Knowledge

Bergman kernel

Source 📝

558: 971: 746: 317: 637: 423: 836: 166: 458: 882: 863: 784: 660: 222: 573: 1020: 380: 1058: 789: 865:
inner product on this space is manifestly invariant under biholomorphisms of D, the Bergman kernel and the associated
41: 92: 207:
in its own right. This follows from the fundamental estimate, that for a holomorphic square-integrable function
1041: 1031: 1012: 441: 429: 553:{\displaystyle \operatorname {ev} _{z}f=\int _{D}f(\zeta ){\overline {\eta _{z}(\zeta )}}\,d\mu (\zeta ).} 1036: 21: 204: 841: 762: 48: 8: 356: 33: 1016: 45: 966:{\displaystyle K(z,\zeta )={\frac {1}{\pi }}{\frac {1}{(1-z{\bar {\zeta }})^{2}}}.} 869:
are therefore automatically invariant under the automorphism group of the domain.
991: 981: 866: 29: 444:, this functional can be represented as the inner product with an element of 1052: 1004: 986: 37: 336: 17: 192: 873: 63: 741:{\displaystyle f(z)=\int _{D}K(z,\zeta )f(\zeta )\,d\mu (\zeta ).} 82:) denote the subspace consisting of holomorphic functions in L( 347:. Thus convergence of a sequence of holomorphic functions in 312:{\displaystyle \sup _{z\in K}|f(z)|\leq C_{K}\|f\|_{L^{2}(D)}} 632:{\displaystyle K(z,\zeta )={\overline {\eta _{z}(\zeta )}}.} 70:
be the Hilbert space of square integrable functions on
786:
holomorphic (n,0)-forms on D, via multiplication by
885: 844: 792: 765: 663: 576: 461: 418:{\displaystyle \operatorname {ev} _{z}:f\mapsto f(z)} 383: 225: 95: 965: 857: 830: 778: 740: 631: 552: 417: 311: 160: 831:{\displaystyle dz^{1}\wedge \cdots \wedge dz^{n}} 359:, and so the limit function is also holomorphic. 1050: 227: 751:One key observation about this picture is that 654:and antiholomorphic in ζ, and satisfies 1009:Function Theory of Several Complex Variables 284: 277: 161:{\displaystyle L^{2,h}(D)=L^{2}(D)\cap H(D)} 179:) is the space of holomorphic functions in 719: 531: 759:) may be identified with the space of 1051: 1029: 1003: 216: 13: 14: 1070: 948: 941: 923: 901: 889: 732: 726: 716: 710: 704: 692: 673: 667: 617: 611: 592: 580: 544: 538: 522: 516: 500: 494: 412: 406: 400: 304: 298: 260: 256: 250: 243: 191:) is a Hilbert space: it is a 155: 149: 140: 134: 118: 112: 1: 1013:American Mathematical Society 997: 621: 526: 442:Riesz representation theorem 430:continuous linear functional 7: 1037:Encyclopedia of Mathematics 975: 872:The Bergman kernel for the 650:,ζ) is holomorphic in 363: 325: 10: 1075: 1059:Several complex variables 1032:"Bergman kernel function" 22:several complex variables 452:), which is to say that 362:Another consequence of ( 1030:Chirka, E.M. (2001) , 967: 859: 832: 780: 742: 633: 554: 419: 313: 162: 968: 860: 858:{\displaystyle L^{2}} 833: 781: 779:{\displaystyle L^{2}} 743: 634: 555: 420: 314: 163: 49:holomorphic functions 1011:, Providence, R.I.: 883: 842: 790: 763: 661: 574: 459: 381: 366:) is that, for each 223: 93: 563:The Bergman kernel 370: ∈  357:compact convergence 195:linear subspace of 963: 855: 828: 776: 738: 629: 550: 415: 309: 241: 158: 34:reproducing kernel 1022:978-0-8218-2724-6 1005:Krantz, Steven G. 958: 944: 915: 624: 529: 374:, the evaluation 333: 332: 226: 203:), and therefore 46:square integrable 1066: 1044: 1025: 972: 970: 969: 964: 959: 957: 956: 955: 946: 945: 937: 918: 916: 908: 879:is the function 864: 862: 861: 856: 854: 853: 837: 835: 834: 829: 827: 826: 805: 804: 785: 783: 782: 777: 775: 774: 747: 745: 744: 739: 688: 687: 638: 636: 635: 630: 625: 620: 610: 609: 599: 559: 557: 556: 551: 530: 525: 515: 514: 504: 490: 489: 471: 470: 424: 422: 421: 416: 393: 392: 365: 327: 318: 316: 315: 310: 308: 307: 297: 296: 276: 275: 263: 246: 240: 217: 167: 165: 164: 159: 133: 132: 111: 110: 1074: 1073: 1069: 1068: 1067: 1065: 1064: 1063: 1049: 1048: 1023: 1000: 978: 951: 947: 936: 935: 922: 917: 907: 884: 881: 880: 849: 845: 843: 840: 839: 822: 818: 800: 796: 791: 788: 787: 770: 766: 764: 761: 760: 683: 679: 662: 659: 658: 605: 601: 600: 598: 575: 572: 571: 510: 506: 505: 503: 485: 481: 466: 462: 460: 457: 456: 388: 384: 382: 379: 378: 355:) implies also 292: 288: 287: 283: 271: 267: 259: 242: 230: 224: 221: 220: 128: 124: 100: 96: 94: 91: 90: 62:In detail, let 12: 11: 5: 1072: 1062: 1061: 1047: 1046: 1027: 1021: 999: 996: 995: 994: 989: 984: 982:Bergman metric 977: 974: 962: 954: 950: 943: 940: 934: 931: 928: 925: 921: 914: 911: 906: 903: 900: 897: 894: 891: 888: 867:Bergman metric 852: 848: 825: 821: 817: 814: 811: 808: 803: 799: 795: 773: 769: 749: 748: 737: 734: 731: 728: 725: 722: 718: 715: 712: 709: 706: 703: 700: 697: 694: 691: 686: 682: 678: 675: 672: 669: 666: 640: 639: 628: 623: 619: 616: 613: 608: 604: 597: 594: 591: 588: 585: 582: 579: 567:is defined by 561: 560: 549: 546: 543: 540: 537: 534: 528: 524: 521: 518: 513: 509: 502: 499: 496: 493: 488: 484: 480: 477: 474: 469: 465: 426: 425: 414: 411: 408: 405: 402: 399: 396: 391: 387: 331: 330: 321: 319: 306: 303: 300: 295: 291: 286: 282: 279: 274: 270: 266: 262: 258: 255: 252: 249: 245: 239: 236: 233: 229: 169: 168: 157: 154: 151: 148: 145: 142: 139: 136: 131: 127: 123: 120: 117: 114: 109: 106: 103: 99: 30:Stefan Bergman 28:, named after 26:Bergman kernel 9: 6: 4: 3: 2: 1071: 1060: 1057: 1056: 1054: 1043: 1039: 1038: 1033: 1028: 1024: 1018: 1014: 1010: 1006: 1002: 1001: 993: 990: 988: 987:Bergman space 985: 983: 980: 979: 973: 960: 952: 938: 932: 929: 926: 919: 912: 909: 904: 898: 895: 892: 886: 878: 875: 870: 868: 850: 846: 823: 819: 815: 812: 809: 806: 801: 797: 793: 771: 767: 758: 754: 735: 729: 723: 720: 713: 707: 701: 698: 695: 689: 684: 680: 676: 670: 664: 657: 656: 655: 653: 649: 645: 626: 614: 606: 602: 595: 589: 586: 583: 577: 570: 569: 568: 566: 547: 541: 535: 532: 519: 511: 507: 497: 491: 486: 482: 478: 475: 472: 467: 463: 455: 454: 453: 451: 447: 443: 439: 435: 431: 409: 403: 397: 394: 389: 385: 377: 376: 375: 373: 369: 360: 358: 354: 350: 346: 342: 338: 329: 322: 320: 301: 293: 289: 280: 272: 268: 264: 253: 247: 237: 234: 231: 219: 218: 215: 214: 210: 206: 202: 198: 194: 190: 186: 182: 178: 174: 152: 146: 143: 137: 129: 125: 121: 115: 107: 104: 101: 97: 89: 88: 87: 85: 81: 77: 73: 69: 67: 60: 58: 54: 50: 47: 43: 39: 38:Hilbert space 35: 31: 27: 23: 19: 1035: 1008: 992:Szegő kernel 876: 871: 838:. Since the 756: 752: 750: 651: 647: 643: 641: 564: 562: 449: 445: 437: 433: 427: 371: 367: 361: 352: 348: 344: 340: 334: 323: 212: 208: 200: 196: 188: 184: 180: 176: 172: 170: 86:): that is, 83: 79: 75: 71: 65: 61: 56: 52: 51:on a domain 25: 18:mathematical 15: 642:The kernel 440:). By the 998:References 335:for every 74:, and let 1042:EMS Press 942:¯ 939:ζ 930:− 913:π 899:ζ 874:unit disc 813:∧ 810:⋯ 807:∧ 730:ζ 724:μ 714:ζ 702:ζ 681:∫ 622:¯ 615:ζ 603:η 590:ζ 542:ζ 536:μ 527:¯ 520:ζ 508:η 498:ζ 483:∫ 473:⁡ 401:↦ 285:‖ 278:‖ 265:≤ 235:∈ 144:∩ 44:) of all 32:, is the 20:study of 1053:Category 1007:(2002), 976:See also 205:complete 183:. Then 55:in  36:for the 339:subset 337:compact 16:In the 1019:  209:ƒ 193:closed 171:where 24:, the 428:is a 1017:ISBN 42:RKHS 432:on 343:of 228:sup 211:in 1055:: 1040:, 1034:, 1015:, 464:ev 386:ev 64:L( 59:. 1045:. 1026:. 961:. 953:2 949:) 933:z 927:1 924:( 920:1 910:1 905:= 902:) 896:, 893:z 890:( 887:K 877:D 851:2 847:L 824:n 820:z 816:d 802:1 798:z 794:d 772:2 768:L 757:D 755:( 753:L 736:. 733:) 727:( 721:d 717:) 711:( 708:f 705:) 699:, 696:z 693:( 690:K 685:D 677:= 674:) 671:z 668:( 665:f 652:z 648:z 646:( 644:K 627:. 618:) 612:( 607:z 596:= 593:) 587:, 584:z 581:( 578:K 565:K 548:. 545:) 539:( 533:d 523:) 517:( 512:z 501:) 495:( 492:f 487:D 479:= 476:f 468:z 450:D 448:( 446:L 438:D 436:( 434:L 413:) 410:z 407:( 404:f 398:f 395:: 390:z 372:D 368:z 364:1 353:D 351:( 349:L 345:D 341:K 328:) 326:1 324:( 305:) 302:D 299:( 294:2 290:L 281:f 273:K 269:C 261:| 257:) 254:z 251:( 248:f 244:| 238:K 232:z 213:D 201:D 199:( 197:L 189:D 187:( 185:L 181:D 177:D 175:( 173:H 156:) 153:D 150:( 147:H 141:) 138:D 135:( 130:2 126:L 122:= 119:) 116:D 113:( 108:h 105:, 102:2 98:L 84:D 80:D 78:( 76:L 72:D 68:) 66:D 57:C 53:D 40:(

Index

mathematical
several complex variables
Stefan Bergman
reproducing kernel
Hilbert space
RKHS
square integrable
holomorphic functions
L(D)
closed
complete
compact
compact convergence
continuous linear functional
Riesz representation theorem
Bergman metric
unit disc
Bergman metric
Bergman space
Szegő kernel
Krantz, Steven G.
American Mathematical Society
ISBN
978-0-8218-2724-6
"Bergman kernel function"
Encyclopedia of Mathematics
EMS Press
Category
Several complex variables

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.