Knowledge

Macromolecule

Source đź“ť

1015: 931: 401: 39: 136: 801:
into the amino acid sequence of proteins, as evidenced by the messenger RNA molecules present within every cell, and the RNA genomes of a large number of viruses. The single-stranded nature of RNA, together with tendency for rapid breakdown and a lack of repair systems means that RNA is not so well
737:
DNA has three primary attributes that allow it to be far better than RNA at encoding genetic information. First, it is normally double-stranded, so that there are a minimum of two copies of the information encoding each gene in every cell. Second, DNA has a much greater stability against breakdown
733:
DNA and RNA are both capable of encoding genetic information, because there are biochemical mechanisms which read the information coded within a DNA or RNA sequence and use it to generate a specified protein. On the other hand, the sequence information of a protein molecule is not used by cells to
762:
The single-stranded nature of protein molecules, together with their composition of 20 or more different amino acid building blocks, allows them to fold in to a vast number of different three-dimensional shapes, while providing binding pockets through which they can specifically interact with all
805:
In addition, RNA is a single-stranded polymer that can, like proteins, fold into a very large number of three-dimensional structures. Some of these structures provide binding sites for other molecules and chemically active centers that can catalyze specific chemical reactions on those bound
546:
in the case of proteins). In general, they are all unbranched polymers, and so can be represented in the form of a string. Indeed, they can be viewed as a string of beads, with each bead representing a single nucleotide or amino acid monomer linked together through
738:
than does RNA, an attribute primarily associated with the absence of the 2'-hydroxyl group within every nucleotide of DNA. Third, highly sophisticated DNA surveillance and repair systems are present which monitor damage to the DNA and
359:
as used in polymer science refers only to a single molecule. For example, a single polymeric molecule is appropriately described as a "macromolecule" or "polymer molecule" rather than a "polymer," which suggests a
742:
the sequence when necessary. Analogous systems have not evolved for repairing damaged RNA molecules. Consequently, chromosomes can contain many billions of atoms, arranged in a specific chemical structure.
763:
manner of molecules. In addition, the chemical diversity of the different amino acids, together with different chemical environments afforded by local 3D structure, enables many proteins to act as
806:
molecules. The limited number of different building blocks of RNA (4 nucleotides vs >20 amino acids in proteins), together with their lack of chemical diversity, results in catalytic RNA (
1067: 703:
In contrast, both RNA and proteins are normally single-stranded. Therefore, they are not constrained by the regular geometry of the DNA double helix, and so fold into complex
554:
In most cases, the monomers within the chain have a strong propensity to interact with other amino acids or nucleotides. In DNA and RNA, this can take the form of
707:
dependent on their sequence. These different shapes are responsible for many of the common properties of RNA and proteins, including the formation of specific
1156: 1556:
Roland E. Bauer; Volker Enkelmann; Uwe M. Wiesler; Alexander J. Berresheim; Klaus MĂĽllen (2002). "Single-Crystal Structures of Polyphenylene Dendrimers".
1138: 767:, catalyzing a wide range of specific biochemical transformations within cells. In addition, proteins have evolved the ability to bind a wide range of 375:. Complicated biomacromolecules, on the other hand, require multi-faceted structural description such as the hierarchy of structures used to describe 1659: 1615: 227: 1343: 1196: 371:
alone. The structure of simple macromolecules, such as homopolymers, may be described in terms of the individual monomer subunit and total
976:
in arthropods and fungi). Many carbohydrates contain modified monosaccharide units that have had functional groups replaced or removed.
456:
Another common macromolecular property that does not characterize smaller molecules is their relative insolubility in water and similar
759:
that sustain life. Proteins carry out all functions of an organism, for example photosynthesis, neural function, vision, and movement.
900:
Some lipids are held together by ester bonds; some are huge aggregates of small molecules held together by hydrophobic interactions.
1569: 775:, smaller molecules that can endow the protein with specific activities beyond those associated with the polypeptide chain alone. 1593: 1652: 1540: 1511: 1478: 1445: 1120: 1054:. The incorporation of inorganic elements enables the tunability of properties and/or responsive behavior as for instance in 103: 27: 75: 897:
unlike the other macromolecules, lipids are not defined by chemical Structure. Lipids are any organic nonpolar molecule.
532: 1330: 440: 122: 82: 1606: 790:, according to the instructions within a cell's DNA. They control and regulate many aspects of protein synthesis in 1645: 1171: 422: 418: 89: 60: 56: 1465:
Walter, Peter; Alberts, Bruce; Johnson, Alexander S.; Lewis, Julian; Raff, Martin C.; Roberts, Keith (2008).
1135: 1255:"Ăśber Isopren und Kautschuk. 5. Mitteilung. Ăśber die Hydrierung des Kautschuks und ĂĽber seine Konstitution" 26:"Macromolecular chemistry" redirects here. For the journal formerly known as Macromolecular Chemistry, see 1598: 71: 1630:. Cached HTML version of a missing PDF file. Retrieved March 10, 2010. The article is based on the book, 473: 1769: 1759: 1204: 527:. Each of these molecules is required for life since each plays a distinct, indispensable role in the 1437: 697: 1555: 1374: 1229: 1055: 20: 692:
Because of the double-stranded nature of DNA, essentially all of the nucleotides take the form of
1754: 1724: 1668: 768: 488: 411: 49: 1627: 314: 1632:
Inventing Polymer Science: Staudinger, Carothers, and the Emergence of Macromolecular Chemistry
934: 704: 453:
Macromolecules often have unusual physical properties that do not occur for smaller molecules.
332:
Usage of the term to describe large molecules varies among the disciplines. For example, while
1764: 1464: 1453: 991: 968:). Polysaccharides perform numerous roles in living organisms, acting as energy stores (e.g. 798: 723: 1486: 1296: 496: 484: 341: 96: 8: 941:
composed of core of glucose units surrounded by gallic acid esters and ellagic acid units
1300: 810:) being generally less-effective catalysts than proteins for most biological reactions. 538:
DNA, RNA, and proteins all consist of a repeating structure of related building blocks (
495:
other molecules from a large part of the volume of the solution, thereby increasing the
265:
2. If a part or the whole of the molecule fits into this definition, it may be described
1366: 1221: 361: 302: 156: 866:
Nucleotides (a phosphate, ribose, and a base- adenine, guanine, thymine, or cytosine)
1774: 1704: 1623: 1573: 1536: 1507: 1500: 1474: 1441: 1414: 1326: 1284: 1116: 1047: 983: 957: 876:
Nucleotides (a phosphate, ribose, and a base- adenine, guanine, uracil, or cytosine)
787: 1370: 1225: 558:(G–C and A–T or A–U), although many more complicated interactions can and do occur. 259:
few of the units has a negligible effect on the molecular properties. This statement
1712: 1565: 1404: 1358: 1304: 1266: 1213: 1035: 752: 465: 317:
in 1832, had a different meaning from that of today: it simply was another form of
336:
refers to macromolecules as the four large molecules comprising living things, in
305:
in the 1920s, although his first relevant publication on this field only mentions
245:
comprises the multiple repetition of units derived, actually or conceptually, from
1708: 1610: 1532: 1470: 1142: 1043: 1031: 953: 492: 380: 367:
Because of their size, macromolecules are not conveniently described in terms of
215: 1431: 730:) that are required to assemble, maintain, and reproduce every living organism. 1716: 1106: 1072: 1014: 995: 949: 528: 372: 290: 257:
as having a high relative molecular mass if the addition or removal of one or a
255:
1. In many cases, especially for synthetic polymers, a molecule can be regarded
243:
A molecule of high relative molecular mass, the structure of which essentially
1748: 1393:"How can biochemical reactions within cells differ from those in test tubes?" 1270: 999: 945: 548: 480: 368: 345: 340:, the term may refer to aggregates of two or more molecules held together by 168: 1362: 1217: 1046:. Polymers may be prepared from inorganic matter as well as for instance in 1577: 1418: 1112: 708: 261:
fails in the case of certain macromolecules for which the properties may be
199: 191: 183: 164: 1732: 1692: 1603: 1570:
10.1002/1521-3765(20020902)8:17<3858::AID-CHEM3858>3.0.CO;2-5
1197:"Glossary of basic terms in polymer science (IUPAC Recommendations 1996)" 1077: 1003: 930: 722:
is an information storage macromolecule that encodes the complete set of
543: 512: 299: 140: 1604:
Several (free) introductory macromolecule related internet-based courses
1696: 1342:
Jenkins, A. D.; KratochvĂ­l, P.; Stepto, R. F. T.; Suter, U. W. (1996).
1051: 979: 756: 739: 539: 425: in this section. Unsourced material may be challenged and removed. 211: 187: 1409: 1392: 1308: 476:
if the solute concentration of their solution is too high or too low.
1720: 1688: 1680: 1019: 961: 807: 791: 772: 693: 555: 487:
of the reactions of other macromolecules, through an effect known as
337: 326: 318: 1637: 1254: 400: 38: 1700: 1341: 1195:
Jenkins, A. D; KratochvĂ­l, P; Stepto, R. F. T; Suter, U. W (1996).
1039: 965: 802:
suited for the long-term storage of genetic information as is DNA.
524: 508: 461: 376: 152: 135: 479:
High concentrations of macromolecules in a solution can alter the
1485:. Fourth edition is available online through the NCBI Bookshelf: 1068:
List of biophysically important macromolecular crystal structures
1027: 764: 457: 333: 322: 207: 195: 179: 175: 160: 263:
critically dependent on fine details of the molecular structure.
987: 973: 969: 938: 727: 1684: 1599:
Lecture notes on the structure and function of macromolecules
1467:
Molecular Biology of the Cell (5th edition, Extended version)
1432:
Berg, Jeremy Mark; Tymoczko, John L.; Stryer, Lubert (2010).
352: 203: 171: 1497: 1194: 714: 696:
between nucleotides on the two complementary strands of the
1452:
Fifth edition available online through the NCBI Bookshelf:
1252: 783: 719: 520: 516: 469: 1026:
Some examples of macromolecules are synthetic polymers (
751:
Proteins are functional macromolecules responsible for
746: 214:. Synthetic fibers and experimental materials such as 19:"Macromolecules" redirects here. For the journal, see 711:, and the ability to catalyse biochemical reactions. 472:
to dissolve in water. Similarly, many proteins will
63:. Unsourced material may be challenged and removed. 1526: 1520: 1499: 1491: 1104: 986:subunits. They can perform structural roles (e.g. 309:(in excess of 1,000 atoms). At that time the term 1594:Synopsis of Chapter 5, Campbell & Reece, 2002 1458: 1425: 1145:. Americanchemistry.com. Retrieved on 2011-07-01. 960:, polysaccharides can form linear polymers (e.g. 1746: 786:is multifunctional, its primary function is to 383:, the word "macromolecule" tends to be called " 1154: 1653: 1498:Golnick, Larry; Wheelis, Mark. (1991-08-14). 1287:(2008). "The Origin of the Polymer Concept". 1100: 1098: 1096: 1094: 1092: 1344:"Glossary of Basic Terms in Polymer Science" 982:consist of a branched structure of multiple 797:RNA encodes genetic information that can be 202:) and large non-polymeric molecules such as 1434:Biochemistry, 7th ed. (Biochemistry (Berg)) 1009: 1660: 1646: 1089: 533:DNA makes RNA, and then RNA makes proteins 247:molecules of low relative molecular mass. 1408: 1390: 1157:"Nanotechnology: A Guide to Nano-Objects" 778: 734:functionally encode genetic information. 715:DNA is optimised for encoding information 441:Learn how and when to remove this message 123:Learn how and when to remove this message 1013: 956:. Because monosaccharides have multiple 929: 134: 1105:Stryer L, Berg JM, Tymoczko JL (2002). 964:) or complex branched structures (e.g. 925: 1747: 1283: 1018:Structure of an example polyphenylene 561: 16:Very large molecule, such as a protein 1667: 1641: 1384: 1277: 1253:Staudinger, H.; Fritschi, J. (1922). 972:) and as structural components (e.g. 502: 348:but which do not readily dissociate. 218:are also examples of macromolecules. 1529:The Manga Guide to Molecular Biology 747:Proteins are optimised for catalysis 423:adding citations to reliable sources 394: 182:. The most common macromolecules in 61:adding citations to reliable sources 32: 28:Macromolecular Chemistry and Physics 1323:Principles of Physical Biochemistry 1155:Gullapalli, S.; Wong, M.S. (2011). 13: 14: 1786: 1587: 511:are dependent on three essential 491:. This comes from macromolecules 167:. It is composed of thousands of 515:for their biological functions: 399: 329:and had little to do with size. 37: 1549: 1136:Life cycle of a plastic product 1111:(5th ed.). San Francisco: 596:Catalyzes biological reactions 410:needs additional citations for 48:needs additional citations for 1335: 1315: 1246: 1188: 1148: 1129: 952:) are formed from polymers of 1: 1558:Chemistry: A European Journal 1502:The Cartoon Guide to Genetics 1289:Journal of Chemical Education 1164:Chemical Engineering Progress 1083: 908:carbon, hydrogen, and oxygen 531:. The simple summary is that 390: 221: 582:Encodes genetic information 542:in the case of DNA and RNA, 364:composed of macromolecules. 178:of smaller molecules called 7: 1527:Takemura, Masaharu (2009). 1325:Prentice Hall: New Jersey, 1061: 10: 1791: 1438:W.H. Freeman & Company 1351:Pure and Applied Chemistry 1205:Pure and Applied Chemistry 1170:(5): 28–32. Archived from 351:According to the standard 174:. Many macromolecules are 25: 18: 1675: 915:Major protein Complexes? 814:The Major Macromolecules: 663:Stability to degradation 624:Building blocks (number) 1271:10.1002/hlca.19220050517 1056:smart inorganic polymers 1010:Synthetic macromolecules 705:three-dimensional shapes 551:into a very long chain. 497:effective concentrations 307:high molecular compounds 139:Chemical structure of a 21:Macromolecules (journal) 1363:10.1351/pac199668122287 1321:van Holde, K.E. (1998) 1218:10.1351/pac199668122287 694:Watson–Crick base pairs 610:Building blocks (type) 556:Watson–Crick base pairs 549:covalent chemical bonds 489:macromolecular crowding 1259:Helvetica Chimica Acta 1023: 990:) as well as roles as 942: 935:Raspberry ellagitannin 779:RNA is multifunctional 281: 144: 1506:. Collins Reference. 1017: 992:secondary metabolites 933: 837:Bonds that Join them 757:biochemical reactions 485:equilibrium constants 355:definition, the term 342:intermolecular forces 232: 138: 1725:Biomolecular complex 926:Branched biopolymers 499:of these molecules. 419:improve this article 157:biological processes 57:improve this article 1301:2008JChEd..85..624J 819: 562:Structural features 313:, as introduced by 279:used adjectivally. 1622:Winter 2002–2003, 1618:by Ulysses Magee, 1609:2011-07-18 at the 1391:Minton AP (2006). 1285:Jensen, William B. 1141:2010-03-17 at the 1048:inorganic polymers 1024: 943: 818: 503:Linear biopolymers 460:, instead forming 303:Hermann Staudinger 145: 1770:Polymer chemistry 1760:Molecular physics 1742: 1741: 1669:Hierarchy of life 1634:by Yasu Furukawa. 1564:(17): 3858–3864. 1542:978-1-59327-202-9 1513:978-0-06-273099-2 1480:978-0-8153-4111-6 1447:978-1-4292-2936-4 1410:10.1242/jcs.03063 1403:(Pt 14): 2863–9. 1309:10.1021/ed085p624 1212:(12): 2287–2311. 1122:978-0-7167-4955-4 958:functional groups 923: 922: 690: 689: 451: 450: 443: 321:for example with 169:covalently bonded 133: 132: 125: 107: 1782: 1735: 1662: 1655: 1648: 1639: 1638: 1616:Giant Molecules! 1582: 1581: 1553: 1547: 1546: 1524: 1518: 1517: 1505: 1495: 1489: 1484: 1462: 1456: 1451: 1429: 1423: 1422: 1412: 1388: 1382: 1381: 1379: 1373:. Archived from 1348: 1339: 1333: 1319: 1313: 1312: 1281: 1275: 1274: 1250: 1244: 1243: 1241: 1240: 1234: 1228:. Archived from 1201: 1192: 1186: 1185: 1183: 1182: 1176: 1161: 1152: 1146: 1133: 1127: 1126: 1102: 1044:carbon nanotubes 1036:synthetic rubber 1032:synthetic fibers 948:macromolecules ( 886:Monosaccharides 883:Polysaccharides 820: 817: 566: 565: 509:living organisms 446: 439: 435: 432: 426: 403: 395: 298:) was coined by 216:carbon nanotubes 151:is a very large 128: 121: 117: 114: 108: 106: 65: 41: 33: 1790: 1789: 1785: 1784: 1783: 1781: 1780: 1779: 1745: 1744: 1743: 1738: 1679: 1671: 1666: 1611:Wayback Machine 1590: 1585: 1554: 1550: 1543: 1533:No Starch Press 1525: 1521: 1514: 1496: 1492: 1481: 1471:Garland Science 1463: 1459: 1448: 1430: 1426: 1389: 1385: 1377: 1346: 1340: 1336: 1320: 1316: 1282: 1278: 1251: 1247: 1238: 1236: 1232: 1199: 1193: 1189: 1180: 1178: 1174: 1159: 1153: 1149: 1143:Wayback Machine 1134: 1130: 1123: 1103: 1090: 1086: 1064: 1012: 954:monosaccharides 950:polysaccharides 928: 858:Phosphodiester 831:Building Block 788:encode proteins 781: 749: 717: 709:binding pockets 677:Repair systems 564: 505: 464:. Many require 447: 436: 430: 427: 416: 404: 393: 381:British English 282: 266: 264: 262: 260: 258: 256: 246: 244: 237: 231: 224: 129: 118: 112: 109: 72:"Macromolecule" 66: 64: 54: 42: 31: 24: 17: 12: 11: 5: 1788: 1778: 1777: 1772: 1767: 1762: 1757: 1755:Macromolecules 1740: 1739: 1737: 1736: 1676: 1673: 1672: 1665: 1664: 1657: 1650: 1642: 1636: 1635: 1613: 1601: 1596: 1589: 1588:External links 1586: 1584: 1583: 1548: 1541: 1519: 1512: 1490: 1479: 1457: 1446: 1424: 1383: 1380:on 2007-02-23. 1334: 1314: 1276: 1245: 1187: 1147: 1128: 1121: 1087: 1085: 1082: 1081: 1080: 1075: 1073:Small molecule 1070: 1063: 1060: 1022:macromolecule. 1011: 1008: 927: 924: 921: 920: 918: 916: 912: 911: 909: 906: 905:Carbohydrates 902: 901: 898: 895: 891: 890: 887: 884: 880: 879: 877: 874: 870: 869: 867: 864: 860: 859: 856: 854: 853:Nucleic acids 850: 849: 846: 843: 839: 838: 835: 829: 780: 777: 748: 745: 716: 713: 688: 687: 684: 681: 678: 674: 673: 670: 667: 664: 660: 659: 656: 653: 650: 646: 645: 642: 639: 635: 634: 631: 628: 625: 621: 620: 617: 614: 611: 607: 606: 603: 600: 597: 593: 592: 589: 586: 583: 579: 578: 575: 572: 569: 563: 560: 504: 501: 468:or particular 449: 448: 407: 405: 398: 392: 389: 373:molecular mass 346:covalent bonds 300:Nobel laureate 269:macromolecular 253: 252: 239:Large molecule 226: 225: 223: 220: 131: 130: 113:September 2024 45: 43: 36: 15: 9: 6: 4: 3: 2: 1787: 1776: 1773: 1771: 1768: 1766: 1763: 1761: 1758: 1756: 1753: 1752: 1750: 1734: 1730: 1729:Macromolecule 1726: 1722: 1718: 1714: 1710: 1706: 1702: 1698: 1694: 1690: 1686: 1682: 1678: 1677: 1674: 1670: 1663: 1658: 1656: 1651: 1649: 1644: 1643: 1640: 1633: 1629: 1625: 1621: 1617: 1614: 1612: 1608: 1605: 1602: 1600: 1597: 1595: 1592: 1591: 1579: 1575: 1571: 1567: 1563: 1559: 1552: 1544: 1538: 1534: 1530: 1523: 1515: 1509: 1504: 1503: 1494: 1488: 1482: 1476: 1472: 1468: 1461: 1455: 1449: 1443: 1439: 1435: 1428: 1420: 1416: 1411: 1406: 1402: 1398: 1394: 1387: 1376: 1372: 1368: 1364: 1360: 1356: 1352: 1345: 1338: 1332: 1331:0-13-720459-0 1328: 1324: 1318: 1310: 1306: 1302: 1298: 1294: 1290: 1286: 1280: 1272: 1268: 1264: 1260: 1256: 1249: 1235:on 2016-03-04 1231: 1227: 1223: 1219: 1215: 1211: 1207: 1206: 1198: 1191: 1177:on 2012-08-13 1173: 1169: 1165: 1158: 1151: 1144: 1140: 1137: 1132: 1124: 1118: 1114: 1110: 1109: 1101: 1099: 1097: 1095: 1093: 1088: 1079: 1076: 1074: 1071: 1069: 1066: 1065: 1059: 1057: 1053: 1049: 1045: 1041: 1037: 1033: 1029: 1021: 1016: 1007: 1005: 1001: 997: 993: 989: 985: 981: 977: 975: 971: 967: 963: 959: 955: 951: 947: 940: 936: 932: 919: 917: 914: 913: 910: 907: 904: 903: 899: 896: 893: 892: 888: 885: 882: 881: 878: 875: 872: 871: 868: 865: 862: 861: 857: 855: 852: 851: 847: 844: 841: 840: 836: 834: 830: 828: 825: 824:Macromolecule 822: 821: 816: 815: 811: 809: 803: 800: 795: 793: 789: 785: 776: 774: 770: 766: 760: 758: 754: 744: 741: 735: 731: 729: 725: 721: 712: 710: 706: 701: 699: 695: 685: 682: 679: 676: 675: 671: 668: 665: 662: 661: 657: 654: 652:Double helix 651: 648: 647: 643: 640: 638:Strandedness 637: 636: 632: 629: 626: 623: 622: 618: 615: 612: 609: 608: 604: 601: 598: 595: 594: 590: 587: 584: 581: 580: 576: 573: 570: 568: 567: 559: 557: 552: 550: 545: 541: 536: 534: 530: 526: 522: 518: 514: 510: 500: 498: 494: 490: 486: 482: 477: 475: 471: 467: 463: 459: 454: 445: 442: 434: 424: 420: 414: 413: 408:This section 406: 402: 397: 396: 388: 386: 382: 378: 374: 370: 369:stoichiometry 365: 363: 358: 357:macromolecule 354: 349: 347: 343: 339: 335: 330: 328: 324: 320: 316: 312: 308: 304: 301: 297: 293: 292: 287: 286:macromolecule 280: 278: 274: 270: 250: 249: 248: 241: 240: 236: 235:Macromolecule 229: 219: 217: 213: 209: 205: 201: 200:carbohydrates 197: 193: 192:nucleic acids 189: 185: 181: 177: 173: 170: 166: 162: 158: 155:important to 154: 150: 149:macromolecule 143:macromolecule 142: 137: 127: 124: 116: 105: 102: 98: 95: 91: 88: 84: 81: 77: 74: â€“  73: 69: 68:Find sources: 62: 58: 52: 51: 46:This article 44: 40: 35: 34: 29: 22: 1765:Biochemistry 1731: > 1728: 1727: > 1723: > 1719: > 1715: > 1711: > 1707: > 1705:Organ system 1703: > 1699: > 1695: > 1691: > 1687: > 1683: > 1631: 1619: 1561: 1557: 1551: 1528: 1522: 1501: 1493: 1469:. New York: 1466: 1460: 1433: 1427: 1400: 1396: 1386: 1375:the original 1357:(12): 2287. 1354: 1350: 1337: 1322: 1317: 1292: 1288: 1279: 1262: 1258: 1248: 1237:. Retrieved 1230:the original 1209: 1203: 1190: 1179:. Retrieved 1172:the original 1167: 1163: 1150: 1131: 1113:W.H. Freeman 1108:Biochemistry 1107: 1025: 1000:pigmentation 994:involved in 978: 946:Carbohydrate 944: 845:Amino acids 832: 826: 823: 813: 812: 804: 796: 782: 761: 750: 736: 732: 724:instructions 718: 702: 698:double helix 691: 619:Amino acids 616:Nucleotides 613:Nucleotides 553: 537: 506: 478: 455: 452: 437: 428: 417:Please help 412:verification 409: 385:high polymer 384: 366: 356: 350: 344:rather than 331: 310: 306: 295: 289: 285: 283: 276: 272: 268: 254: 242: 238: 234: 233: 184:biochemistry 165:nucleic acid 159:, such as a 148: 146: 119: 110: 100: 93: 86: 79: 67: 55:Please help 50:verification 47: 1733:Biomolecule 1693:Biocoenosis 1620:ISSA Review 1397:J. Cell Sci 1078:Soft matter 1052:geopolymers 980:Polyphenols 889:Glycosidic 544:amino acids 540:nucleotides 513:biopolymers 212:macrocycles 188:biopolymers 141:polypeptide 1749:Categories 1697:Population 1295:(5): 624. 1265:(5): 785. 1239:2013-07-27 1181:2015-06-28 1084:References 996:signalling 833:(Monomer) 827:(Polymer) 799:translated 792:eukaryotes 753:catalysing 649:Structure 391:Properties 267:as either 230:definition 222:Definition 83:newspapers 1721:Organelle 1689:Ecosystem 1681:Biosphere 1628:1540-9864 1020:dendrimer 962:cellulose 842:Proteins 808:ribozymes 773:coenzymes 769:cofactors 672:Variable 669:Variable 577:Proteins 493:excluding 362:substance 338:chemistry 327:acetylene 319:isomerism 315:Berzelius 284:The term 273:polymeric 1775:Polymers 1701:Organism 1607:Archived 1578:12203280 1419:16825427 1371:98774337 1226:98774337 1139:Archived 1062:See also 1040:graphene 1028:plastics 984:phenolic 966:glycogen 848:Peptide 658:Complex 655:Complex 525:proteins 474:denature 462:colloids 458:solvents 431:May 2013 377:proteins 296:molecule 275:, or by 208:nanogels 196:proteins 180:monomers 176:polymers 153:molecule 1297:Bibcode 1004:defense 894:Lipids 765:enzymes 644:Single 641:Double 334:biology 323:benzene 311:polymer 277:polymer 161:protein 97:scholar 1713:Tissue 1626:  1576:  1539:  1510:  1477:  1444:  1417:  1369:  1329:  1224:  1119:  1042:, and 1034:, and 988:lignin 974:chitin 970:starch 939:tannin 740:repair 728:genome 291:macro- 204:lipids 198:, and 99:  92:  85:  78:  70:  1709:Organ 1685:Biome 1378:(PDF) 1367:S2CID 1347:(PDF) 1233:(PDF) 1222:S2CID 1200:(PDF) 1175:(PDF) 1160:(PDF) 726:(the 666:High 481:rates 466:salts 379:. In 353:IUPAC 251:Notes 228:IUPAC 172:atoms 104:JSTOR 90:books 1717:Cell 1624:ISSN 1574:PMID 1537:ISBN 1508:ISBN 1487:link 1475:ISBN 1454:link 1442:ISBN 1415:PMID 1327:ISBN 1117:ISBN 1050:and 1002:and 937:, a 873:RNA 863:DNA 771:and 755:the 680:Yes 605:Yes 602:Yes 588:Yes 585:Yes 574:RNA 571:DNA 529:cell 523:and 507:All 483:and 470:ions 325:and 210:and 186:are 76:news 1566:doi 1405:doi 1401:119 1359:doi 1305:doi 1267:doi 1214:doi 1168:107 1038:), 784:RNA 720:DNA 686:No 683:No 633:20 599:No 591:No 521:RNA 517:DNA 421:by 387:". 271:or 163:or 59:by 1751:: 1572:. 1560:. 1535:. 1531:. 1473:. 1440:. 1436:. 1413:. 1399:. 1395:. 1365:. 1355:68 1353:. 1349:. 1303:. 1293:85 1291:. 1261:. 1257:. 1220:. 1210:68 1208:. 1202:. 1166:. 1162:. 1115:. 1091:^ 1058:. 1030:, 1006:. 998:, 794:. 700:. 630:4 627:4 535:. 519:, 294:+ 206:, 194:, 147:A 1661:e 1654:t 1647:v 1580:. 1568:: 1562:8 1545:. 1516:. 1483:. 1450:. 1421:. 1407:: 1361:: 1311:. 1307:: 1299:: 1273:. 1269:: 1263:5 1242:. 1216:: 1184:. 1125:. 444:) 438:( 433:) 429:( 415:. 288:( 190:( 126:) 120:( 115:) 111:( 101:· 94:· 87:· 80:· 53:. 30:. 23:.

Index

Macromolecules (journal)
Macromolecular Chemistry and Physics

verification
improve this article
adding citations to reliable sources
"Macromolecule"
news
newspapers
books
scholar
JSTOR
Learn how and when to remove this message

polypeptide
molecule
biological processes
protein
nucleic acid
covalently bonded
atoms
polymers
monomers
biochemistry
biopolymers
nucleic acids
proteins
carbohydrates
lipids
nanogels

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑