Knowledge

18-electron rule

Source 📝

304:
d metal ions are all square planar. Important examples of square-planar low-spin d metal Ions are Rh(I), Ir(I), Ni(II), Pd(II), and Pt(II). At picture below is shown the splitting of the d subshell in low-spin square-planar complexes. Examples are especially prevalent for derivatives of the cobalt
499:
High-spin metal complexes have singly occupied orbitals and may not have any empty orbitals into which ligands could donate electron density. In general, there are few or no π-acidic ligands in the complex. These singly occupied orbitals can combine with the singly occupied orbitals of radical
697:
nature of the cyclopentadienyl ligand stabilizes its bonding to the metal. Somewhat satisfying are the two following observations: cobaltocene is a strong electron donor, readily forming the 18-electron cobaltocenium cation; and nickelocene tends to react with substrates to give 18-electron
220:
The current consensus in the general chemistry community is that unlike the singular octet rule for main group elements, transition metals do not strictly obey either the 12-electron or 18-electron rule, but that the rules describe the lower bound and upper bound of valence electron count
101:, lending stability to the complex. Transition metal complexes that deviate from the rule are often interesting or useful because they tend to be more reactive. The rule is not helpful for complexes of metals that are not transition metals. The rule was first proposed by American chemist 692:
Often, cases where complexes have more than 18 valence electrons are attributed to electrostatic forces – the metal attracts ligands to itself to try to counterbalance its positive charge, and the number of electrons it ends up with is unimportant. In the case of the metallocenes, the
573:
In the latter case, there is substantial donation of the nitrogen lone pairs to the Mo (so the compound could also be described as a 16 e compound). This can be seen from the short Mo–N bond length, and from the angle Mo–N–C(R), which is nearly 180°. Counter-examples:
189:
mechanisms, wherein the rate of reaction is determined by the rate of dissociation of a ligand. On the other hand, 18-electron compounds can be highly reactive toward electrophiles such as protons, and such reactions are associative in mechanism, being acid-base reactions.
705:
In the case of nickelocene, the extra two electrons are in orbitals which are weakly metal-carbon antibonding; this is why it often participates in reactions where the M–C bonds are broken and the electron count of the metal changes to 18.
221:
respectively. Thus, while transition metal d-orbital and s-orbital bonding readily occur, the involvement of the higher energy and more spatially diffuse p-orbitals in bonding depends on the central atom and coordination environment.
1104:
Jin, Jiaye; Yang, Tao; Xin, Ke; Wang, Guanjun; Jin, Xiaoyang; Zhou, Mingfei; Frenking, Gernot (2018-04-25). "Octacarbonyl Anion Complexes of Group Three Transition Metals − (TM=Sc, Y, La) and the 18-Electron Rule".
249:). Therefore, addition or removal of electron has little effect on complex stability. In this case, there is no restriction on the number of d-electrons and complexes with 12–22 electrons are possible. Small Δ 156:. Complexes of π-acids typically feature metal in a low-oxidation state. The relationship between oxidation state and the nature of the ligands is rationalized within the framework of 337: 616:
In these cases, the M=O bonds are "pure" double bonds (i.e., no donation of the lone pairs of the oxygen to the metal), as reflected in the relatively long bond distances.
1408: 93:
that are either metal-ligand bonding or non-bonding. When a metal complex has 18 valence electrons, it is said to have achieved the same electron configuration as the
209:
Computational findings suggest valence p-orbitals on the metal participate in metal-ligand bonding, albeit weakly. However, Weinhold and Landis within the context of
624:
Ligands where the coordinating atoms bearing nonbonding lone pairs often stabilize unsaturated complexes. Metal amides and alkoxides often violate the 18e rule.
1516: 193:
Complexes with fewer than 18 valence electrons tend to show enhanced reactivity. Thus, the 18-electron rule is often a recipe for non-reactivity in either a
370:
Bulky ligands can preclude the approach of the full complement of ligands that would allow the metal to achieve the 18 electron configuration. Examples:
1623: 1076: 136:
Ligands in a complex determine the applicability of the 18-electron rule. In general, complexes that obey the rule are composed at least partly of
980:
Zhao, Lili; Holzmann, Nicole; Schwerdtfeger, Peter; Frenking, Gernot (2019). "Chemical Bonding and Bonding Models of Main-Group Compounds".
1023:
Bayse, Craig; Hall, Michael (1999). "Prediction of the Geometries of Simple Transition Metal Polyhydride Complexes by Symmetry Analysis".
1509: 474:) (14 e, diamagnetic) has a short V–H bond with the 'alkylidene-H', so the description of the compound is somewhere between Cp(PMe 1198: 732:(TM=Sc, Y) fulfill the 18-electron rule when one considers only those valence electrons, which occupy metal–ligand bonding orbitals. 1618: 1241: 1025: 1644: 1502: 144:, which lowers the energies of the resultant molecular orbitals so that they are favorably occupied. Typical ligands include 1088: 884: 1256: 347:
operate via complexes that alternate between 18-electron and square-planar 16-electron configurations. Examples include
288:
An important class of complexes that violate the 18e rule are the 16-electron complexes with metal d configurations. All
1348: 906: 1551: 1383: 1378: 1343: 728:
symmetry, which is formed only by ligand orbitals without a contribution from the metal AOs. But the adducts TM(CO)
543: 17: 1393: 1388: 1373: 432: 1398: 1276: 551: 348: 297: 875:
Frenking, Gernot; Shaik, Sason, eds. (May 2014). "Chapter 7: Chemical bonding in Transition Metal Compounds".
1191: 840: 293: 169: 534:
Complexes containing strongly π-donating ligands often violate the 18-electron rule. These ligands include
1741: 539: 1449: 213:
do not count the metal p-orbitals in metal-ligand bonding, although these orbitals are still included as
943:
Frenking, Gernot; Fröhlich, Nikolaus (2000). "The Nature of the Bonding in Transition-Metal Compounds".
1454: 508:
ligand can cause electron-pairing, thus creating a vacant orbital that it can donate into. Examples:
385: 1736: 1639: 1266: 301: 289: 277: 186: 114: 1580: 1571: 1338: 1302: 1207: 1184: 74: 46: 1746: 1589: 265:
series. For example: (Ti(IV), d, 12 e), (Co(III), d, 18 e), (Cu(II), d, 21 e).
98: 261:
antibonding (<18 e). These types of ligand are located in the low-to-medium part of the
1525: 1483: 1368: 262: 81:
as either bonding or non-bonding electron pairs. This means that the combination of these nine
54: 1403: 1155:(1972). "The 16 and 18 electron rule in organometallic chemistry and homogeneous catalysis". 643: 402: 217:. This results in a duodectet (12-electron) rule for five d-orbitals and one s-orbital only. 214: 1358: 1221: 849: 801: 210: 1052:
King, R.B. (2000). "Structure and bonding in homoleptic transition metal hydride anions".
362:
Other violations can be classified according to the kinds of ligands on the metal center.
229:π-donor or σ-donor ligands with small interactions with the metal orbitals lead to a weak 168:
Compounds that obey the 18-electron rule are typically "exchange inert". Examples include
8: 1598: 1478: 1297: 1271: 1226: 747: 505: 446: 242: 230: 176: 853: 805: 1292: 1246: 1152: 1005: 310: 122: 1061: 1701: 1670: 1546: 1473: 1444: 1434: 1363: 1130: 1122: 1084: 1009: 997: 962: 925: 880: 835: 817: 792: 741: 238: 126: 90: 460:
has 16 e but has a short bonding contact between one C–H bond and the W center.
1686: 1649: 1439: 1333: 1236: 1165: 1114: 1057: 1034: 989: 954: 945: 915: 857: 809: 759: 753: 356: 273: 149: 42: 157: 1312: 1307: 1157: 783: 517: 463: 344: 322: 130: 102: 82: 50: 993: 1563: 1541: 1536: 1429: 1328: 1251: 902:"Valence and extra-valence orbitals in main group and transition metal bonding" 813: 194: 137: 1730: 1691: 1665: 1424: 1126: 352: 306: 38: 1176: 1134: 1118: 1001: 966: 929: 821: 183: 141: 1494: 1353: 1169: 668: 662: 1038: 1710: 419: 140:(also known as π-acids). This kind of ligand exerts a very strong 958: 920: 901: 750: – Molecular orbital theory applied to transition metal complexes 1465: 1261: 861: 694: 375: 336: 198: 118: 94: 35: 787: 41:
used primarily for predicting and rationalizing formulas for stable
547: 535: 153: 78: 724:) electronic ground state. There is one occupied valence MO with a 449:
with the hydrocarbon framework of the bulky ligand. For example:
979: 501: 280:
complexes which cause some exceptions to the 18-electron rule.
145: 117:
of the Cr, Mn, Fe, and Co triads. Well-known examples include
86: 877:
The Chemical Bond: Chemical Bonding Across the Periodic Table
632:
The above factors can sometimes combine. Examples include
1409:
Arene complexes of univalent gallium, indium, and thallium
359:, olefin isomerizations, and some alkene polymerizations. 1074: 257:* possible (>18 e) and π-donor ligands can make t 185:. In such cases, in general ligand exchange occurs via 658:
Some complexes have more than 18 electrons. Examples:
1624:
Electron configurations of the elements (data page)
1083:. Sausalito, California: University Science Books. 305:and nickel triads. Such compounds are typically 272:increases down a group as well as with increasing 756: – Description of the electron configuration 77:. These orbitals can collectively accommodate 18 1728: 942: 744: – Formalism used for classifying compounds 1103: 1081:Synthesis and Technique in Inorganic Chemistry 899: 838:(2005). "The Origin of the 18-Electron Rule". 163: 1510: 1192: 874: 1206: 113:The rule usefully predicts the formulas for 331:orbital is doubly occupied and nonbonding. 1524: 1517: 1503: 1293:Oxidative addition / reductive elimination 1199: 1185: 762: – Rule describing chemical reactions 627: 1022: 919: 653: 49:. The rule is based on the fact that the 1619:Periodic table (electron configurations) 1242:Polyhedral skeletal electron pair theory 1026:Journal of the American Chemical Society 782: 778: 776: 283: 245:or weakly anti-bonding orbitals (small Δ 1107:Angewandte Chemie International Edition 720:) equilibrium geometry and a singlet (A 674:The hexaaquacopper(II) ion (21 e) 14: 1729: 1151: 1075:Girolami, Gregory; Rauchfuss, Thomas; 834: 494: 57:of transition metals consist of five ( 27:Chemical property of transition metals 1498: 1180: 773: 619: 1349:Transition metal fullerene complexes 1051: 900:Landis, C. R.; Weinhold, F. (2007). 445:Sometimes such complexes engage in 24: 1384:Transition metal carbyne complexes 1379:Transition metal carbene complexes 1344:Transition metal indenyl complexes 1145: 907:Journal of Computational Chemistry 25: 1758: 1552:Introduction to quantum mechanics 1394:Transition metal alkyne complexes 1389:Transition metal alkene complexes 233:which increases the energies of t 204: 1399:Transition-metal allyl complexes 365: 335: 108: 1374:Transition metal acyl complexes 1097: 530:(21 e, see comments below) 276:. Strong ligand fields lead to 1068: 1054:Coordination Chemistry Reviews 1045: 1016: 973: 936: 893: 868: 828: 709:The 20-electron systems TM(CO) 349:Monsanto acetic acid synthesis 13: 1: 1062:10.1016/S0010-8545(00)00263-0 841:Journal of Chemical Education 766: 309:. The most famous example is 224: 7: 1612:Ground-state configurations 1450:Shell higher olefin process 1257:Dewar–Chatt–Duncanson model 994:10.1021/acs.chemrev.8b00722 735: 713:(TM = Sc, Y) have a cubic ( 325:. In such complexes, the d 164:Consequences for reactivity 10: 1763: 1581:Azimuthal quantum number ( 1572:Principal quantum number ( 1339:Cyclopentadienyl complexes 1303:β-hydride elimination 1277:Metal–ligand multiple bond 814:10.1126/science.54.1386.59 1700: 1679: 1658: 1640:Pauli exclusion principle 1632: 1611: 1590:Magnetic quantum number ( 1562: 1532: 1463: 1417: 1404:Transition metal carbides 1321: 1285: 1214: 1079:(1999). "Experiment 20". 698:complexes, e.g. CpNiCl(PR 268:In terms of metal ions, Δ 187:dissociative substitution 1208:Organometallic chemistry 75:principal quantum number 47:organometallic compounds 1369:Half sandwich compounds 628:Combinations of effects 1526:Electron configuration 1484:Bioinorganic chemistry 1119:10.1002/anie.201802590 654:Higher electron counts 215:polarization functions 89:orbitals creates nine 55:electron configuration 45:complexes, especially 1680:Bonding participation 1599:Spin quantum number ( 1455:Ziegler–Natta process 1359:Metal tetranorbornyls 284:16-electron complexes 211:natural bond orbitals 65:s orbital, and three 1464:Related branches of 1222:Crystal field theory 1170:10.1039/CS9720100337 1056:. 200–202: 813–829. 504:), or addition of a 447:agostic interactions 1742:Inorganic chemistry 1479:Inorganic chemistry 1298:Migratory insertion 1272:Agostic interaction 1227:Ligand field theory 854:2005JChEd..82...28J 806:1921Sci....54...59L 748:Ligand field theory 495:High-spin complexes 61:−1)d orbitals, one 1364:Sandwich compounds 1322:Types of compounds 1247:Isolobal principle 836:Jensen, William B. 788:"Types of Valence" 620:π-donating ligands 239:molecular orbitals 138:π-acceptor ligands 123:iron pentacarbonyl 115:low-spin complexes 91:molecular orbitals 69:p orbitals, where 1724: 1723: 1702:Electron counting 1671:Unpaired electron 1547:Quantum mechanics 1492: 1491: 1474:Organic chemistry 1445:Olefin metathesis 1435:Grignard reaction 1334:Grignard reagents 1113:(21): 6236–6241. 1090:978-0-935702-48-4 1039:10.1021/ja981965+ 988:(14): 8781–8845. 959:10.1021/cr980401l 921:10.1002/jcc.20492 886:978-3-527-33315-8 742:Electron counting 357:hydroformylations 292:d metal ions are 127:chromium carbonyl 16:(Redirected from 1754: 1737:Chemical bonding 1716:18-electron rule 1687:Valence electron 1659:Electron pairing 1650:Aufbau principle 1633:Electron filling 1602: 1593: 1584: 1575: 1519: 1512: 1505: 1496: 1495: 1440:Monsanto process 1237:d electron count 1232:18-electron rule 1201: 1194: 1187: 1178: 1177: 1173: 1139: 1138: 1101: 1095: 1094: 1077:Angelici, Robert 1072: 1066: 1065: 1049: 1043: 1042: 1033:(6): 1348–1358. 1020: 1014: 1013: 982:Chemical Reviews 977: 971: 970: 946:Chemical Reviews 940: 934: 933: 923: 897: 891: 890: 872: 866: 865: 862:10.1021/ed082p28 832: 826: 825: 780: 754:d electron count 702:) and free CpH. 554:(RN). Examples: 345:catalytic cycles 339: 274:oxidation number 237:orbitals. These 51:valence orbitals 43:transition metal 32:18-electron rule 21: 18:18-Electron rule 1762: 1761: 1757: 1756: 1755: 1753: 1752: 1751: 1727: 1726: 1725: 1720: 1696: 1675: 1654: 1628: 1607: 1600: 1591: 1582: 1573: 1564:Quantum numbers 1558: 1528: 1523: 1493: 1488: 1459: 1413: 1329:Gilman reagents 1317: 1313:Carbometalation 1308:Transmetalation 1281: 1210: 1205: 1158:Chem. Soc. Rev. 1148: 1146:Further reading 1143: 1142: 1102: 1098: 1091: 1073: 1069: 1050: 1046: 1021: 1017: 978: 974: 941: 937: 898: 894: 887: 873: 869: 833: 829: 800:(1386): 59–67. 781: 774: 769: 738: 731: 727: 723: 719: 712: 701: 688:= Sc, Y) (20 e) 683: 656: 647: 639: 630: 622: 611: 604: 600: 596: 592: 588: 584: 568: 564: 523: 515: 500:ligands (e.g., 497: 489: 485: 481: 477: 473: 469: 459: 456: 436: 428: 424: 414: 406: 398: 394: 390: 381: 368: 330: 320: 316: 311:Vaska's complex 286: 271: 263:spectrochemical 260: 256: 253:makes filling e 252: 248: 236: 227: 207: 180: 173: 166: 131:nickel carbonyl 111: 103:Irving Langmuir 83:atomic orbitals 28: 23: 22: 15: 12: 11: 5: 1760: 1750: 1749: 1747:Rules of thumb 1744: 1739: 1722: 1721: 1719: 1718: 1713: 1707: 1705: 1698: 1697: 1695: 1694: 1689: 1683: 1681: 1677: 1676: 1674: 1673: 1668: 1662: 1660: 1656: 1655: 1653: 1652: 1647: 1642: 1636: 1634: 1630: 1629: 1627: 1626: 1621: 1615: 1613: 1609: 1608: 1606: 1605: 1596: 1587: 1578: 1568: 1566: 1560: 1559: 1557: 1556: 1555: 1554: 1544: 1542:Atomic orbital 1539: 1537:Electron shell 1533: 1530: 1529: 1522: 1521: 1514: 1507: 1499: 1490: 1489: 1487: 1486: 1481: 1476: 1470: 1468: 1461: 1460: 1458: 1457: 1452: 1447: 1442: 1437: 1432: 1430:Cativa process 1427: 1421: 1419: 1415: 1414: 1412: 1411: 1406: 1401: 1396: 1391: 1386: 1381: 1376: 1371: 1366: 1361: 1356: 1351: 1346: 1341: 1336: 1331: 1325: 1323: 1319: 1318: 1316: 1315: 1310: 1305: 1300: 1295: 1289: 1287: 1283: 1282: 1280: 1279: 1274: 1269: 1264: 1259: 1254: 1249: 1244: 1239: 1234: 1229: 1224: 1218: 1216: 1212: 1211: 1204: 1203: 1196: 1189: 1181: 1175: 1174: 1147: 1144: 1141: 1140: 1096: 1089: 1067: 1044: 1015: 972: 953:(2): 717–774. 935: 914:(1): 198–203. 892: 885: 867: 827: 771: 770: 768: 765: 764: 763: 757: 751: 745: 737: 734: 729: 725: 721: 717: 710: 699: 690: 689: 681: 675: 672: 666: 655: 652: 651: 650: 645: 641: 637: 629: 626: 621: 618: 614: 613: 609: 606: 602: 598: 594: 590: 586: 582: 571: 570: 566: 562: 559: 532: 531: 528: 525: 521: 513: 496: 493: 492: 491: 487: 483: 479: 475: 471: 467: 461: 457: 454: 443: 442: 439: 434: 430: 426: 422: 416: 412: 409: 404: 400: 396: 392: 388: 383: 379: 367: 364: 353:hydrogenations 341: 340: 326: 318: 314: 285: 282: 269: 258: 254: 250: 246: 234: 226: 223: 206: 205:Duodectet rule 203: 195:stoichiometric 178: 171: 165: 162: 110: 107: 26: 9: 6: 4: 3: 2: 1759: 1748: 1745: 1743: 1740: 1738: 1735: 1734: 1732: 1717: 1714: 1712: 1709: 1708: 1706: 1703: 1699: 1693: 1692:Core electron 1690: 1688: 1685: 1684: 1682: 1678: 1672: 1669: 1667: 1666:Electron pair 1664: 1663: 1661: 1657: 1651: 1648: 1646: 1643: 1641: 1638: 1637: 1635: 1631: 1625: 1622: 1620: 1617: 1616: 1614: 1610: 1604: 1597: 1595: 1588: 1586: 1579: 1577: 1570: 1569: 1567: 1565: 1561: 1553: 1550: 1549: 1548: 1545: 1543: 1540: 1538: 1535: 1534: 1531: 1527: 1520: 1515: 1513: 1508: 1506: 1501: 1500: 1497: 1485: 1482: 1480: 1477: 1475: 1472: 1471: 1469: 1467: 1462: 1456: 1453: 1451: 1448: 1446: 1443: 1441: 1438: 1436: 1433: 1431: 1428: 1426: 1425:Carbonylation 1423: 1422: 1420: 1416: 1410: 1407: 1405: 1402: 1400: 1397: 1395: 1392: 1390: 1387: 1385: 1382: 1380: 1377: 1375: 1372: 1370: 1367: 1365: 1362: 1360: 1357: 1355: 1352: 1350: 1347: 1345: 1342: 1340: 1337: 1335: 1332: 1330: 1327: 1326: 1324: 1320: 1314: 1311: 1309: 1306: 1304: 1301: 1299: 1296: 1294: 1291: 1290: 1288: 1284: 1278: 1275: 1273: 1270: 1268: 1265: 1263: 1260: 1258: 1255: 1253: 1252:π backbonding 1250: 1248: 1245: 1243: 1240: 1238: 1235: 1233: 1230: 1228: 1225: 1223: 1220: 1219: 1217: 1213: 1209: 1202: 1197: 1195: 1190: 1188: 1183: 1182: 1179: 1171: 1167: 1163: 1160: 1159: 1154: 1153:Tolman, C. A. 1150: 1149: 1136: 1132: 1128: 1124: 1120: 1116: 1112: 1108: 1100: 1092: 1086: 1082: 1078: 1071: 1063: 1059: 1055: 1048: 1040: 1036: 1032: 1028: 1027: 1019: 1011: 1007: 1003: 999: 995: 991: 987: 983: 976: 968: 964: 960: 956: 952: 948: 947: 939: 931: 927: 922: 917: 913: 909: 908: 903: 896: 888: 882: 879:. Wiley-VCH. 878: 871: 863: 859: 855: 851: 847: 843: 842: 837: 831: 823: 819: 815: 811: 807: 803: 799: 795: 794: 789: 785: 779: 777: 772: 761: 760:Tolman's rule 758: 755: 752: 749: 746: 743: 740: 739: 733: 716: 707: 703: 696: 687: 679: 676: 673: 670: 667: 664: 661: 660: 659: 648: 642: 635: 634: 633: 625: 617: 607: 580: 577: 576: 575: 560: 557: 556: 555: 553: 549: 545: 541: 537: 529: 526: 519: 511: 510: 509: 507: 503: 465: 462: 452: 451: 450: 448: 440: 437: 433:Co(norbornyl) 431: 421: 417: 410: 407: 401: 399:) (16 e) 387: 384: 377: 373: 372: 371: 366:Bulky ligands 363: 360: 358: 354: 350: 346: 338: 334: 333: 332: 329: 324: 313:(IrCl(CO)(PPh 312: 308: 307:square-planar 303: 299: 295: 291: 281: 279: 275: 266: 264: 244: 240: 232: 222: 218: 216: 212: 202: 200: 196: 191: 188: 184: 181: 174: 161: 159: 158:π backbonding 155: 151: 147: 143: 139: 134: 132: 128: 124: 120: 116: 109:Applicability 106: 104: 100: 96: 92: 88: 84: 80: 76: 72: 68: 64: 60: 56: 52: 48: 44: 40: 39:rule of thumb 37: 33: 19: 1715: 1418:Applications 1354:Metallocenes 1231: 1161: 1156: 1110: 1106: 1099: 1080: 1070: 1053: 1047: 1030: 1024: 1018: 985: 981: 975: 950: 944: 938: 911: 905: 895: 876: 870: 845: 839: 830: 797: 791: 784:Langmuir, I. 714: 708: 704: 691: 685: 677: 657: 631: 623: 615: 578: 572: 533: 506:strong field 498: 482:) and Cp(PMe 444: 369: 361: 342: 327: 323:Zeise's salt 287: 267: 231:ligand field 228: 219: 208: 192: 167: 142:ligand field 135: 112: 70: 66: 62: 58: 31: 29: 1645:Hund's rule 1267:spin states 671:(20 e) 669:Nickelocene 665:(19 e) 663:Cobaltocene 640:(14 e) 612:(18 e) 605:(18 e) 569:(12 e) 558:(16 e) 527:(17 e) 524:(15 e) 441:(17 e) 438:(13 e) 429:(14 e) 415:(17 e) 408:(17 e) 300:), but the 298:tetrahedral 243:non-bonding 1731:Categories 1711:Octet rule 1215:Principles 1164:(3): 337. 767:References 649:(8 e) 550:(RO), and 486:)V(H)(CCMe 382:(8 e) 294:octahedral 225:Exceptions 150:phosphines 1466:chemistry 1286:Reactions 1262:Hapticity 1127:1433-7851 1010:195761899 848:(1): 28. 695:chelating 548:alkoxides 411:Cp*Cr(CO) 376:neopentyl 321:), , and 290:high-spin 199:catalytic 119:ferrocene 105:in 1921. 95:noble gas 79:electrons 1135:29578636 1002:31251603 967:11749249 930:17063478 822:17843674 786:(1921). 736:See also 536:fluoride 478:)V(CHCMe 470:)V(CHCMe 302:low-spin 278:low-spin 36:chemical 850:Bibcode 802:Bibcode 793:Science 636:Cp*VOCl 561:Mo(=NR) 544:nitride 241:become 201:sense. 146:olefins 97:in the 73:is the 53:in the 1133:  1125:  1087:  1008:  1000:  965:  928:  883:  820:  608:Cp*ReO 552:imides 502:oxygen 182:, and 177:Mo(CO) 152:, and 129:, and 99:period 87:ligand 1704:rules 1006:S2CID 579:trans 546:(N), 542:(O), 540:oxide 538:(F), 453:W(CO) 403:V(CO) 343:Many 197:or a 85:with 34:is a 1131:PMID 1123:ISSN 1085:ISBN 998:PMID 963:PMID 926:PMID 881:ISBN 818:PMID 680:(CO) 644:TiCl 512:CrCl 466:(PMe 418:Pt(P 391:Ti(C 296:(or 30:The 1166:doi 1115:doi 1058:doi 1035:doi 1031:121 990:doi 986:119 955:doi 951:100 916:doi 858:doi 810:doi 597:PMe 589:PCH 585:(Me 581:-WO 518:THF 386:Cp* 374:Ti( 270:oct 251:oct 247:oct 133:. 1733:: 1129:. 1121:. 1111:57 1109:. 1029:. 1004:. 996:. 984:. 961:. 949:. 924:. 912:28 910:. 904:. 856:. 846:82 844:. 816:. 808:. 798:54 796:. 790:. 775:^ 726:2u 722:1g 686:TM 678:TM 593:CH 565:Cl 490:). 464:Cp 420:Bu 355:, 351:, 259:2g 235:2g 175:, 170:Cl 160:. 154:CO 148:, 125:, 121:, 1603:) 1601:s 1594:) 1592:m 1585:) 1583:ℓ 1576:) 1574:n 1518:e 1511:t 1504:v 1200:e 1193:t 1186:v 1172:. 1168:: 1162:1 1137:. 1117:: 1093:. 1064:. 1060:: 1041:. 1037:: 1012:. 992:: 969:. 957:: 932:. 918:: 889:. 864:. 860:: 852:: 824:. 812:: 804:: 730:8 718:h 715:O 711:8 700:3 684:( 682:8 646:4 638:2 610:3 603:2 601:) 599:2 595:2 591:2 587:2 583:2 567:2 563:2 522:3 520:) 516:( 514:3 488:3 484:3 480:3 476:3 472:3 468:3 458:2 455:3 435:4 427:2 425:) 423:3 413:3 405:6 397:4 395:H 393:2 389:2 380:4 378:) 328:z 319:2 317:) 315:3 255:g 179:6 172:3 71:n 67:n 63:n 59:n 20:)

Index

18-Electron rule
chemical
rule of thumb
transition metal
organometallic compounds
valence orbitals
electron configuration
principal quantum number
electrons
atomic orbitals
ligand
molecular orbitals
noble gas
period
Irving Langmuir
low-spin complexes
ferrocene
iron pentacarbonyl
chromium carbonyl
nickel carbonyl
π-acceptor ligands
ligand field
olefins
phosphines
CO
π backbonding
Cl3
Mo(CO)6

dissociative substitution

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.