 17995: 17991: 17988: 17985: 17980: 17976: 17957: 17956: 17945: 17942: 17938: 17934: 17931: 17928: 17923: 17919: 17913: 17908: 17905: 17902: 17898: 17894: 17891: 17887: 17883: 17880: 17877: 17872: 17868: 17842: 17839: 17826: 17823: 17822: 17821: 17818:total ordering 17809: 17808: 17788: 17782: 17777: 17774: 17769: 17763: 17760: 17757: 17754: 17749: 17745: 17721: 17706: 17705: 17704: 17703: 17692: 17689: 17686: 17683: 17678: 17675: 17672: 17668: 17664: 17661: 17658: 17653: 17649: 17643: 17638: 17634: 17630: 17627: 17624: 17621: 17618: 17615: 17610: 17606: 17586:that are like 17562: 17501: 17498: 17495: 17492: 17489: 17486: 17483: 17456: 17449:has dimension 17435: 17392: 17389: 17386:uniserial ring 17378: 17377: 17311: 17308: 17305: 17302: 17299: 17296: 17293: 17290: 17287: 17284: 17281: 17276: 17273: 17270: 17266: 17262: 17259: 17256: 17253: 17250: 17247: 17244: 17241: 17238: 17202: 17198: 17195: 17192: 17188: 17185: 17166: 17155: 17152: 17148: 17145: 17142: 17138: 17135: 17085: 17081: 17078: 17075: 17071: 17068: 17024:valuation ring 16948:is a field, a 16940:Valuation ring 16938:Main article: 16935: 16934:Valuation ring 16932: 16914: 16910: 16904: 16900: 16896: 16893: 16890: 16886: 16882: 16879: 16876: 16873: 16869: 16863: 16859: 16814: 16809: 16805: 16801: 16757: 16752: 16748: 16744: 16708: 16703: 16698: 16694: 16691: 16688: 16685: 16682: 16679: 16653: 16648: 16634:(for example, 16611: 16607: 16603: 16600: 16597: 16586:Tsen's theorem 16576:is trivial if 16533: 16529: 16524: 16520: 16516: 16512: 16508: 16505: 16502: 16499: 16496: 16493: 16490: 16470: 16465: 16462: 16458: 16454: 16449: 16445: 16439: 16435: 16429: 16425: 16404: 16399: 16395: 16389: 16385: 16381: 16378: 16373: 16369: 16363: 16359: 16355: 16310: 16263:Main article: 16260: 16257: 16223: 16218: 16214: 16210: 16197:is said to be 16187: 16186: 16175: 16164: 16148: 16143: 16139: 16135: 16132: 16125: 16121: 16116: 16110: 16105: 16102: 16099: 16095: 16084:direct product 16077: 16063: 16062:is semisimple. 16045: 16042: 16026: 16025: 16019: 16000:characteristic 15982: 15966: 15953: 15940: 15937: 15917:Main article: 15914: 15911: 15899:cyclic algebra 15861: 15858: 15857: 15856: 15752: 15740: 15721: 15707: 15702: 15698: 15694: 15691: 15688: 15685: 15682: 15679: 15674: 15670: 15649: 15645: 15638: 15634: 15628: 15624: 15620: 15615: 15611: 15608: 15605: 15602: 15591:cyclic modules 15564: 15561: 15558: 15555: 15552: 15549: 15546: 15543: 15540: 15518: 15511: 15507: 15501: 15497: 15493: 15486: 15482: 15476: 15472: 15468: 15465: 15446:. Then, since 15395:prime elements 15370: 15367: 15365: 15362: 15340: 15337: 15334: 15331: 15328: 15325: 15322: 15319: 15316: 15313: 15310: 15307: 15304: 15301: 15298: 15295: 15292: 15268: 15263: 15259: 15255: 15200: 15192: 15189: 15146: 15143: 15140: 15137: 15134: 15131: 15128: 15125: 15122: 15119: 15116: 15113: 15110: 15107: 15104: 15101: 15075: 15071: 15051:and relations 14979: 14976: 14972:excellent ring 14970:definition of 14955:Hensel's lemma 14916: 14911: 14906: 14886: 14858: 14853: 14827: 14822: 14817: 14804:is denoted by 14786: 14760: 14735: 14730: 14725: 14721: 14716: 14710: 14705: 14700: 14696: 14692: 14687: 14682: 14677: 14673: 14669: 14665: 14644: 14641: 14636: 14631: 14626: 14622: 14593: 14590: 14587: 14582: 14578: 14555: 14552: 14549: 14544: 14540: 14536: 14532: 14528: 14523: 14518: 14513: 14509: 14485: 14459: 14435: 14431: 14427: 14423: 14420: 14397: 14368: 14364: 14332: 14327: 14322: 14307:-adic integers 14276: 14226: 14220: 14217: 14211: 14208: 14186: 14182: 14177: 14173: 14149: 14144: 14140: 14135: 14131: 14128: 14123: 14120: 14115: 14109: 14106: 14065: 14062: 14048: 14043: 14040: 14036: 14032: 14028: 14003: 13998: 13995: 13991: 13987: 13983: 13928: 13927: 13923: 13911: 13908: 13904: 13901: 13897: 13894: 13891: 13887: 13884: 13880: 13877: 13857: 13852: 13830: 13827: 13823: 13818: 13813: 13809: 13803: 13798: 13794: 13790: 13785: 13780: 13776: 13773: 13762: 13746: 13743: 13739: 13736: 13732: 13729: 13726: 13722: 13719: 13715: 13712: 13691: 13686: 13683: 13679: 13675: 13671: 13662:is exact over 13651: 13648: 13644: 13639: 13636: 13632: 13628: 13623: 13620: 13616: 13612: 13607: 13604: 13600: 13596: 13592: 13589: 13585: 13580: 13577: 13573: 13569: 13564: 13561: 13557: 13554: 13543: 13524: 13520: 13515: 13512: 13508: 13504: 13500: 13497: 13492: 13489: 13484: 13480: 13475: 13472: 13468: 13464: 13460: 13450: 13439: 13435: 13430: 13427: 13423: 13419: 13415: 13402:disjoint from 13386: 13381: 13378: 13374: 13370: 13364: 13359: 13354: 13319: 13316: 13311: 13307: 13302: 13297: 13294: 13290: 13286: 13282: 13279: 13275: 13270: 13267: 13263: 13259: 13255: 13243:is given by a 13214: 13211: 13206: 13201: 13198: 13175: 13170: 13147: 13141: 13137: 13111: 13081: 13075: 13070: 13064: 13032: 13027: 13007: 13003: 12998: 12995: 12991: 12987: 12983: 12960: 12955: 12934: 12929: 12924: 12921: 12918: 12915: 12884: 12881: 12878: 12875: 12872: 12869: 12866: 12862: 12858: 12855: 12852: 12849: 12846: 12842: 12837: 12834: 12830: 12826: 12822: 12802: 12799: 12796: 12792: 12789: 12786: 12783: 12779: 12774: 12770: 12765: 12761: 12740: 12735: 12732: 12728: 12724: 12720: 12707:an element in 12687:is called the 12675: 12670: 12667: 12663: 12659: 12655: 12635: 12631: 12626: 12623: 12619: 12615: 12611: 12583: 12579: 12574: 12571: 12567: 12563: 12559: 12530: 12525: 12522: 12518: 12514: 12510: 12507: 12504: 12484: 12479: 12476: 12472: 12468: 12465: 12433: 12430: 12403: 12394: 12383: 12372: 12360: 12354:consisting of 12340: 12336: 12332: 12309: 12305: 12301: 12296: 12293: 12262: 12253: 12242: 12233: 12224: 12213: 12204: 12183: 12174: 12157: 12150:filtered limit 12135: 12134: 12104: 12101: 12098: 12095: 12092: 12087: 12084: 12063: 12051: 12048: 12044: 12041: 12038: 12034: 12031: 12008: 12004: 12001: 11998: 11994: 11991: 11986: 11983: 11979: 11975: 11970: 11967: 11962: 11959: 11955: 11952: 11949: 11945: 11942: 11923: 11912: 11905: 11901: 11895: 11890: 11885: 11882: 11877: 11872: 11866: 11862: 11839: 11828: 11825: 11820: 11816: 11812: 11809: 11806: 11801: 11797: 11793: 11788: 11784: 11780: 11777: 11774: 11769: 11766: 11761: 11758: 11755: 11752: 11747: 11743: 11739: 11734: 11730: 11726: 11723: 11699: 11672: 11656: 11652: 11648: 11643: 11640: 11625: 11607: 11598: 11591: 11585: 11582: 11569: 11551: 11525: 11505: 11504: 11493: 11490: 11487: 11482: 11478: 11474: 11471: 11466: 11462: 11458: 11455: 11448: 11444: 11439: 11433: 11428: 11425: 11422: 11418: 11414: 11411: 11408: 11405: 11402: 11397: 11393: 11369: 11364: 11360: 11342: 11324: 11320: 11316: 11311: 11307: 11301: 11296: 11293: 11290: 11286: 11282: 11279: 11259: 11256:-module, then 11231: 11221: 11206: 11205: 11194: 11191: 11186: 11183: 11179: 11175: 11172: 11169: 11165: 11162: 11159: 11156: 11153: 11148: 11144: 11140: 11137: 11134: 11129: 11124: 11120: 11116: 11113: 11108: 11104: 11080: 11070: 11048: 11043: 11038: 11034: 11030: 11027: 11022: 11017: 11013: 11009: 11006: 10986: 10983: 10980: 10977: 10974: 10969: 10965: 10961: 10958: 10953: 10949: 10945: 10942: 10937: 10933: 10909: 10871: 10839: 10836: 10817: 10816: 10805: 10802: 10797: 10793: 10788: 10783: 10779: 10773: 10769: 10763: 10758: 10754: 10730: 10726: 10723: 10720: 10716: 10713: 10678: 10672: 10668: 10664: 10661: 10658: 10653: 10649: 10644: 10640: 10564: 10561: 10540: 10539: 10526: 10523: 10518: 10515: 10511: 10508: 10505: 10502: 10499: 10496: 10493: 10427: 10424: 10402: 10399: 10396: 10393: 10390: 10385: 10382: 10360: 10357: 10354: 10351: 10348: 10345: 10342: 10337: 10334: 10304: 10301: 10298: 10295: 10292: 10151: 10150: 10139: 10135: 10129: 10125: 10121: 10116: 10112: 10107: 10103: 10100: 10097: 10093: 10090: 10087: 10084: 10081: 10078: 10075: 10072: 10069: 10066: 10063: 10060: 10036: 10030: 10026: 10022: 10017: 10013: 10008: 10004: 9974:is denoted by 9961: 9958: 9955: 9952: 9949: 9946: 9882:(that is, the 9880: 9879: 9868: 9865: 9862: 9859: 9856: 9853: 9849: 9846: 9843: 9840: 9837: 9834: 9831: 9800: 9797: 9794: 9719: 9714: 9710: 9706: 9702: 9680: 9676: 9672: 9669: 9666: 9661: 9657: 9635: 9629: 9625: 9621: 9618: 9615: 9610: 9606: 9601: 9597: 9574: 9573: 9561: 9557: 9554: 9549: 9545: 9541: 9538: 9535: 9532: 9529: 9524: 9520: 9516: 9513: 9508: 9504: 9500: 9497: 9494: 9489: 9486: 9483: 9479: 9473: 9470: 9467: 9463: 9459: 9454: 9450: 9444: 9440: 9435: 9431: 9428: 9425: 9422: 9419: 9393:Main article: 9390: 9387: 9362: 9348: 9343: 9339: 9335: 9332: 9327: 9321: 9293: 9289: 9281: 9267: 9262: 9256: 9233: 9228: 9222: 9216: 9211: 9207: 9202: 9197: 9193: 9189: 9186: 9183: 9178: 9174: 9170: 9167: 9154:. Assume that 9133: 9127: 9121: 9116: 9111: 9105: 9098: 9095: 9092: 9089: 9086: 9083: 9080: 9075: 9069: 9061: 9055: 9048: 9043: 9037: 9031: 9028: 9025: 9020: 9014: 9008: 9005: 8992:are ideals of 8979: 8973: 8948: 8942: 8917: 8911: 8886: 8882: 8878: 8875: 8872: 8869: 8864: 8860: 8839: 8836: 8833: 8830: 8827: 8824: 8819: 8815: 8792: 8789: 8784: 8777: 8772: 8767: 8764: 8761: 8758: 8753: 8746: 8741: 8736: 8733: 8730: 8722: 8716: 8708: 8703: 8700: 8697: 8693: 8687: 8683: 8679: 8673: 8667: 8660: 8656: 8650: 8645: 8642: 8639: 8635: 8631: 8623: 8617: 8608: 8603: 8600: 8597: 8593: 8586: 8582: 8548: 8545: 8542: 8539: 8534: 8528: 8522: 8517: 8511: 8486: 8480: 8474: 8471: 8468: 8463: 8457: 8425: 8421: 8415: 8412: 8409: 8405: 8387: 8373:direct product 8370:is called the 8348: 8341: 8328: 8321: 8314: 8313: 8298: 8293: 8289: 8285: 8280: 8276: 8272: 8267: 8263: 8259: 8254: 8250: 8246: 8243: 8240: 8235: 8231: 8227: 8222: 8218: 8214: 8211: 8208: 8203: 8199: 8195: 8190: 8186: 8182: 8179: 8177: 8175: 8172: 8167: 8163: 8159: 8154: 8150: 8146: 8141: 8137: 8133: 8128: 8124: 8120: 8117: 8114: 8109: 8105: 8101: 8096: 8092: 8088: 8085: 8082: 8077: 8073: 8069: 8064: 8060: 8056: 8053: 8051: 8049: 8010:Main article: 8007: 8006:Direct product 8004: 8002: 7999: 7829:noncommutative 7825: 7824: 7809: 7806: 7803: 7800: 7797: 7794: 7791: 7788: 7785: 7782: 7779: 7776: 7774: 7772: 7769: 7766: 7763: 7760: 7757: 7755: 7752: 7749: 7746: 7743: 7740: 7737: 7734: 7731: 7728: 7725: 7722: 7719: 7716: 7714: 7712: 7709: 7706: 7703: 7700: 7697: 7694: 7691: 7688: 7685: 7682: 7679: 7676: 7673: 7671: 7661: 7550:Main article: 7547: 7544: 7517: 7514: 7511: 7508: 7505: 7501: 7497: 7494: 7489: 7486: 7449: 7448: 7437: 7434: 7431: 7426: 7423: 7418: 7415: 7395: 7392: 7389: 7385: 7381: 7378: 7373: 7370: 7265: 7264: 7249: 7246: 7243: 7240: 7237: 7234: 7231: 7228: 7225: 7222: 7219: 7216: 7213: 7210: 7207: 7204: 7201: 7198: 7195: 7193: 7191: 7188: 7185: 7182: 7179: 7176: 7173: 7170: 7167: 7164: 7161: 7158: 7155: 7152: 7149: 7146: 7143: 7140: 7137: 7134: 7131: 7128: 7126: 7124: 7104:is the set of 7046:quotient group 7040:The notion of 7034:Main article: 7031: 7028: 6975:is called the 6955: 6954: 6935: 6920: 6916: 6912: 6894: 6873: 6870: 6866: 6848: 6823: 6792: 6770: 6767: 6763: 6759: 6756: 6753: 6750: 6747: 6744: 6741: 6738: 6719: 6704: 6700: 6696: 6691: 6665: 6607: 6606: 6589: 6585: 6581: 6578: 6573: 6569: 6565: 6562: 6559: 6557: 6554: 6551: 6548: 6545: 6542: 6539: 6536: 6533: 6530: 6527: 6524: 6521: 6518: 6515: 6512: 6509: 6506: 6504: 6501: 6498: 6495: 6492: 6489: 6486: 6483: 6480: 6477: 6474: 6471: 6468: 6465: 6462: 6459: 6456: 6453: 6451: 6411:is a function 6379:Main article: 6376: 6373: 6325:Equivalently, 6314: 6311: 6308: 6305: 6285: 6282: 6279: 6259: 6256: 6253: 6250: 6230: 6227: 6224: 6221: 6218: 6148:is written as 6035: 6034: 6023: 6020: 6017: 6012: 6008: 5995: 5992: 5987: 5983: 5960: 5956: 5950: 5946: 5942: 5939: 5936: 5931: 5927: 5921: 5917: 5842:be a ring. A 5832:Main article: 5829: 5826: 5685:characteristic 5682:is called the 5647:is called the 5584: 5580: 5556: 5552: 5522: 5518: 5493: 5468: 5465: 5462: 5458: 5425: 5411: 5410: 5394: 5363:; and for all 5355: 5303:Main article: 5300: 5297: 5231:is an element 5199: 5158:is an element 5132:is an element 5121: 5118: 5041: 5032: 5023: 5013: 4995: 4991: 4985: 4980: 4977: 4974: 4970: 4966: 4961: 4957: 4928: 4923: 4919: 4915: 4912: 4909: 4904: 4900: 4896: 4880: 4877: 4875: 4874:Basic concepts 4872: 4871: 4870: 4846: 4843: 4840: 4836: 4833: 4830: 4827: 4824: 4821: 4818: 4815: 4812: 4809: 4804: 4799: 4796: 4792: 4788: 4785: 4782: 4779: 4776: 4773: 4770: 4767: 4764: 4745: 4723: 4719: 4691:is not even a 4678: 4675: 4672: 4668: 4664: 4639: 4620: 4617: 4616: 4615: 4604: 4543: 4536: 4524: 4466: 4416: 4413: 4412: 4411: 4384: 4377: 4357: 4352: 4322: 4316: 4312: 4292: 4274: 4270: 4244: 4226: 4225: 4224: 4201: 4182: 4160: 4140: 4137: 4132: 4128: 4124: 4121: 4118: 4113: 4109: 4105: 4102: 4099: 4088: 4054: 4047: 4042: 4039: 4031: 4030:Basic examples 4028: 4027: 4026: 4025: 4024: 4021: 4008:direct product 3972: 3969: 3949:Adolf Fraenkel 3944: 3941: 3915: 3914: 3899: 3895: 3893: 3888: 3885: 3884: 3881: 3878: 3875: 3872: 3869: 3866: 3861: 3857: 3853: 3850: 3847: 3844: 3842: 3838: 3834: 3830: 3829: 3826: 3823: 3820: 3817: 3814: 3811: 3806: 3802: 3798: 3795: 3792: 3790: 3786: 3782: 3778: 3777: 3774: 3771: 3768: 3765: 3762: 3759: 3754: 3750: 3746: 3743: 3740: 3738: 3734: 3730: 3726: 3725: 3722: 3719: 3716: 3711: 3707: 3703: 3700: 3697: 3695: 3691: 3687: 3683: 3682: 3679: 3676: 3673: 3670: 3667: 3664: 3661: 3659: 3655: 3651: 3647: 3646: 3611: 3608: 3587: 3584: 3562: 3559: 3521: 3517: 3509: 3506: 3504: 3501: 3500: 3497: 3494: 3492: 3489: 3488: 3484: 3480: 3477: 3474: 3453: 3445: 3442: 3440: 3437: 3436: 3433: 3430: 3428: 3425: 3424: 3420: 3416: 3413: 3410: 3390: 3386: 3378: 3375: 3373: 3370: 3369: 3366: 3363: 3361: 3358: 3357: 3353: 3349: 3346: 3325: 3317: 3314: 3312: 3309: 3308: 3305: 3302: 3300: 3297: 3296: 3292: 3288: 3285: 3264: 3256: 3253: 3251: 3248: 3247: 3244: 3241: 3239: 3236: 3235: 3231: 3210: 3207: 3204: 3201: 3196: 3192: 3176: 3175: 3164: 3160: 3156: 3153: 3150: 3147: 3144: 3141: 3138: 3135: 3132: 3125: 3120: 3114: 3111: 3109: 3106: 3105: 3102: 3099: 3097: 3094: 3093: 3091: 3086: 3082: 3078: 3075: 3072: 3069: 3066: 3061: 3057: 3030: 3027: 3015: 3010: 3007: 3002: 2997: 2993: 2990: 2984: 2979: 2976: 2971: 2951: 2946: 2942: 2939: 2933: 2928: 2925: 2920: 2897: 2893: 2889: 2884: 2859: 2856: 2830: 2825: 2822: 2791: 2787: 2783: 2779: 2774: 2737: 2733: 2707: 2703: 2699: 2694: 2680: 2679: 2668: 2663: 2660: 2655: 2650: 2647: 2642: 2637: 2634: 2610: 2607: 2602: 2597: 2594: 2589: 2584: 2581: 2566:is divided by 2548: 2544: 2540: 2535: 2510: 2507: 2502: 2497: 2494: 2481: 2470: 2465: 2462: 2457: 2452: 2449: 2444: 2439: 2436: 2412: 2409: 2404: 2399: 2396: 2391: 2386: 2383: 2333:is divided by 2309: 2305: 2301: 2296: 2271: 2268: 2263: 2258: 2255: 2228: 2222: 2219: 2214: 2209: 2206: 2201: 2196: 2193: 2188: 2183: 2180: 2174: 2170: 2166: 2162: 2158: 2153: 2143:Equip the set 2134: 2131: 2130: 2129: 2110:holds for any 2104: 2093: 2070: 2034: 2031: 2028: 2020: 2017: 2013: 2012: 2001: 1998: 1995: 1992: 1989: 1986: 1983: 1980: 1977: 1974: 1971: 1968: 1965: 1962: 1959: 1956: 1953: 1950: 1947: 1944: 1941: 1938: 1935: 1932: 1929: 1926: 1923: 1920: 1917: 1914: 1886: 1882: 1864:multiplication 1847: 1844: 1760:Β§ History 1725: 1722: 1714:is written as 1698: 1697: 1696: 1695: 1643: 1585: 1584: 1583: 1535: 1473: 1472: 1471: 1423: 1386: 1344: 1258: 1255: 1229:that occur in 1087:multiplication 1073: 1072: 1070: 1069: 1062: 1055: 1047: 1044: 1043: 1039: 1038: 1033: 1028: 1023: 1018: 1013: 1008: 1002: 1001: 1000: 994: 988: 987: 984: 983: 980: 979: 976:Linear algebra 970: 969: 964: 959: 953: 952: 946: 945: 942: 941: 938: 937: 934:Lattice theory 930: 923: 922: 917: 912: 907: 902: 897: 891: 890: 884: 883: 880: 879: 870: 869: 864: 859: 854: 849: 844: 839: 834: 829: 824: 818: 817: 811: 810: 807: 806: 797: 796: 791: 786: 780: 779: 778: 773: 768: 759: 753: 747: 746: 743: 742: 703:multiplication 657: 656: 654: 653: 646: 639: 631: 628: 627: 619: 618: 590: 589: 583: 577: 571: 559: 554: 553: 550: 549: 546: 545: 534: 529: 525: 521: 517: 498: 485: 480: 461: 448: 443: 431:-adic integers 424: 418: 409: 395: 394: 393: 392: 386: 380: 379: 378: 366: 360: 354: 348: 342: 324: 319: 318: 315: 314: 311: 310: 309: 308: 296: 295: 294: 288: 276: 275: 274: 256: 255: 254: 253: 241: 237: 233: 228: 224: 221: 207: 195: 174: 168: 162: 156: 142: 141: 135: 129: 115: 114: 108: 102: 96: 95: 94: 88: 76: 70: 58: 56:Basic concepts 55: 54: 51: 50: 26: 9: 6: 4: 3: 2: 21656: 21645: 21642: 21640: 21637: 21636: 21634: 21622: 21618: 21614: 21609: 21604: 21600: 21596: 21595: 21590: 21586: 21582: 21578: 21574: 21570: 21566: 21562: 21558: 21557: 21552: 21548: 21545: 21541: 21537: 21534: 21533:0-8218-0993-8 21530: 21527: 21523: 21519: 21515: 21511: 21507: 21503: 21501: 21498: 21495: 21494:3-540-43491-7 21491: 21487: 21483: 21482: 21470: 21466: 21462: 21458: 21454: 21450: 21449:Math. Annalen 21446: 21442: 21441:Noether, Emmy 21438: 21434: 21430: 21426: 21422: 21418: 21414: 21410: 21406: 21402: 21398: 21394: 21390: 21389: 21377: 21375:0-387-90089-6 21371: 21367: 21363: 21359: 21355: 21352: 21347: 21345:9780821891322 21341: 21337: 21336: 21330: 21327: 21325:9783540373704 21321: 21317: 21316: 21310: 21306: 21302: 21298: 21295: 21291: 21286: 21281: 21277: 21273: 21269: 21265: 21264:Poonen, Bjorn 21261: 21257: 21255:0-387-90693-2 21251: 21247: 21246: 21240: 21237: 21233: 21229: 21223: 21219: 21215: 21211: 21207: 21202: 21198: 21196:9780486411477 21192: 21188: 21187: 21182: 21179:Korn, G. A.; 21177: 21173: 21169: 21165: 21162: 21158: 21154: 21150: 21146: 21142: 21138: 21134: 21133: 21128: 21124: 21120: 21114: 21110: 21106: 21102: 21101:Isaacs, I. M. 21098: 21094: 21089: 21084: 21079: 21075: 21071: 21067: 21062: 21059: 21057:9780521432177 21053: 21048: 21047: 21041: 21037: 21033: 21028: 21024: 21020: 21015: 21012: 21006: 21002: 20997: 20994: 20988: 20984: 20979: 20978: 20966: 20961: 20957: 20952: 20948: 20946:9780486663418 20942: 20938: 20933: 20930: 20926: 20922: 20916: 20912: 20911: 20906: 20902: 20899: 20897:0-387-98541-7 20893: 20889: 20888:Galois Theory 20884: 20880: 20875: 20871: 20865: 20861: 20857: 20852: 20848: 20844: 20840: 20837: 20835:0-387-22025-9 20831: 20827: 20822: 20819: 20815: 20811: 20807: 20803: 20797: 20793: 20789: 20785: 20781: 20777: 20775:0-387-00500-5 20771: 20767: 20763: 20759: 20755: 20753:0-387-95183-0 20749: 20745: 20741: 20737: 20733: 20731:0-387-98428-3 20727: 20723: 20719: 20715: 20712: 20708: 20704: 20702:0-226-42454-5 20698: 20694: 20690: 20689: 20684: 20680: 20676: 20670: 20666: 20665:Basic algebra 20662: 20658: 20654: 20650: 20646: 20642: 20638: 20634: 20630: 20626: 20622: 20620:9780030105593 20616: 20612: 20607: 20603: 20601:0-88385-015-X 20597: 20593: 20589: 20585: 20581: 20575: 20571: 20566: 20562: 20560:9780618514717 20556: 20552: 20547: 20543: 20539: 20535: 20531: 20527: 20524: 20518: 20514: 20510: 20506: 20502: 20498: 20494: 20490: 20486: 20482: 20478: 20474: 20470: 20466: 20462: 20458: 20454: 20453: 20441: 20436: 20433: 20432: 20426: 20423: 20417: 20413: 20408: 20404: 20398: 20394: 20389: 20388: 20374: 20368: 20363: 20356: 20351: 20345: 20340: 20333: 20328: 20321: 20317: 20316:Weibel (2013) 20312: 20305: 20300: 20294: 20290: 20285: 20278: 20273: 20266: 20261: 20254: 20249: 20242: 20237: 20230: 20225: 20218: 20213: 20206: 20201: 20199: 20191: 20186: 20179: 20174: 20167: 20162: 20155: 20150: 20144:, p. 155 20143: 20138: 20131: 20130:Rotman (1998) 20126: 20120:, p. 176 20119: 20118:Wilder (1965) 20114: 20108: 20107:Poonen (2019) 20103: 20097: 20092: 20084: 20080: 20074: 20068: 20063: 20057:, p. 188 20056: 20055:Warner (1965) 20051: 20044: 20039: 20033:, p. 235 20032: 20027: 20020: 20015: 20008: 20003: 19997:, p. 346 19996: 19991: 19985: 19980: 19974: 19969: 19960: 19956: 19951: 19944: 19939: 19937: 19927: 19923: 19918: 19911: 19906: 19899: 19894: 19888: 19884: 19879: 19873: 19868: 19861: 19856: 19848: 19842: 19836:, p. 158 19835: 19830: 19823: 19818: 19811: 19806: 19800:, Theorem 3.1 19799: 19794: 19788:, p. 161 19787: 19786:Isaacs (1994) 19782: 19774: 19770: 19764: 19758:, p. 160 19757: 19756:Isaacs (1994) 19752: 19745: 19740: 19738: 19730: 19725: 19718: 19713: 19709: 19696: 19690: 19681: 19668: 19661: 19657: 19656: 19649: 19632: 19628: 19617: 19613: 19610: 19608: 19605: 19603: 19600: 19598: 19595: 19593: 19590: 19588: 19585: 19583: 19580: 19578: 19574: 19571: 19569: 19566: 19564: 19561: 19559: 19556: 19554: 19551: 19549: 19546: 19544: 19543:Dedekind ring 19541: 19539: 19536: 19535: 19533: 19527: 19524: 19522: 19519: 19517: 19514: 19512: 19509: 19507: 19504: 19502: 19499: 19497: 19494: 19492: 19489: 19487: 19484: 19483: 19476: 19474: 19470: 19469:monoid object 19463: 19458: 19454: 19437: 19431: 19428: 19425: 19422: 19419: 19408: 19404: 19403:ring spectrum 19400: 19393:Ring spectrum 19390: 19380: 19370: 19365: 19335: 19332: 19320: 19306: 19302: 19292: 19279: 19222: 19218: 19178: 19174: 19170: 19164: 19161: 19158: 19152: 19149: 19146: 19141: 19137: 19112: 19104: 19092: 19072: 19064: 19051: 19031: 19023: 19011: 18991: 18983: 18970: 18967: 18964: 18944: 18936: 18923: 18920: 18917: 18906:is an object 18901: 18893: 18889: 18867: 18863: 18845: 18842: 18839: 18836: 18833: 18830: 18827: 18816: 18815: 18814: 18811: 18805: 18799: 18795: 18787: 18779: 18773: 18769: 18759: 18757: 18753: 18743: 18741: 18731: 18723: 18721: 18717: 18712: 18707: 18701: 18683: 18678: 18641: 18637: 18633: 18629: 18625: 18621: 18606: 18601: 18586: 18585:endomorphisms 18580: 18576: 18569: 18549: 18541: 18537: 18531: 18521: 18517: 18513: 18509: 18481: 18472: 18466: 18460: 18457: 18451: 18442: 18439: 18436: 18431: 18420: 18414: 18411: 18405: 18399: 18396: 18390: 18381: 18378: 18375: 18370: 18358: 18357: 18356: 18353: 18349: 18343: 18339: 18332: 18320: 18304: 18298: 18292: 18284: 18277: 18275: 18267: 18256: 18226: 18222: 18218: 18214: 18208: 18198: 18196: 18192: 18188: 18184: 18174: 18172: 18168: 18164: 18160: 18156: 18152: 18148: 18138: 18136: 18132: 18127: 18123: 18119: 18109: 18107: 18102: 18098: 18094: 18093:Burnside ring 18090: 18080: 18078: 18074: 18070: 18069:fiber bundles 18066: 18061: 18058: 18054: 18045: 18037: 18033: 18029: 18025: 18021: 18017: 18013: 17989: 17986: 17978: 17974: 17966: 17962: 17943: 17932: 17929: 17921: 17917: 17906: 17903: 17900: 17896: 17892: 17881: 17878: 17870: 17866: 17858: 17857: 17856: 17855: 17848: 17838: 17836: 17832: 17819: 17815: 17811: 17810: 17806: 17802: 17786: 17775: 17772: 17761: 17755: 17747: 17743: 17709:For example, 17708: 17707: 17690: 17684: 17676: 17673: 17670: 17666: 17659: 17651: 17647: 17641: 17636: 17632: 17628: 17622: 17619: 17616: 17608: 17604: 17596: 17595: 17593: 17584: 17580: 17576: 17567: 17563: 17560: 17556: 17544: 17541:inherits the 17539: 17535: 17530: 17525: 17521: 17517: 17499: 17493: 17490: 17487: 17484: 17481: 17473: 17465: 17457: 17453: 17411:over a field 17410: 17406: 17402: 17401: 17400: 17398: 17397:abelian group 17387: 17383: 17373: 17369: 17344: 17334: 17330: 17309: 17303: 17300: 17297: 17291: 17285: 17279: 17274: 17271: 17268: 17264: 17260: 17254: 17245: 17242: 17239: 17228: 17224: 17193: 17183: 17167: 17153: 17143: 17133: 17126: 17112: 17108: 17096:over a field 17076: 17066: 17059: 17056:The field of 17055: 17054: 17053: 17050: 17046: 17042: 17025: 17019: 17015: 17011: 17007: 17003: 16999: 16995: 16989: 16985: 16975: 16969: 16959: 16951: 16941: 16931: 16929: 16925: 16912: 16908: 16902: 16898: 16894: 16888: 16884: 16880: 16874: 16871: 16867: 16861: 16857: 16846: 16842: 16812: 16807: 16803: 16799: 16789: 16785: 16777: 16773: 16755: 16750: 16746: 16742: 16725: 16723: 16722:invariant map 16701: 16692: 16686: 16680: 16677: 16651: 16633: 16625: 16598: 16595: 16587: 16583: 16573: 16568:For example, 16566: 16564: 16558: 16548: 16531: 16527: 16522: 16518: 16514: 16510: 16506: 16500: 16491: 16468: 16463: 16460: 16456: 16452: 16447: 16443: 16437: 16433: 16427: 16423: 16402: 16397: 16393: 16387: 16383: 16379: 16376: 16371: 16367: 16361: 16357: 16353: 16337: 16324: 16322: 16317: 16313: 16309: 16284: 16266: 16256: 16254: 16245: 16241: 16237: 16221: 16216: 16212: 16208: 16200: 16193:over a field 16184: 16178: 16174: 16167: 16163: 16141: 16137: 16130: 16123: 16119: 16108: 16103: 16100: 16097: 16093: 16085: 16078: 16075: 16074:semiprimitive 16071: 16064: 16058: 16057: 16056: 16049: 16041: 16039: 16035: 16031: 16023: 16020: 16017: 16009: 16001: 15996: 15983: 15980: 15974: 15969: 15954: 15951: 15947: 15946:division ring 15943: 15942: 15936: 15934: 15933: 15928: 15927: 15920: 15910: 15908: 15904: 15903:L. E. Dickson 15900: 15895: 15893: 15888: 15885: 15883: 15879: 15875: 15871: 15867: 15866:division ring 15860:Division ring 15855: 15854: 15849: 15848: 15843: 15842: 15837: 15836: 15831: 15830: 15825: 15824: 15819: 15818: 15813: 15812: 15807: 15806: 15801: 15800: 15795: 15794: 15790: 15789: 15788: 15786: 15781: 15779: 15770: 15766: 15760: 15755: 15748: 15732: 15731:Jordan matrix 15705: 15700: 15696: 15692: 15689: 15686: 15680: 15672: 15668: 15647: 15643: 15636: 15632: 15626: 15622: 15618: 15613: 15606: 15600: 15592: 15583: 15562: 15556: 15550: 15547: 15544: 15541: 15538: 15529: 15516: 15509: 15505: 15499: 15495: 15491: 15484: 15480: 15474: 15470: 15466: 15463: 15450: 15440: 15436: 15432: 15419: 15414: 15412: 15408: 15404: 15400: 15396: 15392: 15388: 15384: 15380: 15379:zero-divisors 15376: 15360: 15356: 15351: 15338: 15335: 15332: 15329: 15326: 15323: 15320: 15314: 15311: 15308: 15299: 15296: 15293: 15266: 15261: 15257: 15253: 15236: 15230: 15224: 15222: 15218: 15214: 15198: 15187: 15178: 15173:with symbols 15168: 15144: 15138: 15135: 15132: 15129: 15126: 15123: 15120: 15117: 15114: 15111: 15108: 15102: 15099: 15073: 15025: 15022: 15018: 14989: 14975: 14973: 14968: 14964: 14959: 14957: 14956: 14949: 14942: 14935: 14929: 14914: 14909: 14889: 14883: 14856: 14825: 14820: 14803: 14733: 14723: 14714: 14708: 14698: 14690: 14685: 14675: 14671: 14667: 14642: 14639: 14634: 14624: 14588: 14580: 14576: 14550: 14542: 14538: 14534: 14530: 14526: 14521: 14511: 14429: 14418: 14366: 14351: 14330: 14325: 14308: 14295: 14262: 14256: 14224: 14215: 14206: 14184: 14180: 14175: 14171: 14147: 14142: 14138: 14133: 14129: 14126: 14121: 14118: 14113: 14104: 14085: 14084: 14061: 14046: 14041: 14038: 14034: 14030: 14026: 14001: 13996: 13993: 13989: 13985: 13981: 13974:then maps to 13961: 13937: 13933: 13924: 13909: 13902: 13899: 13892: 13885: 13882: 13875: 13855: 13828: 13821: 13811: 13796: 13788: 13778: 13771: 13763: 13744: 13737: 13734: 13727: 13720: 13717: 13710: 13689: 13684: 13681: 13677: 13673: 13669: 13649: 13642: 13637: 13634: 13630: 13626: 13621: 13618: 13610: 13605: 13602: 13598: 13594: 13590: 13583: 13578: 13575: 13571: 13567: 13562: 13559: 13552: 13544: 13522: 13518: 13513: 13510: 13506: 13502: 13498: 13495: 13490: 13487: 13482: 13478: 13473: 13470: 13466: 13462: 13458: 13451: 13437: 13433: 13428: 13425: 13421: 13417: 13413: 13384: 13379: 13376: 13372: 13368: 13343: 13342: 13341: 13330: 13317: 13314: 13309: 13305: 13300: 13295: 13292: 13288: 13284: 13280: 13277: 13273: 13268: 13265: 13261: 13257: 13253: 13246: 13225: 13212: 13196: 13168: 13139: 13135: 13079: 13068: 13053: 13052:maximal ideal 13049: 13025: 13005: 13001: 12996: 12993: 12989: 12985: 12981: 12953: 12932: 12922: 12919: 12916: 12913: 12896: 12882: 12876: 12873: 12870: 12867: 12860: 12853: 12847: 12844: 12840: 12835: 12832: 12828: 12824: 12820: 12800: 12797: 12794: 12790: 12787: 12784: 12781: 12777: 12772: 12768: 12763: 12759: 12738: 12733: 12730: 12726: 12722: 12718: 12690: 12673: 12668: 12665: 12661: 12657: 12653: 12633: 12629: 12624: 12621: 12617: 12613: 12609: 12581: 12577: 12572: 12569: 12565: 12561: 12557: 12528: 12523: 12520: 12516: 12512: 12508: 12502: 12477: 12474: 12470: 12463: 12448:and a subset 12443: 12439: 12429: 12427: 12426: 12420: 12417: 12413: 12406: 12402: 12397: 12393: 12386: 12382: 12375: 12371: 12363: 12359: 12338: 12334: 12330: 12307: 12303: 12299: 12294: 12291: 12280: 12276: 12272: 12265: 12261: 12256: 12252: 12245: 12241: 12236: 12232: 12227: 12223: 12216: 12212: 12207: 12203: 12197: 12193: 12186: 12182: 12177: 12173: 12167: 12160: 12156: 12151: 12147: 12142: 12140: 12132: 12131:generic point 12128: 12119: 12099: 12093: 12090: 12085: 12082: 12069:over a field 12068: 12064: 12049: 12039: 12029: 12022: 11999: 11989: 11984: 11981: 11977: 11973: 11968: 11965: 11960: 11950: 11940: 11929:over a field 11928: 11925:The field of 11924: 11910: 11903: 11899: 11888: 11883: 11880: 11875: 11870: 11848: 11847:finite fields 11844: 11840: 11826: 11818: 11814: 11810: 11807: 11804: 11799: 11795: 11791: 11786: 11782: 11775: 11772: 11767: 11764: 11759: 11753: 11750: 11745: 11741: 11737: 11732: 11728: 11721: 11713: 11712: 11711: 11708: 11694: 11690: 11684: 11680: 11654: 11650: 11646: 11641: 11638: 11621: 11610: 11606: 11581: 11577: 11572: 11559: 11554: 11543: 11539: 11533: 11528: 11516: 11514: 11510: 11491: 11480: 11476: 11469: 11464: 11460: 11453: 11446: 11442: 11431: 11426: 11423: 11420: 11416: 11412: 11406: 11400: 11395: 11391: 11383: 11382: 11381: 11367: 11362: 11358: 11322: 11318: 11314: 11309: 11305: 11299: 11294: 11291: 11288: 11284: 11280: 11277: 11267: 11262: 11248:says that if 11247: 11246:Schur's lemma 11243: 11239: 11234: 11229: 11224: 11216: 11212: 11192: 11184: 11181: 11177: 11167: 11163: 11157: 11151: 11146: 11132: 11127: 11122: 11118: 11111: 11106: 11102: 11094: 11093: 11092: 11088: 11083: 11078: 11046: 11041: 11036: 11032: 11025: 11020: 11015: 11011: 11007: 11004: 10984: 10978: 10972: 10967: 10959: 10951: 10947: 10940: 10935: 10931: 10921: 10917: 10912: 10901: 10879: 10874: 10867: 10849: 10845: 10835: 10833: 10829: 10823: 10803: 10800: 10795: 10791: 10786: 10781: 10777: 10771: 10767: 10756: 10752: 10744: 10743: 10742: 10721: 10711: 10704: 10699: 10697: 10696:GrΓΆbner basis 10676: 10670: 10666: 10662: 10659: 10656: 10651: 10647: 10642: 10638: 10630: 10621: 10618: 10600: 10590: 10589:is infinite. 10580: 10559: 10521: 10513: 10509: 10506: 10497: 10491: 10484: 10483: 10482: 10479: 10475: 10449: 10447: 10440:restricts to 10422: 10400: 10397: 10391: 10380: 10358: 10349: 10343: 10340: 10332: 10302: 10296: 10293: 10290: 10281: 10269: 10265: 10259: 10255: 10251: 10247: 10243: 10239: 10223: 10219: 10215: 10211: 10207: 10201: 10194: 10190: 10186: 10174:Example: let 10172: 10169: 10163: 10159:generated by 10157: 10137: 10133: 10127: 10123: 10119: 10114: 10110: 10105: 10101: 10095: 10091: 10085: 10079: 10070: 10067: 10064: 10058: 10051: 10050: 10049: 10034: 10028: 10024: 10020: 10015: 10011: 10006: 10002: 9993: 9984:generated by 9978: 9956: 9950: 9944: 9932: 9928: 9918: 9914: 9910: 9904: 9900: 9894: 9890: 9885: 9863: 9857: 9851: 9847: 9844: 9835: 9829: 9822: 9821: 9820: 9798: 9795: 9792: 9783: 9780: 9770: 9760: 9751: 9746: 9741: 9732: 9731:as subrings. 9717: 9712: 9708: 9704: 9700: 9678: 9674: 9670: 9667: 9664: 9659: 9655: 9633: 9627: 9623: 9619: 9616: 9613: 9608: 9604: 9599: 9595: 9583: 9559: 9555: 9552: 9547: 9543: 9539: 9536: 9533: 9530: 9527: 9522: 9518: 9514: 9511: 9506: 9502: 9498: 9495: 9492: 9487: 9484: 9481: 9477: 9471: 9468: 9465: 9461: 9457: 9452: 9448: 9442: 9438: 9433: 9429: 9423: 9417: 9410: 9409: 9408: 9396: 9386: 9384: 9380: 9376: 9371: 9346: 9341: 9337: 9333: 9330: 9325: 9307: 9303: 9296: 9278:one has that 9265: 9260: 9231: 9226: 9214: 9209: 9205: 9200: 9195: 9191: 9187: 9184: 9181: 9176: 9172: 9168: 9165: 9153: 9131: 9119: 9114: 9109: 9096: 9093: 9090: 9087: 9084: 9081: 9078: 9073: 9059: 9046: 9041: 9029: 9026: 9023: 9018: 9006: 9003: 8977: 8946: 8915: 8884: 8880: 8876: 8873: 8870: 8862: 8858: 8837: 8834: 8831: 8828: 8825: 8822: 8817: 8813: 8803: 8790: 8782: 8765: 8762: 8759: 8756: 8751: 8734: 8720: 8706: 8701: 8698: 8695: 8691: 8681: 8677: 8671: 8658: 8654: 8648: 8643: 8640: 8637: 8633: 8629: 8621: 8606: 8601: 8598: 8595: 8591: 8584: 8580: 8572: 8567: 8563: 8543: 8537: 8532: 8520: 8515: 8484: 8472: 8469: 8466: 8461: 8439: 8423: 8419: 8413: 8410: 8407: 8403: 8375: 8374: 8364: 8360: 8347: 8340: 8327: 8320: 8291: 8287: 8283: 8278: 8274: 8270: 8265: 8261: 8257: 8252: 8248: 8241: 8233: 8229: 8225: 8220: 8216: 8209: 8201: 8197: 8193: 8188: 8184: 8178: 8165: 8161: 8157: 8152: 8148: 8144: 8139: 8135: 8131: 8126: 8122: 8115: 8107: 8103: 8099: 8094: 8090: 8083: 8075: 8071: 8067: 8062: 8058: 8052: 8040: 8039: 8038: 8035: 8031: 8027: 8013: 8001:Constructions 7998: 7996: 7980: 7974: 7970: 7960: 7956: 7952: 7948: 7934: 7930: 7926: 7920: 7917: 7912: 7908: 7901: 7899: 7895: 7889: 7886: 7882: 7878: 7874: 7870: 7863: 7859: 7855: 7851: 7838: 7837:right modules 7834: 7830: 7804: 7801: 7795: 7792: 7789: 7783: 7780: 7775: 7767: 7764: 7761: 7758: 7750: 7747: 7744: 7741: 7738: 7735: 7732: 7726: 7723: 7720: 7715: 7707: 7704: 7701: 7698: 7695: 7692: 7686: 7683: 7680: 7674: 7662: 7656: 7655: 7654: 7647: 7641: 7631: 7625: 7620: 7603: 7599: 7595: 7591: 7587: 7586:abelian group 7571: 7567: 7563: 7559: 7553: 7543: 7536: 7532: 7515: 7509: 7506: 7503: 7499: 7495: 7492: 7484: 7473: 7469: 7463: 7459: 7455: 7435: 7432: 7429: 7421: 7416: 7413: 7393: 7387: 7383: 7379: 7376: 7368: 7356: 7352: 7346: 7342: 7338: 7333: 7332: 7331: 7328: 7324: 7320: 7314: 7310: 7306: 7302: 7296: 7294: 7289: 7285: 7275: 7271: 7247: 7244: 7241: 7235: 7232: 7226: 7220: 7217: 7214: 7205: 7202: 7199: 7194: 7186: 7183: 7180: 7174: 7171: 7168: 7162: 7156: 7153: 7150: 7144: 7138: 7135: 7132: 7127: 7115: 7114: 7113: 7107: 7102: 7098: 7094: 7093:quotient ring 7088: 7076: 7072: 7063: 7057: 7053: 7047: 7043: 7042:quotient ring 7037: 7036:Quotient ring 7030:Quotient ring 7027: 7013: 6996: 6978: 6969: 6965: 6961: 6952: 6944: 6936: 6899: 6895: 6890: 6871: 6850:For any ring 6849: 6837: 6833: 6828: 6824: 6821: 6811: 6806: 6793: 6786: 6768: 6765: 6761: 6757: 6754: 6748: 6745: 6742: 6736: 6720: 6698: 6694: 6649:(a number in 6640: 6639: 6638: 6635: 6633: 6629: 6621: 6620: 6610: 6587: 6583: 6579: 6571: 6567: 6560: 6549: 6543: 6540: 6534: 6528: 6525: 6519: 6516: 6513: 6507: 6496: 6490: 6487: 6481: 6475: 6472: 6466: 6463: 6460: 6454: 6442: 6441: 6440: 6433: 6427: 6408: 6400: 6396: 6390: 6389: 6382: 6372: 6369: 6365: 6359: 6355: 6349: 6345: 6341:we have that 6339: 6333: 6312: 6309: 6306: 6303: 6283: 6280: 6277: 6257: 6254: 6251: 6248: 6241:we have that 6228: 6225: 6222: 6219: 6216: 6208: 6195: 6193: 6189: 6188:Artinian ring 6185: 6181: 6176: 6174: 6169: 6153: 6146: 6137: 6132: 6126: 6112: 6097: 6080: 6076: 6067: 6063: 6054: 6049: 6045: 6021: 6018: 6015: 6010: 6006: 5993: 5990: 5985: 5981: 5958: 5954: 5948: 5944: 5940: 5937: 5934: 5929: 5925: 5919: 5915: 5907: 5906: 5905: 5882: 5878: 5845: 5835: 5825: 5819: 5807: 5804:, called the 5771: 5768:, called the 5761: 5746: 5742: 5719: 5710:Given a ring 5708: 5706: 5696: 5687: 5686: 5667: 5650: 5637: 5635: 5603: 5601: 5578: 5554: 5516: 5463: 5446: 5442: 5407: 5403: 5395: 5383: 5379: 5361: 5356: 5344: 5340: 5336: 5331: 5324: 5323: 5322: 5320: 5306: 5296: 5294: 5285: 5270: 5266: 5259: 5253: 5248: 5243: 5238: 5230: 5225: 5223: 5218: 5214: 5197: 5190: 5185: 5183: 5179: 5173: 5166: 5157: 5152: 5148: 5127: 5117: 5113: 5109: 5103: 5100: 5096: 5089: 5083: 5080: 5076: 5069: 5059: 5056: 5052: 5044: 5040: 5035: 5031: 5026: 5022: 5012: 4993: 4989: 4983: 4978: 4975: 4972: 4968: 4964: 4959: 4955: 4921: 4917: 4913: 4910: 4907: 4902: 4898: 4864: 4844: 4841: 4838: 4831: 4828: 4825: 4819: 4813: 4807: 4794: 4790: 4786: 4780: 4771: 4768: 4765: 4754: 4746: 4743: 4721: 4698: 4694: 4673: 4670: 4627: 4623: 4622: 4613: 4609: 4605: 4601: 4591: 4585: 4576: 4567: 4562: 4554: 4549: 4544: 4541: 4537: 4532: 4527: 4512: 4503: 4496: 4491: 4486: 4481: 4480:endomorphisms 4477: 4476:abelian group 4472: 4467: 4458: 4447: 4438: 4420:For any ring 4419: 4418: 4409: 4405: 4401: 4393: 4385: 4382: 4378: 4355: 4320: 4314: 4297: 4293: 4290: 4272: 4231: 4227: 4202: 4199: 4169: 4165: 4161: 4154: 4130: 4126: 4122: 4119: 4116: 4111: 4107: 4097: 4089: 4082: 4077: 4072: 4071: 4069: 4059: 4055: 4052: 4048: 4045: 4044: 4037: 4022: 4019: 4018: 4017: 4016: 4015: 4012: 4009: 4005: 3996: 3994: 3976: 3968: 3966: 3962: 3958: 3954: 3950: 3940: 3937: 3931: 3921: 3897: 3894: 3886: 3879: 3876: 3873: 3870: 3867: 3864: 3859: 3855: 3851: 3848: 3845: 3843: 3836: 3832: 3824: 3821: 3818: 3815: 3812: 3809: 3804: 3800: 3796: 3793: 3791: 3784: 3780: 3772: 3769: 3766: 3763: 3760: 3757: 3752: 3748: 3744: 3741: 3739: 3732: 3728: 3720: 3717: 3714: 3709: 3705: 3701: 3698: 3696: 3689: 3685: 3677: 3674: 3671: 3668: 3665: 3662: 3660: 3653: 3649: 3637: 3636: 3635: 3631: 3627: 3622: 3617: 3616:David Hilbert 3607: 3605: 3601: 3597: 3593: 3581: 3577: 3573: 3568: 3558: 3556: 3555: 3533: 3519: 3515: 3507: 3502: 3495: 3490: 3482: 3478: 3475: 3472: 3451: 3443: 3438: 3431: 3426: 3418: 3414: 3411: 3408: 3388: 3384: 3376: 3371: 3364: 3359: 3351: 3347: 3344: 3323: 3315: 3310: 3303: 3298: 3290: 3286: 3283: 3262: 3254: 3249: 3242: 3237: 3229: 3205: 3199: 3194: 3181: 3162: 3158: 3154: 3151: 3148: 3145: 3142: 3139: 3136: 3133: 3130: 3123: 3118: 3112: 3107: 3100: 3095: 3089: 3080: 3076: 3070: 3064: 3059: 3047: 3046: 3045: 3040: 3036: 3026: 3013: 3005: 3000: 2991: 2988: 2982: 2974: 2969: 2962:For example, 2949: 2940: 2937: 2931: 2923: 2918: 2891: 2887: 2854: 2828: 2820: 2808: 2789: 2781: 2777: 2735: 2701: 2697: 2666: 2658: 2653: 2645: 2640: 2632: 2605: 2600: 2592: 2587: 2579: 2542: 2538: 2505: 2500: 2492: 2482: 2468: 2460: 2455: 2447: 2442: 2434: 2407: 2402: 2394: 2389: 2381: 2369: 2365: 2359: 2355: 2345: 2341: 2331: 2327: 2303: 2299: 2266: 2261: 2253: 2243: 2242: 2241: 2226: 2217: 2212: 2204: 2199: 2191: 2186: 2178: 2172: 2168: 2160: 2156: 2140: 2126: 2122: 2109: 2105: 2094: 2091: 2071: 2067: 2063: 2057: 2052: 2048: 2035: 2032: 2029: 2026: 2025: 2024: 2016: 1999: 1996: 1993: 1990: 1987: 1984: 1981: 1978: 1975: 1972: 1969: 1966: 1963: 1960: 1957: 1954: 1951: 1948: 1945: 1942: 1939: 1936: 1933: 1930: 1927: 1924: 1921: 1918: 1915: 1912: 1905: 1904: 1903: 1902: 1884: 1865: 1861: 1857: 1852: 1843: 1842:is a "ring". 1841: 1836: 1833: 1829: 1825: 1821: 1810: 1808: 1804: 1800: 1795: 1793: 1789: 1785: 1784: 1778: 1769: 1764: 1762: 1761: 1756: 1755:even integers 1750: 1732: 1721: 1718: 1712: 1708: 1688: 1684: 1680: 1673: 1669: 1665: 1661: 1657: 1653: 1649: 1644: 1636: 1632: 1628: 1621: 1617: 1613: 1609: 1605: 1601: 1597: 1593: 1592: 1590: 1586: 1581: 1564: 1560: 1553: 1549: 1536: 1524: 1520: 1516: 1509: 1505: 1501: 1497: 1493: 1489: 1484: 1483: 1481: 1474: 1465: 1460: 1452: 1448: 1438: 1433:there exists 1424: 1421: 1404: 1400: 1387: 1384: 1371: 1367: 1361: 1357: 1353: 1349: 1345: 1342: 1329: 1325: 1321: 1314: 1310: 1306: 1302: 1298: 1294: 1289: 1288: 1286: 1285:abelian group 1279: 1278: 1277: 1275: 1268: 1264: 1254: 1252: 1248: 1244: 1240: 1236: 1232: 1231:number theory 1228: 1224: 1220: 1216: 1212: 1207: 1205: 1201: 1197: 1193: 1189: 1185: 1181: 1175: 1170: 1165: 1161: 1156: 1152: 1148: 1143: 1141: 1137: 1133: 1129: 1125: 1121: 1116: 1114: 1113: 1108: 1104: 1100: 1096: 1092: 1091:abelian group 1088: 1084: 1080: 1068: 1063: 1061: 1056: 1054: 1049: 1048: 1046: 1045: 1037: 1034: 1032: 1029: 1027: 1024: 1022: 1019: 1017: 1014: 1012: 1009: 1007: 1004: 1003: 999: 996: 995: 991: 986: 985: 978: 977: 973: 972: 968: 965: 963: 960: 958: 955: 954: 949: 944: 943: 936: 935: 931: 929: 926: 925: 921: 918: 916: 913: 911: 908: 906: 903: 901: 898: 896: 893: 892: 887: 882: 881: 876: 875: 868: 865: 863: 862:Division ring 860: 858: 855: 853: 850: 848: 845: 843: 840: 838: 835: 833: 830: 828: 825: 823: 820: 819: 814: 809: 808: 803: 802: 795: 792: 790: 787: 785: 784:Abelian group 782: 781: 777: 774: 772: 769: 767: 763: 760: 758: 755: 754: 750: 745: 744: 741: 738: 737: 734: 732: 728: 724: 720: 716: 712: 708: 704: 700: 696: 692: 688: 684: 680: 676: 672: 668: 664: 652: 647: 645: 640: 638: 633: 632: 630: 629: 624: 623: 617: 613: 612: 611: 610: 609: 604: 603: 602: 597: 596: 595: 588: 584: 582: 578: 576: 572: 570: 569:Division ring 566: 565: 564: 563: 557: 552: 551: 523: 507: 505: 499: 483: 469: 468:-adic numbers 467: 462: 446: 432: 430: 425: 423: 419: 417: 410: 408: 404: 403: 402: 401: 400: 391: 387: 385: 381: 377: 373: 372: 371: 367: 365: 361: 359: 355: 353: 349: 347: 343: 341: 337: 336: 335: 331: 330: 329: 328: 322: 317: 316: 307: 303: 302: 301: 297: 293: 289: 287: 283: 282: 281: 277: 273: 269: 268: 267: 263: 262: 261: 260: 235: 231: 222: 219: 212: 211:Terminal ring 208: 185: 181: 180: 179: 175: 173: 169: 167: 163: 161: 157: 155: 151: 150: 149: 148: 147: 140: 136: 134: 130: 128: 124: 123: 122: 121: 120: 113: 109: 107: 103: 101: 97: 93: 89: 87: 83: 82: 81: 80:Quotient ring 77: 75: 71: 69: 65: 64: 63: 62: 53: 52: 49: 44:β†’ Ring theory 43: 39: 38: 33: 19: 21620: 21601:(1): 18–35. 21598: 21592: 21560: 21554: 21539: 21521: 21513: 21452: 21448: 21432: 21428: 21400: 21396: 21393:Fraenkel, A. 21365: 21334: 21314: 21305:Local fields 21304: 21278:(1): 58βˆ’62, 21275: 21271: 21244: 21217: 21185: 21171: 21168:Knuth, D. E. 21136: 21130: 21104: 21092: 21073: 21069: 21045: 21031: 21022: 21018: 21000: 20982: 20964: 20955: 20936: 20909: 20887: 20855: 20846: 20825: 20787: 20765: 20743: 20721: 20687: 20664: 20652: 20648: 20636: 20632: 20610: 20591: 20569: 20550: 20533: 20515:, Springer, 20512: 20500: 20497:Bourbaki, N. 20488: 20485:Bourbaki, N. 20476: 20460: 20439: 20430: 20411: 20392: 20373: 20362: 20350: 20344:Serre (1950) 20339: 20327: 20311: 20306:, Ch XIV, Β§2 20299: 20284: 20272: 20265:Milne (2012) 20260: 20253:Milne (2012) 20248: 20236: 20224: 20212: 20185: 20173: 20161: 20156:, p. 98 20149: 20137: 20125: 20113: 20102: 20091: 20082: 20073: 20062: 20050: 20045:, p. 42 20038: 20026: 20021:, p. 11 20014: 20009:, p. 96 20002: 19995:Artin (2018) 19990: 19979: 19968: 19958: 19950: 19945:, p. 29 19925: 19917: 19905: 19893: 19878: 19867: 19862:, p. 27 19855: 19841: 19834:Serre (1979) 19829: 19822:Serre (2006) 19817: 19805: 19793: 19781: 19772: 19763: 19751: 19746:, p. 83 19731:, p. 85 19724: 19712: 19689: 19680: 19667: 19653: 19648: 19631: 19597:Regular ring 19592:Reduced ring 19587:Poisson ring 19582:Ordered ring 19538:Boolean ring 19531: 19511:Ring of sets 19456: 19452: 19396: 19379:Witt vectors 19368: 19363: 19318: 19303:over a base 19300: 19298: 18957:(addition), 18899: 18881: 18812: 18803: 18797: 18793: 18785: 18777: 18771: 18765: 18749: 18737: 18729: 18708: 18681: 18676: 18639: 18635: 18631: 18627: 18623: 18619: 18604: 18599: 18578: 18574: 18567: 18547: 18539: 18535: 18519: 18515: 18511: 18507: 18500: 18351: 18347: 18341: 18337: 18330: 18318: 18302: 18290: 18282: 18278: 18274:vector space 18216: 18210: 18180: 18144: 18122:Hopf algebra 18115: 18086: 18062: 18056: 18052: 18028:vector space 17958: 17844: 17828: 17582: 17578: 17574: 17537: 17533: 17523: 17519: 17515: 17451: 17409:vector space 17394: 17382:Novikov ring 17371: 17367: 17332: 17328: 17223:well ordered 17110: 17106: 17051: 17044: 17040: 17017: 17013: 17009: 17005: 17001: 16997: 16993: 16987: 16983: 16973: 16967: 16957: 16943: 16926: 16844: 16840: 16833:is split by 16787: 16783: 16775: 16771: 16726: 16720:through the 16571: 16567: 16556: 16547:Brauer group 16335: 16325: 16318: 16311: 16307: 16301:over a ring 16269:For a field 16268: 16243: 16239: 16188: 16176: 16172: 16165: 16161: 16082:is a finite 16050: 16047: 16030:Weyl algebra 16027: 15994: 15984:For a field 15972: 15967: 15930: 15924: 15922: 15896: 15889: 15886: 15877: 15863: 15851: 15845: 15839: 15833: 15827: 15821: 15815: 15809: 15803: 15798: 15797: 15791: 15782: 15775: 15750: 15746: 15581: 15530: 15448: 15438: 15434: 15430: 15415: 15411:number field 15381:is called a 15372: 15234: 15228: 15225: 15220: 15179: 15026: 15020: 15016: 14981: 14960: 14953: 14947: 14940: 14933: 14930: 14887: 14881: 14802:metric space 14293: 14263: 14081: 14067: 13929: 13331: 13226: 12897: 12689:localization 12688: 12438:localization 12435: 12432:Localization 12423: 12421: 12415: 12411: 12404: 12400: 12395: 12391: 12384: 12380: 12373: 12369: 12361: 12357: 12278: 12274: 12270: 12263: 12259: 12254: 12250: 12243: 12239: 12234: 12230: 12225: 12221: 12214: 12210: 12205: 12201: 12195: 12191: 12184: 12180: 12175: 12171: 12165: 12158: 12154: 12143: 12136: 12117: 11709: 11692: 11688: 11682: 11678: 11629:is the ring 11608: 11604: 11587: 11575: 11570: 11557: 11552: 11536:over it are 11531: 11526: 11517: 11506: 11265: 11260: 11244: 11237: 11232: 11227: 11222: 11214: 11210: 11207: 11086: 11081: 11076: 10922: 10915: 10910: 10877: 10872: 10851: 10821: 10818: 10700: 10622: 10616: 10598: 10591: 10541: 10477: 10473: 10450: 10282: 10267: 10263: 10257: 10253: 10249: 10245: 10241: 10237: 10221: 10217: 10213: 10209: 10205: 10199: 10192: 10188: 10184: 10173: 10167: 10161: 10155: 10152: 9994: 9976: 9930: 9926: 9916: 9912: 9908: 9902: 9898: 9892: 9888: 9884:substitution 9881: 9784: 9778: 9768: 9758: 9744: 9733: 9575: 9398: 9372: 9305: 9301: 9287: 8804: 8565: 8561: 8440: 8371: 8362: 8358: 8345: 8338: 8325: 8318: 8315: 8033: 8029: 8015: 7989:is called a 7972: 7968: 7958: 7954: 7950: 7946: 7932: 7928: 7924: 7921: 7910: 7906: 7902: 7890: 7887: 7880: 7876: 7872: 7868: 7861: 7857: 7853: 7849: 7836: 7833:left modules 7832: 7826: 7645: 7639: 7629: 7623: 7601: 7597: 7593: 7562:vector space 7557: 7555: 7534: 7530: 7471: 7467: 7461: 7457: 7453: 7450: 7354: 7350: 7344: 7340: 7336: 7326: 7322: 7318: 7312: 7308: 7304: 7300: 7297: 7292: 7287: 7283: 7281:. The ring 7273: 7269: 7266: 7100: 7096: 7092: 7086: 7074: 7070: 7055: 7051: 7039: 6997: 6967: 6963: 6959: 6956: 6949:is called a 6888: 6835: 6831: 6827:Galois group 6809: 6804: 6651:{0, 1, 2, 3} 6636: 6617: 6611: 6608: 6431: 6425: 6406: 6398: 6394: 6391:from a ring 6388:homomorphism 6386: 6384: 6375:Homomorphism 6367: 6363: 6357: 6353: 6347: 6343: 6337: 6331: 6205:is called a 6196: 6177: 6170: 6151: 6144: 6130: 6124: 6113: 6095: 6078: 6074: 6065: 6061: 6055:is a subset 6052: 6047: 6043: 6036: 5896:denotes the 5880: 5876: 5843: 5837: 5817: 5759: 5744: 5740: 5717: 5709: 5704: 5694: 5683: 5665: 5648: 5638: 5630: 5604: 5412: 5405: 5401: 5389:are in  5381: 5377: 5359: 5342: 5338: 5334: 5317:is called a 5308: 5283: 5268: 5264: 5257: 5251: 5241: 5226: 5216: 5212: 5186: 5182:nonzero ring 5171: 5164: 5153: 5146: 5126:zero divisor 5123: 5111: 5107: 5101: 5098: 5094: 5087: 5081: 5078: 5074: 5067: 5060: 5054: 5050: 5042: 5038: 5033: 5029: 5024: 5020: 5010: 4943:elements of 4882: 4599: 4589: 4583: 4565: 4547: 4530: 4525: 4513:over a ring 4501: 4494: 4484: 4470: 4456: 4454:itself. For 4445: 4408:Boolean ring 4404:intersection 4294:The ring of 4228:The ring of 4166:real-valued 4090:The algebra 4075: 4073:The algebra 4013: 3997: 3977: 3974: 3964: 3961:Emmy Noether 3946: 3935: 3929: 3919: 3916: 3629: 3625: 3613: 3604:Ernst Kummer 3589: 3552: 3534: 3177: 3032: 2806: 2681: 2483:The product 2367: 2363: 2357: 2353: 2343: 2339: 2329: 2325: 2142: 2124: 2120: 2065: 2061: 2054:(zero is an 2050: 2046: 2022: 2014: 1869: 1846:Illustration 1837: 1831: 1827: 1823: 1819: 1811: 1805:is called a 1796: 1791: 1787: 1781: 1776: 1765: 1758: 1727: 1716: 1710: 1706: 1699: 1686: 1682: 1678: 1671: 1667: 1663: 1659: 1655: 1651: 1647: 1634: 1630: 1626: 1619: 1615: 1611: 1607: 1603: 1599: 1595: 1589:distributive 1562: 1558: 1551: 1547: 1522: 1518: 1514: 1507: 1503: 1499: 1495: 1491: 1487: 1458: 1450: 1446: 1436: 1402: 1398: 1369: 1365: 1359: 1355: 1351: 1347: 1327: 1323: 1319: 1312: 1308: 1304: 1300: 1296: 1292: 1273: 1262: 1260: 1208: 1173: 1163: 1159: 1144: 1117: 1110: 1106: 1099:distributive 1086: 1082: 1078: 1077:Formally, a 1076: 1036:Hopf algebra 974: 967:Vector space 932: 872: 821: 812: 801:Group theory 799: 764: / 731:power series 686: 666: 660: 620: 606: 605: 601:Free algebra 599: 598: 592: 591: 560: 503: 465: 428: 397: 396: 376:Finite field 325: 272:Finite field 258: 257: 184:Initial ring 144: 143: 117: 116: 60: 59: 21644:Ring theory 21218:Local rings 21181:Korn, T. M. 21095:. Springer. 21076:: 795–799. 20784:Lang, Serge 20503:. Springer. 20334:, Ch IV, Β§2 20304:Lang (2002) 20289:Cohn (1995) 20229:Cohn (1995) 20217:Lang (2002) 20205:Cohn (2003) 20166:Cohn (2003) 20132:, p. 7 19883:Cohn (1980) 19824:, p. 3 19812:, Ch V, Β§3. 19810:Lang (2005) 19744:Lang (2002) 19558:Finite ring 19301:ring scheme 19295:Ring scheme 18900:ring object 18770:(sometimes 18756:Lie algebra 18690:-group (by 18311:, where if 17961:graded ring 17527:to be both 17470:is given a 17227:convolution 16632:local field 16283:simple ring 16159:where each 16051:For a ring 16034:simple ring 15874:quaternions 15399:prime ideal 14060:-modules.) 11511:states any 10866:matrix ring 10844:Matrix ring 10606:containing 10581:defined by 8569:. Then the 8356:. The ring 7985:, the ring 7843:instead of 7316:, given by 7293:factor ring 7091:; then the 6898:epimorphism 6818:called the 6619:isomorphism 6207:prime ideal 6160:along with 6069:. A subset 6053:right ideal 5806:centralizer 5639:For a ring 5617:containing 5602:, however. 5445:polynomials 5065:of a ring: 4753:convolution 4624:The set of 4575:free module 4511:left module 4478:, then the 4081:polynomials 3959:. In 1921, 3621:equivalence 3598:. In 1871, 3580:ring theory 3554:Matrix ring 2118:satisfying 1768:commutative 1383:commutative 1341:associative 1274:ring axioms 1180:group rings 1128:ring theory 1095:associative 1021:Lie algebra 1006:Associative 910:Total order 900:Semilattice 874:Ring theory 719:polynomials 679:commutative 663:mathematics 581:Simple ring 292:Jordan ring 166:Graded ring 48:Ring theory 18:Unital ring 21633:Categories 21204:Milne, J. 20818:0984.00001 20579:0824750330 20491:. Hermann. 20384:References 20318:, p.  19798:Lam (2001) 19573:Noetherian 19568:Local ring 19381:of length 19377:-isotypic 18813:Examples: 18698:being its 18530:associated 18227:under the 18205:See also: 18118:group ring 17529:continuous 17380:See also: 17343:group ring 17326:such that 17104:such that 17052:Examples: 17038:such that 16829:(that is, 16346:such that 16044:Properties 15353:See also: 15006:to a ring 14952:(see also 14083:completion 14064:Completion 13231:is a left 13048:local ring 13046:is then a 12367:such that 12199:such that 10830:(in fact, 10610:such that 10371:such that 9584:over  9383:adele ring 8850:be rings, 8380:with  7865:) becomes 7406:such that 7026:-module). 7002:to a ring 6637:Examples: 6403:to a ring 6077:or simply 6059:such that 5844:left ideal 5730:such that 5222:projection 5189:idempotent 5162:such that 5144:such that 5128:of a ring 4697:invertible 4561:group ring 4381:Hecke ring 4164:continuous 4034:See also: 3955:to have a 3565:See also: 2843:0, 1, 2, 3 2137:See also: 2095:If a ring 2076:in a ring 2044:, one has 2040:in a ring 1574:(that is, 1545:such that 1530:(that is, 1455:(that is, 1444:such that 1414:(that is, 1396:such that 1377:(that is, 1335:(that is, 1257:Definition 1153:, and the 587:Commutator 346:GCD domain 21544:MIT Press 21469:121594471 21417:118962421 21285:1404.0135 21216:(1962) , 21189:. Dover. 21153:0003-486X 20939:. Dover. 20590:(1994) . 19705:Citations 19460:from the 19435:→ 19429:∧ 19420:μ 19336:⁡ 19258:forgetful 19252:⟶ 19228:→ 19184:→ 19159:− 19153:⁡ 19100:→ 19060:→ 19019:→ 18979:→ 18968:× 18932:→ 18921:× 18846:… 18720:morphisms 18440:⋅ 17912:∞ 17897:⨁ 17871:∗ 17744:λ 17674:− 17667:λ 17648:λ 17633:∑ 17605:λ 17557:, or the 17514:β‹… : 17497:→ 17491:× 17301:− 17272:∈ 17265:∑ 17243:∗ 16991:nonzero, 16950:valuation 16903:∗ 16875:⁡ 16804:⊗ 16747:⊗ 16743:− 16681:⁡ 16599:⁡ 16561:. By the 16519:⊗ 16453:≃ 16434:⊗ 16384:⊗ 16377:≈ 16358:⊗ 16213:⊗ 16199:separable 16131:⁡ 16094:∏ 15697:λ 15693:− 15542:⋅ 15492:… 15330:⊗ 15312:⊗ 15297:⊗ 15258:⊗ 15246:-modules 15215:from the 15191:↦ 15136:∈ 15124:∣ 15115:− 14988:free ring 14535:− 14499:given by 14422:↦ 14411:is a map 14219:^ 14210:→ 14127:⁡ 14122:← 14108:^ 14039:− 13994:− 13922:is exact. 13907:→ 13896:→ 13890:→ 13879:→ 13826:→ 13808:→ 13793:→ 13775:→ 13742:→ 13731:→ 13725:→ 13714:→ 13703:whenever 13682:− 13647:→ 13635:− 13615:→ 13603:− 13588:→ 13576:− 13556:→ 13511:− 13496:⁡ 13491:→ 13471:− 13426:− 13377:− 13358:↦ 13306:⊗ 13293:− 13266:− 13050:with the 12994:− 12923:− 12874:− 12833:− 12798:≥ 12785:∈ 12731:− 12666:− 12646:The ring 12622:− 12570:− 12521:− 12506:→ 12475:− 12331:∏ 12300:⁡ 12295:← 12268:whenever 12091:⁡ 12086:→ 11982:− 11974:⁡ 11969:→ 11889:⁡ 11884:→ 11865:¯ 11808:⋯ 11773:⁡ 11768:→ 11754:⋯ 11647:⁡ 11642:→ 11470:⁡ 11454:⁡ 11417:∏ 11413:≃ 11401:⁡ 11350:-modules 11315:⊕ 11285:⨁ 11171:↦ 11152:⁡ 11139:→ 11119:⊕ 11112:⁡ 11033:⊕ 11029:→ 11012:⊕ 10973:⁡ 10960:≃ 10941:⁡ 10801:∈ 10762:∞ 10753:∑ 10660:… 10563:¯ 10525:¯ 10517:↦ 10504:→ 10426:¯ 10423:ϕ 10384:¯ 10381:ϕ 10356:→ 10336:¯ 10333:ϕ 10300:→ 10291:ϕ 10165:and  10099:↦ 10077:→ 9995:Example: 9988:and  9948:↦ 9855:↦ 9842:→ 9796:⊆ 9668:… 9617:… 9553:∈ 9534:≥ 9528:∣ 9496:⋯ 9485:− 9469:− 9215:∈ 9185:⋯ 9120:⊆ 9091:≠ 9030:⊕ 9027:⋯ 9024:⊕ 8877:∏ 8868:→ 8835:≤ 8829:≤ 8760:… 8729:↦ 8692:⋂ 8634:∏ 8630:≃ 8592:⋂ 8559:whenever 8470:⋯ 8411:∈ 8404:∏ 8284:⋅ 8258:⋅ 8210:⋅ 7590:operation 7513:→ 7507:⁡ 7488:¯ 7430:∘ 7425:¯ 7391:→ 7372:¯ 6915:→ 6869:↦ 6766:− 6752:↦ 6740:→ 6632:bijective 6541:∗ 6517:⋅ 6488:‡ 6307:∈ 6281:∈ 6255:∈ 6226:∈ 6136:principal 6016:∈ 5991:∈ 5938:⋯ 5900:-span of 5659:and  5309:A subset 5235:having a 5169:for some 4969:∏ 4911:… 4829:− 4803:∞ 4798:∞ 4795:− 4791:∫ 4769:∗ 4619:Non-rings 4392:power set 4315:^ 4198:pointwise 4168:functions 4120:… 3898:⋮ 3887:⋮ 3874:− 3849:− 3810:− 3767:− 3745:− 3715:− 3672:− 3200:⁡ 3152:∈ 3065:⁡ 3009:¯ 2996:¯ 2989:− 2978:¯ 2970:− 2945:¯ 2938:− 2927:¯ 2919:− 2858:¯ 2824:¯ 2662:¯ 2649:¯ 2641:⋅ 2636:¯ 2609:¯ 2596:¯ 2588:⋅ 2583:¯ 2509:¯ 2501:⋅ 2496:¯ 2464:¯ 2451:¯ 2438:¯ 2411:¯ 2398:¯ 2385:¯ 2270:¯ 2257:¯ 2221:¯ 2208:¯ 2195:¯ 2182:¯ 2090:zero ring 2049:0 = 0 = 0 2000:… 1955:− 1946:− 1937:− 1928:− 1919:− 1913:… 1425:For each 1233:, and of 1031:Bialgebra 837:Near-ring 794:Lie group 762:Semigroup 727:functions 528:∞ 306:Semifield 21619:(1985), 21512:(1996), 21443:(1921). 21364:(1975). 21303:(1979), 21294:48666015 21266:(2019), 21183:(2000). 21170:(1998). 21103:(1994). 21042:(1995), 20958:. Wiley. 20907:(1930), 20881:. v2.23. 20786:(2002), 20764:(2003). 20742:(2001). 20720:(1999). 20685:(1974), 20663:(2009). 20532:(1995). 20511:(2003), 20499:(1989). 20487:(1964). 20475:(1969). 20459:(2018). 19607:SBI ring 19563:Lie ring 19516:Semiring 19479:See also 19407:spectrum 18888:products 18802:for all 18768:semiring 18762:Semiring 18706:-group. 18255:-modules 17472:topology 17004:) β‰₯ min{ 16768:induces 16727:Now, if 16070:artinian 15939:Examples 15660:Now, if 15575:we make 15531:Letting 15433: : 15014:so that 13903:″ 13886:′ 13822:″ 13789:′ 13738:″ 13721:′ 13622:″ 13563:′ 12378:maps to 11614:for all 11542:category 11218:induces 10886:-module 10832:complete 10550:) where 10546:maps to 10276:at  9815:of  8352:in  8316:for all 7927: : 7637:and all 7580:-module 7564:(over a 7456: : 7339: : 7303: : 7267:for all 7018:to  6979:of  6962: : 6419:to  5820:in  5780:of  5772:of  5752:in  5748:for any 5688:of  5330:restrict 5105:for all 5092:. Then 5018:and let 4742:semiring 4499:of  4437:matrices 3586:Dedekind 2244:The sum 1860:addition 1856:integers 1733:" (IPA: 1676:for all 1624:for all 1566:for all 1512:for all 1406:for all 1363:for all 1317:for all 1251:analysis 1247:geometry 1219:Fraenkel 1211:Dedekind 1204:topology 1083:addition 867:Lie ring 832:Semiring 711:integers 707:integers 699:addition 300:Semiring 286:Lie ring 68:Subrings 21577:2974935 21236:0155856 21161:1969205 20929:0009016 20847:Algebra 20810:1878556 20788:Algebra 20711:0345945 20542:1322960 20461:Algebra 20293:pg. 242 19353:⁠ 19325:⁠ 18800:β‹… 0 = 0 18295:be its 18266:-module 18253:⁠ 18231:⁠ 18116:To any 18087:To any 18046:and an 18012:spheres 17845:To any 17733:⁠ 17711:⁠ 17458:A ring 17447:⁠ 17425:⁠ 17123:is the 16774:) β†’ Br( 16666:⁠ 16637:⁠ 16336:similar 15375:nonzero 15369:Domains 15086:⁠ 15061:⁠ 14927:⁠ 14895:⁠ 14871:⁠ 14842:⁠ 14838:⁠ 14806:⁠ 14798:⁠ 14776:⁠ 14772:⁠ 14750:⁠ 14497:⁠ 14475:⁠ 14471:⁠ 14449:⁠ 14409:⁠ 14387:⁠ 14379:⁠ 14354:⁠ 14343:⁠ 14311:⁠ 14288:⁠ 14266:⁠ 13960:functor 12282:. Then 11518:A ring 10577:is the 10182:. Then 9972:⁠ 9937:⁠ 9906:, then 9742:, then 8395:, then 8026:product 7995:algebra 7079:, view 7012:algebra 6932:⁠ 6902:⁠ 6884:⁠ 6856:⁠ 6802:. Then 6729:, then 6716:⁠ 6681:⁠ 6677:⁠ 6655:⁠ 6409:, ‑, βˆ—) 6122:, then 6093:, then 5888:are in 5818:central 5796:. Then 5756:. Then 5596:⁠ 5571:⁠ 5567:⁠ 5542:⁠ 5534:⁠ 5509:⁠ 5505:⁠ 5483:⁠ 5479:⁠ 5448:⁠ 5437:⁠ 5415:⁠ 5346:making 5319:subring 5305:Subring 5299:Subring 5124:A left 4734:⁠ 4709:⁠ 4703:to get 4689:⁠ 4655:⁠ 4651:⁠ 4629:⁠ 4581:having 4370:⁠ 4341:⁠ 4333:⁠ 4299:⁠ 4285:⁠ 4260:⁠ 4256:⁠ 4234:⁠ 4194:⁠ 4172:⁠ 4068:-module 3632:+ 1 = 0 3610:Hilbert 3561:History 2909:⁠ 2874:⁠ 2802:⁠ 2764:⁠ 2748:⁠ 2723:⁠ 2719:⁠ 2684:⁠ 2560:⁠ 2525:⁠ 2321:⁠ 2286:⁠ 1901:numbers 1897:⁠ 1872:⁠ 1840:algebra 1578:is the 1462:is the 1418:is the 1223:Noether 1215:Hilbert 998:Algebra 990:Algebra 895:Lattice 886:Lattice 502:PrΓΌfer 104:β€’  21575:  21531:  21492:  21467:  21415:  21372:  21351:online 21349:(also 21342:  21322:  21292:  21252:  21234:  21224:  21193:  21159:  21151:  21115:  21054:  21007:  20989:  20943:  20927:  20917:  20894:  20866:  20832:  20816:  20808:  20798:  20772:  20750:  20728:  20709:  20699:  20671:  20617:  20598:  20576:  20557:  20540:  20519:  20418:  20399:  19305:scheme 18505:as in 18501:where 18327:is in 18323:, and 18315:is in 18219:, the 18213:monoid 18181:Every 17566:Ξ»-ring 17176:, let 16584:; cf. 16415:Since 15979:simple 15950:simple 15878:finite 15847:fields 15383:domain 15279:is an 14885:| 14879:| 14568:where 14080:. The 12389:under 12148:(or a 11540:: the 11059:is an 9886:). If 9738:is an 8368:(1, 1) 7979:center 7619:axioms 7584:is an 7546:Module 7533:/ ker 7470:= ker 7106:cosets 6977:kernel 6173:simple 6118:is in 5784:, let 5770:center 5714:, let 5600:subrng 5385:, and 5174:> 0 4474:is an 4459:> 1 4051:fields 4004:Poonen 3933:, and 3890:  3634:then: 3465:while 3128:  1790:means 1550:Β· 1 = 1480:monoid 1401:+ 0 = 1283:is an 1221:, and 1198:, and 1149:of an 1140:fields 1109:. See 1026:Graded 957:Module 948:Module 847:Domain 766:Monoid 729:, and 675:fields 154:Module 127:Kernel 21573:JSTOR 21465:S2CID 21413:S2CID 21290:JSTOR 21280:arXiv 21157:JSTOR 20207:, 4.4 19887:p. 49 19623:Notes 19405:is a 19385:over 19323:over 18538:, +, 18089:group 17462:is a 17047:) β‰₯ 0 16981:with 16670:then 16247:. If 16008:order 15870:field 15799:rings 15409:in a 15169:over 14986:be a 14877:with 14800:as a 14447:from 14253:, by 13958:is a 13868:then 12127:stalk 11622:) of 11380:then 11230:) β†’ M 11079:= End 10828:local 10256:)) / 9752:. If 7962:. If 7898:basis 7856:) = ( 7576:, an 7566:field 7357:) = 0 7073:, +, 7062:ideal 7054:, +, 7014:over 6415:from 6397:, +, 6180:chain 6085:. If 6079:ideal 6037:then 5892:. If 5828:Ideal 5441:field 5247:group 4857:Then 4693:group 4577:over 4573:is a 4569:over 4553:group 4551:is a 4509:is a 4461:(and 3401:then 3039:field 2811:" or 2809:mod 4 2682:Then 2074:0 = 1 1807:field 1666:) + ( 1614:) + ( 1606:) = ( 1478:is a 1453:) = 0 1265:is a 1171:with 1167:real 1097:, is 1085:and 992:-like 950:-like 888:-like 857:Field 815:-like 789:Magma 757:Group 751:-like 749:Group 689:is a 667:rings 506:-ring 370:Field 266:Field 74:Ideal 61:Rings 21529:ISBN 21490:ISBN 21401:1915 21370:ISBN 21340:ISBN 21320:ISBN 21250:ISBN 21222:ISBN 21191:ISBN 21149:ISSN 21113:ISBN 21052:ISBN 21005:ISBN 20987:ISBN 20941:ISBN 20915:ISBN 20892:ISBN 20864:ISBN 20830:ISBN 20796:ISBN 20770:ISBN 20748:ISBN 20726:ISBN 20697:ISBN 20669:ISBN 20615:ISBN 20596:ISBN 20574:ISBN 20555:ISBN 20517:ISBN 20416:ISBN 20397:ISBN 19614:and 19575:and 19401:, a 19333:Spec 18882:Let 18864:the 18792:0 β‹… 18788:, +) 18780:, +) 18630:) = 18581:, +) 18570:, +) 18550:, +) 18514:) + 18345:and 18329:End( 18317:End( 18301:End( 18289:End( 18285:, +) 18279:Let 18016:tori 18014:and 17799:the 17549:-by- 17419:-by- 17384:and 17022:The 16342:and 16330:and 16319:The 16273:, a 16072:and 16028:The 15793:rngs 15428:and 15357:and 15226:Let 14655:and 14381:The 14068:Let 14015:and 13934:, a 12974:for 12436:The 12065:The 11841:The 11588:Let 11507:The 10852:Let 10846:and 10623:Let 10413:and 10248:) – 10216:) – 10203:and 9915:) = 9896:and 9785:Let 8996:and 8441:Let 8336:and 8020:and 8016:Let 7905:(βˆ’1) 7089:, +) 6825:The 6794:Let 6128:and 5975:that 5967:such 5884:and 5866:and 5860:x, y 5838:Let 5365:x, y 5358:1 ∈ 5229:unit 5085:for 5072:and 5049:1 ≀ 5047:for 4747:Let 4606:The 4555:and 4538:The 4493:End( 4432:-by- 4379:The 4203:Let 3337:and 2623:and 2425:and 2337:(as 2114:and 2106:The 2060:(–1) 1862:and 1854:The 1799:zero 1788:ring 1654:) Β· 1557:1 Β· 1555:and 1494:) Β· 1449:+ (βˆ’ 1299:) + 1263:ring 1249:and 1241:and 1134:and 1079:ring 822:Ring 813:Ring 701:and 687:ring 681:and 669:are 21603:doi 21565:doi 21561:103 21457:doi 21405:doi 21141:doi 21109:AMS 21078:doi 20814:Zbl 19655:rng 19397:In 19373:of 19150:Hom 18902:in 18894:of 18806:in 18772:rig 18740:rng 18734:Rng 18674:End 18672:to 18648:in 18613:of 18597:End 18587:of 18577:= ( 18556:in 18215:in 18120:or 18097:act 18067:of 17590:th 17403:An 17345:of 17217:to 17026:of 17020:)}. 17012:), 16977:in 16944:If 16872:Gal 16839:Br( 16782:Br( 16770:Br( 16588:). 16570:Br( 16555:Br( 16549:of 16255:.) 16068:is 16010:of 16002:of 15884:). 15808:βŠƒ 15761:of 15221:Set 15219:to 15177:.) 14944:at 14891:≀ 1 14473:to 14352:on 14119:lim 14090:at 14086:of 13954:of 13930:In 13488:lim 13227:If 12691:of 12452:of 12292:lim 12248:is 12083:lim 12073:is 11966:lim 11881:lim 11845:of 11765:lim 11696:in 11639:lim 11611:+ 1 11461:End 11392:End 11258:End 11103:End 11074:in 10932:End 10908:End 10834:). 10698:.) 10596:in 10467:in 10319:in 10264:f' 10261:is 10234:in 9734:If 9385:). 9297:= 0 8771:mod 8740:mod 8686:mod 8376:of 8332:in 7981:of 7909:= βˆ’ 7653:, 7649:in 7633:in 7504:ker 7334:If 7277:in 7108:of 7067:of 6896:An 6891:β†’ 0 6787:of 6721:If 6435:in 6361:or 6296:or 6201:of 6145:RxR 6114:If 6000:and 5894:R I 5870:in 5862:in 5854:of 5846:of 5726:in 5697:Β· 1 5651:of 5609:of 5367:in 5313:of 5262:or 5255:or 5187:An 5167:= 0 5149:= 0 5140:of 5114:β‰₯ 0 5090:β‰₯ 1 5070:= 1 5016:= 1 4939:of 4563:of 4545:If 4523:End 4482:of 4468:If 4448:= 1 4394:of 4386:If 4215:to 4151:of 4079:of 3628:βˆ’ 4 3044:is 2911:is 2872:in 2750:If 2523:in 2370:βˆ’ 4 2361:or 2284:in 2072:If 2064:= – 1835:.) 1731:rng 1690:in 1658:= ( 1638:in 1598:Β· ( 1570:in 1541:in 1526:in 1502:Β· ( 1466:of 1440:in 1429:in 1410:in 1392:in 1381:is 1373:in 1339:is 1331:in 1307:+ ( 1267:set 1202:in 1190:in 1182:in 1176:β‰₯ 2 1115:.) 827:Rng 713:or 705:of 691:set 661:In 21635:: 21599:53 21597:. 21591:. 21571:. 21559:. 21508:; 21463:. 21453:83 21451:. 21447:. 21431:. 21411:. 21399:. 21360:; 21288:, 21276:92 21274:, 21270:, 21232:MR 21230:, 21155:, 21147:, 21137:46 21135:, 21111:. 21107:. 21074:49 21072:. 21068:. 21021:. 20925:MR 20923:, 20862:. 20812:, 20806:MR 20804:, 20790:, 20707:MR 20705:, 20695:, 20651:. 20637:37 20635:. 20538:MR 20471:; 20320:26 20291:, 20197:^ 20081:. 19962:7) 19935:^ 19929:8) 19885:, 19771:. 19736:^ 19675:". 19475:. 19455:β†’ 19389:. 19223:op 19179:op 19093:pt 19012:pt 18796:= 18766:A 18750:A 18738:A 18634:β‹… 18626:β‹… 18544:, 18355:: 18350:β‹… 18340:+ 18217:Ab 18197:. 18075:, 18055:+ 17959:a 17837:. 17812:A 17594:: 17581:β†’ 17577:: 17564:A 17536:Γ— 17522:β†’ 17518:Γ— 17376:.) 17229:: 17049:. 17000:+ 16986:+ 16971:, 16843:/ 16786:/ 16724:. 16678:Br 16668:), 16596:Br 16316:. 16242:/ 16185:). 16040:. 16018:). 15995:kG 15981:). 15952:). 15944:A 15923:A 15909:. 15897:A 15894:. 15864:A 15850:βŠƒ 15844:βŠƒ 15838:βŠƒ 15832:βŠƒ 15826:βŠƒ 15820:βŠƒ 15814:βŠƒ 15802:βŠƒ 15796:βŠƒ 15765:. 15749:– 15579:a 15437:β†’ 15373:A 15232:, 15019:β†’ 14974:. 14958:) 14936:}] 12895:) 12428:. 12419:. 12414:β‰₯ 12409:, 12399:β†’ 12277:β‰₯ 12273:β‰₯ 12258:β†’ 12238:β†’ 12229:β†’ 12209:β†’ 12194:β‰₯ 12189:, 12179:β†’ 12163:, 12144:A 12141:. 12133:.) 11933:: 11707:. 11691:= 11681:~ 11580:. 11242:. 11213:β†’ 11071:ij 10920:. 10620:. 10476:β†’ 10280:. 10244:+ 10212:+ 10191:+ 10171:. 9992:. 9901:= 9891:= 9370:. 9304:β‰  9299:, 8564:β‰  8361:Γ— 8344:, 8324:, 8032:Γ— 7949:= 7947:rs 7931:β†’ 7900:. 7881:ax 7875:= 7869:ab 7858:xa 7854:ab 7845:ax 7841:xa 7835:; 7643:, 7627:, 7600:β†’ 7596:Γ— 7542:. 7460:β†’ 7343:β†’ 7325:+ 7321:↦ 7311:/ 7307:β†’ 7295:. 7286:/ 7272:, 7099:/ 6995:. 6966:β†’ 6834:/ 6807:↦ 6634:. 6429:, 6385:A 6366:βŠ† 6356:βŠ† 6346:βŠ† 6344:IJ 6335:, 6131:xR 6125:Rx 6111:. 6096:RE 6064:βŠ† 6062:IR 6046:βŠ† 6044:RI 5886:rx 5879:+ 5758:Z( 5745:yx 5743:= 5741:xy 5738:: 5716:Z( 5707:. 5661:βˆ’1 5636:. 5598:a 5404:β†’ 5387:βˆ’x 5380:+ 5375:, 5373:xy 5341:β†’ 5337:Γ— 5295:. 5227:A 5215:= 5154:A 5147:ab 5116:. 5110:, 5097:= 5077:= 5058:. 5053:≀ 5036:βˆ’1 5028:= 4755:: 3967:. 3939:. 3927:, 3877:16 3868:65 3797:16 3761:16 3557:. 3182:, 2564:xy 2366:+ 2356:+ 2342:+ 2328:+ 2125:yx 2123:= 2121:xy 1832:ab 1830:+ 1828:cd 1826:= 1824:cd 1822:+ 1820:ab 1809:. 1777:ba 1772:ab 1720:. 1717:ab 1709:Β· 1685:, 1681:, 1670:Β· 1662:Β· 1650:+ 1633:, 1629:, 1618:Β· 1610:Β· 1602:+ 1582:). 1561:= 1521:, 1517:, 1506:Β· 1498:= 1490:Β· 1470:). 1422:). 1385:). 1368:, 1358:+ 1354:= 1350:+ 1343:). 1326:, 1322:, 1311:+ 1303:= 1295:+ 1276:: 1261:A 1253:. 1217:, 1213:, 1206:. 1194:, 1186:, 1178:, 1162:Γ— 1142:. 733:. 725:, 721:, 665:, 614:β€’ 585:β€’ 579:β€’ 573:β€’ 567:β€’ 500:β€’ 463:β€’ 426:β€’ 420:β€’ 411:β€’ 405:β€’ 388:β€’ 382:β€’ 374:β€’ 368:β€’ 362:β€’ 356:β€’ 350:β€’ 344:β€’ 338:β€’ 332:β€’ 304:β€’ 298:β€’ 290:β€’ 284:β€’ 278:β€’ 270:β€’ 264:β€’ 209:β€’ 182:β€’ 176:β€’ 170:β€’ 164:β€’ 158:β€’ 152:β€’ 137:β€’ 131:β€’ 125:β€’ 110:β€’ 98:β€’ 90:β€’ 84:β€’ 78:β€’ 72:β€’ 66:β€’ 21611:. 21605:: 21579:. 21567:: 21546:. 21535:. 21496:. 21471:. 21459:: 21435:. 21433:4 21419:. 21407:: 21378:. 21353:) 21282:: 21258:. 21208:. 21199:. 21143:: 21121:. 21086:. 21080:: 21023:I 20949:. 20872:. 20778:. 20756:. 20734:. 20677:. 20655:. 20653:I 20623:. 20604:. 20582:. 20563:. 20544:. 20405:. 20085:. 19959:R 19926:R 19849:. 19775:. 19697:. 19673:1 19662:. 19643:. 19641:R 19637:R 19465:S 19457:X 19453:S 19438:X 19432:X 19426:X 19423:: 19410:X 19387:A 19383:n 19375:p 19371:) 19369:A 19367:( 19364:n 19361:W 19357:A 19340:Z 19319:n 19316:W 19312:S 19308:S 19280:. 19276:s 19273:t 19270:e 19267:S 19244:s 19241:g 19238:n 19235:i 19232:R 19219:C 19197:s 19194:t 19191:e 19188:S 19175:C 19171:: 19168:) 19165:R 19162:, 19156:( 19147:= 19142:R 19138:h 19127:R 19113:R 19105:1 19073:R 19065:i 19052:R 19032:R 19024:0 18992:R 18984:m 18971:R 18965:R 18945:R 18937:a 18924:R 18918:R 18908:R 18904:C 18896:C 18884:C 18868:. 18849:} 18843:, 18840:2 18837:, 18834:1 18831:, 18828:0 18825:{ 18808:R 18804:a 18798:a 18794:a 18786:R 18784:( 18778:R 18776:( 18704:X 18696:X 18692:X 18688:X 18684:) 18682:A 18680:( 18677:R 18670:R 18666:A 18662:R 18658:r 18654:A 18650:R 18646:r 18642:) 18640:x 18638:( 18636:m 18632:r 18628:x 18624:r 18622:( 18620:m 18615:A 18611:m 18607:) 18605:A 18603:( 18600:R 18593:R 18589:A 18579:R 18575:A 18568:R 18566:( 18562:r 18558:R 18554:r 18548:R 18546:( 18542:) 18540:β‹… 18536:R 18534:( 18526:A 18522:) 18520:x 18518:( 18516:g 18512:x 18510:( 18508:f 18503:+ 18482:, 18479:) 18476:) 18473:x 18470:( 18467:g 18464:( 18461:f 18458:= 18455:) 18452:x 18449:( 18446:) 18443:g 18437:f 18434:( 18424:) 18421:x 18418:( 18415:g 18412:+ 18409:) 18406:x 18403:( 18400:f 18397:= 18394:) 18391:x 18388:( 18385:) 18382:g 18379:+ 18376:f 18373:( 18352:g 18348:f 18342:g 18338:f 18333:) 18331:A 18325:g 18321:) 18319:A 18313:f 18309:A 18305:) 18303:A 18293:) 18291:A 18283:A 18281:( 18270:R 18264:R 18259:R 18240:Z 18057:l 18053:k 18048:l 18042:- 18040:k 17998:) 17994:Z 17990:, 17987:X 17984:( 17979:i 17975:H 17944:, 17941:) 17937:Z 17933:, 17930:X 17927:( 17922:i 17918:H 17907:0 17904:= 17901:i 17893:= 17890:) 17886:Z 17882:, 17879:X 17876:( 17867:H 17850:X 17807:. 17787:, 17781:) 17776:n 17773:x 17768:( 17762:= 17759:) 17756:x 17753:( 17748:n 17720:Z 17691:. 17688:) 17685:y 17682:( 17677:i 17671:n 17663:) 17660:x 17657:( 17652:i 17642:n 17637:0 17629:= 17626:) 17623:y 17620:+ 17617:x 17614:( 17609:n 17588:n 17583:R 17579:R 17575:Ξ» 17570:R 17551:n 17547:n 17538:X 17534:X 17524:R 17520:R 17516:R 17500:R 17494:R 17488:R 17485:: 17482:+ 17468:R 17460:R 17452:n 17434:R 17421:n 17417:n 17413:n 17374:) 17372:n 17370:( 17368:f 17363:n 17359:f 17355:G 17351:G 17347:G 17339:f 17335:) 17333:f 17331:( 17329:v 17324:v 17310:. 17307:) 17304:s 17298:t 17295:( 17292:g 17289:) 17286:s 17283:( 17280:f 17275:G 17269:s 17261:= 17258:) 17255:t 17252:( 17249:) 17246:g 17240:f 17237:( 17219:k 17215:G 17201:) 17197:) 17194:G 17191:( 17187:( 17184:k 17174:G 17170:k 17154:. 17151:] 17147:] 17144:t 17141:[ 17137:[ 17134:k 17121:v 17117:f 17113:) 17111:f 17109:( 17107:v 17102:v 17098:k 17084:) 17080:) 17077:t 17074:( 17070:( 17067:k 17045:f 17043:( 17041:v 17036:f 17032:K 17028:v 17018:g 17016:( 17014:v 17010:f 17008:( 17006:v 17002:g 16998:f 16996:( 16994:v 16988:g 16984:f 16979:K 16974:g 16968:f 16963:G 16958:K 16953:v 16946:K 16913:. 16909:) 16899:k 16895:, 16892:) 16889:k 16885:/ 16881:F 16878:( 16868:( 16862:2 16858:H 16847:) 16845:k 16841:F 16835:F 16831:A 16827:F 16813:F 16808:k 16800:A 16790:) 16788:k 16784:F 16778:) 16776:F 16772:k 16756:F 16751:k 16733:k 16729:F 16707:Z 16702:/ 16697:Q 16693:= 16690:) 16687:k 16684:( 16652:p 16647:Q 16628:k 16610:) 16606:R 16602:( 16578:k 16574:) 16572:k 16559:) 16557:k 16551:k 16532:] 16528:B 16523:k 16515:A 16511:[ 16507:= 16504:] 16501:B 16498:[ 16495:] 16492:A 16489:[ 16469:, 16464:m 16461:n 16457:k 16448:m 16444:k 16438:k 16428:n 16424:k 16403:. 16398:m 16394:k 16388:k 16380:B 16372:n 16368:k 16362:k 16354:A 16344:m 16340:n 16332:B 16328:A 16312:n 16308:R 16303:R 16299:n 16295:k 16291:k 16287:k 16279:k 16275:k 16271:k 16249:A 16244:k 16240:F 16222:F 16217:k 16209:A 16195:k 16191:A 16177:i 16173:D 16166:i 16162:n 16147:) 16142:i 16138:D 16134:( 16124:i 16120:n 16115:M 16109:r 16104:1 16101:= 16098:i 16080:R 16076:. 16066:R 16060:R 16053:R 16014:( 16012:G 16004:k 15990:G 15986:k 15975:) 15973:D 15971:( 15968:n 15965:M 15961:n 15957:D 15763:f 15753:i 15751:Ξ» 15747:t 15741:i 15739:p 15735:k 15727:f 15722:i 15720:p 15706:, 15701:i 15690:t 15687:= 15684:) 15681:t 15678:( 15673:i 15669:p 15648:. 15644:) 15637:j 15633:k 15627:i 15623:p 15619:( 15614:/ 15610:] 15607:t 15604:[ 15601:k 15587:V 15582:k 15577:V 15563:, 15560:) 15557:v 15554:( 15551:f 15548:= 15545:v 15539:t 15517:. 15510:s 15506:e 15500:s 15496:p 15485:1 15481:e 15475:1 15471:p 15467:= 15464:q 15454:q 15449:k 15444:q 15439:V 15435:V 15431:f 15426:k 15422:V 15339:. 15336:v 15333:u 15327:y 15324:x 15321:= 15318:) 15315:v 15309:y 15306:( 15303:) 15300:u 15294:x 15291:( 15281:R 15267:B 15262:R 15254:A 15244:R 15240:R 15235:B 15229:A 15199:S 15188:S 15175:X 15171:A 15163:X 15159:A 15145:, 15142:} 15139:X 15133:y 15130:, 15127:x 15121:x 15118:y 15112:y 15109:x 15106:{ 15103:= 15100:E 15090:A 15074:, 15070:Z 15057:A 15053:E 15049:X 15045:E 15041:F 15037:F 15033:E 15029:X 15021:R 15017:F 15012:F 15008:R 15004:X 15000:X 14996:F 14992:X 14984:F 14950:) 14948:t 14946:( 14941:R 14934:R 14915:. 14910:p 14905:Z 14888:p 14882:x 14875:x 14857:p 14852:Q 14826:. 14821:p 14816:Q 14785:Q 14759:Q 14734:p 14729:| 14724:n 14720:| 14715:/ 14709:p 14704:| 14699:m 14695:| 14691:= 14686:p 14681:| 14676:n 14672:/ 14668:m 14664:| 14643:0 14640:= 14635:p 14630:| 14625:0 14621:| 14610:n 14606:p 14592:) 14589:n 14586:( 14581:p 14577:v 14554:) 14551:n 14548:( 14543:p 14539:v 14531:p 14527:= 14522:p 14517:| 14512:n 14508:| 14484:R 14458:Q 14434:| 14430:x 14426:| 14419:x 14396:Q 14383:p 14367:. 14363:Q 14348:p 14331:. 14326:p 14321:Z 14305:p 14300:p 14296:) 14294:p 14292:( 14275:Z 14259:I 14251:I 14247:R 14243:I 14239:R 14225:. 14216:R 14207:R 14185:n 14181:I 14176:/ 14172:R 14162:R 14148:; 14143:n 14139:I 14134:/ 14130:R 14114:= 14105:R 14092:I 14088:R 14078:R 14074:I 14070:R 14047:] 14042:1 14035:S 14031:[ 14027:R 14017:R 14002:] 13997:1 13990:S 13986:[ 13982:R 13972:R 13968:S 13964:R 13956:R 13952:S 13948:R 13944:R 13940:R 13910:0 13900:M 13893:M 13883:M 13876:0 13856:, 13851:m 13829:0 13817:m 13812:M 13802:m 13797:M 13784:m 13779:M 13772:0 13761:. 13759:R 13745:0 13735:M 13728:M 13718:M 13711:0 13690:] 13685:1 13678:S 13674:[ 13670:R 13650:0 13643:] 13638:1 13631:S 13627:[ 13619:M 13611:] 13606:1 13599:S 13595:[ 13591:M 13584:] 13579:1 13572:S 13568:[ 13560:M 13553:0 13540:S 13536:f 13523:, 13519:] 13514:1 13507:f 13503:[ 13499:R 13483:= 13479:] 13474:1 13467:S 13463:[ 13459:R 13438:. 13434:] 13429:1 13422:S 13418:[ 13414:R 13404:S 13400:R 13385:] 13380:1 13373:S 13369:[ 13363:p 13353:p 13338:S 13334:R 13318:. 13315:M 13310:R 13301:] 13296:1 13289:S 13285:[ 13281:R 13278:= 13274:] 13269:1 13262:S 13258:[ 13254:M 13241:S 13237:M 13233:R 13229:M 13213:. 13210:) 13205:p 13200:( 13197:k 13174:p 13169:R 13146:p 13140:/ 13136:R 13126:R 13110:p 13098:R 13094:R 13080:. 13074:p 13069:R 13063:p 13031:p 13026:R 13006:. 13002:] 12997:1 12990:S 12986:[ 12982:R 12959:p 12954:R 12933:, 12928:p 12920:R 12917:= 12914:S 12904:R 12900:R 12883:. 12880:) 12877:1 12871:f 12868:t 12865:( 12861:/ 12857:] 12854:t 12851:[ 12848:R 12845:= 12841:] 12836:1 12829:f 12825:[ 12821:R 12801:0 12795:n 12791:, 12788:R 12782:r 12778:, 12773:n 12769:f 12764:/ 12760:r 12739:] 12734:1 12727:f 12723:[ 12719:R 12709:R 12705:f 12701:R 12697:S 12693:R 12674:] 12669:1 12662:S 12658:[ 12654:R 12634:. 12630:] 12625:1 12618:S 12614:[ 12610:R 12600:S 12596:R 12582:, 12578:] 12573:1 12566:S 12562:[ 12558:R 12548:S 12544:S 12529:] 12524:1 12517:S 12513:[ 12509:R 12503:R 12483:] 12478:1 12471:S 12467:[ 12464:R 12454:R 12450:S 12446:R 12416:i 12412:j 12405:i 12401:R 12396:j 12392:R 12385:i 12381:x 12374:j 12370:x 12365:) 12362:n 12358:x 12356:( 12339:i 12335:R 12308:i 12304:R 12279:i 12275:j 12271:k 12264:i 12260:R 12255:k 12251:R 12244:i 12240:R 12235:j 12231:R 12226:k 12222:R 12215:i 12211:R 12206:i 12202:R 12196:i 12192:j 12185:i 12181:R 12176:j 12172:R 12166:i 12159:i 12155:R 12123:U 12118:k 12103:] 12100:U 12097:[ 12094:k 12071:k 12062:) 12050:. 12047:] 12043:] 12040:t 12037:[ 12033:[ 12030:k 12007:] 12003:] 12000:t 11997:[ 11993:[ 11990:k 11985:m 11978:t 11961:= 11958:) 11954:) 11951:t 11948:( 11944:( 11941:k 11931:k 11911:. 11904:m 11900:p 11894:F 11876:= 11871:p 11861:F 11827:. 11824:] 11819:m 11815:t 11811:, 11805:, 11800:2 11796:t 11792:, 11787:1 11783:t 11779:[ 11776:R 11760:= 11757:] 11751:, 11746:2 11742:t 11738:, 11733:1 11729:t 11725:[ 11722:R 11705:i 11700:i 11698:R 11693:y 11689:x 11683:y 11679:x 11673:i 11671:R 11655:i 11651:R 11626:i 11624:R 11616:i 11609:i 11605:R 11599:i 11597:R 11592:i 11590:R 11578:) 11576:R 11574:( 11571:n 11568:M 11564:R 11560:) 11558:R 11556:( 11553:n 11550:M 11546:R 11534:) 11532:R 11530:( 11527:n 11524:M 11520:R 11492:. 11489:) 11486:) 11481:i 11477:U 11473:( 11465:R 11457:( 11447:i 11443:m 11438:M 11432:r 11427:1 11424:= 11421:i 11410:) 11407:U 11404:( 11396:R 11368:, 11363:i 11359:U 11348:R 11343:i 11341:m 11323:i 11319:m 11310:i 11306:U 11300:r 11295:1 11292:= 11289:i 11281:= 11278:U 11268:) 11266:U 11264:( 11261:R 11254:R 11250:U 11240:) 11238:S 11236:( 11233:n 11228:R 11226:( 11223:n 11220:M 11215:S 11211:R 11193:. 11190:) 11185:j 11182:i 11178:f 11174:( 11168:f 11164:, 11161:) 11158:S 11155:( 11147:n 11143:M 11136:) 11133:U 11128:n 11123:1 11115:( 11107:R 11089:) 11087:U 11085:( 11082:R 11077:S 11069:f 11065:f 11061:R 11047:U 11042:n 11037:1 11026:U 11021:n 11016:1 11008:: 11005:f 10985:. 10982:) 10979:R 10976:( 10968:n 10964:M 10957:) 10952:n 10948:R 10944:( 10936:R 10918:) 10916:U 10914:( 10911:R 10904:U 10896:U 10892:R 10888:U 10884:R 10880:) 10878:R 10876:( 10873:n 10870:M 10862:R 10858:n 10854:R 10822:R 10804:R 10796:i 10792:a 10787:, 10782:i 10778:t 10772:i 10768:a 10757:0 10729:] 10725:] 10722:t 10719:[ 10715:[ 10712:R 10692:k 10677:] 10671:n 10667:t 10663:, 10657:, 10652:1 10648:t 10643:[ 10639:k 10625:k 10617:S 10612:f 10608:R 10604:S 10599:R 10594:f 10587:R 10583:f 10560:f 10548:x 10544:t 10542:( 10522:f 10514:f 10510:, 10507:S 10501:] 10498:t 10495:[ 10492:R 10478:S 10474:R 10469:R 10465:r 10461:x 10457:R 10453:S 10442:Ο• 10401:x 10398:= 10395:) 10392:t 10389:( 10359:S 10353:] 10350:t 10347:[ 10344:R 10341:: 10321:S 10317:x 10303:S 10297:R 10294:: 10278:x 10274:f 10270:) 10268:x 10266:( 10258:h 10254:x 10252:( 10250:f 10246:h 10242:x 10240:( 10238:f 10236:( 10232:h 10228:h 10224:) 10222:x 10220:( 10218:f 10214:h 10210:x 10208:( 10206:f 10200:R 10195:) 10193:h 10189:x 10187:( 10185:f 10180:R 10176:f 10168:t 10162:t 10156:k 10138:. 10134:) 10128:3 10124:t 10120:, 10115:2 10111:t 10106:( 10102:f 10096:f 10092:, 10089:] 10086:t 10083:[ 10080:k 10074:] 10071:y 10068:, 10065:x 10062:[ 10059:k 10035:] 10029:3 10025:t 10021:, 10016:2 10012:t 10007:[ 10003:k 9990:x 9986:R 9982:S 9977:R 9960:) 9957:x 9954:( 9951:f 9945:f 9933:) 9931:t 9929:( 9927:f 9922:f 9917:f 9913:t 9911:( 9909:f 9903:t 9899:x 9893:R 9889:S 9867:) 9864:x 9861:( 9858:f 9852:f 9848:, 9845:S 9839:] 9836:t 9833:[ 9830:R 9817:S 9813:x 9799:S 9793:R 9779:R 9774:R 9769:R 9764:R 9759:R 9754:R 9745:R 9736:R 9718:] 9713:i 9709:t 9705:[ 9701:R 9679:n 9675:t 9671:, 9665:, 9660:1 9656:t 9634:] 9628:n 9624:t 9620:, 9614:, 9609:1 9605:t 9600:[ 9596:R 9586:R 9578:R 9560:} 9556:R 9548:j 9544:a 9540:, 9537:0 9531:n 9523:0 9519:a 9515:+ 9512:t 9507:1 9503:a 9499:+ 9493:+ 9488:1 9482:n 9478:t 9472:1 9466:n 9462:a 9458:+ 9453:n 9449:t 9443:n 9439:a 9434:{ 9430:= 9427:] 9424:t 9421:[ 9418:R 9405:R 9401:t 9368:R 9363:i 9361:e 9347:, 9342:i 9338:e 9334:R 9331:= 9326:i 9320:a 9306:j 9302:i 9294:j 9292:e 9290:i 9288:e 9282:i 9280:e 9266:, 9261:i 9255:a 9232:. 9227:i 9221:a 9210:i 9206:e 9201:, 9196:n 9192:e 9188:+ 9182:+ 9177:1 9173:e 9169:= 9166:1 9156:R 9148:R 9132:i 9126:a 9115:2 9110:i 9104:a 9097:, 9094:j 9088:i 9085:, 9082:0 9079:= 9074:j 9068:a 9060:i 9054:a 9047:, 9042:n 9036:a 9019:1 9013:a 9007:= 9004:R 8994:R 8978:i 8972:a 8947:i 8941:a 8916:i 8910:a 8885:i 8881:R 8874:= 8871:R 8863:i 8859:R 8838:n 8832:i 8826:1 8823:, 8818:i 8814:R 8791:. 8788:) 8783:n 8776:a 8766:x 8763:, 8757:, 8752:1 8745:a 8735:x 8732:( 8721:i 8715:a 8707:n 8702:1 8699:= 8696:i 8682:x 8678:, 8672:i 8666:a 8659:/ 8655:R 8649:n 8644:1 8641:= 8638:i 8622:i 8616:a 8607:n 8602:1 8599:= 8596:i 8585:/ 8581:R 8566:j 8562:i 8547:) 8544:1 8541:( 8538:= 8533:j 8527:a 8521:+ 8516:i 8510:a 8485:n 8479:a 8473:, 8467:, 8462:1 8456:a 8443:R 8424:i 8420:R 8414:I 8408:i 8393:I 8388:i 8386:R 8382:S 8378:R 8363:S 8359:R 8354:S 8349:2 8346:s 8342:1 8339:s 8334:R 8329:2 8326:r 8322:1 8319:r 8297:) 8292:2 8288:s 8279:1 8275:s 8271:, 8266:2 8262:r 8253:1 8249:r 8245:( 8242:= 8239:) 8234:2 8230:s 8226:, 8221:2 8217:r 8213:( 8207:) 8202:1 8198:s 8194:, 8189:1 8185:r 8181:( 8171:) 8166:2 8162:s 8158:+ 8153:1 8149:s 8145:, 8140:2 8136:r 8132:+ 8127:1 8123:r 8119:( 8116:= 8113:) 8108:2 8104:s 8100:, 8095:2 8091:r 8087:( 8084:+ 8081:) 8076:1 8072:s 8068:, 8063:1 8059:r 8055:( 8034:S 8030:R 8022:S 8018:R 7993:- 7991:R 7987:S 7983:S 7975:) 7973:R 7971:( 7969:f 7964:R 7959:s 7957:) 7955:r 7953:( 7951:f 7942:R 7938:S 7933:S 7929:R 7925:f 7911:x 7907:x 7883:) 7879:( 7877:b 7873:x 7871:) 7867:( 7862:b 7860:) 7852:( 7850:x 7808:) 7805:x 7802:b 7799:( 7796:a 7793:= 7790:x 7787:) 7784:b 7781:a 7778:( 7768:x 7765:= 7762:x 7759:1 7751:x 7748:b 7745:+ 7742:x 7739:a 7736:= 7733:x 7730:) 7727:b 7724:+ 7721:a 7718:( 7708:y 7705:a 7702:+ 7699:x 7696:a 7693:= 7690:) 7687:y 7684:+ 7681:x 7678:( 7675:a 7658:M 7651:M 7646:y 7640:x 7635:R 7630:b 7624:a 7615:M 7611:R 7607:M 7602:M 7598:M 7594:R 7582:M 7578:R 7574:R 7540:f 7535:f 7531:R 7516:S 7510:f 7500:/ 7496:R 7493:: 7485:f 7472:f 7468:I 7462:S 7458:R 7454:f 7436:. 7433:p 7422:f 7417:= 7414:f 7394:S 7388:I 7384:/ 7380:R 7377:: 7369:f 7355:I 7353:( 7351:f 7345:S 7341:R 7337:f 7327:I 7323:x 7319:x 7313:I 7309:R 7305:R 7301:p 7288:I 7284:R 7279:R 7274:b 7270:a 7248:. 7245:I 7242:+ 7239:) 7236:b 7233:a 7230:( 7227:= 7224:) 7221:I 7218:+ 7215:b 7212:( 7209:) 7206:I 7203:+ 7200:a 7197:( 7187:, 7184:I 7181:+ 7178:) 7175:b 7172:+ 7169:a 7166:( 7163:= 7160:) 7157:I 7154:+ 7151:b 7148:( 7145:+ 7142:) 7139:I 7136:+ 7133:a 7130:( 7110:I 7101:I 7097:R 7087:R 7085:( 7081:I 7077:) 7075:β‹… 7071:R 7069:( 7065:I 7058:) 7056:β‹… 7052:R 7050:( 7024:A 7020:A 7016:R 7008:A 7004:A 7000:R 6993:S 6989:f 6985:R 6981:f 6973:f 6968:S 6964:R 6960:f 6953:. 6947:k 6939:k 6919:Q 6911:Z 6893:. 6889:R 6872:R 6865:Z 6852:R 6845:K 6841:L 6836:K 6832:L 6822:. 6816:R 6810:x 6805:x 6800:p 6796:R 6791:. 6789:R 6769:1 6762:u 6758:x 6755:u 6749:x 6746:, 6743:R 6737:R 6727:R 6723:u 6703:Z 6699:4 6695:/ 6690:Z 6664:Z 6647:4 6643:x 6624:f 6614:f 6588:S 6584:1 6580:= 6577:) 6572:R 6568:1 6564:( 6561:f 6553:) 6550:b 6547:( 6544:f 6538:) 6535:a 6532:( 6529:f 6526:= 6523:) 6520:b 6514:a 6511:( 6508:f 6500:) 6497:b 6494:( 6491:f 6485:) 6482:a 6479:( 6476:f 6473:= 6470:) 6467:b 6464:+ 6461:a 6458:( 6455:f 6437:R 6432:b 6426:a 6421:S 6417:R 6413:f 6407:S 6405:( 6401:) 6399:β‹… 6395:R 6393:( 6368:P 6364:J 6358:P 6354:I 6348:P 6338:J 6332:I 6327:P 6313:. 6310:P 6304:y 6284:P 6278:x 6258:P 6252:y 6249:x 6229:R 6223:y 6220:, 6217:x 6203:R 6199:P 6166:2 6162:0 6158:2 6154:) 6152:x 6150:( 6140:x 6120:R 6116:x 6109:R 6105:E 6101:E 6091:R 6087:E 6083:R 6071:I 6066:I 6057:I 6048:I 6039:I 6022:, 6019:I 6011:i 6007:x 5994:R 5986:i 5982:r 5959:n 5955:x 5949:n 5945:r 5941:+ 5935:+ 5930:1 5926:x 5920:1 5916:r 5902:I 5898:R 5890:I 5881:y 5877:x 5872:R 5868:r 5864:I 5856:R 5852:I 5848:R 5840:R 5822:R 5814:R 5810:X 5802:R 5798:S 5794:X 5790:R 5786:S 5782:R 5778:X 5774:R 5766:R 5762:) 5760:R 5754:R 5750:y 5736:R 5732:x 5728:R 5724:x 5720:) 5718:R 5712:R 5701:n 5695:n 5690:R 5680:n 5676:n 5672:n 5670:( 5666:n 5657:1 5653:R 5645:R 5641:R 5633:E 5627:E 5623:R 5619:E 5615:R 5611:R 5607:E 5583:Z 5579:2 5555:; 5551:Z 5538:1 5521:Z 5517:2 5492:Z 5467:] 5464:X 5461:[ 5457:Z 5424:Z 5406:R 5402:S 5397:S 5393:. 5391:S 5382:y 5378:x 5369:S 5360:S 5354:. 5352:R 5348:S 5343:S 5339:S 5335:S 5327:R 5315:R 5311:S 5289:n 5284:R 5279:n 5275:R 5271:) 5269:R 5267:( 5265:U 5260:* 5258:R 5252:R 5242:a 5233:a 5217:e 5213:e 5198:e 5172:n 5165:a 5160:a 5142:R 5138:b 5134:a 5130:R 5112:n 5108:m 5102:a 5099:a 5095:a 5088:n 5082:a 5079:a 5075:a 5068:a 5063:a 5055:n 5051:m 5043:m 5039:a 5034:m 5030:P 5025:m 5021:P 5014:0 5011:P 4994:i 4990:a 4984:n 4979:1 4976:= 4973:i 4965:= 4960:n 4956:P 4945:R 4941:n 4927:) 4922:n 4918:a 4914:, 4908:, 4903:1 4899:a 4895:( 4885:n 4869:. 4867:R 4859:R 4845:. 4842:y 4839:d 4835:) 4832:y 4826:x 4823:( 4820:g 4817:) 4814:y 4811:( 4808:f 4787:= 4784:) 4781:x 4778:( 4775:) 4772:g 4766:f 4763:( 4749:R 4738:0 4722:. 4718:Z 4705:0 4701:3 4677:) 4674:+ 4671:, 4667:N 4663:( 4638:N 4603:. 4600:G 4595:R 4590:G 4584:G 4579:R 4571:R 4566:G 4557:R 4548:G 4535:. 4533:) 4531:V 4529:( 4526:R 4519:R 4515:R 4507:V 4502:G 4497:) 4495:G 4485:G 4471:G 4463:R 4457:n 4452:R 4446:n 4441:R 4434:n 4430:n 4426:n 4422:R 4410:. 4396:S 4388:S 4376:. 4374:p 4356:p 4351:Z 4337:p 4321:, 4311:Z 4291:. 4273:. 4269:Q 4243:Z 4221:R 4217:R 4213:X 4209:R 4205:X 4181:R 4159:. 4157:R 4139:] 4136:] 4131:n 4127:X 4123:, 4117:, 4112:1 4108:X 4104:[ 4101:[ 4098:R 4087:. 4085:R 4076:R 4066:R 4061:R 4053:. 4000:1 3989:1 3984:1 3980:1 3936:a 3930:a 3925:1 3920:a 3880:, 3871:a 3865:+ 3860:2 3856:a 3852:8 3846:= 3837:7 3833:a 3825:, 3822:1 3819:+ 3816:a 3813:8 3805:2 3801:a 3794:= 3785:6 3781:a 3773:, 3770:4 3764:a 3758:+ 3753:2 3749:a 3742:= 3733:5 3729:a 3721:, 3718:a 3710:2 3706:a 3702:4 3699:= 3690:4 3686:a 3678:, 3675:1 3669:a 3666:4 3663:= 3654:3 3650:a 3630:a 3626:a 3549:R 3545:n 3541:n 3537:R 3520:; 3516:) 3508:0 3503:0 3496:0 3491:1 3483:( 3479:= 3476:A 3473:B 3452:) 3444:1 3439:0 3432:0 3427:0 3419:( 3415:= 3412:B 3409:A 3389:, 3385:) 3377:0 3372:0 3365:1 3360:0 3352:( 3348:= 3345:B 3324:) 3316:0 3311:1 3304:1 3299:0 3291:( 3287:= 3284:A 3263:) 3255:1 3250:0 3243:0 3238:1 3230:( 3209:) 3206:F 3203:( 3195:2 3191:M 3163:. 3159:} 3155:F 3149:d 3146:, 3143:c 3140:, 3137:b 3134:, 3131:a 3124:| 3119:) 3113:d 3108:c 3101:b 3096:a 3090:( 3081:{ 3077:= 3074:) 3071:F 3068:( 3060:2 3056:M 3042:F 3014:. 3006:1 3001:= 2992:3 2983:= 2975:3 2950:. 2941:x 2932:= 2924:x 2896:Z 2892:4 2888:/ 2883:Z 2855:x 2829:, 2821:x 2807:x 2790:, 2786:Z 2782:4 2778:/ 2773:Z 2760:4 2756:x 2752:x 2736:. 2732:Z 2706:Z 2702:4 2698:/ 2693:Z 2667:. 2659:1 2654:= 2646:3 2633:3 2606:2 2601:= 2593:3 2580:2 2568:4 2547:Z 2543:4 2539:/ 2534:Z 2506:y 2493:x 2469:. 2461:2 2456:= 2448:3 2443:+ 2435:3 2408:1 2403:= 2395:3 2390:+ 2382:2 2368:y 2364:x 2358:y 2354:x 2349:8 2344:y 2340:x 2335:4 2330:y 2326:x 2308:Z 2304:4 2300:/ 2295:Z 2267:y 2262:+ 2254:x 2227:} 2218:3 2213:, 2205:2 2200:, 2192:1 2187:, 2179:0 2173:{ 2169:= 2165:Z 2161:4 2157:/ 2152:Z 2128:. 2116:y 2112:x 2101:R 2097:R 2092:. 2086:R 2082:0 2078:R 2069:. 2066:x 2062:x 2051:x 2047:x 2042:R 2038:x 1997:, 1994:5 1991:, 1988:4 1985:, 1982:3 1979:, 1976:2 1973:, 1970:1 1967:, 1964:0 1961:, 1958:1 1952:, 1949:2 1943:, 1940:3 1934:, 1931:4 1925:, 1922:5 1916:, 1885:, 1881:Z 1815:1 1813:" 1749:/ 1746:Ε‹ 1743:ʊ 1740:r 1737:/ 1729:" 1711:b 1707:a 1702:Β· 1692:R 1687:c 1683:b 1679:a 1674:) 1672:a 1668:c 1664:a 1660:b 1656:a 1652:c 1648:b 1646:( 1640:R 1635:c 1631:b 1627:a 1622:) 1620:c 1616:a 1612:b 1608:a 1604:c 1600:b 1596:a 1576:1 1572:R 1568:a 1563:a 1559:a 1552:a 1548:a 1543:R 1539:1 1532:β‹… 1528:R 1523:c 1519:b 1515:a 1510:) 1508:c 1504:b 1500:a 1496:c 1492:b 1488:a 1486:( 1476:R 1468:a 1459:a 1457:βˆ’ 1451:a 1447:a 1442:R 1437:a 1435:βˆ’ 1431:R 1427:a 1416:0 1412:R 1408:a 1403:a 1399:a 1394:R 1390:0 1379:+ 1375:R 1370:b 1366:a 1360:a 1356:b 1352:b 1348:a 1337:+ 1333:R 1328:c 1324:b 1320:a 1315:) 1313:c 1309:b 1305:a 1301:c 1297:b 1293:a 1291:( 1281:R 1270:R 1174:n 1164:n 1160:n 1066:e 1059:t 1052:v 650:e 643:t 636:v 533:) 524:p 520:( 516:Z 504:p 484:p 479:Q 466:p 447:p 442:Z 429:p 415:n 240:Z 236:1 232:/ 227:Z 223:= 220:0 194:Z 34:. 20:)

Index

Unital ring
Ring (disambiguation) Β§ Mathematics
Algebraic structure
Ring theory
Rings
Subrings
Ideal
Quotient ring
Fractional ideal
Total ring of fractions
Product of rings
Free product of associative algebras
Tensor product of algebras
Ring homomorphisms
Kernel
Inner automorphism
Frobenius endomorphism
Algebraic structures
Module
Associative algebra
Graded ring
Involutive ring
Category of rings
Initial ring
Terminal ring
Field
Finite field
Non-associative ring
Lie ring
Jordan ring

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑