Knowledge

Homotopy category of chain complexes

Source 📝

403: 625: 1567: 1080: 331: 1292: 1389: 213: 1213: 925: 834: 792: 392: 750: 710: 1141: 634:
by this relation. It is clear that this results in an additive category if one notes that this is the same as taking the quotient by the subgroup of null-homotopic maps.
1430: 503: 445: 522: 1474: 964: 92:
does so only for those that are quasi-isomorphisms for a "good reason", namely actually having an inverse up to homotopy equivalence. Thus,
225: 1628: 1607: 38:
is a framework for working with chain homotopies and homotopy equivalences. It lies intermediate between the category of
1232: 1223: 1347: 455:. It is clear from the definition that the maps of complexes which are null-homotopic form a group under addition. 1394:
is not distinguished since the cone of the identity map is not isomorphic to the complex 0 (however, the zero map
159: 1150: 1668: 1663: 1461: 886: 876: 872: 797: 755: 336: 1341:
as well, that category is not triangulated with respect to these distinguished triangles; for example,
723: 683: 1085: 473:. Its morphisms are "maps of complexes modulo homotopy": that is, we define an equivalence relation 1397: 479: 1306: 69: 1440:). Furthermore, the rotation of a distinguished triangle is obviously not distinguished in 1638: 1591: 1573:
is the category of complexes whose morphisms do not have to respect the differentials). If
8: 620:{\displaystyle \operatorname {Hom} _{K(A)}(A,B)=\operatorname {Hom} _{Kom(A)}(A,B)/\sim } 424: 17: 1623:. Cambridge Studies in Advanced Mathematics. Vol. 38. Cambridge University Press. 1642: 1624: 1603: 880: 844: 113: 81: 32: 1562:{\displaystyle \operatorname {Hom} _{Ho(C)}(X,Y)=H^{0}\operatorname {Hom} _{C}(X,Y)} 936: 928: 883:. (The converse is false in general.) This shows that there is a canonical functor 65: 50: 1634: 1599: 637:
The following variants of the definition are also widely used: if one takes only
39: 1616: 848: 1657: 470: 1646: 21: 1075:{\displaystyle A:...\to A^{n+1}{\xrightarrow {d_{A}^{n}}}A^{n+2}\to ...} 879:, which are zero in homology. In particular a homotopy equivalence is a 465:
is then defined as follows: its objects are the same as the objects of
840: 1359: 1244: 1016: 631: 1313:, i.e. homotopy equivalent) to the triangles above, for arbitrary 752:, such that the two compositions are homotopic to the identities: 402: 1309:, if one defines distinguished triangles to be isomorphic (in 326:{\displaystyle f^{n}-g^{n}=d_{B}^{n-1}h^{n}+h^{n+1}d_{A}^{n},} 72:, and unlike the latter its formation does not require that 120:
is based on the following definition: if we have complexes
1569:. (This boils down to the homotopy of chain complexes if 661:) complexes instead of unbounded ones, one speaks of the 80:
turns into isomorphisms any maps of complexes that are
1477: 1400: 1350: 1235: 1153: 1088: 967: 889: 800: 758: 726: 686: 525: 482: 427: 339: 228: 162: 1561: 1424: 1383: 1286: 1207: 1135: 1074: 919: 828: 786: 744: 704: 619: 497: 439: 386: 325: 207: 1432:is a homotopy equivalence, so that this triangle 1287:{\displaystyle A{\xrightarrow {f}}B\to C(f)\to A} 1655: 1577:has cones and shifts in a suitable sense, then 1384:{\displaystyle X{\xrightarrow {id}}X\to 0\to } 847:induce homotopic (in the above sense) maps of 720:. In detail, this means there is another map 942: 839:The name "homotopy" comes from the fact that 1590: 1325:. The same is true for the bounded variants 208:{\displaystyle h^{n}\colon A^{n}\to B^{n-1}} 1444:, but (less obviously) is distinguished in 867:induce the same maps on homology because 1467:is defined to have the same objects as 1208:{\displaystyle d_{A}^{n}:=-d_{A}^{n+1}} 1656: 1621:An introduction to homological algebra 1615: 1456:More generally, the homotopy category 1337:. Although triangles make sense in 920:{\displaystyle K(A)\rightarrow D(A)} 460:homotopy category of chain complexes 76:is abelian. Philosophically, while 1448:. See the references for details. 829:{\displaystyle g\circ f\sim Id_{A}} 787:{\displaystyle f\circ g\sim Id_{B}} 13: 387:{\displaystyle f-g=d_{B}h+hd_{A}.} 14: 1680: 1581:is a triangulated category, too. 1451: 745:{\displaystyle g:B\rightarrow A} 705:{\displaystyle f:A\rightarrow B} 401: 1471:, but morphisms are defined by 1136:{\displaystyle (A)^{n}=A^{n+1}} 663:bounded-below homotopy category 1596:Methods of Homological Algebra 1556: 1544: 1515: 1503: 1495: 1489: 1416: 1413: 1404: 1378: 1372: 1281: 1275: 1269: 1266: 1260: 1254: 1168: 1162: 1105: 1101: 1095: 1089: 1060: 1031: 1025: 992: 977: 971: 914: 908: 902: 899: 893: 736: 696: 606: 594: 586: 580: 560: 548: 540: 534: 219:a map of complexes) such that 186: 103: 1: 1594:; Gelfand, Sergei I. (2003), 1584: 1462:differential graded category 96:is more understandable than 68:; unlike the former it is a 7: 1226:. There are natural maps 1218:For the cone of a morphism 712:which is an isomorphism in 10: 1685: 1425:{\displaystyle C(id)\to 0} 1147:where the differential is 958:is the following complex 943:The triangulated structure 854: 1301:. The homotopy category 1297:This diagram is called a 859:Two chain homotopic maps 665:etc. They are denoted by 498:{\displaystyle f\sim g\ } 397:This can be depicted as: 116:. The homotopy category 31:of chain complexes in an 156:is a collection of maps 1563: 1426: 1385: 1288: 1209: 1137: 1076: 921: 830: 788: 746: 706: 621: 499: 441: 388: 327: 209: 1592:Manin, Yuri Ivanovich 1564: 1427: 1386: 1307:triangulated category 1289: 1210: 1138: 1077: 922: 831: 789: 747: 707: 622: 500: 442: 389: 328: 210: 70:triangulated category 1598:, Berlin, New York: 1475: 1398: 1348: 1233: 1151: 1086: 965: 887: 798: 756: 724: 718:homotopy equivalence 684: 659:A=0 for |n|>>0 523: 480: 425: 337: 226: 160: 1669:Additive categories 1664:Homological algebra 1366: 1248: 1204: 1177: 1041: 1040: 440:{\displaystyle f-g} 319: 275: 18:homological algebra 1617:Weibel, Charles A. 1559: 1422: 1381: 1284: 1205: 1184: 1154: 1133: 1072: 1017: 917: 845:topological spaces 826: 784: 742: 702: 651:A=0 for n>>0 643:A=0 for n<<0 617: 495: 437: 384: 323: 305: 255: 205: 82:quasi-isomorphisms 1630:978-0-521-55987-4 1609:978-3-540-43583-9 1436:distinguished in 1367: 1249: 1042: 881:quasi-isomorphism 494: 409:We also say that 114:additive category 33:additive category 26:homotopy category 1676: 1650: 1612: 1568: 1566: 1565: 1560: 1540: 1539: 1530: 1529: 1499: 1498: 1431: 1429: 1428: 1423: 1390: 1388: 1387: 1382: 1368: 1355: 1293: 1291: 1290: 1285: 1250: 1240: 1214: 1212: 1211: 1206: 1203: 1192: 1176: 1171: 1142: 1140: 1139: 1134: 1132: 1131: 1113: 1112: 1081: 1079: 1078: 1073: 1059: 1058: 1043: 1039: 1034: 1012: 1010: 1009: 929:derived category 926: 924: 923: 918: 835: 833: 832: 827: 825: 824: 793: 791: 790: 785: 783: 782: 751: 749: 748: 743: 711: 709: 708: 703: 677:, respectively. 626: 624: 623: 618: 613: 590: 589: 544: 543: 509:is homotopic to 504: 502: 501: 496: 492: 446: 444: 443: 438: 405: 393: 391: 390: 385: 380: 379: 361: 360: 332: 330: 329: 324: 318: 313: 304: 303: 285: 284: 274: 263: 251: 250: 238: 237: 214: 212: 211: 206: 204: 203: 185: 184: 172: 171: 51:derived category 1684: 1683: 1679: 1678: 1677: 1675: 1674: 1673: 1654: 1653: 1631: 1610: 1600:Springer-Verlag 1587: 1535: 1531: 1525: 1521: 1482: 1478: 1476: 1473: 1472: 1454: 1399: 1396: 1395: 1354: 1349: 1346: 1345: 1239: 1234: 1231: 1230: 1193: 1188: 1172: 1158: 1152: 1149: 1148: 1121: 1117: 1108: 1104: 1087: 1084: 1083: 1048: 1044: 1035: 1021: 1011: 999: 995: 966: 963: 962: 945: 888: 885: 884: 857: 849:singular chains 820: 816: 799: 796: 795: 778: 774: 757: 754: 753: 725: 722: 721: 685: 682: 681: 609: 570: 566: 530: 526: 524: 521: 520: 481: 478: 477: 471:chain complexes 426: 423: 422: 419:chain homotopic 375: 371: 356: 352: 338: 335: 334: 314: 309: 293: 289: 280: 276: 264: 259: 246: 242: 233: 229: 227: 224: 223: 193: 189: 180: 176: 167: 163: 161: 158: 157: 106: 40:chain complexes 12: 11: 5: 1682: 1672: 1671: 1666: 1652: 1651: 1629: 1613: 1608: 1586: 1583: 1558: 1555: 1552: 1549: 1546: 1543: 1538: 1534: 1528: 1524: 1520: 1517: 1514: 1511: 1508: 1505: 1502: 1497: 1494: 1491: 1488: 1485: 1481: 1453: 1452:Generalization 1450: 1421: 1418: 1415: 1412: 1409: 1406: 1403: 1392: 1391: 1380: 1377: 1374: 1371: 1365: 1362: 1358: 1353: 1295: 1294: 1283: 1280: 1277: 1274: 1271: 1268: 1265: 1262: 1259: 1256: 1253: 1247: 1243: 1238: 1202: 1199: 1196: 1191: 1187: 1183: 1180: 1175: 1170: 1167: 1164: 1161: 1157: 1145: 1144: 1130: 1127: 1124: 1120: 1116: 1111: 1107: 1103: 1100: 1097: 1094: 1091: 1071: 1068: 1065: 1062: 1057: 1054: 1051: 1047: 1038: 1033: 1030: 1027: 1024: 1020: 1015: 1008: 1005: 1002: 998: 994: 991: 988: 985: 982: 979: 976: 973: 970: 944: 941: 916: 913: 910: 907: 904: 901: 898: 895: 892: 856: 853: 823: 819: 815: 812: 809: 806: 803: 781: 777: 773: 770: 767: 764: 761: 741: 738: 735: 732: 729: 701: 698: 695: 692: 689: 628: 627: 616: 612: 608: 605: 602: 599: 596: 593: 588: 585: 582: 579: 576: 573: 569: 565: 562: 559: 556: 553: 550: 547: 542: 539: 536: 533: 529: 514: 513: 491: 488: 485: 453:homotopic to 0 449:null-homotopic 436: 433: 430: 407: 406: 395: 394: 383: 378: 374: 370: 367: 364: 359: 355: 351: 348: 345: 342: 322: 317: 312: 308: 302: 299: 296: 292: 288: 283: 279: 273: 270: 267: 262: 258: 254: 249: 245: 241: 236: 232: 202: 199: 196: 192: 188: 183: 179: 175: 170: 166: 146:chain homotopy 105: 102: 9: 6: 4: 3: 2: 1681: 1670: 1667: 1665: 1662: 1661: 1659: 1648: 1644: 1640: 1636: 1632: 1626: 1622: 1618: 1614: 1611: 1605: 1601: 1597: 1593: 1589: 1588: 1582: 1580: 1576: 1572: 1553: 1550: 1547: 1541: 1536: 1532: 1526: 1522: 1518: 1512: 1509: 1506: 1500: 1492: 1486: 1483: 1479: 1470: 1466: 1463: 1459: 1449: 1447: 1443: 1439: 1435: 1419: 1410: 1407: 1401: 1375: 1369: 1363: 1360: 1356: 1351: 1344: 1343: 1342: 1340: 1336: 1332: 1328: 1324: 1320: 1316: 1312: 1308: 1304: 1300: 1278: 1272: 1263: 1257: 1251: 1245: 1241: 1236: 1229: 1228: 1227: 1225: 1221: 1216: 1200: 1197: 1194: 1189: 1185: 1181: 1178: 1173: 1165: 1159: 1155: 1128: 1125: 1122: 1118: 1114: 1109: 1098: 1092: 1069: 1066: 1063: 1055: 1052: 1049: 1045: 1036: 1028: 1022: 1018: 1013: 1006: 1003: 1000: 996: 989: 986: 983: 980: 974: 968: 961: 960: 959: 957: 954:of a complex 953: 950: 940: 938: 934: 930: 911: 905: 896: 890: 882: 878: 874: 870: 866: 862: 852: 850: 846: 842: 837: 821: 817: 813: 810: 807: 804: 801: 779: 775: 771: 768: 765: 762: 759: 739: 733: 730: 727: 719: 715: 699: 693: 690: 687: 678: 676: 672: 668: 664: 660: 656: 652: 648: 647:bounded-above 644: 640: 639:bounded-below 635: 633: 614: 610: 603: 600: 597: 591: 583: 577: 574: 571: 567: 563: 557: 554: 551: 545: 537: 531: 527: 519: 518: 517: 512: 508: 489: 486: 483: 476: 475: 474: 472: 468: 464: 461: 456: 454: 450: 434: 431: 428: 420: 416: 412: 404: 400: 399: 398: 381: 376: 372: 368: 365: 362: 357: 353: 349: 346: 343: 340: 320: 315: 310: 306: 300: 297: 294: 290: 286: 281: 277: 271: 268: 265: 260: 256: 252: 247: 243: 239: 234: 230: 222: 221: 220: 218: 200: 197: 194: 190: 181: 177: 173: 168: 164: 155: 151: 147: 143: 139: 135: 131: 127: 123: 119: 115: 111: 101: 99: 95: 91: 87: 83: 79: 75: 71: 67: 63: 59: 55: 52: 48: 44: 41: 37: 34: 30: 27: 23: 19: 1620: 1595: 1578: 1574: 1570: 1468: 1464: 1457: 1455: 1445: 1441: 1437: 1433: 1393: 1338: 1334: 1330: 1326: 1322: 1318: 1314: 1310: 1302: 1298: 1296: 1224:mapping cone 1222:we take the 1219: 1217: 1146: 955: 951: 948: 946: 932: 868: 864: 860: 858: 838: 717: 716:is called a 713: 679: 674: 670: 666: 662: 658: 654: 650: 646: 642: 638: 636: 629: 515: 510: 506: 466: 462: 459: 457: 452: 448: 418: 414: 410: 408: 396: 216: 153: 149: 145: 141: 137: 133: 129: 125: 121: 117: 109: 107: 97: 93: 89: 85: 77: 73: 61: 57: 53: 46: 42: 35: 28: 25: 15: 1082:(note that 680:A morphism 516:and define 104:Definitions 22:mathematics 1658:Categories 1585:References 877:boundaries 630:to be the 421:, or that 333:or simply 1542:⁡ 1501:⁡ 1417:→ 1379:→ 1373:→ 1270:→ 1255:→ 1182:− 1061:→ 993:→ 903:→ 841:homotopic 811:∼ 805:∘ 769:∼ 763:∘ 737:→ 697:→ 615:∼ 592:⁡ 546:⁡ 487:∼ 469:, namely 432:− 344:− 269:− 240:− 198:− 187:→ 174:: 128:and maps 1647:36131259 1619:(1994). 1357:→ 1299:triangle 1242:→ 1014:→ 843:maps of 632:quotient 49:and the 1639:1269324 937:abelian 927:to the 869:(f − g) 855:Remarks 655:bounded 66:abelian 1645:  1637:  1627:  1606:  1442:Kom(A) 1339:Kom(A) 873:cycles 871:sends 653:), or 493:  467:Kom(A) 112:be an 86:Kom(A) 43:Kom(A) 24:, the 1579:Ho(C) 1460:of a 1458:Ho(C) 1305:is a 949:shift 148:from 136:from 60:when 1643:OCLC 1625:ISBN 1604:ISBN 1446:K(A) 1438:K(A) 1335:K(A) 1333:and 1331:K(A) 1327:K(A) 1321:and 1311:K(A) 1303:K(A) 947:The 931:(if 863:and 794:and 714:K(A) 675:K(A) 673:and 671:K(A) 667:K(A) 463:K(A) 458:The 417:are 413:and 144:, a 118:K(A) 108:Let 98:D(A) 94:K(A) 90:K(A) 78:D(A) 54:D(A) 29:K(A) 1533:Hom 1480:Hom 1215:. 939:). 935:is 875:to 645:), 568:Hom 528:Hom 505:if 451:or 447:is 217:not 152:to 140:to 84:in 64:is 56:of 45:of 20:in 16:In 1660:: 1641:. 1635:MR 1633:. 1602:, 1434:is 1329:, 1317:, 1179::= 1143:), 851:. 836:. 669:, 132:, 124:, 100:. 88:, 1649:. 1575:C 1571:C 1557:) 1554:Y 1551:, 1548:X 1545:( 1537:C 1527:0 1523:H 1519:= 1516:) 1513:Y 1510:, 1507:X 1504:( 1496:) 1493:C 1490:( 1487:o 1484:H 1469:C 1465:C 1420:0 1414:) 1411:d 1408:i 1405:( 1402:C 1376:0 1370:X 1364:d 1361:i 1352:X 1323:f 1319:B 1315:A 1282:] 1279:1 1276:[ 1273:A 1267:) 1264:f 1261:( 1258:C 1252:B 1246:f 1237:A 1220:f 1201:1 1198:+ 1195:n 1190:A 1186:d 1174:n 1169:] 1166:1 1163:[ 1160:A 1156:d 1129:1 1126:+ 1123:n 1119:A 1115:= 1110:n 1106:) 1102:] 1099:1 1096:[ 1093:A 1090:( 1070:. 1067:. 1064:. 1056:2 1053:+ 1050:n 1046:A 1037:n 1032:] 1029:1 1026:[ 1023:A 1019:d 1007:1 1004:+ 1001:n 997:A 990:. 987:. 984:. 981:: 978:] 975:1 972:[ 969:A 956:A 952:A 933:A 915:) 912:A 909:( 906:D 900:) 897:A 894:( 891:K 865:g 861:f 822:A 818:d 814:I 808:f 802:g 780:B 776:d 772:I 766:g 760:f 740:A 734:B 731:: 728:g 700:B 694:A 691:: 688:f 657:( 649:( 641:( 611:/ 607:) 604:B 601:, 598:A 595:( 587:) 584:A 581:( 578:m 575:o 572:K 564:= 561:) 558:B 555:, 552:A 549:( 541:) 538:A 535:( 532:K 511:g 507:f 490:g 484:f 435:g 429:f 415:g 411:f 382:. 377:A 373:d 369:h 366:+ 363:h 358:B 354:d 350:= 347:g 341:f 321:, 316:n 311:A 307:d 301:1 298:+ 295:n 291:h 287:+ 282:n 278:h 272:1 266:n 261:B 257:d 253:= 248:n 244:g 235:n 231:f 215:( 201:1 195:n 191:B 182:n 178:A 169:n 165:h 154:g 150:f 142:B 138:A 134:g 130:f 126:B 122:A 110:A 74:A 62:A 58:A 47:A 36:A

Index

homological algebra
mathematics
additive category
chain complexes
derived category
abelian
triangulated category
quasi-isomorphisms
additive category

chain complexes
quotient
homotopic
topological spaces
singular chains
cycles
boundaries
quasi-isomorphism
derived category
abelian
mapping cone
triangulated category
differential graded category
Manin, Yuri Ivanovich
Springer-Verlag
ISBN
978-3-540-43583-9
Weibel, Charles A.
ISBN
978-0-521-55987-4

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.