Knowledge

Axicon

Source 📝

86: 20: 200:. In these experiments, laser radiation is focused on the surfaces in a concentric ring. The laser pulse generates concentric surface acoustic waves, with amplitude that reaches a maximum in the center of the ring. This approach makes it possible to study mechanical properties of materials under extreme conditions. 93:
There are two areas of interest for a variety of applications: a long range with an almost constant intensity distribution (a) and a ring-shaped distant field intensity distribution (b). The distance (a) depends on the angle α of the Axicon and the diameter (ØEP) of the incident beam. The diameter of
259:
describes axicon use in optical tweezers, which are commonly used for manipulating microscopic particles such as cells and colloids. The tweezers use lasers with a Bessel beam profile produced by illuminating an axicon with a Gaussian beam, which can trap several particles along the beam's axis.
39:
surface. An axicon transforms a laser beam into a ring shaped distribution. They can be convex or concave and be made of any optical material. The combination with other axicons or lenses allows a wide variety of beam patterns to be generated. It can be used to turn a
353: 175:
The reflective axicon or "reflaxicon" was described in 1973 by W. R. Edmonds. The reflaxicon uses a pair of coaxial, conical reflecting surfaces to duplicate the functionality of the transmissive axicon. The use of reflection rather than transmission improves the
196:
In research at Physikalisch-Chemisches-Institut, Heidelberg, Germany, axicon lenses have been used in laser diagnostics of mechanical properties of thin films and solids by
197: 82:
over a certain range. This special feature results from the generation of (non-diffracting) Bessel-like beams with properties mainly determined by the Axicon angle α.
414:
Green, S. Z.; Adli, E.; Clarke, C. I.; Corde, S.; Edstrom, S. A.; Fisher, A. S.; Frederico, J.; Frisch, J. C.; Gessner, S.; Gilevich, S.; Hering, P. (2014-07-22).
94:
the annular distant field intensity distribution (b) is proportional to the length l. The width of the ring is about half the diameter of the incident beam.
124:
tissue. Using a combination of positive and negative axicons, the diameter of the ring of light can be adjusted to obtain the best performance.
204: 306: 110:, without making any adjustments. It can be used to simultaneously view two or more small sources placed along the line of sight. 70:
The Axicon is usually characterized by the ratio of the diameter of the ring to the distance from the lens tip to image plane d/l.
463: 491: 106:
is replaced by an axicon. Such a telescope can be simultaneously in focus for targets at distances from less than a meter to
207:
to focus a parallel beam into a beam with long focus depth and a highly confined lateral spot, to develop a novel
78:
Single axicons are usually used to generate an annular light distribution which is laterally constant along the
280: 208: 215: 505:
Edmonds, W.R. (1973). "The Reflaxicon, a New Reflective Optical Element, and Some Applications".
223: 244:
and beam switches, out of hollow laser beams. These beams, made using axicons, provide an ideal
252: 233: 177: 85: 60: 514: 427: 388: 321: 181: 307:"Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam" 8: 185: 117:. Their ability to focus a laser beam into a ring is useful in surgery for smoothing and 518: 440: 431: 415: 392: 325: 305:
Garcés-Chåvez, V.; McGloin, D.; Melville, H.; Sibbett, W.; Dholakia, K. (Sep 12, 2002).
345: 148: 103: 530: 445: 337: 219: 114: 64: 548: 131:. The ring of light creates attractive and repulsive forces which can trap and hold 522: 435: 396: 349: 329: 128: 56: 581: 229: 153: 36: 136: 575: 449: 241: 132: 41: 32: 534: 400: 341: 245: 79: 526: 237: 52: 45: 333: 102:
One application of axicons is in telescopes, where the usual spherical
379:
McLeod, John H. (1954). "The axicon: A new type of optical element".
304: 164: 118: 107: 464:"Various beam shaping applications utilizing axicons | asphericon" 48:-like beam. Axicons were first proposed in 1954 by John McLeod. 121: 19: 218:. Their goal is to determine the effects of axicons on the 73: 413: 286:. University of Arizona College of Optical Sciences 573: 214:Inphase Technologies researchers use axicons in 203:Axicons have been used by the research team at 67:in cases where a ring-shaped spot is useful. 251:An article published by the research team at 23:Diagram of Axicon and resulting Bessel Beam 205:Beckman Laser Institute and Medical Clinic 89:Creation of Bessel beams through an axicon 439: 416:"Laser ionized preformed plasma at FACET" 486: 484: 374: 372: 370: 368: 366: 274: 272: 84: 74:Special features and Bessel beam shaping 18: 504: 574: 378: 278: 481: 363: 269: 420:Plasma Physics and Controlled Fusion 222:of random binary data spectrum of a 255:in the UK in the Sept. 12 issue of 236:is focused on creating elements of 16:Special lens with a conical surface 13: 188:compared to conventional axicons. 14: 593: 161:Gradient index, grating axicons 97: 541: 498: 456: 407: 298: 170: 1: 492:"An In-Depth Look at Axicons" 441:10.1088/0741-3335/56/8/084011 263: 209:optical coherence tomography 158:Breakdown in light filaments 7: 191: 139:in the center of the ring. 10: 598: 198:surface-wave spectroscopy 186:group velocity dispersion 127:Axicons are also used in 31:is a specialized type of 279:Mallik, Proteep (2005). 248:to channel cold atoms. 216:holographic data storage 142: 224:spatial light modulator 113:Axicons can be used in 44:into a non-diffractive 401:10.1364/JOSA.44.000592 359:on September 19, 2006. 253:St. Andrews University 234:University of Maryland 232:research group at the 230:Wendell T. Hill, III's 90: 61:wakefield accelerators 24: 88: 22: 527:10.1364/AO.12.001940 494:. Edmund Optics Inc. 220:Fourier distribution 182:chromatic aberration 51:Axicons are used in 519:1973ApOpt..12.1940E 432:2014PPCF...56h4011G 393:1954JOSA...44..592M 334:10.1038/nature01007 326:2002Natur.419..145G 149:Solar concentrators 63:. They are used in 55:and for generating 91: 25: 115:laser eye surgery 589: 567: 566: 564: 562: 553: 545: 539: 538: 502: 496: 495: 488: 479: 478: 476: 475: 460: 454: 453: 443: 411: 405: 404: 376: 361: 360: 358: 352:. Archived from 311: 302: 296: 295: 293: 291: 285: 276: 178:damage threshold 154:Laser resonators 129:optical trapping 597: 596: 592: 591: 590: 588: 587: 586: 572: 571: 570: 560: 558: 556:dmphotonics.com 551: 547: 546: 542: 503: 499: 490: 489: 482: 473: 471: 462: 461: 457: 412: 408: 381:J. Opt. Soc. Am 377: 364: 356: 320:(6903): 145–7. 309: 303: 299: 289: 287: 283: 277: 270: 266: 194: 173: 145: 100: 76: 17: 12: 11: 5: 595: 585: 584: 569: 568: 540: 507:Applied Optics 497: 480: 455: 406: 362: 297: 267: 265: 262: 242:beam splitters 211:(OCT) system. 193: 190: 172: 169: 168: 167: 162: 159: 156: 151: 144: 141: 133:microparticles 99: 96: 75: 72: 15: 9: 6: 4: 3: 2: 594: 583: 580: 579: 577: 557: 550: 544: 536: 532: 528: 524: 520: 516: 513:(8): 1940–5. 512: 508: 501: 493: 487: 485: 469: 465: 459: 451: 447: 442: 437: 433: 429: 426:(8): 084011. 425: 421: 417: 410: 402: 398: 394: 390: 386: 382: 375: 373: 371: 369: 367: 355: 351: 347: 343: 339: 335: 331: 327: 323: 319: 315: 308: 301: 282: 275: 273: 268: 261: 258: 254: 249: 247: 243: 239: 235: 231: 227: 225: 221: 217: 212: 210: 206: 201: 199: 189: 187: 183: 179: 166: 163: 160: 157: 155: 152: 150: 147: 146: 140: 138: 134: 130: 125: 123: 120: 116: 111: 109: 105: 95: 87: 83: 81: 71: 68: 66: 62: 58: 54: 49: 47: 43: 42:Gaussian beam 38: 34: 30: 21: 559:. Retrieved 555: 543: 510: 506: 500: 472:. Retrieved 470:. 2017-04-26 467: 458: 423: 419: 409: 384: 380: 354:the original 317: 313: 300: 288:. Retrieved 281:"The Axicon" 256: 250: 246:optical trap 228: 213: 202: 195: 174: 165:Illumination 126: 112: 101: 98:Applications 92: 80:optical axis 77: 69: 53:atomic traps 50: 28: 26: 290:12 December 238:atom optics 171:Reflaxicons 65:eye surgery 35:that has a 561:18 January 474:2020-11-24 468:asphericon 387:(8): 592. 264:References 240:, such as 450:0741-3335 104:objective 576:Category 549:"Axicon" 535:20125635 342:12226659 192:Research 119:ablating 108:infinity 515:Bibcode 428:Bibcode 389:Bibcode 350:4426776 322:Bibcode 226:(SLM). 122:corneal 37:conical 582:Lenses 533:  448:  348:  340:  314:Nature 257:Nature 184:, and 57:plasma 46:Bessel 29:axicon 552:(PDF) 357:(PDF) 346:S2CID 310:(PDF) 284:(PDF) 143:Other 137:cells 563:2015 531:PMID 446:ISSN 338:PMID 292:2014 135:and 33:lens 523:doi 436:doi 397:doi 330:doi 318:419 59:in 27:An 578:: 554:. 529:. 521:. 511:12 509:. 483:^ 466:. 444:. 434:. 424:56 422:. 418:. 395:. 385:44 383:. 365:^ 344:. 336:. 328:. 316:. 312:. 271:^ 180:, 565:. 537:. 525:: 517:: 477:. 452:. 438:: 430:: 403:. 399:: 391:: 332:: 324:: 294:.

Index


lens
conical
Gaussian beam
Bessel
atomic traps
plasma
wakefield accelerators
eye surgery
optical axis
Creation of Bessel beams through an axicon
objective
infinity
laser eye surgery
ablating
corneal
optical trapping
microparticles
cells
Solar concentrators
Laser resonators
Illumination
damage threshold
chromatic aberration
group velocity dispersion
surface-wave spectroscopy
Beckman Laser Institute and Medical Clinic
optical coherence tomography
holographic data storage
Fourier distribution

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑