Knowledge

Nitrogen assimilation

Source 📝

174: 91:. Nitrate is taken up by several nitrate transporters that use a proton gradient to power the transport. Nitrogen is transported from the root to the shoot via the xylem in the form of nitrate, dissolved ammonia and amino acids. Usually (but not always) most of the nitrate reduction is carried out in the shoots while the roots reduce only a small fraction of the absorbed nitrate to ammonia. Ammonia (both absorbed and synthesized) is incorporated into amino acids via the 99:(GS-GOGAT) pathway. While nearly all the ammonia in the root is usually incorporated into amino acids at the root itself, plants may transport significant amounts of ammonium ions in the xylem to be fixed in the shoots. This may help avoid the transport of organic compounds down to the roots just to carry the nitrogen back as amino acids. 80:. Plant roots themselves can affect the abundance of various forms of nitrogen by changing the pH and secreting organic compounds or oxygen. This influences microbial activities like the inter-conversion of various nitrogen species, the release of ammonia from organic matter in the soil and the fixation of nitrogen by 210:
Plants that reduce nitrates in the shoots and excrete alkali from their roots need to transport the alkali in an inert form from the shoots to the roots. To achieve this they synthesize malic acid in the leaves from neutral precursors like carbohydrates. The potassium ions brought to the leaves along
177:
Different plants use different pathways to different levels. Tomatoes take in a lot of K and accumulate salts in their vacuoles, castor reduces nitrate in the roots to a large extent and excretes the resulting alkali. Soy bean plants moves a large amount of malate to the roots where they convert it
182:
Every nitrate ion reduced to ammonia produces one OH ion. To maintain a pH balance, the plant must either excrete it into the surrounding medium or neutralize it with organic acids. This results in the medium around the plants roots becoming alkaline when they take up nitrate.
218:
Plants like castor reduce a lot of nitrate in the root itself, and excrete the resulting base. Some of the base produced in the shoots is transported to the roots as salts of organic acids while a small amount of the carboxylates are just stored in the shoot itself.
190:
taken into the root must be accompanied by either the uptake of a cation or the excretion of an anion. Plants like tomatoes take up metal ions like K, Na, Ca and Mg to exactly match every nitrate taken up and store these as the salts of organic acids like
211:
with the nitrate in the xylem are then sent along with the malate to the roots via the phloem. In the roots, the malate is consumed. When malate is converted back to malic acid prior to use, an OH is released and excreted. (RCOO + H
657:
Kiyomiya, S.; Nakanishi, H.; Uchida, H.; Tsuji, A.; Nishiyama, S.; Futatsubashi, M.; Tsukada, H.; Ishioka, N. S.; Watanabe, S.; Ito, T.; Mizuniwa, C.; Osa, A.; Matsuhashi, S.; Hashimoto, S.; Sekine, T.; Mori, S. (2001).
230:(NUE) is the proportion of nitrogen present that a plant absorbs and uses. Improving nitrogen use efficiency and thus fertilizer efficiency is important to make agriculture more sustainable, by reducing pollution ( 1143:
Sharma, Narendra; Sinha, Vimlendu Bhushan; Prem Kumar, N. Arun; Subrahmanyam, Desiraju; Neeraja, C. N.; Kuchi, Surekha; Jha, Ashwani; Parsad, Rajender; Sitaramam, Vetury; Raghuram, Nandula (20 January 2021).
75:
can occur, nitrate is usually the predominant form of available nitrogen that is absorbed. However this is not always the case as ammonia can predominate in grasslands and in flooded, anaerobic soils like
241:
Nitrogen use efficiency can be measured at various levels: the crop plant, the soil, by fertilizer input, by ecosystem productivity, etc. At the level of photosynthesis in leaves, it is termed
130:
while in the root it uses a form of ferredoxin (Fd3) that has a less negative midpoint potential and can be reduced easily by NADPH. In non photosynthesizing tissues, NADPH is generated by
215:
O -> RCOOH +OH) The potassium ions are then recirculated up the xylem with fresh nitrate. Thus the plants avoid having to absorb and store excess salts and also transport the OH.
165:(GDH) does not play a direct role in the assimilation, it protects the mitochondrial functions during periods of high nitrogen metabolism and takes part in nitrogen remobilization. 1036:
Allen, Susan; J. A. Raven (1987-04-01). "Intracellular pH Regulation in Ricinus communis Grown with Ammonium or Nitrate as N Source: The Role of Long Distance Transport".
234:) and production cost and increasing yield. Worldwide, crops generally have less than 50% NUE. Better fertilizers, improved crop management, selective breeding, and 608:
Masclaux-Daubresse, C.; Reisdorf-Cren, M.; Pageau, K.; Lelandais, M.; Grandjean, O.; Kronenberger, J.; Valadier, M. H.; Feraud, M.; Jouglet, T.; Suzuki, A. (2006).
157:) transfer the amide group onto a 2-oxoglutarate molecule producing two glutamates. Further transaminations are carried out make other amino acids (most commonly 348:
Jackson, L. E.; Schimel, J. P.; Firestone, M. K. (1989). "Short-term partitioning of ammonium and nitrate between plants and microbes in an annual grassland".
867:"Influence of the Level of Nitrate Nutrition on Ion Uptake and Assimilation, Organic Acid Accumulation, and Cation-Anion Balance in Whole Tomato Plants" 305:
Nadelhoffer, KnuteJ.; JohnD. Aber; JerryM. Melillo (1984-10-01). "Seasonal patterns of ammonium and nitrate uptake in ten temperate forest ecosystems".
1074: 610:"Glutamine Synthetase-Glutamate Synthase Pathway and Glutamate Dehydrogenase Play Distinct Roles in the Sink-Source Nitrogen Cycle in Tobacco" 660:"Real time visualization of 13N-translocation in rice under different environmental conditions using positron emitting Ttacer imaging system" 1403: 1197:"Strategies for engineering improved nitrogen use efficiency in crop plants via redistribution and recycling of organic nitrogen" 96: 1342:
Funk, Jennifer L. (2008-10-15). "Differences in plasticity between invasive and native plants from a low resource environment".
799:"How stable isotopes may help to elucidate primary nitrogen metabolism and its interaction with (photo)respiration in C3 leaves" 1457: 1252:
Congreves, Kate A.; Otchere, Olivia; Ferland, Daphnée; Farzadfar, Soudeh; Williams, Shanay; Arcand, Melissa M. (4 June 2021).
1437: 1146:"Nitrogen Use Efficiency Phenotype and Associated Genes: Roles of Germination, Flowering, Root/Shoot Length and Biomass" 1432: 1127: 1477: 1442: 123: 577:"Localization of Nitrate Reduction in Ferns and Its Relationship to Environment and Physiological Characteristics" 1513: 150: 536:"The contribution of roots and shoots to whole plant nitrate reduction in fast- and slow-growing grass species" 1472: 1396: 1082: 1452: 1424: 1677: 154: 135: 55:
for their needs. Other organisms, like animals, depend entirely on organic nitrogen from their food.
1636: 1482: 1389: 1447: 1662: 838:
Lea, P. J.; Miflin, B. J. (2003). "Glutamate synthase and the synthesis of glutamate in plants".
459:"Nitrate uptake along the maize primary root: An integrated physiological and molecular approach" 162: 418:"The relationship between rhizosphere nitrification and nitrogen-use efficiency in rice plants" 1467: 1351: 92: 275: 141:
In the chloroplasts, glutamine synthetase incorporates this ammonia as the amide group of
126:. In photosynthesizing tissues, it uses an isoform of ferredoxin (Fd1) that is reduced by 8: 1672: 1579: 1518: 1462: 1106:
Fageria, N.K.; Baligar, V.C. (2005). "Enhancing Nitrogen Use Efficiency in Crop Plants".
262:
Xu, G.; Fan, X.; Miller, A. J. (2012). "Plant Nitrogen Assimilation and Use Efficiency".
235: 88: 1355: 575:
Stewart, G. R.; Popp, M.; Holzapfel, I.; Stewart, J. A.; Dickie-Eskew, A. N. N. (1986).
457:
Sorgonà, A.; Lupini, A.; Mercati, F.; Di Dio, L.; Sunseri, F.; Abenavoli, M. R. (2011).
1610: 1584: 1574: 1367: 1324: 1280: 1253: 1234: 1172: 1145: 1013: 981:"Effect of Phloem-Translocated Malate on NO3− Uptake by Roots of Intact Soybean Plants" 980: 956: 923: 634: 609: 593: 576: 330: 287: 1119: 899: 866: 851: 774: 749: 377:"Nitrogen cycling in rice paddy environments: Past achievements and future challenges" 1667: 1589: 1564: 1559: 1363: 1285: 1238: 1226: 1196: 1177: 1123: 1053: 1018: 1000: 961: 943: 904: 886: 820: 779: 730: 689: 684: 659: 639: 557: 519: 502: 480: 475: 458: 439: 434: 417: 398: 361: 322: 279: 231: 111: 40: 1371: 1328: 334: 291: 1528: 1359: 1316: 1275: 1265: 1216: 1208: 1167: 1157: 1115: 1045: 1008: 992: 951: 935: 924:"Charge Balance in NO3−-Fed Soybean Estimation of K+ and Carboxylate Recirculation" 894: 878: 847: 810: 769: 761: 720: 679: 671: 629: 621: 588: 547: 514: 470: 429: 388: 357: 314: 271: 1549: 1492: 1412: 1212: 725: 708: 1605: 1381: 173: 1320: 607: 27:
from inorganic nitrogen compounds present in the environment. Organisms like
1656: 1523: 1270: 1162: 1057: 1004: 947: 890: 326: 127: 114:
using NADH or NADPH. Nitrite is then reduced to ammonia in the chloroplasts (
72: 1641: 1569: 1554: 1289: 1230: 1181: 1049: 1022: 965: 908: 824: 783: 734: 693: 643: 561: 484: 443: 402: 283: 102:
Nitrate reduction is carried out in two steps. Nitrate is first reduced to
765: 675: 625: 393: 376: 1620: 1544: 1307:
in a Mesic Native Grassland Promotes Rapid Carbon and Nitrogen Accrual".
1303:
McKinley, Duncan C.; Blair, John M. (2008). "Woody Plant Encroachment by
996: 815: 798: 552: 535: 77: 1221: 939: 882: 1416: 318: 158: 131: 119: 81: 24: 1487: 978: 304: 146: 142: 1195:
Melino, Vanessa J; Tester, Mark A; Okamoto, Mamoru (February 2022).
921: 168: 36: 20: 1615: 1142: 196: 115: 103: 52: 48: 1251: 748:
Hanke, G. T.; Kimata-Ariga, Y.; Taniguchi, I.; Hase, T. (2004).
979:
Touraine, Bruno; Bertrand Muller; Claude Grignon (1992-07-01).
707:
Schjoerring, J. K.; Husted, S.; Mäck, G.; Mattsson, M. (2002).
192: 63:
Plants absorb nitrogen from the soil in the form of nitrate (NO
28: 922:
Touraine, Bruno; Nicole Grignon; Claude Grignon (1988-11-01).
747: 534:
Scheurwater, I.; Koren, M.; Lambers, H.; Atkin, O. K. (2002).
706: 32: 750:"A Post Genomic Characterization of Arabidopsis Ferredoxins" 656: 533: 1254:"Nitrogen Use Efficiency Definitions of Today and Tomorrow" 574: 456: 503:"Nitrate uptake and reduction in higher and lower plants" 374: 864: 375:
Ishii, S.; Ikeda, S.; Minamisawa, K.; Senoo, K. (2011).
199:. Other plants like the soybean balance most of their NO 347: 601: 865:
Kirkby, Ernest A.; Alistair H. Knight (1977-09-01).
709:"The regulation of ammonium translocation in plants" 1194: 58: 169:pH and Ionic balance during nitrogen assimilation 1654: 1411: 1035: 700: 1105: 796: 527: 416:Li, Y. L. N.; Fan, X. R.; Shen, Q. R. (2007). 298: 178:to alkali while the potassium is recirculated. 1397: 1302: 650: 87:Ammonium ions are absorbed by the plant via 261: 1404: 1390: 1101: 1099: 568: 496: 494: 450: 341: 222: 1279: 1269: 1220: 1171: 1161: 1012: 955: 898: 837: 814: 773: 741: 724: 683: 633: 592: 551: 518: 474: 433: 415: 392: 1296: 790: 500: 172: 1096: 831: 491: 368: 1655: 1069: 1067: 243:photosynthetic nitrogen use efficiency 203:intake with the excretion of OH or HCO 47:) depend on the ability to assimilate 1385: 409: 276:10.1146/annurev-arplant-042811-105532 255: 1341: 1335: 149:as a substrate. Glutamate synthase ( 1064: 186:To maintain ionic balance, every NO 161:) from glutamine. While the enzyme 13: 594:10.1111/j.1469-8137.1986.tb02905.x 14: 1689: 840:Plant Physiology and Biochemistry 797:Tcherkez, G.; Hodges, M. (2007). 1364:10.1111/j.1365-2745.2008.01435.x 1201:Current Opinion in Biotechnology 520:10.1046/j.1365-3040.2000.00595.x 476:10.1111/j.1365-3040.2011.02311.x 435:10.1111/j.1365-3040.2007.01737.x 1245: 1188: 1136: 1029: 972: 915: 858: 59:Nitrogen assimilation in plants 1038:Journal of Experimental Botany 803:Journal of Experimental Botany 713:Journal of Experimental Botany 540:Journal of Experimental Botany 264:Annual Review of Plant Biology 1: 1120:10.1016/S0065-2113(05)88004-6 852:10.1016/S0981-9428(03)00060-3 463:Plant, Cell & Environment 422:Plant, Cell & Environment 350:Soil Biology and Biochemistry 248: 1213:10.1016/j.copbio.2021.09.003 362:10.1016/0038-0717(89)90152-1 19:is the formation of organic 7: 1448:Magnesium deficiency#Plants 507:Plant, Cell and Environment 82:non-nodule-forming bacteria 10: 1694: 1258:Frontiers in Plant Science 1150:Frontiers in Plant Science 1081:. UC Davis. Archived from 71:). In aerobic soils where 1629: 1598: 1537: 1501: 1423: 1321:10.1007/s10021-008-9133-4 1079:Seed Biotechnology Center 1075:"Nitrogen Use Efficiency" 726:10.1093/jexbot/53.370.883 381:Microbes and Environments 136:pentose phosphate pathway 1637:Algal nutrient solutions 1483:Micronutrient deficiency 1271:10.3389/fpls.2021.637108 1163:10.3389/fpls.2020.587464 1514:Phosphorus assimilation 228:Nitrogen use efficiency 223:Nitrogen use efficiency 163:glutamate dehydrogenase 179: 1509:Nitrogen assimilation 1468:Phosphorus deficiency 1458:Molybdenum deficiency 766:10.1104/pp.103.032755 676:10.1104/pp.125.4.1743 626:10.1104/pp.105.071910 501:Tischner, R. (2000). 394:10.1264/jsme2.me11293 176: 17:Nitrogen assimilation 1524:Microbial assistance 1473:Potassium deficiency 1453:Manganese deficiency 1305:Juniperus virginiana 1108:Advances in Agronomy 1050:10.1093/jxb/38.4.580 997:10.1104/pp.99.3.1118 110:) in the cytosol by 93:glutamine synthetase 89:ammonia transporters 1580:Nutrient management 1519:Sulfur assimilation 1463:Nitrogen deficiency 1356:2008JEcol..96.1162F 940:10.1104/pp.88.3.605 883:10.1104/pp.60.3.349 236:genetic engineering 1611:Nutrient pollution 1585:Organic fertilizer 1575:Nutrient budgeting 1438:Calcium deficiency 1344:Journal of Ecology 816:10.1093/jxb/erm115 553:10.1093/jxb/erf008 546:(374): 1635–1642. 319:10.1007/BF02140039 238:can increase NUE. 180: 97:glutamate synthase 67:) and ammonium (NH 1650: 1649: 1590:Plant tissue test 1565:Hydroponic dosers 1560:Hoagland solution 513:(10): 1005–1024. 232:fertilizer runoff 124:nitrite reductase 112:nitrate reductase 1685: 1678:Plant physiology 1630:Related concepts 1529:Photorespiration 1433:Boron deficiency 1406: 1399: 1392: 1383: 1382: 1376: 1375: 1350:(6): 1162–1173. 1339: 1333: 1332: 1300: 1294: 1293: 1283: 1273: 1249: 1243: 1242: 1224: 1192: 1186: 1185: 1175: 1165: 1140: 1134: 1133: 1103: 1094: 1093: 1091: 1090: 1071: 1062: 1061: 1033: 1027: 1026: 1016: 991:(3): 1118–1123. 985:Plant Physiology 976: 970: 969: 959: 928:Plant Physiology 919: 913: 912: 902: 871:Plant Physiology 862: 856: 855: 846:(6–7): 555–564. 835: 829: 828: 818: 809:(7): 1685–1693. 794: 788: 787: 777: 754:Plant Physiology 745: 739: 738: 728: 719:(370): 883–890. 704: 698: 697: 687: 670:(4): 1743–1753. 664:Plant Physiology 654: 648: 647: 637: 614:Plant Physiology 605: 599: 598: 596: 572: 566: 565: 555: 531: 525: 524: 522: 498: 489: 488: 478: 469:(7): 1127–1140. 454: 448: 447: 437: 413: 407: 406: 396: 372: 366: 365: 345: 339: 338: 302: 296: 295: 259: 1693: 1692: 1688: 1687: 1686: 1684: 1683: 1682: 1653: 1652: 1651: 1646: 1625: 1594: 1550:Fertilizer tree 1533: 1497: 1493:Fertilizer burn 1478:Zinc deficiency 1443:Iron deficiency 1419: 1413:Plant nutrition 1410: 1380: 1379: 1340: 1336: 1301: 1297: 1250: 1246: 1193: 1189: 1141: 1137: 1130: 1104: 1097: 1088: 1086: 1073: 1072: 1065: 1034: 1030: 977: 973: 920: 916: 863: 859: 836: 832: 795: 791: 746: 742: 705: 701: 655: 651: 606: 602: 581:New Phytologist 573: 569: 532: 528: 499: 492: 455: 451: 414: 410: 373: 369: 346: 342: 303: 299: 260: 256: 251: 225: 214: 206: 202: 189: 171: 118:in roots) by a 109: 70: 66: 61: 46: 43:nitrogen gas (N 23:compounds like 12: 11: 5: 1691: 1681: 1680: 1675: 1670: 1665: 1663:Nitrogen cycle 1648: 1647: 1645: 1644: 1639: 1633: 1631: 1627: 1626: 1624: 1623: 1618: 1613: 1608: 1606:Soil fertility 1602: 1600: 1596: 1595: 1593: 1592: 1587: 1582: 1577: 1572: 1567: 1562: 1557: 1552: 1547: 1541: 1539: 1535: 1534: 1532: 1531: 1526: 1521: 1516: 1511: 1505: 1503: 1499: 1498: 1496: 1495: 1490: 1485: 1480: 1475: 1470: 1465: 1460: 1455: 1450: 1445: 1440: 1435: 1429: 1427: 1421: 1420: 1409: 1408: 1401: 1394: 1386: 1378: 1377: 1334: 1315:(3): 454–468. 1295: 1244: 1187: 1135: 1128: 1095: 1063: 1044:(4): 580–596. 1028: 971: 934:(3): 605–612. 914: 877:(3): 349–353. 857: 830: 789: 760:(1): 255–264. 740: 699: 649: 620:(2): 444–456. 600: 587:(3): 373–384. 567: 526: 490: 449: 408: 387:(4): 282–292. 367: 356:(3): 409–415. 340: 313:(3): 321–335. 307:Plant and Soil 297: 253: 252: 250: 247: 224: 221: 212: 204: 200: 187: 170: 167: 107: 68: 64: 60: 57: 44: 9: 6: 4: 3: 2: 1690: 1679: 1676: 1674: 1671: 1669: 1666: 1664: 1661: 1660: 1658: 1643: 1640: 1638: 1635: 1634: 1632: 1628: 1622: 1619: 1617: 1614: 1612: 1609: 1607: 1604: 1603: 1601: 1599:Miscellaneous 1597: 1591: 1588: 1586: 1583: 1581: 1578: 1576: 1573: 1571: 1568: 1566: 1563: 1561: 1558: 1556: 1553: 1551: 1548: 1546: 1543: 1542: 1540: 1536: 1530: 1527: 1525: 1522: 1520: 1517: 1515: 1512: 1510: 1507: 1506: 1504: 1500: 1494: 1491: 1489: 1486: 1484: 1481: 1479: 1476: 1474: 1471: 1469: 1466: 1464: 1461: 1459: 1456: 1454: 1451: 1449: 1446: 1444: 1441: 1439: 1436: 1434: 1431: 1430: 1428: 1426: 1422: 1418: 1414: 1407: 1402: 1400: 1395: 1393: 1388: 1387: 1384: 1373: 1369: 1365: 1361: 1357: 1353: 1349: 1345: 1338: 1330: 1326: 1322: 1318: 1314: 1310: 1306: 1299: 1291: 1287: 1282: 1277: 1272: 1267: 1263: 1259: 1255: 1248: 1240: 1236: 1232: 1228: 1223: 1218: 1214: 1210: 1206: 1202: 1198: 1191: 1183: 1179: 1174: 1169: 1164: 1159: 1155: 1151: 1147: 1139: 1131: 1129:9780120007868 1125: 1121: 1117: 1113: 1109: 1102: 1100: 1085:on 2021-05-16 1084: 1080: 1076: 1070: 1068: 1059: 1055: 1051: 1047: 1043: 1039: 1032: 1024: 1020: 1015: 1010: 1006: 1002: 998: 994: 990: 986: 982: 975: 967: 963: 958: 953: 949: 945: 941: 937: 933: 929: 925: 918: 910: 906: 901: 896: 892: 888: 884: 880: 876: 872: 868: 861: 853: 849: 845: 841: 834: 826: 822: 817: 812: 808: 804: 800: 793: 785: 781: 776: 771: 767: 763: 759: 755: 751: 744: 736: 732: 727: 722: 718: 714: 710: 703: 695: 691: 686: 681: 677: 673: 669: 665: 661: 653: 645: 641: 636: 631: 627: 623: 619: 615: 611: 604: 595: 590: 586: 582: 578: 571: 563: 559: 554: 549: 545: 541: 537: 530: 521: 516: 512: 508: 504: 497: 495: 486: 482: 477: 472: 468: 464: 460: 453: 445: 441: 436: 431: 427: 423: 419: 412: 404: 400: 395: 390: 386: 382: 378: 371: 363: 359: 355: 351: 344: 336: 332: 328: 324: 320: 316: 312: 308: 301: 293: 289: 285: 281: 277: 273: 269: 265: 258: 254: 246: 244: 239: 237: 233: 229: 220: 216: 208: 198: 194: 184: 175: 166: 164: 160: 156: 152: 148: 144: 139: 137: 133: 129: 125: 121: 117: 113: 105: 100: 98: 94: 90: 85: 83: 79: 74: 73:nitrification 56: 54: 50: 42: 38: 34: 30: 26: 22: 18: 1642:Biostimulant 1570:Living mulch 1555:Green manure 1508: 1502:Assimilation 1347: 1343: 1337: 1312: 1308: 1304: 1298: 1261: 1257: 1247: 1222:10754/672009 1204: 1200: 1190: 1153: 1149: 1138: 1111: 1107: 1087:. Retrieved 1083:the original 1078: 1041: 1037: 1031: 988: 984: 974: 931: 927: 917: 874: 870: 860: 843: 839: 833: 806: 802: 792: 757: 753: 743: 716: 712: 702: 667: 663: 652: 617: 613: 603: 584: 580: 570: 543: 539: 529: 510: 506: 466: 462: 452: 428:(1): 73–85. 425: 421: 411: 384: 380: 370: 353: 349: 343: 310: 306: 300: 267: 263: 257: 242: 240: 227: 226: 217: 209: 185: 181: 140: 101: 86: 78:rice paddies 62: 35:and certain 16: 15: 1621:Agrobiology 1545:Fertigation 1207:: 263–269. 270:: 153–182. 25:amino acids 1673:Metabolism 1657:Categories 1425:Imbalances 1417:Fertilizer 1309:Ecosystems 1264:: 637108. 1156:: 587464. 1114:: 97–185. 1089:2019-11-23 249:References 159:asparagine 155:NADH-GOGAT 132:glycolysis 122:dependent 120:ferredoxin 1488:Chlorosis 1239:237626832 1058:0022-0957 1005:0032-0889 948:0032-0889 891:0032-0889 327:0032-079X 147:glutamate 143:glutamine 39:that can 1668:Nitrogen 1372:84336174 1329:23911766 1290:34177975 1231:34560475 1182:33552094 1023:16668978 966:16666356 909:16660091 825:17646207 784:14684843 735:11912231 694:11299355 644:16407450 562:12096102 485:21410710 444:17944815 403:22008507 335:40749543 292:20690850 284:22224450 245:(PNUE). 151:Fd-GOGAT 134:and the 116:plastids 37:bacteria 21:nitrogen 1616:Soil pH 1538:Methods 1352:Bibcode 1281:8220819 1173:7855041 1014:1080591 957:1055632 635:1361315 197:oxalate 104:nitrite 53:ammonia 49:nitrate 1370:  1327:  1288:  1278:  1237:  1229:  1180:  1170:  1126:  1056:  1021:  1011:  1003:  964:  954:  946:  907:  900:542614 897:  889:  823:  782:  775:316305 772:  733:  692:  682:  642:  632:  560:  483:  442:  401:  333:  325:  290:  282:  193:malate 145:using 29:plants 1368:S2CID 1325:S2CID 1235:S2CID 685:88831 331:S2CID 288:S2CID 33:fungi 1286:PMID 1227:PMID 1178:PMID 1124:ISBN 1054:ISSN 1019:PMID 1001:ISSN 962:PMID 944:ISSN 905:PMID 887:ISSN 821:PMID 780:PMID 731:PMID 690:PMID 640:PMID 558:PMID 481:PMID 440:PMID 399:PMID 323:ISSN 280:PMID 195:and 153:and 1360:doi 1317:doi 1276:PMC 1266:doi 1217:hdl 1209:doi 1168:PMC 1158:doi 1116:doi 1046:doi 1009:PMC 993:doi 952:PMC 936:doi 895:PMC 879:doi 848:doi 811:doi 770:PMC 762:doi 758:134 721:doi 680:PMC 672:doi 668:125 630:PMC 622:doi 618:140 589:doi 585:104 548:doi 515:doi 471:doi 430:doi 389:doi 358:doi 315:doi 272:doi 128:PSI 106:(NO 51:or 41:fix 1659:: 1415:/ 1366:. 1358:. 1348:96 1346:. 1323:. 1313:11 1311:. 1284:. 1274:. 1262:12 1260:. 1256:. 1233:. 1225:. 1215:. 1205:73 1203:. 1199:. 1176:. 1166:. 1154:11 1152:. 1148:. 1122:. 1112:88 1110:. 1098:^ 1077:. 1066:^ 1052:. 1042:38 1040:. 1017:. 1007:. 999:. 989:99 987:. 983:. 960:. 950:. 942:. 932:88 930:. 926:. 903:. 893:. 885:. 875:60 873:. 869:. 844:41 842:. 819:. 807:59 805:. 801:. 778:. 768:. 756:. 752:. 729:. 717:53 715:. 711:. 688:. 678:. 666:. 662:. 638:. 628:. 616:. 612:. 583:. 579:. 556:. 544:53 542:. 538:. 511:23 509:. 505:. 493:^ 479:. 467:34 465:. 461:. 438:. 426:31 424:. 420:. 397:. 385:26 383:. 379:. 354:21 352:. 329:. 321:. 311:80 309:. 286:. 278:. 268:63 266:. 207:. 138:. 84:. 31:, 1405:e 1398:t 1391:v 1374:. 1362:: 1354:: 1331:. 1319:: 1292:. 1268:: 1241:. 1219:: 1211:: 1184:. 1160:: 1132:. 1118:: 1092:. 1060:. 1048:: 1025:. 995:: 968:. 938:: 911:. 881:: 854:. 850:: 827:. 813:: 786:. 764:: 737:. 723:: 696:. 674:: 646:. 624:: 597:. 591:: 564:. 550:: 523:. 517:: 487:. 473:: 446:. 432:: 405:. 391:: 364:. 360:: 337:. 317:: 294:. 274:: 213:2 205:3 201:3 188:3 108:2 95:- 69:4 65:3 45:2

Index

nitrogen
amino acids
plants
fungi
bacteria
fix
nitrate
ammonia
nitrification
rice paddies
non-nodule-forming bacteria
ammonia transporters
glutamine synthetase
glutamate synthase
nitrite
nitrate reductase
plastids
ferredoxin
nitrite reductase
PSI
glycolysis
pentose phosphate pathway
glutamine
glutamate
Fd-GOGAT
NADH-GOGAT
asparagine
glutamate dehydrogenase

malate

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.