Knowledge

Astrophysical maser

Source 📝

17: 876: 907:
the inner and outer radii limits roughly correspond to the density limits for maser operation. At the inner boundary, the collisions between molecules are enough to remove a population inversion. At the outer boundary, the density and optical depth is low enough that the gain of the maser is diminished. The hydroxyl masers are supported chemical pumping. At the distances where these masers are found water molecules are disassociated by UV radiation.
592: 957: 936:, support the bulk of astrophysical masers. Various pumping schemes – both radiative and collisional and combinations thereof – result in the maser emission of multiple transitions of many species. For example, the OH molecule has been observed to mase at 1612, 1665, 1667, 1720, 4660, 4750, 4765, 6031, 6035, and 13441 MHz. Water and 664:
Small path differences across the irregularly shaped maser cloud become greatly distorted by exponential gain. Part of the cloud that has a slightly longer path length than the rest will appear much brighter (as it is the exponent of the path length that is relevant), and so maser spots are typically
400:
in the 1940s, and so the emission was at first attributed to a hypothetical form of interstellar matter named "mysterium", but the emission was soon identified as line emission from hydroxide molecules in compact sources within molecular clouds. More discoveries followed, with water emission in 1969,
906:
Both radiative and collisional pumping resulting from the shockwave have been suggested as the pumping mechanism for the silicon monoxide masers. These masers diminish for larger radii as the gaseous silicon monoxide condenses into dust, depleting the available maser molecules. For the water masers,
479:(FIR) emission has been used to conduct searches of the sky with optical telescopes (because optical telescopes are easier to use for searches of this kind), and likely objects are then checked in the radio spectrum. Particularly targeted are molecular clouds, OH-IR stars, and FIR active galaxies. 351:
The radiation from astrophysical masers can be quite weak and may escape detection due to the limited sensitivity, and relative remoteness, of astronomical observatories and due to the sometimes overwhelming spectral absorption from unpumped molecules of the maser species in the surrounding space.
1737:
McGuire, Brett A.; Loomis, Ryan A.; Charness, Cameron M.; Corby, Joanna F.; Blake, Geoffrey A.; Hollis, Jan M.; Lovas, Frank J.; Jewell, Philip R.; Remijan, Anthony J. (2012). "Interstellar Carbodiimide (HNCNH): A New Astronomical Detection from the GBT PRIMOS Survey via Maser Emission Features".
1090:
Unlike terrestrial lasers and masers for which the excitation mechanism is known and engineered, the reverse is true for astrophysical masers. In general, astrophysical masers are discovered empirically then studied further in order to develop plausible suggestions about possible pumping schemes.
898:
support the pumping of different maser species at different distances from the star. Due to instabilities within the nuclear burning sections of the star, the star experiences periods of increased energy release. These pulses produce a shockwave that forces the atmosphere outward. Hydroxyl masers
1029:
and laboratory astrophysics due, in part, to the fact that they are valuable diagnostic tools for astrophysical environments which may otherwise elude rigorous quantitative study and because they may facilitate the study of conditions which are inaccessible in terrestrial laboratories. A global
1041:
is generally understood to mean the change in apparent brightness to the observer. Intensity variations can occur on timescales from days to years indicating limits on maser size and excitation scheme. However, masers change in various ways over various timescales.
1091:
Quantification of the transverse size, spatial and temporal variations, and polarisation state, typically requiring VLBI telemetry, are all useful in the development of a pump theory. Galactic formaldehyde masing is one such example that remains problematic.
714:. In a saturated maser, amplification of radiation depends linearly on the size of population inversion and the path length. Saturation of one transition in a maser can affect the degree of inversion in other transitions in the same maser, an effect known as 705:
The exponential growth in intensity of radiation passing through a maser cloud continues as long as pumping processes can maintain the population inversion against the growing losses by stimulated emission. While this is so the maser is said to be
1055:
variation of the observed frequency of the maser, permitting a three-dimensional mapping of the dynamics of the maser environment. Perhaps the most spectacular success of this technique is the dynamical determination of the distance to the galaxy
823:) embedded in a crusty silicate filler that orbit the Sun in eccentric orbits. As they approach the Sun, the volatiles vaporise to form a halo and later a tail around the nucleus. Once vaporised, these molecules can form inversions and mase. 858:
It is predicted that masers exist in the atmospheres of gas giant planets. Such masers would be highly variable due to planetary rotation (10-hour period for Jovian planets). Cyclotron masers have been detected at the north pole of Jupiter.
1050:
Masers in star-forming regions are known to move across the sky along with the material that is flowing out from the forming star(s). Also, since the emission is a narrow spectral line, line-of-sight velocity can be determined from the
182:
This fundamental incongruency in language has resulted in the use of other paradoxical definitions in the field. For example, if the gain medium of a misaligned laser is emission-seeded but non-oscillating radiation, it is said to emit
834:
in 1994 resulted in maser emissions in the 22 GHz region from the water molecule. Despite the apparent rarity of these events, observation of the intense maser emission has been suggested as a detection scheme for
167:
Due to the differences between engineered and naturally occurring masers, it is often stated that astrophysical masers are not "true" masers because they lack oscillation cavities. However, the distinction between
1961:
Pogrebenko, S. V.; Gurvits, L. I.; Elitzur, M.; Cosmovici, C. B.; Avruch, I. M.; Montebugnoli, S.; Salerno, E.; Pluchino, S.; MacCaferri, G.; Mujunen, A.; Ritakari, J.; Wagner, J.; Molera, G.; Uunila, M. (2009).
1890: 396:: emission lines in space, of unknown origin, at a frequency of 1665 MHz. At this time many researchers still thought that molecules could not exist in space, even though they had been discovered by 343:
in laboratory lasers and masers may be achieved by selectively oscillating the desired modes, polarisation in natural masers will arise only in the presence of a polarisation-state–dependent pump or of a
431:
Another unexpected discovery was made in 1982 with the discovery of emission from an extra-galactic source with an unrivalled luminosity about 10 times larger than any previous source. This was termed a
1082:
and therefore their distance. This method is much more accurate than other distance determinations, and gives us information about the galactic distance scale, e.g. the distance of spiral arms.
697:, etc.) more than the edges or wings. This results in an emission line shape that is much taller but not much wider. This makes the line appear narrower relative to the unamplified line. 203:
to differentiate it from the laboratory phenomenon. This simply adds to the confusion, since both sources are superradiant. In some laboratory lasers, such as a single pass through a
335:
The simple existence of a pumped population inversion is not sufficient for the observation of a maser. For example, there must be velocity coherence along the line of sight so that
151:
engineered for terrestrial laboratory masers. The emission from an astrophysical maser is due to a single pass through the gain medium and therefore generally lacks the spatial
2262:
Herrnstein; Moran; Greenhill; Diamond; Inoue; Nakai; Miyoshi; Henkel; Riess (1999). "A 4% Geometric Distance to the Galaxy NGC4258 from Orbital Motions in a Nuclear Gas Disk".
756:
of the maser gas but is nevertheless useful in describing maser emission. Masers have incredible effective temperatures, many around 10K, but some of up to 10K and even 10K.
867:
In 2009, S. V. Pogrebenko et al. reported the detection of water masers in the plumes of water associated with the Saturnian moons Hyperion, Titan, Enceladus, and Atlas.
424:. First was hydroxide emission in 1968, then water emission in 1969 and silicon monoxide emission in 1974. Masers were discovered in external galaxies in 1973, and in the 1440:
Korotkov, A. N.; Averin, D. V.; Likharev, K. K. (1994). "TASERs: Possible dc pumped terahertz lasers using interwell transitions in semiconductor heterostructures".
2009:
Vlemmings; Diamond; van Langevelde; M Torrelles (2006). "The Magnetic Field in the Star-forming Region Cepheus a from Water Maser Polarization Observations".
665:
much smaller than their parent clouds. The majority of the radiation will emerge along this line of greatest path length in a "beam"; this is termed
1717:
McGuire et al. (2012), "Interstellar Carbodiimide (HNCNH) – A New Astronomical Detection from the GBT PRIMOS Survey via Maser Emission Features."
1030:
collaboration called the Maser Monitoring Organisation, colloquially known as the M2O, are one prominent group of researchers in this discipline.
2315:
Brunthaler, A.; Reid, MJ; Falcke, H; Greenhill, LJ; Henkel, C (2005). "The Geometric Distance and Proper Motion of the Triangulum Galaxy (M33)".
1098:
transitions of the OH molecule near 53 MHz are expected to occur but have yet to be observed, perhaps due to a lack of sensitive equipment.
991:
While some of the masers in star forming regions can achieve luminosities sufficient for detection from external galaxies (such as the nearby
1476: 2376:
Hoffman; Goss; Patrick Palmer; Richards (2003). "The Formaldehyde Masers in NGC 7538 and G29.96–0.02: VLBA, MERLIN, and VLA Observations".
413:, as from their narrow line widths and high effective temperatures it became clear that these sources were amplifying microwave radiation. 363:
The study of masers provides valuable information on the conditions—temperature, density, magnetic field, and velocity—in environments of
199:: that is, the users wish the system to behave as a laser. The emission from astrophysical masers is, in fact, ASE but is sometimes termed 1850:
Cosmovici, C. B.; Montebugnoli, S.; Pogrebenko, S.; Colom, P. (1995). "Water MASER Detection at 22 GHZ after the SL-9/Jupiter Collision".
736:
would have if producing the same emission brightness at the wavelength of the maser. That is, if an object had a temperature of about 10
1495:
Thum, C.; Strelnitski, V. S.; Martin-Pintado, J.; Matthews, H. E.; Smith, H. A. (1995). "Hydrogen recombination β-lines in MWC 349".
1060:
from the analysis of the motion of the masers in the black-hole disk. Also, water masers have been used to estimate the distance and
226:
are variously employed. For example, when lasers were initially developed in the visible portion of the spectrum, they were called
1094:
On the other hand, some masers have been predicted to occur theoretically but have yet to be observed in nature. For example, the
2089:
Fish; Reid; Argon; Xing-Wu Zheng (2005). "Full-Polarization Observations of OH Masers in Massive Star-Forming Regions: I. Data".
1327: 191:. This ASE is regarded as unwanted or parasitic. Some researchers would add to this definition the presence of insufficient 613: 1401:"An ISO survey of possible water and hydroxyl IRASER transitions towards the star-forming regions W49, W3(OH) and SGR B2M" 768:
of the emission. Astronomical masers are often very highly polarised, sometimes 100% (in the case of some OH masers) in a
2498: 960: 903:(AU), water masers at a distance of about 100 to 400 AU, and silicon monoxide masers at a distance of about 5 to 10 AU. 995:), masers observed from distant galaxies generally arise in wholly different conditions. Some galaxies possess central 740:
it would produce as much 1665-MHz radiation as a strong interstellar OH maser. Of course, at 10K the OH molecule would
1075: 639: 357: 621: 241:, since energy states of molecules generally provide the masing transition. Along these lines, some use the term 656:
of radiation passing through a maser cloud is exponential. This has consequences for the radiation it produces:
352:
This latter obstacle may be partially surmounted through the judicious use of the spatial filtering inherent in
617: 184: 1478:
Identifying Circumstellar Dust Around Oxygen-Rich Mira Variables With Maser Emission Via Continuum Elimination
681:-coherent path length, any variation of either will itself result in exponential change of the maser output. 1078:
observations of maser sources in late type stars and star forming regions provide determinations of their
1017:
with large luminosities. Hydroxyl, water, and formaldehyde masers are known to exist in these conditions.
16: 710:. However, after a point, the population inversion cannot be maintained any longer and the maser becomes 442: 339:
does not prevent inverted states in different parts of the gain medium from radiatively coupling. While
2067: 1947: 2164: 846:
that can mase. In 1997, 1667-MHz maser emission characteristic of hydroxide was observed from comet
2493: 602: 57: 28: 1383: 179:
lasers was intentionally disregarded by the laser community in the early years of the technology.
2503: 2142:
Wardle, M.; Yusef-Zadeh, F (2002). "Supernova Remnant OH Masers: Signposts of Cosmic Collision".
1562: 785: 606: 487:
The following species have been observed in stimulated emission from astronomical environments:
2159: 1079: 827: 728: 372: 316: 254: 33: 921: 769: 250: 200: 138: 2216: 2032: 1979: 1578: 1508: 1279: 875: 2452: 2395: 2334: 2281: 2224: 2212: 2151: 2108: 2071: 2028: 1975: 1902: 1876: 1859: 1814: 1757: 1656: 1574: 1535: 1504: 1449: 1412: 1356: 1275: 765: 340: 204: 141: 8: 1313: 1107: 773: 694: 690: 510: 496: 289: 152: 111: 46: 2456: 2399: 2338: 2285: 2155: 2112: 2075: 1963: 1906: 1863: 1818: 1761: 1660: 1539: 1453: 1416: 1360: 1135:
Davis R.D., Rowson B., Booth R.S., Cooper A.J., Gent H., Adgie R.L., Crowther J.H. 1967
441:
A weak disk maser was discovered in 1995 emanating from the star MWC 349A, using NASA's
211:
stage, the physics is directly analogous to an amplified ray in an astrophysical maser.
2470: 2442: 2411: 2385: 2358: 2324: 2297: 2271: 2185: 2124: 2098: 2044: 2018: 1991: 1832: 1804: 1773: 1747: 1646: 1609: 1317: 1291: 976: 836: 572: 327:
and 300 GHz; that is, wavelengths between 30 cm and 1 mm, respectively.
80: 76: 2431:"A search for 53 MHz OH line near G48.4$ –$ 1.4 using the National MST Radar Facility" 1769: 1523: 2465: 2430: 2415: 2350: 2301: 2177: 2128: 1995: 1836: 1680: 1590: 1425: 1400: 1323: 1295: 1069: 992: 968: 900: 208: 130: 2474: 2362: 2189: 2048: 1777: 2460: 2403: 2342: 2289: 2220: 2169: 2116: 2036: 1983: 1929: 1822: 1765: 1672: 1668: 1664: 1631: 1582: 1543: 1457: 1420: 1364: 1283: 1146:
Cheung A.C., Rank D.M., Townes C.H., Thornton D.D., Welch W.J., Crowther J.H. 1969
1008: 980: 559: 553: 406: 196: 148: 1987: 1877:
Radio Search for Extrasolar Cometary Impacts at 22 GHz (water Maser Emission)
438:
because of its great luminosity; many more megamasers have since been discovered.
2040: 1699: 1586: 1095: 1026: 929: 677:
As the gain of a maser depends exponentially on the population inversion and the
397: 61: 409:
emission in 1974, all emanating from within molecular clouds. These were termed
1827: 1793:"First Detection of CS Masers around a High-mass Young Stellar Object, W51 e2e" 1792: 1547: 975:
The 1720 MHz maser transition of hydroxide is known to be associated with
916: 895: 417: 353: 345: 258: 230: 1920:
Ogley, Richard; Richards, Anita; Spencer, Ralph (1997). "A masing Hale-Bopp".
1287: 1110: – Matter and radiation in the space between the star systems in a galaxy 940:
masers are also typical of these environments. Relatively rare masers such as
2487: 1933: 1594: 1369: 1344: 1061: 1052: 1004: 880: 777: 749: 368: 364: 336: 134: 49: 2346: 2173: 1522:
Snyder, Lewis E.; Buhl, David; Zuckerman, B.; Palmer, Patrick (1969-03-31).
1266:
Strelnitski, Vladimir (1997). "Masers, Lasers and the Interstellar Medium".
2354: 2181: 1684: 1610:"Darkness Amplification by Stimulated Absorption of Radiation, No Kidding!" 945: 501: 476: 457: 425: 245:
to describe any system that exploits an electronic transition and the term
2447: 2390: 2329: 2276: 2103: 2023: 2008: 1386: 1065: 933: 925: 781: 753: 745: 172: 156: 842:
Ultraviolet light from the Sun breaks down some water molecules to form
1676: 1309: 996: 741: 733: 421: 376: 293: 270: 266: 122: 72: 1494: 1461: 1013: 883: 847: 843: 792: 491: 434: 301: 145: 119: 53: 1849: 591: 2407: 2238: 2120: 1809: 1190:
Knowles S.H., Mayer C.H., Cheung A.E., Rank D.M., Townes C.H. 1969
1057: 937: 678: 531: 402: 192: 2293: 1752: 1725: 1651: 2375: 1960: 941: 831: 820: 816: 811:
are small bodies (5 to 15 km diameter) of frozen volatiles (
566: 519: 310: 24: 752:
energy), so the brightness temperature is not indicative of the
133:
energy levels of the species in the gain medium which have been
2428: 2261: 1000: 964: 737: 274: 126: 69: 20: 689:
Exponential gain also amplifies the centre of the line shape (
2314: 887: 808: 453: 107: 103: 92: 65: 456:) sub-thermal population in the 4830 MHz transition of 1322:. Vol. 83. National Academy of Sciences. p. 202. 1003:
in size) is falling. Excitations of these molecules in the
2088: 1736: 1025:
Astronomical masers remain an active field of research in
1852:
AAS/Division for Planetary Sciences Meeting Abstracts #27
1521: 1168:
Ball J.A., Gottlieb C.A., Lilley A.E., Radford H.E. 1970
956: 379:, leading to refinements in existing theoretical models. 324: 1889:
Ogley, Richard; Richards, Anita; Spencer, Ralph (1997).
1124:
Weaver H., Dieter N.H., Williams D.R.W., Lum W.T. 1965
1439: 1316:(2003). "Arthur Schawlow". In Edward P. Lazear (ed.). 776:. This polarisation is due to some combination of the 581: 257:
transition, regardless of the output frequency. Some
1919: 1888: 1201:
Buhl D., Snyder L.E., Lovas F.J., Johnson D.R. 1974
214:
Furthermore, the practical limits of the use of the
1302: 999:into which a disk of molecular material (about 0.5 392:In 1965 an unexpected discovery was made by Weaver 288:has been used to describe laboratory masers in the 1632:"Coherent Perfect Absorbers: Time-Reversed Lasers" 1524:"Microwave Detection of Interstellar Formaldehyde" 416:Masers were then discovered around highly evolved 2435:Monthly Notices of the Royal Astronomical Society 2141: 1405:Monthly Notices of the Royal Astronomical Society 2485: 1629: 780:, magnetic beaming of the maser radiation, and 319:community typically limits the use of the word 144:. However, naturally occurring masers lack the 1342: 2203:Lo, K.Y. (2005). "Mega-Masers and Galaxies". 1790: 899:occur at a distance of about 1,000 to 10,000 482: 97: 2429:Menon; Anish Roshi; Rajendra Prasad (2005). 2205:Annual Review of Astronomy and Astrophysics 2091:The Astrophysical Journal Supplement Series 1567:Annual Review of Astronomy and Astrophysics 1265: 1223:Baan W.A., Wood P.A.D., Haschick A.D. 1982 948:may also be found in star-forming regions. 620:. Unsourced material may be challenged and 330: 1484:(Thesis). University of Missouri-Columbia. 1045: 2464: 2446: 2389: 2328: 2275: 2163: 2102: 2022: 1826: 1808: 1751: 1697: 1650: 1424: 1398: 1368: 1308: 640:Learn how and when to remove this message 159:purity expected from a laboratory maser. 986: 955: 874: 853: 387: 15: 1791:Ginsburg, Adam; Goddi, Ciriaco (2019). 1630:Chong; Ge; Cao; Stone (July 30, 2010). 1474: 1343:Schawlow, A. L.; Townes, C. H. (1958). 910: 475:The connections of maser activity with 2486: 2225:10.1146/annurev.astro.41.011802.094927 1964:"Water masers in the Saturnian system" 1879:, Catastrophic Events Conference, 2000 1560: 870: 764:An important aspect of maser study is 323:to frequencies between roughly 1  315:in reference to the gain species. The 1607: 1561:Townes, Charles H. (September 1997). 951: 894:The conditions in the atmospheres of 798: 249:to describe a system that exploits a 2061: 1608:Volpe, Giorgio (November 10, 2010). 862: 672: 618:adding citations to reliable sources 585: 1020: 464:CO) was observed in 1969 by Palmer 45:is a naturally occurring source of 13: 2202: 1399:Gray, M. D.; Yates, J. A. (1999). 721: 582:Characteristics of maser radiation 265:to describe a maser emitting at a 79:, or various other conditions in 14: 2515: 1719:The Astrophysical Journal Letters 1212:Whiteoak J.B., Gardner F.F. 1973 684: 358:very long baseline interferometry 2466:10.1111/j.1365-2966.2004.08517.x 1698:Lachowicz, Paweł (16 May 2007), 1426:10.1046/j.1365-8711.1999.03010.x 732:of a maser is the temperature a 590: 277:community terms similar sources 118:) and monochromatic, having the 2422: 2369: 2308: 2255: 2231: 2196: 2135: 2082: 2055: 2002: 1954: 1940: 1913: 1882: 1870: 1843: 1784: 1730: 1726:https://arxiv.org/abs/1209.1590 1711: 1691: 1623: 1601: 1554: 1241: 1230: 1219: 1179:Wilson W.J., Darrett A.H. 1968 791:Many of the characteristics of 759: 162: 1669:10.1103/PhysRevLett.105.053901 1515: 1488: 1468: 1433: 1392: 1377: 1336: 1268:Astrophysics and Space Science 1259: 1245:Elitzur M. Annu. Rev. Astron. 1208: 1197: 1186: 1175: 1164: 1153: 1142: 1131: 1120: 1085: 1033: 886:, showing dust production and 784:pumping which favours certain 772:, and to a lesser degree in a 185:amplified spontaneous emission 1: 2064:Maser Sources in Astrophysics 1563:"A Physicist Court Astronomy" 1345:"Infrared and Optical Masers" 1253: 700: 86: 60:. This emission may arise in 1968:Astronomy & Astrophysics 1639:Yale Physical Review Letters 1587:10.1146/annurev.astro.35.1.0 470: 382: 7: 1988:10.1051/0004-6361:200811186 1770:10.1088/2041-8205/758/2/L33 1475:Shepard, Lisa (July 2021). 1101: 443:Kuiper Airborne Observatory 52:emission, typically in the 10: 2520: 2499:Astronomical radio sources 2068:Cambridge University Press 2041:10.1051/0004-6361:20054275 2011:Astronomy and Astrophysics 1922:Astronomy & Geophysics 1895:Irish Astronomical Journal 1617:Optics and Photonics Focus 1548:10.1103/PhysRevLett.22.679 1497:Astronomy and Astrophysics 1157:Snyder L.E., Buhl D. 1974 914: 659: 483:Known interstellar species 98:Discrete transition energy 90: 2378:The Astrophysical Journal 1740:The Astrophysical Journal 815:, water, carbon dioxide, 803: 1828:10.3847/1538-3881/ab4790 1797:The Astronomical Journal 1370:10.1103/PhysRev.112.1940 1114: 1068:, including that of the 795:emission are different. 331:Astrophysical conditions 58:electromagnetic spectrum 2347:10.1126/science.1108342 2217:2005ARA&A..43..625L 2174:10.1126/science.1068168 2033:2006A&A...448..597V 1980:2009A&A...494L...1P 1579:1997ARA&A..35D..13T 1528:Physical Review Letters 1509:1995A&A...300..843T 1442:Applied Physics Letters 1288:10.1023/A:1000892300429 1280:1997Ap&SS.252..279S 1046:Distance determinations 356:techniques, especially 142:population distribution 129:difference between two 2062:Gray, Malcolm (2012). 1934:10.1093/astrog/38.4.22 1080:trigonometric parallax 972: 934:giant molecular clouds 891: 729:brightness temperature 405:emission in 1970, and 317:electrical engineering 106:, the emission from a 38: 987:Extragalactic sources 959: 922:Young stellar objects 878: 854:Planetary atmospheres 652:The amplification or 388:Historical background 348:in the gain medium. 304:generally call these 298:sub-millimeter masers 201:superradiant emission 23:on the north pole of 19: 1891:"A Masing Hale-Bopp" 1701:Astrophysical masers 1319:Biographical Memoirs 911:Star-forming regions 826:The impact of comet 748:is greater than the 614:improve this section 2457:2005MNRAS.356..958M 2400:2003ApJ...598.1061H 2339:2005Sci...307.1440B 2286:1999Natur.400..539H 2156:2002Sci...296.2350W 2113:2005ApJS..160..220F 2076:2012msa..book.....G 2070:. pp. 218–30. 1907:1997IrAJ...24...95G 1864:1995DPS....27.2802C 1819:2019AJ....158..208G 1762:2012ApJ...758L..33M 1661:2010PhRvL.105e3901C 1540:1969PhRvL..22..679S 1454:1994ApPhL..65.1865K 1417:1999MNRAS.310.1153G 1361:1958PhRv..112.1940S 1108:Interstellar medium 1064:of galaxies in the 979:that interact with 971:with maser emission 924:and (ultra)compact 871:Stellar atmospheres 754:kinetic temperature 373:centres of galaxies 233:advocated that the 77:stellar atmospheres 43:astrophysical maser 977:supernova remnants 973: 952:Supernova remnants 901:astronomical units 892: 879:Pulsations of the 837:extrasolar planets 799:Maser environments 273:, even though the 131:quantum-mechanical 81:interstellar space 39: 2323:(5714): 1440–43. 2150:(5577): 2350–54. 1948:"3and12mm_masers" 1448:(15): 1865–1867. 1329:978-0-309-08699-8 1070:Triangulum Galaxy 1039:Maser variability 993:Magellanic Clouds 969:supernova remnant 863:Planetary systems 673:Rapid variability 650: 649: 642: 296:might call these 292:regime, although 2511: 2479: 2478: 2468: 2450: 2448:astro-ph/0501649 2426: 2420: 2419: 2393: 2391:astro-ph/0308256 2373: 2367: 2366: 2332: 2330:astro-ph/0503058 2312: 2306: 2305: 2279: 2277:astro-ph/9907013 2270:(6744): 539–41. 2259: 2253: 2252: 2250: 2249: 2235: 2229: 2228: 2200: 2194: 2193: 2167: 2139: 2133: 2132: 2106: 2104:astro-ph/0505148 2086: 2080: 2079: 2059: 2053: 2052: 2026: 2024:astro-ph/0510452 2006: 2000: 1999: 1958: 1952: 1951: 1944: 1938: 1937: 1917: 1911: 1910: 1886: 1880: 1874: 1868: 1867: 1847: 1841: 1840: 1830: 1812: 1788: 1782: 1781: 1755: 1734: 1728: 1715: 1709: 1708: 1706: 1695: 1689: 1688: 1654: 1636: 1627: 1621: 1620: 1614: 1605: 1599: 1598: 1573:(1): xiii–xliv. 1558: 1552: 1551: 1519: 1513: 1512: 1492: 1486: 1485: 1483: 1472: 1466: 1465: 1462:10.1063/1.112865 1437: 1431: 1430: 1428: 1396: 1390: 1381: 1375: 1374: 1372: 1355:(6): 1940–1949. 1340: 1334: 1333: 1306: 1300: 1299: 1263: 1249:. 1992 30 75–112 1244: 1234:Cohen R.J. Rep. 1233: 1222: 1214:Astrophys. Lett. 1211: 1200: 1189: 1178: 1167: 1156: 1145: 1134: 1123: 1021:Ongoing research 981:molecular clouds 930:molecular clouds 828:Shoemaker-Levy 9 770:circular fashion 716:competitive gain 645: 638: 634: 631: 625: 594: 586: 448:Evidence for an 428:in comet halos. 407:silicon monoxide 337:Doppler shifting 308:or specifically 197:lasing threshold 170:oscillator-based 62:molecular clouds 37: 29:cyclotron masers 2519: 2518: 2514: 2513: 2512: 2510: 2509: 2508: 2494:Radio astronomy 2484: 2483: 2482: 2427: 2423: 2374: 2370: 2313: 2309: 2260: 2256: 2247: 2245: 2237: 2236: 2232: 2201: 2197: 2165:10.1.1.524.2946 2140: 2136: 2087: 2083: 2060: 2056: 2007: 2003: 1959: 1955: 1950:. 20 July 2022. 1946: 1945: 1941: 1918: 1914: 1887: 1883: 1875: 1871: 1848: 1844: 1789: 1785: 1735: 1731: 1724:(2): L33 arXiv: 1716: 1712: 1704: 1696: 1692: 1634: 1628: 1624: 1612: 1606: 1602: 1559: 1555: 1534:(13): 679–681. 1520: 1516: 1493: 1489: 1481: 1473: 1469: 1438: 1434: 1397: 1393: 1382: 1378: 1349:Physical Review 1341: 1337: 1330: 1314:Townes, Charles 1307: 1303: 1264: 1260: 1256: 1238:1989 52 881–943 1117: 1104: 1096:magnetic dipole 1088: 1048: 1036: 1027:radio astronomy 1023: 989: 954: 919: 913: 896:late-type stars 873: 865: 856: 806: 801: 762: 724: 722:High brightness 703: 687: 675: 662: 646: 635: 629: 626: 611: 595: 584: 578: 549: 535: 528: 523: 514: 505: 485: 473: 463: 418:late-type stars 390: 385: 354:interferometric 333: 300:and laboratory 259:astrophysicists 228:optical masers. 165: 100: 95: 89: 56:portion of the 31: 12: 11: 5: 2517: 2507: 2506: 2504:Astrochemistry 2501: 2496: 2481: 2480: 2421: 2408:10.1086/379062 2384:(2): 1061–75. 2368: 2307: 2254: 2230: 2195: 2134: 2121:10.1086/431669 2081: 2054: 2017:(2): 597–611. 2001: 1953: 1939: 1912: 1881: 1869: 1842: 1783: 1729: 1710: 1690: 1622: 1600: 1553: 1514: 1487: 1467: 1432: 1391: 1376: 1335: 1328: 1301: 1257: 1255: 1252: 1251: 1250: 1239: 1228: 1217: 1206: 1195: 1184: 1173: 1162: 1151: 1140: 1129: 1116: 1113: 1112: 1111: 1103: 1100: 1087: 1084: 1047: 1044: 1035: 1032: 1022: 1019: 1011:can result in 988: 985: 953: 950: 917:Star formation 915:Main article: 912: 909: 872: 869: 864: 861: 855: 852: 805: 802: 800: 797: 786:magnetic-state 774:linear fashion 761: 758: 723: 720: 702: 699: 686: 685:Line narrowing 683: 674: 671: 661: 658: 648: 647: 598: 596: 589: 583: 580: 576: 575: 570: 563: 557: 551: 547: 544: 541: 538: 533: 529: 526: 521: 517: 512: 508: 503: 499: 494: 484: 481: 472: 469: 461: 389: 386: 384: 381: 346:magnetic field 332: 329: 231:Charles Townes 205:regeneratively 164: 161: 99: 96: 91:Main article: 88: 85: 9: 6: 4: 3: 2: 2516: 2505: 2502: 2500: 2497: 2495: 2492: 2491: 2489: 2476: 2472: 2467: 2462: 2458: 2454: 2449: 2444: 2441:(3): 958–62. 2440: 2436: 2432: 2425: 2417: 2413: 2409: 2405: 2401: 2397: 2392: 2387: 2383: 2379: 2372: 2364: 2360: 2356: 2352: 2348: 2344: 2340: 2336: 2331: 2326: 2322: 2318: 2311: 2303: 2299: 2295: 2294:10.1038/22972 2291: 2287: 2283: 2278: 2273: 2269: 2265: 2258: 2244: 2240: 2234: 2226: 2222: 2218: 2214: 2211:(1): 625–76. 2210: 2206: 2199: 2191: 2187: 2183: 2179: 2175: 2171: 2166: 2161: 2157: 2153: 2149: 2145: 2138: 2130: 2126: 2122: 2118: 2114: 2110: 2105: 2100: 2097:(1): 220–71. 2096: 2092: 2085: 2077: 2073: 2069: 2065: 2058: 2050: 2046: 2042: 2038: 2034: 2030: 2025: 2020: 2016: 2012: 2005: 1997: 1993: 1989: 1985: 1981: 1977: 1973: 1969: 1965: 1957: 1949: 1943: 1935: 1931: 1927: 1923: 1916: 1908: 1904: 1900: 1896: 1892: 1885: 1878: 1873: 1865: 1861: 1857: 1853: 1846: 1838: 1834: 1829: 1824: 1820: 1816: 1811: 1806: 1802: 1798: 1794: 1787: 1779: 1775: 1771: 1767: 1763: 1759: 1754: 1749: 1745: 1741: 1733: 1727: 1723: 1720: 1714: 1703: 1702: 1694: 1686: 1682: 1678: 1674: 1670: 1666: 1662: 1658: 1653: 1648: 1645:(5): 053901. 1644: 1640: 1633: 1626: 1618: 1611: 1604: 1596: 1592: 1588: 1584: 1580: 1576: 1572: 1568: 1564: 1557: 1549: 1545: 1541: 1537: 1533: 1529: 1525: 1518: 1510: 1506: 1502: 1498: 1491: 1480: 1479: 1471: 1463: 1459: 1455: 1451: 1447: 1443: 1436: 1427: 1422: 1418: 1414: 1410: 1406: 1402: 1395: 1388: 1385: 1380: 1371: 1366: 1362: 1358: 1354: 1350: 1346: 1339: 1331: 1325: 1321: 1320: 1315: 1311: 1305: 1297: 1293: 1289: 1285: 1281: 1277: 1273: 1269: 1262: 1258: 1248: 1243: 1240: 1237: 1232: 1229: 1226: 1225:Astrophys. J. 1221: 1218: 1215: 1210: 1207: 1204: 1203:Astrophys. J. 1199: 1196: 1193: 1188: 1185: 1182: 1177: 1174: 1171: 1170:Astrophys. J. 1166: 1163: 1160: 1159:Astrophys. J. 1155: 1152: 1149: 1144: 1141: 1138: 1133: 1130: 1127: 1122: 1119: 1118: 1109: 1106: 1105: 1099: 1097: 1092: 1083: 1081: 1077: 1073: 1071: 1067: 1063: 1062:proper motion 1059: 1054: 1053:Doppler shift 1043: 1040: 1031: 1028: 1018: 1016: 1015: 1010: 1006: 1002: 998: 994: 984: 982: 978: 970: 966: 962: 958: 949: 947: 943: 939: 935: 931: 927: 923: 918: 908: 904: 902: 897: 889: 885: 882: 881:Mira variable 877: 868: 860: 851: 849: 845: 840: 838: 833: 829: 824: 822: 818: 814: 810: 796: 794: 789: 788:transitions. 787: 783: 779: 778:Zeeman effect 775: 771: 767: 757: 755: 751: 747: 743: 739: 735: 731: 730: 719: 717: 713: 709: 698: 696: 692: 682: 680: 670: 668: 657: 655: 644: 641: 633: 623: 619: 615: 609: 608: 604: 599:This section 597: 593: 588: 587: 579: 574: 571: 568: 564: 561: 558: 555: 552: 545: 542: 539: 537: 530: 524: 518: 516: 509: 507: 500: 498: 495: 493: 490: 489: 488: 480: 478: 468: 467: 459: 455: 451: 446: 444: 439: 437: 436: 429: 427: 423: 419: 414: 412: 408: 404: 399: 395: 380: 378: 374: 370: 366: 365:stellar birth 361: 359: 355: 349: 347: 342: 338: 328: 326: 322: 318: 314: 312: 307: 303: 299: 295: 291: 287: 282: 280: 276: 272: 268: 264: 261:use the term 260: 256: 252: 248: 244: 240: 236: 232: 229: 225: 221: 218:to stand for 217: 212: 210: 206: 202: 198: 194: 190: 186: 180: 178: 174: 171: 160: 158: 154: 150: 147: 143: 140: 136: 132: 128: 124: 123:corresponding 121: 117: 113: 109: 105: 94: 84: 82: 78: 74: 71: 67: 63: 59: 55: 51: 50:spectral line 48: 44: 35: 30: 26: 22: 18: 2438: 2434: 2424: 2381: 2377: 2371: 2320: 2316: 2310: 2267: 2263: 2257: 2246:. Retrieved 2242: 2233: 2208: 2204: 2198: 2147: 2143: 2137: 2094: 2090: 2084: 2063: 2057: 2014: 2010: 2004: 1974:(2): L1–L4. 1971: 1967: 1956: 1942: 1928:(4): 22–23. 1925: 1921: 1915: 1898: 1894: 1884: 1872: 1855: 1851: 1845: 1800: 1796: 1786: 1743: 1739: 1732: 1721: 1718: 1713: 1707:, p. 10 1700: 1693: 1642: 1638: 1625: 1616: 1603: 1570: 1566: 1556: 1531: 1527: 1517: 1500: 1496: 1490: 1477: 1470: 1445: 1441: 1435: 1408: 1404: 1394: 1384:C. H. Townes 1379: 1352: 1348: 1338: 1318: 1304: 1271: 1267: 1261: 1246: 1242: 1235: 1231: 1224: 1220: 1213: 1209: 1205:192 L97–100 1202: 1198: 1191: 1187: 1180: 1176: 1169: 1165: 1158: 1154: 1147: 1143: 1136: 1132: 1125: 1121: 1093: 1089: 1074: 1049: 1038: 1037: 1024: 1012: 990: 974: 946:formaldehyde 928:embedded in 926:H II regions 920: 905: 893: 866: 857: 841: 825: 812: 807: 790: 766:polarisation 763: 760:Polarisation 727: 725: 715: 711: 707: 704: 688: 676: 666: 663: 653: 651: 636: 630:January 2021 627: 612:Please help 600: 577: 486: 477:far infrared 474: 465: 458:formaldehyde 449: 447: 440: 433: 430: 426:Solar System 415: 410: 393: 391: 362: 350: 341:polarisation 334: 320: 309: 305: 297: 285: 283: 278: 262: 246: 242: 238: 234: 227: 223: 219: 215: 213: 188: 181: 176: 169: 166: 163:Nomenclature 115: 101: 42: 40: 1677:10220/18341 1411:(4): 1153. 1387:Nobel Prize 1310:Chu, Steven 1274:: 279–287. 1236:Prog. Phys. 1194:163 1055–57 1172:162 L203–10 1139:213 1109–10 1086:Open issues 1066:Local Group 1034:Variability 997:black holes 782:anisotropic 708:unsaturated 450:anti-pumped 422:OH/IR stars 377:black holes 375:containing 294:astronomers 271:micrometres 255:vibrational 177:single-pass 139:non-thermal 73:atmospheres 2488:Categories 2248:2024-01-07 2239:"M2O Home" 1810:1909.11089 1803:(5): 208. 1746:(2): L33. 1254:References 1227:260 L49–52 1161:189 L31–33 1014:megamasers 844:hydroxides 742:dissociate 734:black body 701:Saturation 695:Lorentzian 556:, SiO, SiO 306:gas lasers 302:physicists 267:wavelength 251:rotational 237:stand for 207:amplified 112:stimulated 87:Background 47:stimulated 2416:120692205 2302:204995005 2160:CiteSeerX 2129:119406933 1996:122403004 1837:202750405 1753:1209.1590 1652:1003.4968 1595:0066-4146 1296:115181195 1247:Astrophys 1183:161 778–9 1150:221 626–8 1128:208 29–31 963:image of 884:S Orionis 848:Hale-Bopp 793:megamaser 712:saturated 601:does not 471:Detection 435:megamaser 383:Discovery 321:microwave 290:terahertz 284:The term 269:of a few 220:microwave 195:or unmet 153:coherence 120:frequency 70:planetary 54:microwave 27:generate 2475:14787000 2363:28172780 2355:15746420 2243:M2O Home 2190:46009823 2182:12089433 2049:17385266 1778:26146516 1685:20867918 1216:15 211–5 1102:See also 1058:NGC 4258 1007:or in a 938:methanol 691:Gaussian 679:velocity 420:, named 403:methanol 398:McKellar 371:and the 360:(VLBI). 239:molecule 209:Ti:Sapph 193:feedback 146:resonant 2453:Bibcode 2396:Bibcode 2335:Bibcode 2317:Science 2282:Bibcode 2213:Bibcode 2152:Bibcode 2144:Science 2109:Bibcode 2072:Bibcode 2029:Bibcode 1976:Bibcode 1903:Bibcode 1860:Bibcode 1815:Bibcode 1758:Bibcode 1657:Bibcode 1575:Bibcode 1536:Bibcode 1505:Bibcode 1503:: 843. 1450:Bibcode 1413:Bibcode 1389:lecture 1357:Bibcode 1276:Bibcode 1192:Science 1181:Science 942:ammonia 832:Jupiter 821:methane 817:ammonia 667:beaming 660:Beaming 622:removed 607:sources 567:MWC 349 311:alcohol 137:into a 125:to the 102:Like a 25:Jupiter 21:Aurorae 2473:  2414:  2361:  2353:  2300:  2264:Nature 2188:  2180:  2162:  2127:  2047:  1994:  1901:: 97. 1835:  1776:  1683:  1593:  1326:  1294:  1148:Nature 1137:Nature 1126:Nature 1001:parsec 965:IC 443 888:masers 819:, and 809:Comets 804:Comets 565:H (in 466:et al. 411:masers 394:et al. 313:lasers 279:lasers 275:optics 263:iraser 173:lasers 149:cavity 135:pumped 127:energy 116:seeded 66:comets 34:Hubble 2471:S2CID 2443:arXiv 2412:S2CID 2386:arXiv 2359:S2CID 2325:arXiv 2298:S2CID 2272:arXiv 2186:S2CID 2125:S2CID 2099:arXiv 2045:S2CID 2019:arXiv 1992:S2CID 1833:S2CID 1805:arXiv 1774:S2CID 1748:arXiv 1705:(PDF) 1647:arXiv 1635:(PDF) 1613:(PDF) 1482:(PDF) 1292:S2CID 1115:Notes 890:(ESO) 830:with 562:, HCN 540:HNCNH 454:dasar 369:death 286:taser 247:maser 243:laser 224:maser 108:maser 104:laser 93:maser 2351:PMID 2178:PMID 1681:PMID 1591:ISSN 1324:ISBN 1076:VLBI 1005:disk 967:, a 961:WISE 944:and 932:and 813:e.g. 750:bond 726:The 654:gain 605:any 603:cite 525:, NH 367:and 175:and 157:mode 155:and 114:(or 2461:doi 2439:356 2404:doi 2382:598 2343:doi 2321:307 2290:doi 2268:400 2221:doi 2170:doi 2148:296 2117:doi 2095:160 2037:doi 2015:448 1984:doi 1972:494 1930:doi 1823:doi 1801:158 1766:doi 1744:758 1722:758 1673:hdl 1665:doi 1643:105 1583:doi 1544:doi 1501:300 1458:doi 1421:doi 1409:310 1365:doi 1353:112 1284:doi 1272:252 1009:jet 693:or 616:by 560:HCN 554:SiO 543:SiS 325:GHz 281:. 253:or 222:in 189:ASE 187:or 110:is 41:An 2490:: 2469:. 2459:. 2451:. 2437:. 2433:. 2410:. 2402:. 2394:. 2380:. 2357:. 2349:. 2341:. 2333:. 2319:. 2296:. 2288:. 2280:. 2266:. 2241:. 2219:. 2209:43 2207:. 2184:. 2176:. 2168:. 2158:. 2146:. 2123:. 2115:. 2107:. 2093:. 2066:. 2043:. 2035:. 2027:. 2013:. 1990:. 1982:. 1970:. 1966:. 1926:38 1924:. 1899:24 1897:. 1893:. 1858:. 1856:27 1854:. 1831:. 1821:. 1813:. 1799:. 1795:. 1772:. 1764:. 1756:. 1742:. 1679:. 1671:. 1663:. 1655:. 1641:. 1637:. 1615:. 1589:. 1581:. 1571:35 1569:. 1565:. 1542:. 1532:22 1530:. 1526:. 1499:. 1456:. 1446:65 1444:. 1419:. 1407:. 1403:. 1363:. 1351:. 1347:. 1312:; 1290:. 1282:. 1270:. 1072:. 983:. 850:. 839:. 746:kT 718:. 669:. 573:CS 546:HC 536:OH 532:CH 520:NH 506:CO 497:CH 492:OH 460:(H 445:. 83:. 75:, 68:, 64:, 2477:. 2463:: 2455:: 2445:: 2418:. 2406:: 2398:: 2388:: 2365:. 2345:: 2337:: 2327:: 2304:. 2292:: 2284:: 2274:: 2251:. 2227:. 2223:: 2215:: 2192:. 2172:: 2154:: 2131:. 2119:: 2111:: 2101:: 2078:. 2074:: 2051:. 2039:: 2031:: 2021:: 1998:. 1986:: 1978:: 1936:. 1932:: 1909:. 1905:: 1866:. 1862:: 1839:. 1825:: 1817:: 1807:: 1780:. 1768:: 1760:: 1750:: 1687:. 1675:: 1667:: 1659:: 1649:: 1619:. 1597:. 1585:: 1577:: 1550:. 1546:: 1538:: 1511:. 1507:: 1464:. 1460:: 1452:: 1429:. 1423:: 1415:: 1373:. 1367:: 1359:: 1332:. 1298:. 1286:: 1278:: 744:( 738:K 643:) 637:( 632:) 628:( 624:. 610:. 569:) 550:N 548:3 534:3 527:3 522:3 515:O 513:2 511:H 504:2 502:H 462:2 452:( 235:m 216:m 36:) 32:(

Index


Aurorae
Jupiter
cyclotron masers
Hubble
stimulated
spectral line
microwave
electromagnetic spectrum
molecular clouds
comets
planetary
atmospheres
stellar atmospheres
interstellar space
maser
laser
maser
stimulated
frequency
corresponding
energy
quantum-mechanical
pumped
non-thermal
population distribution
resonant
cavity
coherence
mode

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.