Knowledge

Wave turbulence

Source đź“ť

975: 1863: 1884: 964: 1873: 180:, and not by the number of modes in particular resonance clusters – which can be fairly big. As a result, while SWT is completely described by statistical methods, in DWT both integrable and chaotic dynamics are accounted for. A graphical representation of a resonant cluster of wave components is given by the corresponding NR-diagram ( 201:. Accordingly, three wave turbulent regimes can be singled out—kinetic, discrete and mesoscopic described by KZ-spectra, resonance clustering and their coexistence correspondingly. Energetic behavior of kinetic wave turbulent regime is usually described by 109:. That leads to an excitation of waves with frequencies and wavelengths in wide intervals, not necessarily in resonance with an external source. In experiments with high shaking amplitudes one initially observes waves that are in 164:
on the details of initial energy distribution over the wave field or on the initial magnitude of the complete energy in a wave turbulent system. Only the fact the energy is conserved at some inertial interval is important.
113:
with one another. Thereafter, both longer and shorter waves appear as a result of wave interaction. The appearance of shorter waves is referred to as a direct cascade while longer waves are part of an
105:
When, however, wave amplitudes are not very small (for surface waves: when the fluid surface is inclined by more than few degrees) waves with different frequencies start to
172:, are exact and quasi-resonances. Previous to the two-layer model of wave turbulence, the standard counterpart of SWT were low-dimensioned systems characterized by 140:, which allows using some statistical assumptions and describing the wave system by kinetic equations and their stationary solutions – the approach developed by 43: 106: 1603: 114: 1593: 652: 213:), while NR-diagrams are suitable for representing finite resonance clusters in discrete regime and energy cascades in mesoscopic regimes. 1509: 1876: 924: 692: 298: 1156: 645: 1046: 1751: 1178: 1066: 357: 1598: 869: 380: 334: 245: 86:
in some narrow interval. For example, shaking a container with frequency ω excites surface waves with frequency ω/2 (
1056: 1016: 1786: 772: 1866: 1459: 638: 914: 284: 974: 1909: 1111: 372: 290: 1646: 1051: 1011: 1776: 1151: 1141: 1081: 717: 687: 1813: 1796: 1633: 1126: 991: 929: 919: 812: 1808: 1746: 1173: 859: 187:
In some wave turbulent systems both discrete and statistical layers of turbulence are observed
1919: 1641: 1623: 1131: 1026: 661: 67: 495:; Korotkevich, A.O.; Pushkarev, A.N.; Dyachenko, A.I. (2005). "Mesoscopic wave turbulence". 1914: 1828: 1661: 1364: 1221: 1086: 797: 610: 561: 514: 492: 456: 409: 318: 229: 141: 87: 8: 1823: 1708: 1703: 1429: 1101: 1061: 777: 181: 35: 20: 622: 614: 565: 518: 460: 413: 160:
and α a positive constant depending on the specific wave system. The form of KZ-spectra
1766: 1479: 1469: 1434: 1334: 1319: 1216: 577: 551: 530: 504: 480: 446: 437:
Kartashova, E. (2007). "Exact and quasi-resonances in discrete water wave turbulence".
425: 399: 197: 1848: 1838: 1781: 1761: 1444: 1409: 1344: 1324: 1314: 1196: 884: 742: 534: 472: 376: 353: 330: 294: 241: 581: 484: 429: 1803: 1771: 1741: 1550: 1535: 1404: 1339: 1231: 1146: 1076: 1001: 782: 752: 682: 677: 618: 573: 569: 522: 464: 417: 63: 468: 1608: 1504: 1454: 1419: 1379: 1271: 1241: 1091: 1041: 951: 842: 767: 727: 349: 326: 237: 206: 91: 1718: 1713: 1618: 1613: 1449: 1389: 1384: 1116: 1006: 827: 762: 737: 598: 963: 421: 1903: 1888: 1736: 1656: 1545: 1464: 1439: 1374: 1304: 1211: 1106: 983: 904: 864: 837: 747: 697: 210: 99: 1843: 1791: 1731: 1682: 1560: 1555: 1530: 1514: 1489: 1206: 1096: 1036: 822: 732: 707: 476: 120: 51: 102:– only those waves exist that are directly excited by an external source. 1833: 1565: 1494: 1359: 1299: 1266: 1256: 1251: 1136: 1071: 1031: 1021: 996: 879: 852: 832: 792: 757: 39: 630: 509: 451: 404: 1651: 1499: 1474: 1369: 1349: 1276: 1261: 1246: 1236: 1201: 1121: 941: 936: 899: 894: 889: 787: 157: 145: 83: 1883: 526: 78:
External sources by some resonant mechanism usually excite waves with
1723: 1585: 1570: 1484: 1329: 1168: 1163: 946: 874: 802: 722: 712: 669: 491: 192: 110: 95: 79: 28: 1818: 1540: 1399: 1291: 1281: 1226: 702: 556: 1687: 1677: 847: 817: 202: 1394: 807: 47: 125:
Two generic types of wave turbulence should be distinguished:
1756: 1575: 1354: 1309: 16:
Set of nonlinear waves deviated far from thermal equilibrium
1188: 59: 55: 31: 390:
Kartashova, E. (2006). "A model of laminated turbulence".
98:
are small – which usually means that the wave is far from
121:
Statistical wave turbulence and discrete wave turbulence
317: 228: 323:
Kolmogorov Spectra of Turbulence I – Wave Turbulence
234:
Kolmogorov Spectra of Turbulence I – Wave Turbulence
191:, this wave turbulent regime have been described in 542:Kartashova, E. (2009). "Discrete wave turbulence". 1604:North West Shelf Operational Oceanographic System 1901: 148:–Zakharov (KZ) energy spectra and have the form 1594:Deep-ocean Assessment and Reporting of Tsunamis 646: 276: 597: 653: 639: 541: 436: 389: 282: 271: 260: 169: 660: 555: 508: 450: 403: 38:. Such a state is usually accompanied by 168:The subject of DWT, first introduced in 601:; Rumpf, B. (2011). "Wave turbulence". 50:to sustain it. Examples are waves on a 1902: 925:one-dimensional Saint-Venant equations 321:; Lvov, V.S.; Falkovich, G.E. (1992). 232:; Lvov, V.S.; Falkovich, G.E. (1992). 138:exact and quasi-resonances are omitted 634: 1872: 623:10.1146/annurev-fluid-122109-160807 176:. However, DWT is characterized by 13: 1752:National Oceanographic Data Center 1179:World Ocean Circulation Experiment 1067:Global Ocean Data Analysis Project 590: 46:or requires an external source of 14: 1931: 1599:Global Sea Level Observing System 1882: 1871: 1862: 1861: 1057:Geochemical Ocean Sections Study 973: 962: 603:Annual Review of Fluid Mechanics 174:a small number of modes included 1787:Ocean thermal energy conversion 1510:Vine–Matthews–Morley hypothesis 343: 265: 254: 222: 1: 469:10.1103/PhysRevLett.98.214502 310: 144:. These solutions are called 73: 1047:El Niño–Southern Oscillation 1017:Craik–Leibovich vortex force 773:Luke's variational principle 366: 286:Nonlinear Resonance Analysis 7: 367:Galtier, Sebastien (2023). 127:statistical wave turbulence 10: 1936: 1112:Ocean dynamical thermostat 960: 574:10.1209/0295-5075/87/44001 373:Cambridge University Press 369:Physics of Wave Turbulence 344:Nazarenko, Sergey (2011). 291:Cambridge University Press 1857: 1696: 1670: 1647:Ocean acoustic tomography 1632: 1584: 1523: 1460:MohoroviÄŤić discontinuity 1418: 1290: 1187: 1052:General circulation model 982: 688:Benjamin–Feir instability 668: 422:10.1134/S0021364006070058 1777:Ocean surface topography 1152:Thermohaline circulation 1142:Subsurface ocean current 1082:Hydrothermal circulation 915:Wave–current interaction 693:Boussinesq approximation 216: 131:discrete wave turbulence 1814:Sea surface temperature 1797:Outline of oceanography 992:Atmospheric circulation 930:shallow water equations 920:Waves and shallow water 813:Significant wave height 439:Physical Review Letters 283:Kartashova, E. (2010). 1809:Sea surface microlayer 1174:Wind generated current 445:(21): 214502 (4 pp.). 193:Zakharov et al. (2005) 1642:Deep scattering layer 1624:World Geodetic System 1132:Princeton Ocean Model 1012:Coriolis–Stokes force 662:Physical oceanography 68:electromagnetic waves 1662:Underwater acoustics 1222:Perigean spring tide 1087:Langmuir circulation 798:Rossby-gravity waves 550:(4): 44001 (5 pp.). 178:resonance clustering 142:Vladimir E. Zakharov 117:of wave turbulence. 88:parametric resonance 1824:Science On a Sphere 1430:Convergent boundary 1102:Modular Ocean Model 1062:Geostrophic current 778:Mild-slope equation 615:2011AnRFM..43...59N 566:2009EL.....8744001K 519:2005physics...8155Z 461:2007PhRvL..98u4502K 414:2006JETPL..83..283K 182:nonlinear resonance 44:decaying turbulence 36:thermal equilibrium 21:continuum mechanics 1480:Seafloor spreading 1470:Outer trench swell 1435:Divergent boundary 1335:Continental margin 1320:Carbonate platform 1217:Lunitidal interval 34:deviated far from 1910:Nonlinear systems 1897: 1896: 1889:Oceans portal 1849:World Ocean Atlas 1839:Underwater glider 1782:Ocean temperature 1445:Hydrothermal vent 1410:Submarine volcano 1345:Continental shelf 1325:Coastal geography 1315:Bathymetric chart 1197:Amphidromic point 885:Wave nonlinearity 743:Infragravity wave 527:10.1134/1.2150867 300:978-0-521-76360-8 272:Kartashova (2009) 261:Kartashova (2007) 170:Kartashova (2006) 1927: 1887: 1886: 1875: 1874: 1865: 1864: 1804:Pelagic sediment 1742:Marine pollution 1536:Deep ocean water 1405:Submarine canyon 1340:Continental rise 1232:Rule of twelfths 1147:Sverdrup balance 1077:Humboldt Current 1002:Boundary current 977: 966: 783:Radiation stress 753:Iribarren number 728:Equatorial waves 683:Ballantine scale 678:Airy wave theory 655: 648: 641: 632: 631: 626: 585: 559: 538: 512: 488: 454: 433: 407: 386: 363: 340: 305: 304: 280: 274: 269: 263: 258: 252: 251: 226: 90:, discovered by 1935: 1934: 1930: 1929: 1928: 1926: 1925: 1924: 1900: 1899: 1898: 1893: 1881: 1853: 1692: 1666: 1628: 1609:Sea-level curve 1580: 1519: 1505:Transform fault 1455:Mid-ocean ridge 1421: 1414: 1380:Oceanic plateau 1286: 1272:Tidal resonance 1242:Theory of tides 1183: 1092:Longshore drift 1042:Ekman transport 978: 972: 971: 970: 969: 968: 967: 958: 910:Wave turbulence 843:Trochoidal wave 768:Longshore drift 664: 659: 629: 593: 591:Further reading 588: 510:physics/0508155 452:math-ph/0701077 405:physics/0512014 383: 360: 350:Springer-Verlag 346:Wave Turbulence 337: 327:Springer-Verlag 313: 308: 301: 281: 277: 270: 266: 259: 255: 248: 238:Springer-Verlag 227: 223: 219: 211:Wyld's diagrams 162:does not depend 123: 115:inverse cascade 92:Michael Faraday 76: 62:, and waves in 42:. It is either 25:wave turbulence 17: 12: 11: 5: 1933: 1923: 1922: 1917: 1912: 1895: 1894: 1892: 1891: 1879: 1869: 1858: 1855: 1854: 1852: 1851: 1846: 1841: 1836: 1831: 1829:Stratification 1826: 1821: 1816: 1811: 1806: 1801: 1800: 1799: 1789: 1784: 1779: 1774: 1769: 1764: 1759: 1754: 1749: 1744: 1739: 1734: 1729: 1721: 1719:Color of water 1716: 1714:Benthic lander 1711: 1706: 1700: 1698: 1694: 1693: 1691: 1690: 1685: 1680: 1674: 1672: 1668: 1667: 1665: 1664: 1659: 1654: 1649: 1644: 1638: 1636: 1630: 1629: 1627: 1626: 1621: 1619:Sea level rise 1616: 1614:Sea level drop 1611: 1606: 1601: 1596: 1590: 1588: 1582: 1581: 1579: 1578: 1573: 1568: 1563: 1558: 1553: 1548: 1543: 1538: 1533: 1527: 1525: 1521: 1520: 1518: 1517: 1512: 1507: 1502: 1497: 1492: 1487: 1482: 1477: 1472: 1467: 1462: 1457: 1452: 1450:Marine geology 1447: 1442: 1437: 1432: 1426: 1424: 1416: 1415: 1413: 1412: 1407: 1402: 1397: 1392: 1390:Passive margin 1387: 1385:Oceanic trench 1382: 1377: 1372: 1367: 1362: 1357: 1352: 1347: 1342: 1337: 1332: 1327: 1322: 1317: 1312: 1307: 1302: 1296: 1294: 1288: 1287: 1285: 1284: 1279: 1274: 1269: 1264: 1259: 1254: 1249: 1244: 1239: 1234: 1229: 1224: 1219: 1214: 1209: 1204: 1199: 1193: 1191: 1185: 1184: 1182: 1181: 1176: 1171: 1166: 1161: 1160: 1159: 1149: 1144: 1139: 1134: 1129: 1124: 1119: 1117:Ocean dynamics 1114: 1109: 1104: 1099: 1094: 1089: 1084: 1079: 1074: 1069: 1064: 1059: 1054: 1049: 1044: 1039: 1034: 1029: 1024: 1019: 1014: 1009: 1007:Coriolis force 1004: 999: 994: 988: 986: 980: 979: 961: 959: 957: 956: 955: 954: 944: 939: 934: 933: 932: 927: 917: 912: 907: 902: 897: 892: 887: 882: 877: 872: 867: 862: 857: 856: 855: 845: 840: 835: 830: 828:Stokes problem 825: 820: 815: 810: 805: 800: 795: 790: 785: 780: 775: 770: 765: 763:Kinematic wave 760: 755: 750: 745: 740: 735: 730: 725: 720: 715: 710: 705: 700: 695: 690: 685: 680: 674: 672: 666: 665: 658: 657: 650: 643: 635: 628: 627: 594: 592: 589: 587: 586: 539: 503:(8): 487–491. 493:Zakharov, V.E. 489: 434: 398:(7): 283–287. 387: 381: 364: 359:978-3642159411 358: 341: 335: 319:Zakharov, V.E. 314: 312: 309: 307: 306: 299: 275: 264: 253: 246: 230:Zakharov, V.E. 220: 218: 215: 195:and is called 189:simultaneously 136:In SWT theory 122: 119: 94:). When wave 75: 72: 15: 9: 6: 4: 3: 2: 1932: 1921: 1918: 1916: 1913: 1911: 1908: 1907: 1905: 1890: 1885: 1880: 1878: 1870: 1868: 1860: 1859: 1856: 1850: 1847: 1845: 1842: 1840: 1837: 1835: 1832: 1830: 1827: 1825: 1822: 1820: 1817: 1815: 1812: 1810: 1807: 1805: 1802: 1798: 1795: 1794: 1793: 1790: 1788: 1785: 1783: 1780: 1778: 1775: 1773: 1770: 1768: 1765: 1763: 1760: 1758: 1755: 1753: 1750: 1748: 1745: 1743: 1740: 1738: 1737:Marine energy 1735: 1733: 1730: 1728: 1727: 1722: 1720: 1717: 1715: 1712: 1710: 1707: 1705: 1704:Acidification 1702: 1701: 1699: 1695: 1689: 1686: 1684: 1681: 1679: 1676: 1675: 1673: 1669: 1663: 1660: 1658: 1657:SOFAR channel 1655: 1653: 1650: 1648: 1645: 1643: 1640: 1639: 1637: 1635: 1631: 1625: 1622: 1620: 1617: 1615: 1612: 1610: 1607: 1605: 1602: 1600: 1597: 1595: 1592: 1591: 1589: 1587: 1583: 1577: 1574: 1572: 1569: 1567: 1564: 1562: 1559: 1557: 1554: 1552: 1549: 1547: 1544: 1542: 1539: 1537: 1534: 1532: 1529: 1528: 1526: 1522: 1516: 1513: 1511: 1508: 1506: 1503: 1501: 1498: 1496: 1493: 1491: 1488: 1486: 1483: 1481: 1478: 1476: 1473: 1471: 1468: 1466: 1465:Oceanic crust 1463: 1461: 1458: 1456: 1453: 1451: 1448: 1446: 1443: 1441: 1440:Fracture zone 1438: 1436: 1433: 1431: 1428: 1427: 1425: 1423: 1417: 1411: 1408: 1406: 1403: 1401: 1398: 1396: 1393: 1391: 1388: 1386: 1383: 1381: 1378: 1376: 1375:Oceanic basin 1373: 1371: 1368: 1366: 1363: 1361: 1358: 1356: 1353: 1351: 1348: 1346: 1343: 1341: 1338: 1336: 1333: 1331: 1328: 1326: 1323: 1321: 1318: 1316: 1313: 1311: 1308: 1306: 1305:Abyssal plain 1303: 1301: 1298: 1297: 1295: 1293: 1289: 1283: 1280: 1278: 1275: 1273: 1270: 1268: 1265: 1263: 1260: 1258: 1255: 1253: 1250: 1248: 1245: 1243: 1240: 1238: 1235: 1233: 1230: 1228: 1225: 1223: 1220: 1218: 1215: 1213: 1212:Internal tide 1210: 1208: 1205: 1203: 1200: 1198: 1195: 1194: 1192: 1190: 1186: 1180: 1177: 1175: 1172: 1170: 1167: 1165: 1162: 1158: 1155: 1154: 1153: 1150: 1148: 1145: 1143: 1140: 1138: 1135: 1133: 1130: 1128: 1125: 1123: 1120: 1118: 1115: 1113: 1110: 1108: 1107:Ocean current 1105: 1103: 1100: 1098: 1095: 1093: 1090: 1088: 1085: 1083: 1080: 1078: 1075: 1073: 1070: 1068: 1065: 1063: 1060: 1058: 1055: 1053: 1050: 1048: 1045: 1043: 1040: 1038: 1035: 1033: 1030: 1028: 1025: 1023: 1020: 1018: 1015: 1013: 1010: 1008: 1005: 1003: 1000: 998: 995: 993: 990: 989: 987: 985: 981: 976: 965: 953: 950: 949: 948: 945: 943: 940: 938: 935: 931: 928: 926: 923: 922: 921: 918: 916: 913: 911: 908: 906: 905:Wave shoaling 903: 901: 898: 896: 893: 891: 888: 886: 883: 881: 878: 876: 873: 871: 868: 866: 865:Ursell number 863: 861: 858: 854: 851: 850: 849: 846: 844: 841: 839: 836: 834: 831: 829: 826: 824: 821: 819: 816: 814: 811: 809: 806: 804: 801: 799: 796: 794: 791: 789: 786: 784: 781: 779: 776: 774: 771: 769: 766: 764: 761: 759: 756: 754: 751: 749: 748:Internal wave 746: 744: 741: 739: 736: 734: 731: 729: 726: 724: 721: 719: 716: 714: 711: 709: 706: 704: 701: 699: 698:Breaking wave 696: 694: 691: 689: 686: 684: 681: 679: 676: 675: 673: 671: 667: 663: 656: 651: 649: 644: 642: 637: 636: 633: 624: 620: 616: 612: 608: 604: 600: 596: 595: 583: 579: 575: 571: 567: 563: 558: 553: 549: 545: 540: 536: 532: 528: 524: 520: 516: 511: 506: 502: 498: 494: 490: 486: 482: 478: 474: 470: 466: 462: 458: 453: 448: 444: 440: 435: 431: 427: 423: 419: 415: 411: 406: 401: 397: 393: 388: 384: 382:9781009275897 378: 374: 370: 365: 361: 355: 351: 347: 342: 338: 336:3-540-54533-6 332: 328: 324: 320: 316: 315: 302: 296: 292: 288: 287: 279: 273: 268: 262: 257: 249: 247:3-540-54533-6 243: 239: 235: 231: 225: 221: 214: 212: 208: 204: 200: 199: 194: 190: 185: 183: 179: 175: 171: 166: 163: 159: 155: 151: 147: 143: 139: 134: 132: 128: 118: 116: 112: 108: 103: 101: 97: 93: 89: 85: 81: 71: 69: 65: 61: 57: 53: 52:fluid surface 49: 45: 41: 37: 33: 30: 26: 22: 1920:Oceanography 1844:Water column 1792:Oceanography 1767:Observations 1762:Explorations 1732:Marginal sea 1725: 1683:OSTM/Jason-2 1515:Volcanic arc 1490:Slab suction 1207:Head of tide 1097:Loop Current 1037:Ekman spiral 909: 823:Stokes drift 733:Gravity wave 708:Cnoidal wave 609:(1): 59–78. 606: 602: 599:Newell, A.C. 547: 543: 500: 497:JETP Letters 496: 442: 438: 395: 392:JETP Letters 391: 368: 345: 322: 285: 278: 267: 256: 233: 224: 196: 188: 186: 177: 173: 167: 161: 153: 149: 137: 135: 130: 126: 124: 104: 77: 27:is a set of 24: 18: 1915:Water waves 1834:Thermocline 1551:Mesopelagic 1524:Ocean zones 1495:Slab window 1360:Hydrography 1300:Abyssal fan 1267:Tidal range 1257:Tidal power 1252:Tidal force 1137:Rip current 1072:Gulf Stream 1032:Ekman layer 1022:Downwelling 997:Baroclinity 984:Circulation 880:Wave height 870:Wave action 853:megatsunami 833:Stokes wave 793:Rossby wave 758:Kelvin wave 738:Green's law 84:wavelengths 80:frequencies 66:excited by 54:excited by 40:dissipation 1904:Categories 1772:Reanalysis 1671:Satellites 1652:Sofar bomb 1500:Subduction 1475:Ridge push 1370:Ocean bank 1350:Contourite 1277:Tide gauge 1262:Tidal race 1247:Tidal bore 1237:Slack tide 1202:Earth tide 1122:Ocean gyre 942:Wind setup 937:Wind fetch 900:Wave setup 895:Wave radar 890:Wave power 788:Rogue wave 718:Dispersion 325:. Berlin: 311:References 236:. Berlin: 198:mesoscopic 184:diagram). 158:wavenumber 146:Kolmogorov 129:(SWT) and 96:amplitudes 74:Appearance 1634:Acoustics 1586:Sea level 1485:Slab pull 1422:tectonics 1330:Cold seep 1292:Landforms 1169:Whirlpool 1164:Upwelling 947:Wind wave 875:Wave base 803:Sea state 723:Edge wave 713:Cross sea 557:0907.4406 535:119002924 111:resonance 29:nonlinear 1867:Category 1819:Seawater 1546:Littoral 1541:Deep sea 1400:Seamount 1282:Tideline 1227:Rip tide 1157:shutdown 1127:Overflow 860:Undertow 703:Clapotis 582:18241042 485:12248807 477:17677779 430:15630550 207:diagrams 107:interact 100:breaking 1877:Commons 1747:Mooring 1697:Related 1688:Jason-3 1678:Jason-1 1561:Pelagic 1556:Oceanic 1531:Benthic 848:Tsunami 818:Soliton 611:Bibcode 562:Bibcode 515:Bibcode 457:Bibcode 410:Bibcode 203:Feynman 152:, with 133:(DWT). 1566:Photic 1395:Seabed 808:Seiche 580:  533:  483:  475:  428:  379:  356:  333:  297:  244:  209:(i.e. 205:-type 64:plasma 48:energy 1757:Ocean 1726:Alvin 1576:Swash 1420:Plate 1365:Knoll 1355:Guyot 1310:Atoll 1189:Tides 952:model 838:Swell 670:Waves 578:S2CID 552:arXiv 531:S2CID 505:arXiv 481:S2CID 447:arXiv 426:S2CID 400:arXiv 217:Notes 70:etc. 60:ships 56:winds 32:waves 1724:DSV 1709:Argo 1571:Surf 1027:Eddy 473:PMID 377:ISBN 354:ISBN 331:ISBN 295:ISBN 242:ISBN 156:the 82:and 619:doi 570:doi 544:EPL 523:doi 465:doi 418:doi 58:or 19:In 1906:: 617:. 607:43 605:. 576:. 568:. 560:. 548:87 546:. 529:. 521:. 513:. 501:82 499:. 479:. 471:. 463:. 455:. 443:98 441:. 424:. 416:. 408:. 396:83 394:. 375:. 371:. 352:. 348:. 329:. 293:. 289:. 240:. 23:, 654:e 647:t 640:v 625:. 621:: 613:: 584:. 572:: 564:: 554:: 537:. 525:: 517:: 507:: 487:. 467:: 459:: 449:: 432:. 420:: 412:: 402:: 385:. 362:. 339:. 303:. 250:. 154:k 150:k

Index

continuum mechanics
nonlinear
waves
thermal equilibrium
dissipation
decaying turbulence
energy
fluid surface
winds
ships
plasma
electromagnetic waves
frequencies
wavelengths
parametric resonance
Michael Faraday
amplitudes
breaking
interact
resonance
inverse cascade
Vladimir E. Zakharov
Kolmogorov
wavenumber
Kartashova (2006)
nonlinear resonance
Zakharov et al. (2005)
mesoscopic
Feynman
diagrams

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑