Knowledge

Gridded ion thruster

Source đź“ť

329:, reportedly four times higher than previously achieved, allowing for a specific impulse which is four times higher. Conventional electrostatic ion thrusters possess only two grids, one high voltage and one low voltage, which perform both the ion extraction and acceleration functions. However, when the charge differential between these grids reaches around 5 kV, some of the particles extracted from the chamber collide with the low voltage grid, eroding it and compromising the engine's longevity. This limitation is successfully bypassed when two pairs of grids are used. The first pair operates at high voltage, possessing a voltage differential of around 3 kV between them; this grid pair is responsible for extracting the charged propellant particles from the gas chamber. The second pair, operating at low voltage, provides the electrical field that accelerates the particles outwards, creating thrust. Other advantages to the new engine include a more compact design, allowing it to be scaled up to higher thrusts, and a narrower, less divergent exhaust plume of 3 degrees, which is reportedly five times narrower than previously achieved. This reduces the propellant needed to correct the orientation of the spacecraft due to small uncertainties in the thrust vector direction. 31: 1429: 96:, launched July 20, 1964, which successfully proved that the technology operated as predicted in space. The second test, SERT-II, launched on February 3, 1970, verified the operation of two mercury ion engines for thousands of running hours. Despite the demonstration in the 1960s and 70s, though, they were rarely used before the late 1990s. 252:. Lower-energy electrons are emitted from a separate cathode, called the neutralizer, into the ion beam to ensure that equal amounts of positive and negative charge are ejected. Neutralizing is needed to prevent the spacecraft from gaining a net negative charge, which would attract ions back toward the spacecraft and cancel the thrust. 247:
The negative voltage of the accelerator grid prevents electrons of the beam plasma outside the thruster from streaming back to the discharge plasma. This can fail due to insufficient negative potential in the grid, which is a common ending for ion thrusters' operational life. The expelled ions propel
243:
The positively charged ions diffuse towards the chamber's extraction system (2 or 3 multi-aperture grids). After ions enter the plasma sheath at a grid hole, they are accelerated by the potential difference between the first and second grids (called the screen and accelerator grids, respectively).
633:
For the first time ever, a telecommunications satellite has used an iodine propellant to change its orbit around Earth. The small but potentially disruptive innovation could help to clear the skies of space junk, by enabling tiny satellites to self-destruct cheaply and easily at the end of their
239:
Related to the electrostatic ion production method is the need for a cathode and power supply requirements. Electron bombardment thrusters require at the least, power supplies to the cathode, anode and chamber. RF and microwave types require an additional power supply to the rf generator, but no
265:
The ion optics are constantly bombarded by a small amount of secondary ions and erode or wear away, thus reducing engine efficiency and life. Several techniques were used to reduce erosion; most notable was switching to a different propellant.
244:
The ions are guided through the extraction holes by the powerful electric field. The final ion energy is determined by the potential of the plasma, which generally is slightly greater than the screen grids' voltage.
553:
Rafalskyi, Dmytro; Martínez Martínez, Javier; Habl, Lui; Zorzoli Rossi, Elena; Proynov, Plamen; Boré, Antoine; Baret, Thomas; Poyet, Antoine; Lafleur, Trevor; Dudin, Stanislav; Aanesland, Ane (17 November 2021).
616: 523: 232:(RF) oscillation of an electric field induced by an alternating electromagnet, which results in a self-sustaining discharge and omits any cathode (RIT 10, RIT 22, ÎĽN-RIT thrusters) 603:
Both atomic and molecular iodine ions are accelerated by high-voltage grids to generate thrust, and a highly collimated beam can be produced with substantial iodine dissociation.
289:
In the extraction grid systems, minor differences occur in the grid geometry and the materials used. This may have implications for the grid system operational lifetime.
278:
atoms, on the other hand, are far less corrosive, and became the propellant of choice for virtually all ion thruster types. NASA has demonstrated continuous operation of
301:
of 30–100 kN·s/kg, or 3,000 to 10,000 s, better than most other ion thruster types. Electrostatic ion thrusters have accelerated ions to speeds reaching 100
716: 721: 763: 520: 1159: 443:
J. S. Sovey, V. K. Rawlin, and M. J. Patterson, "Ion Propulsion Development Projects in U. S.: Space Electric Rocket Test 1 to Deep Space 1",
196: 1277: 1458: 898: 279: 102: 123:) for performing station keeping on its geosynchronous satellites (more than 100 engines flying). NASA is currently working on a 20–50 109:
probe, the first mission to fly an interplanetary trajectory using electric propulsion as the primary propulsion. It later flew on the
338: 17: 1175: 154: 711: 496: 460: 731: 726: 539: 521:
Aerojet Successfully Completes Manufacturing and System Integration Milestones for NASA's NEXT Ion Engine Development Program
274:
atoms were used as propellants during tests in the 1960s and 1970s, but these propellants adhered to, and eroded the grids.
756: 1080: 479: 1154: 736: 181: 1180: 1045: 749: 318: 648: 1453: 1284: 1139: 1108: 1103: 158: 120: 82: 101:
NASA Glenn continued to develop electrostatic gridded ion thrusters through the 1980s, developing the
1239: 1098: 1272: 1031: 1005: 947: 931: 921: 1204: 1328: 1301: 1256: 1244: 1224: 990: 952: 926: 672: 1379: 1229: 1129: 871: 149:
Beginning in the 1970s, radio-frequency ion thrusters were developed at Giessen University and
964: 957: 772: 314: 249: 207:
Propellant atoms are injected into the discharge chamber and are ionized, forming a plasma.
46: 1463: 1075: 974: 888: 567: 343: 326: 302: 8: 1234: 1219: 1134: 1021: 1000: 969: 283: 223: 185: 143: 571: 1433: 1399: 1364: 617:"Iodine thruster used to change the orbit of a small satellite for the first time ever" 588: 555: 407: 210:
There are several ways of producing the electrostatic ions for the discharge chamber:
88:
The use of ion propulsion systems were first demonstrated in space by the NASA Lewis "
1428: 1394: 1349: 1249: 1149: 851: 825: 593: 500: 457: 394: 372: 356: 322: 267: 110: 78: 696: 1414: 1404: 1354: 1060: 813: 583: 575: 402: 384: 298: 219: 132: 74: 1026: 830: 796: 527: 483: 464: 229: 116: 30: 1359: 1294: 995: 835: 673:"NASA's NEXT ion thruster runs five and a half years nonstop to set new record" 579: 389: 165:. Qinetiq (UK) has developed the T5 and T6 engines (Kaufman type), used on the 634:
missions, by steering themselves into the atmosphere where they would burn up.
1447: 1369: 1289: 1144: 1113: 893: 883: 878: 801: 791: 398: 92:
I and II. These thrusters used mercury as the reaction mass. The first was
58: 476: 321:, announced successful testing of an improved electrostatic ion engine, the 1374: 1333: 1306: 1065: 861: 856: 597: 552: 350: 215: 106: 42: 1389: 1384: 1190: 170: 150: 741: 214:
electron bombardment (Kaufman type) by a potential difference between a
1409: 866: 50: 540:"In a space first, scientists test ion thrusters powered by iodine" 192: 174: 124: 370: 1185: 818: 271: 173:
mission (T6). From Japan, the ÎĽ10, using microwaves, flew on the
162: 139: 556:"In-orbit demonstration of an iodine electric propulsion system" 373:"In-orbit demonstration of an iodine electric propulsion system" 808: 786: 712:
Aerojet (Redmond, Washington USA) – Gridded Ion Thruster Vendor
93: 89: 371:
Rafalskyi, D.; MartĂ­nez, J. M.; Habl, L.; et al. (2021).
49:
method running on electrical power by using high-voltage grid
275: 128: 697:
ESA Portal – ESA and ANU make space propulsion breakthrough
649:"NASA Thruster Achieves World-Record 5+ Years of Operation" 166: 85:(now Glenn) Research Center from 1957 to the early 1960s. 70: 54: 248:
the spacecraft in the opposite direction, according to
69:
The ion engine was first demonstrated by German-born
722:
Technologies to Improve Ion Propulsion System (PDF)
105:(NSTAR) engine, that was used successfully on the 297:Electrostatic ion thrusters have also achieved a 1445: 282:thruster for over 16,000 hours (1.8 years) and 737:ESA And ANU Make Space Propulsion Breakthrough 757: 646: 195:reported satellite orbit changes using their 623:. The European Space Agency. 22 January 2021 413:Covers design detail that affect performance 286:thruster for over 48,000 hours (5.5 years). 486:page at Astronautix (Accessed July 1, 2010) 103:NASA Solar Technology Application Readiness 764: 750: 339:Electrically powered spacecraft propulsion 325:(DS4G), that showed exhaust speeds of 210 771: 587: 406: 388: 308: 1176:Atmosphere-breathing electric propulsion 609: 546: 445:Journal of Propulsion and Power, Vol. 17 29: 458:SPACE ELECTRIC ROCKET TEST II (SERT II) 14: 1446: 202: 119:(now L-3 ETI) has developed the XIPS ( 745: 77:, and developed in practical form by 447:, No. 3, May–June 2001, pp. 517–526. 437: 353:, has comparison table with HET etc 135:, and a longer lifetime than NSTAR. 514: 292: 131:which will have higher efficiency, 24: 1459:Plasma technology and applications 1081:Field-emission electric propulsion 647:Administrator, NASA (2013-06-27). 364: 127:electrostatic ion thruster called 90:Space Electric Rocket Test" (SERT) 25: 1475: 1155:Microwave electrothermal thruster 705: 240:anode or cathode power supplies. 142:completed testing of a prototype 1427: 45:, a highly efficient low-thrust 727:Electric Thruster Systems (PDF) 690: 665: 640: 432:Ion Propulsion for Space Flight 1285:Pulsed nuclear thermal rocket‎ 1181:High Power Electric Propulsion 532: 489: 470: 450: 434:(McGraw-Hill, New York, 1964). 424: 319:Australian National University 255: 13: 1: 1140:Helicon double-layer thruster 1109:Electrodeless plasma thruster 1104:Magnetoplasmadynamic thruster 417: 497:"Space Electric Rocket Test" 260: 235:microwave heating (ÎĽ10, ÎĽ20) 7: 332: 121:Xenon Ion Propulsion System 10: 1480: 580:10.1038/s41586-021-04015-y 390:10.1038/s41586-021-04015-y 157:engines are flying on the 64: 18:Electrostatic ion thruster 1425: 1342: 1321: 1265: 1212: 1203: 1168: 1122: 1099:Pulsed inductive thruster 1091: 1053: 1044: 1014: 983: 940: 914: 907: 844: 779: 1273:Nuclear pulse propulsion 1032:Electric-pump-fed engine 932:Hybrid-propellant rocket 922:Liquid-propellant rocket 1329:Beam-powered propulsion 1302:Fission-fragment rocket 1257:Nuclear photonic rocket 1225:Nuclear electric rocket 991:Staged combustion cycle 927:Solid-propellant rocket 467:(Accessed July 1, 2010) 117:Hughes Aircraft Company 41:is a common design for 27:Space propulsion system 1380:Non-rocket spacelaunch 1230:Nuclear thermal rocket 1130:Pulsed plasma thruster 309:Benefits of four grids 34: 1046:Electrical propulsion 773:Spacecraft propulsion 526:May 30, 2006, at the 315:European Space Agency 313:In January 2006, the 199:iodine ion thruster. 169:mission (T5) and the 47:spacecraft propulsion 33: 1454:Electrostatic motors 1278:Antimatter-catalyzed 1076:Hall-effect thruster 889:Solar thermal rocket 344:Hall-effect thruster 317:, together with the 188:xenon ion thruster. 184:launched carrying a 39:gridded ion thruster 1220:Direct Fusion Drive 1135:Vacuum arc thruster 1022:Pressure-fed engine 1001:Gas-generator cycle 908:Chemical propulsion 845:Physical propulsion 572:2021Natur.599..411R 226:, T5, T6 thrusters) 203:Method of operation 1434:Spaceflight portal 1400:Reactionless drive 1365:Aerogravity assist 1205:Nuclear propulsion 482:2010-10-25 at the 463:2011-09-27 at the 430:Ernst Stuhlinger, 113:asteroid mission. 35: 1441: 1440: 1395:Atmospheric entry 1350:Orbital mechanics 1317: 1316: 1199: 1198: 1150:Resistojet rocket 1040: 1039: 1015:Intake mechanisms 948:Liquid propellant 852:Cold gas thruster 566:(7885): 411–415. 383:(7885): 411–415. 357:Dual-Stage 4-Grid 323:Dual-Stage 4-Grid 79:Harold R. Kaufman 16:(Redirected from 1471: 1431: 1415:Alcubierre drive 1405:Field propulsion 1355:Orbital maneuver 1343:Related concepts 1210: 1209: 1061:Colloid thruster 1051: 1050: 912: 911: 814:Specific impulse 766: 759: 752: 743: 742: 717:NSTAR ion engine 699: 694: 688: 687: 685: 684: 669: 663: 662: 660: 659: 644: 638: 637: 629: 628: 613: 607: 606: 591: 550: 544: 543: 536: 530: 518: 512: 511: 509: 508: 499:. Archived from 493: 487: 474: 468: 454: 448: 441: 435: 428: 412: 410: 392: 299:specific impulse 293:Specific impulse 250:Newton's 3rd law 133:specific impulse 75:Ernst Stuhlinger 21: 1479: 1478: 1474: 1473: 1472: 1470: 1469: 1468: 1444: 1443: 1442: 1437: 1421: 1338: 1313: 1261: 1195: 1164: 1118: 1092:Electromagnetic 1087: 1036: 1027:Pump-fed engine 1010: 979: 936: 903: 840: 831:Rocket equation 797:Reaction engine 775: 770: 708: 703: 702: 695: 691: 682: 680: 671: 670: 666: 657: 655: 645: 641: 626: 624: 615: 614: 610: 551: 547: 538: 537: 533: 528:Wayback Machine 519: 515: 506: 504: 495: 494: 490: 484:Wayback Machine 475: 471: 465:Wayback Machine 455: 451: 442: 438: 429: 425: 420: 367: 365:Further reading 335: 311: 295: 263: 258: 230:radio frequency 205: 67: 28: 23: 22: 15: 12: 11: 5: 1477: 1467: 1466: 1461: 1456: 1439: 1438: 1426: 1423: 1422: 1420: 1419: 1418: 1417: 1412: 1402: 1397: 1392: 1387: 1382: 1377: 1372: 1367: 1362: 1360:Gravity assist 1357: 1352: 1346: 1344: 1340: 1339: 1337: 1336: 1331: 1325: 1323: 1322:External power 1319: 1318: 1315: 1314: 1312: 1311: 1310: 1309: 1299: 1298: 1297: 1295:Bussard ramjet 1287: 1282: 1281: 1280: 1269: 1267: 1263: 1262: 1260: 1259: 1254: 1253: 1252: 1247: 1242: 1237: 1227: 1222: 1216: 1214: 1207: 1201: 1200: 1197: 1196: 1194: 1193: 1188: 1183: 1178: 1172: 1170: 1166: 1165: 1163: 1162: 1157: 1152: 1147: 1142: 1137: 1132: 1126: 1124: 1123:Electrothermal 1120: 1119: 1117: 1116: 1111: 1106: 1101: 1095: 1093: 1089: 1088: 1086: 1085: 1084: 1083: 1078: 1073: 1063: 1057: 1055: 1048: 1042: 1041: 1038: 1037: 1035: 1034: 1029: 1024: 1018: 1016: 1012: 1011: 1009: 1008: 1003: 998: 996:Expander cycle 993: 987: 985: 981: 980: 978: 977: 972: 967: 965:Monopropellant 962: 961: 960: 955: 944: 942: 938: 937: 935: 934: 929: 924: 918: 916: 909: 905: 904: 902: 901: 896: 891: 886: 881: 876: 875: 874: 864: 859: 854: 848: 846: 842: 841: 839: 838: 836:Thermal rocket 833: 828: 823: 822: 821: 816: 806: 805: 804: 799: 789: 783: 781: 777: 776: 769: 768: 761: 754: 746: 740: 739: 734: 729: 724: 719: 714: 707: 706:External links 704: 701: 700: 689: 664: 639: 608: 545: 531: 513: 488: 469: 449: 436: 422: 421: 419: 416: 415: 414: 366: 363: 362: 361: 360: 359: 348: 347: 346: 334: 331: 310: 307: 294: 291: 262: 259: 257: 254: 237: 236: 233: 227: 216:hollow cathode 204: 201: 146:ion thruster. 66: 63: 53:to accelerate 26: 9: 6: 4: 3: 2: 1476: 1465: 1462: 1460: 1457: 1455: 1452: 1451: 1449: 1436: 1435: 1430: 1424: 1416: 1413: 1411: 1408: 1407: 1406: 1403: 1401: 1398: 1396: 1393: 1391: 1388: 1386: 1383: 1381: 1378: 1376: 1373: 1371: 1370:Oberth effect 1368: 1366: 1363: 1361: 1358: 1356: 1353: 1351: 1348: 1347: 1345: 1341: 1335: 1332: 1330: 1327: 1326: 1324: 1320: 1308: 1305: 1304: 1303: 1300: 1296: 1293: 1292: 1291: 1290:Fusion rocket 1288: 1286: 1283: 1279: 1276: 1275: 1274: 1271: 1270: 1268: 1264: 1258: 1255: 1251: 1248: 1246: 1243: 1241: 1238: 1236: 1233: 1232: 1231: 1228: 1226: 1223: 1221: 1218: 1217: 1215: 1213:Closed system 1211: 1208: 1206: 1202: 1192: 1189: 1187: 1184: 1182: 1179: 1177: 1174: 1173: 1171: 1167: 1161: 1158: 1156: 1153: 1151: 1148: 1146: 1145:Arcjet rocket 1143: 1141: 1138: 1136: 1133: 1131: 1128: 1127: 1125: 1121: 1115: 1114:Plasma magnet 1112: 1110: 1107: 1105: 1102: 1100: 1097: 1096: 1094: 1090: 1082: 1079: 1077: 1074: 1072: 1069: 1068: 1067: 1064: 1062: 1059: 1058: 1056: 1054:Electrostatic 1052: 1049: 1047: 1043: 1033: 1030: 1028: 1025: 1023: 1020: 1019: 1017: 1013: 1007: 1006:Tap-off cycle 1004: 1002: 999: 997: 994: 992: 989: 988: 986: 982: 976: 975:Tripropellant 973: 971: 968: 966: 963: 959: 956: 954: 951: 950: 949: 946: 945: 943: 939: 933: 930: 928: 925: 923: 920: 919: 917: 913: 910: 906: 900: 897: 895: 894:Photon rocket 892: 890: 887: 885: 884:Magnetic sail 882: 880: 879:Electric sail 877: 873: 870: 869: 868: 865: 863: 860: 858: 855: 853: 850: 849: 847: 843: 837: 834: 832: 829: 827: 824: 820: 817: 815: 812: 811: 810: 807: 803: 802:Reaction mass 800: 798: 795: 794: 793: 792:Rocket engine 790: 788: 785: 784: 782: 778: 774: 767: 762: 760: 755: 753: 748: 747: 744: 738: 735: 733: 730: 728: 725: 723: 720: 718: 715: 713: 710: 709: 698: 693: 678: 674: 668: 654: 650: 643: 636: 635: 622: 618: 612: 605: 604: 599: 595: 590: 585: 581: 577: 573: 569: 565: 561: 557: 549: 541: 535: 529: 525: 522: 517: 503:on 2011-09-27 502: 498: 492: 485: 481: 478: 473: 466: 462: 459: 456:NASA Glenn, " 453: 446: 440: 433: 427: 423: 409: 404: 400: 396: 391: 386: 382: 378: 374: 369: 368: 358: 355: 354: 352: 349: 345: 342: 341: 340: 337: 336: 330: 328: 324: 320: 316: 306: 304: 300: 290: 287: 285: 281: 277: 273: 269: 253: 251: 245: 241: 234: 231: 228: 225: 221: 217: 213: 212: 211: 208: 200: 198: 194: 189: 187: 183: 178: 176: 172: 168: 164: 160: 156: 152: 147: 145: 141: 136: 134: 130: 126: 122: 118: 114: 112: 108: 104: 99: 98: 95: 91: 86: 84: 80: 76: 72: 62: 60: 59:electrostatic 56: 52: 48: 44: 43:ion thrusters 40: 32: 19: 1432: 1375:Space launch 1307:Fission sail 1235:Radioisotope 1070: 1066:Ion thruster 984:Power cycles 970:Bipropellant 862:Steam rocket 857:Water rocket 692: 681:. Retrieved 679:. 2013-06-27 676: 667: 656:. Retrieved 652: 642: 632: 631: 625:. Retrieved 620: 611: 602: 601: 563: 559: 548: 534: 516: 505:. Retrieved 501:the original 491: 472: 452: 444: 439: 431: 426: 380: 376: 351:Ion thruster 312: 296: 288: 264: 246: 242: 238: 209: 206: 190: 179: 148: 137: 115: 107:Deep Space 1 100: 97: 87: 68: 38: 36: 1464:Ion engines 1390:Aerocapture 1385:Aerobraking 1266:Open system 1250:"Lightbulb" 1191:Mass driver 941:Propellants 872:Diffractive 621:www.esa.int 256:Performance 218:and anode ( 171:BepiColombo 151:ArianeGroup 1448:Categories 1410:Warp drive 1240:Salt-water 958:Hypergolic 867:Solar sail 683:2022-10-29 658:2022-10-29 627:2021-11-29 507:2010-07-01 418:References 83:NASA Lewis 73:scientist 51:electrodes 953:Cryogenic 677:New Atlas 399:1476-4687 261:Longevity 191:In 2021, 180:In 2021, 177:mission. 138:In 2006, 1245:Gas core 780:Concepts 598:34789903 524:Archived 480:Archived 461:Archived 333:See also 197:NPT30-I2 193:ThrustMe 175:Hayabusa 61:forces. 1334:Tethers 1186:MagBeam 1071:Gridded 826:Staging 819:Delta-v 589:8599014 568:Bibcode 408:8599014 272:caesium 268:Mercury 163:ARTEMIS 140:Aerojet 65:History 1160:VASIMR 809:Thrust 787:Rocket 596:  586:  560:Nature 405:  397:  377:Nature 186:NEXT-C 159:EURECA 155:RIT-10 94:SERT-1 1169:Other 915:State 732:HiPEP 280:NSTAR 276:Xenon 220:NSTAR 129:HiPEP 57:with 899:WINE 653:NASA 594:PMID 477:SERT 395:ISSN 327:km/s 303:km/s 284:NEXT 224:NEXT 182:DART 167:GOCE 161:and 144:NEXT 111:Dawn 71:NASA 55:ions 37:The 584:PMC 576:doi 564:599 403:PMC 385:doi 381:599 270:or 81:at 1450:: 675:. 651:. 630:. 619:. 600:. 592:. 582:. 574:. 562:. 558:. 401:. 393:. 379:. 375:. 305:. 222:, 153:. 125:kW 765:e 758:t 751:v 686:. 661:. 578:: 570:: 542:. 510:. 411:. 387:: 20:)

Index

Electrostatic ion thruster

ion thrusters
spacecraft propulsion
electrodes
ions
electrostatic
NASA
Ernst Stuhlinger
Harold R. Kaufman
NASA Lewis
Space Electric Rocket Test" (SERT)
SERT-1
NASA Solar Technology Application Readiness
Deep Space 1
Dawn
Hughes Aircraft Company
Xenon Ion Propulsion System
kW
HiPEP
specific impulse
Aerojet
NEXT
ArianeGroup
RIT-10
EURECA
ARTEMIS
GOCE
BepiColombo
Hayabusa

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑