Knowledge

Bessel beam

Source đź“ť

237:, non-diffracting (or propagation-invariant) beams have been utilised to produce very long and uniform light-sheets which do not change size significantly across their length. The self-healing property of Bessel beams has also shown to give improved image quality at depth as the beam shape is less distorted after travelling through scattering tissue than a Gaussian beam. Bessel beam based light-sheet microscopy was first demonstrated in 2010 but many variations have followed since. In 2018, it was shown that the use of attenuation-compensation could be applied to Bessel beam based light-sheet microscopy and could enable imaging at greater depths within biological specimens. 40: 48: 28: 20: 219:
and Bessel beam, is the ability to control the longitudinal intensity envelope of the beam without significantly altering the other characteristics of the beam. This can be used to create Bessel beams which grow in intensity as they travel and can be used to counteract losses, therefore maintaining a
201:
In 2012 it was theoretically proven and experimentally demonstrated that, with a special manipulation of their initial phase, Bessel beams can be made to accelerate along arbitrary trajectories in free space. These beams can be considered as hybrids that combine the symmetric profile of a standard
175:
in cylindrical coordinates. The fundamental zero-order Bessel beam has an amplitude maximum at the origin, while a high-order Bessel beam (HOBB) has an axial phase singularity along the beam axis; the amplitude is zero there. HOBBs can be of vortex (helicoidal) or non-vortex types.
206:
and its counterparts. Previous efforts to produce accelerating Bessel beams included beams with helical and sinusoidal trajectories as well as the early effort for beams with piecewise straight trajectories.
193:
Mathieu beams and parabolic (Weber) beams are other types of non-diffractive beams that have the same non-diffractive and self-healing properties of Bessel beams but different transverse structures.
215:
Beams may encounter losses as they travel through materials which will cause attenuation of the beam intensity. A property common to non-diffracting (or propagation-invariant) beams, such as the
924:
Mitri, F. G.; Fellah, Z. E. A. (2008). "Theory of the acoustic radiation force exerted on a sphere by standing and quasistanding zero-order Bessel beam tweezers of variable half-cone angles".
1151: 971: 926: 750: 1813:
Nylk, Jonathan; McCluskey, Kaley; Preciado, Miguel A.; Mazilu, Michael; Yang, Zhengyi; Gunn-Moore, Frank J.; Aggarwal, Sanya; Tello, Javier A.; Ferrier, David E. K. (2018-04-01).
1564:
Morris, J. E.; Čižmár, T.; Dalgarno, H. I. C.; Marchington, R. F.; Gunn-Moore, F. J.; Dholakia, K. (2010). "Realization of curved Bessel beams: propagation around obstructions".
1884:
Mikutis, M.; Kudrius, T.; Ĺ lekys, G.; Paipulas, D.; Juodkazis, S. (2013). "High 90% efficiency Bragg gratings formed in fused silica by femtosecond Gauss-Bessel laser beams".
262:
Garcés-Chávez, V.; McGloin, D.; Melville, H.; Sibbett, W.; Dholakia, K. (2002). "Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam".
133: 1014:
Mitri, F. G. (2009). "Acoustic radiation force on an air bubble and soft fluid spheres in ideal liquids: Example of a high-order Bessel beam of quasi-standing waves".
1664:
Zamboni-Rached, Michel (2004-08-23). "Stationary optical wave fields with arbitrary longitudinal shape by superposing equal frequency Bessel beams: Frozen Waves".
152:
by the dielectric particles being tweezed. Similarly, particle manipulation with acoustical tweezers was achieved with a Bessel beam that scatters and produces a
83:
and spread out; this is in contrast to the usual behavior of light (or sound), which spreads out after being focused down to a small spot. Bessel beams are also
106:
applications because they exhibit little or no diffraction over a limited distance. Approximations to Bessel beams are made in practice either by focusing a
245:
Bessel beams are a good candidate for the selectively trapping because of the concentric circles of pressure maximum and minimum in the transverse planes.
1241: 1196: 1067:
Mitri, F. G. (2009). "Negative axial radiation force on a fluid and elastic spheres illuminated by a high-order Bessel beam of progressive waves".
832: 705: 1149:
Mitri, F. G. (2009). "Equivalence of expressions for the acoustic scattering of a progressive high-order bessel beam by an elastic sphere".
148:, as a narrow Bessel beam will maintain its required property of tight focus over a relatively long section of beam and even when partially 665: 1566: 1943:
Ultrasound (zeroth-order) Bessel beam profile - Front cover image (April 2002 Issue of the IEEE Trans. Ultrason. Ferr. Freq. Ctrl.)
79:
waves can all be in the form of Bessel beams. A true Bessel beam is non-diffractive. This means that as it propagates, it does not
1325:
Bowlan, P.; et al. (2009). "Measurement of the Spatiotemporal Electric Field of Ultrashort Superluminal Bessel-X Pulses".
887:
Mitri, F. G. (2008). "Acoustic radiation force on a sphere in standing and quasi-standing zero-order Bessel beam tweezers".
234: 164: 60: 1942: 1286:"Linear axial scattering of an acoustical high-order Bessel trigonometric beam by compressible soft fluid spheres" 1194:
Marston, P. L. (2006). "Axial radiation force of a Bessel beam on a sphere and direction reversal of the force".
1016: 506:
JimĂ©nez, N.; et al. (2016). "Formation of high-order acoustic Bessel beams by spiral diffraction gratings".
1370:
Bandres, M. A.; Gutiérrez-Vega, J. C.; Chávez-Cerda, S. (2004). "Parabolic nondiffracting optical wave fields".
64: 87:, meaning that the beam can be partially obstructed at one point, but will re-form at a point further down the 156:
resulting from the exchange of acoustic momentum between the wave-field and a particle placed along its path.
969:
Mitri, F. G. (2009). "Langevin acoustic radiation force of a high-order bessel beam on a rigid sphere".
1519:
Jarutis, V.; Matijošius, A.; DiTrapani, P.; Piskarskas, A. (2009). "Spiraling zero-order Bessel beam".
1290: 1886: 1327: 451:
JimĂ©nez, N.; et al. (2014). "Acoustic Bessel-like beam formation by an axisymmetric grating".
98:, a true Bessel beam cannot be created, as it is unbounded and would require an infinite amount of 1633: 1931: 365: 1957: 1628: 1112:
Mitri, F. G. (2008). "Acoustic scattering of a high-order Bessel beam by an elastic sphere".
799: 168: 122: 1895: 1836: 1787: 1738: 1683: 1620: 1575: 1530: 1485: 1433: 1381: 1336: 1299: 1250: 1205: 1123: 1078: 1069: 1025: 898: 841: 714: 625: 584: 527: 472: 417: 374: 326: 317: 273: 1937: 693:
D. Baresch, J.L. Thomas, and R. Marchiano, Physical review letters, 2016, 116(2), 024301.
612:"Arbitrary scattering of an electromagnetic zero-order Bessel beam by a dielectric sphere" 8: 1587: 1469:"Observation of self-accelerating Bessel-like optical beams along arbitrary trajectories" 1090: 453: 118: 115: 1899: 1840: 1791: 1775: 1742: 1687: 1624: 1579: 1534: 1489: 1437: 1385: 1340: 1303: 1254: 1209: 1127: 1082: 1029: 902: 845: 718: 629: 588: 570: 531: 476: 421: 378: 330: 277: 1857: 1826: 1814: 1707: 1673: 1591: 1352: 1176: 1094: 1049: 996: 951: 775: 551: 517: 488: 462: 342: 297: 172: 153: 102:. Reasonably good approximations can be made, however, and these are important in many 72: 1862: 1756: 1699: 1646: 1595: 1546: 1501: 1468: 1449: 1416: 1397: 1356: 1266: 1221: 1168: 1114: 1098: 1041: 988: 943: 889: 869: 767: 748:
Silva, G. T. (2011). "Off-axis scattering of an ultrasound bessel beam by a sphere".
730: 641: 543: 508: 433: 390: 289: 187: 1711: 1180: 1053: 1000: 955: 795:"Off-axial acoustic scattering of a high-order Bessel vortex beam by a rigid sphere" 779: 555: 492: 484: 346: 1911: 1903: 1852: 1844: 1795: 1746: 1691: 1638: 1583: 1538: 1493: 1441: 1389: 1344: 1307: 1258: 1213: 1160: 1131: 1086: 1033: 980: 935: 906: 859: 849: 812: 808: 759: 722: 674: 633: 592: 575: 535: 480: 425: 382: 334: 301: 281: 264: 145: 1239:
Marston, P. L. (2009). "Radiation force of a helicoidal Bessel beam on a sphere".
828:"Multipole expansion of acoustical Bessel beams with arbitrary order and location" 408:
Cox, A.J.; D'Anna, Joseph (1992). "Constant-axial-intensity nondiffracting beam".
1815:"Light-sheet microscopy with attenuation-compensated propagation-invariant beams" 1037: 386: 338: 1611: 1521: 1476: 1424: 1372: 616: 539: 1135: 910: 864: 315:
McGloin, D.; Dholakia, K. (2005). "Bessel beams: diffraction in a new light".
149: 1951: 1799: 1348: 596: 107: 68: 1609:
Rosen, J.; Yariv, A. (1995). "Snake beam: a paraxial arbitrary focal line".
1164: 984: 763: 1934:
gizmag.com (switched Bessel beams used effectively in real-time microscopy)
1866: 1848: 1760: 1703: 1695: 1650: 1550: 1505: 1453: 1415:
Chremmos, I. D.; Chen, Z; Christodoulides, D. N.; Efremidis, N. K. (2012).
1401: 1270: 1225: 1172: 1045: 992: 947: 873: 771: 734: 645: 547: 437: 394: 293: 1916: 1907: 1751: 1726: 1642: 1542: 1497: 1445: 1393: 637: 429: 160: 80: 76: 1678: 679: 660: 285: 39: 95: 1311: 1262: 1217: 1152:
IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control
972:
IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control
939: 927:
IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control
854: 827: 751:
IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control
726: 216: 203: 129: 88: 47: 1518: 1414: 1285: 794: 611: 182:
are special superpositions of Bessel beams which travel at constant
1831: 522: 261: 183: 125: 1774:
Fahrbach, Florian O.; Simon, Philipp; Rohrbach, Alexander (2010).
703:
Marston, P. L. (2007). "Scattering of a Bessel beam by a sphere".
467: 1369: 1727:"Tunable Bessel light modes: engineering the axial propagation" 1563: 179: 111: 103: 99: 32: 144:
The properties of Bessel beams make them extremely useful for
27: 19: 1883: 51:
Bessel beam re-forming central bright area after obstruction
1812: 163:
function which describes a Bessel beam is a solution of
1417:"Bessel-like optical beams with arbitrary trajectories" 202:
Bessel beam with the self-acceleration property of the
43:
Cross-section of the Bessel beam and graph of intensity
1938:'Tractor beam' is possible with lasers, say scientists 1773: 568: 826:Gong, Z.; Marston, P. L.; Li, W.; Chai, Y. (2017). 1408: 167:, which itself arises from separable solutions to 1932:New microscope captures 3D movies of living cells 825: 569:Fahrbach, F. O.; Simon, P.; Rohrbach, A. (2010). 1949: 1242:The Journal of the Acoustical Society of America 1197:The Journal of the Acoustical Society of America 833:The Journal of the Acoustical Society of America 706:The Journal of the Acoustical Society of America 661:"Viewpoint: A One-Sided View of Acoustic Traps" 314: 114:lens to generate a Bessel–Gauss beam, by using 1725:ÄŚiĹľmár, Tomáš; Dholakia, Kishan (2009-08-31). 1724: 1663: 1460: 132:. High order Bessel beams can be generated by 407: 363:Durnin, J. (1987). "Diffraction-free beams". 220:beam of constant intensity as it propagates. 59:is a wave whose amplitude is described by a 1776:"Microscopy with self-reconstructing beams" 1512: 923: 571:"Microscopy with self-reconstructing beams" 210: 1608: 1557: 792: 1915: 1856: 1830: 1750: 1677: 1632: 1602: 863: 853: 678: 521: 466: 228: 1466: 46: 38: 26: 18: 1238: 1193: 702: 505: 450: 1950: 1324: 362: 1283: 1148: 1111: 1066: 1013: 968: 886: 747: 609: 658: 358: 356: 1363: 793:Mitri, F. G.; Silva, G. T. (2011). 235:light-sheet fluorescence microscopy 13: 1877: 1467:Juanying, Z.; et al. (2013). 240: 14: 1969: 1925: 353: 61:Bessel function of the first kind 1806: 1767: 1718: 1657: 1318: 1277: 1232: 1187: 1142: 1105: 1060: 1017:The European Physical Journal E 1007: 962: 917: 880: 819: 786: 741: 696: 687: 223: 196: 1588:10.1088/2040-8978/12/12/124002 1091:10.1088/1751-8113/42/24/245202 813:10.1016/j.wavemoti.2011.02.001 652: 603: 562: 499: 444: 401: 308: 255: 165:Bessel's differential equation 1: 248: 139: 7: 485:10.1209/0295-5075/106/24005 387:10.1103/PhysRevLett.58.1499 339:10.1080/0010751042000275259 134:spiral diffraction gratings 23:Evolution of a Bessel beam. 10: 1974: 1291:Journal of Applied Physics 1038:10.1140/epje/i2009-10449-y 540:10.1103/PhysRevE.94.053004 1887:Optical Materials Express 1328:Optics and Photonics News 1136:10.1016/j.aop.2008.06.008 911:10.1016/j.aop.2008.01.011 188:exceed the speed of light 121:, or by placing a narrow 35:and resulting Bessel beam 1800:10.1038/nphoton.2010.204 1349:10.1364/OPN.20.12.000042 597:10.1038/nphoton.2010.204 211:Attenuation-compensation 1165:10.1109/TUFFC.2009.1143 985:10.1109/TUFFC.2009.1139 764:10.1109/TUFFC.2011.1807 366:Physical Review Letters 1849:10.1126/sciadv.aar4817 1696:10.1364/opex.12.004001 1298:(1): 014916–014916–5. 229:Imaging and microscopy 52: 44: 36: 24: 1284:Mitri, F. G. (2011). 610:Mitri, F. G. (2011). 50: 42: 30: 22: 1908:10.1364/OME.3.001862 1752:10.1364/oe.17.015558 1643:10.1364/OL.20.002042 1543:10.1364/OL.34.002129 1498:10.1364/OL.38.000498 1446:10.1364/OL.37.005003 1394:10.1364/OL.29.000044 1070:Journal of Physics A 638:10.1364/OL.36.000766 430:10.1364/OL.17.000232 318:Contemporary Physics 119:diffraction gratings 16:Non-diffractive wave 1900:2013OMExp...3.1862M 1841:2018SciA....4R4817N 1792:2010NaPho...4..780F 1743:2009OExpr..1715558C 1737:(18): 15558–15570. 1688:2004OExpr..12.4001Z 1625:1995OptL...20.2042R 1580:2010JOpt...12l4002M 1535:2009OptL...34.2129J 1490:2013OptL...38..498Z 1438:2012OptL...37.5003C 1386:2004OptL...29...44B 1341:2009OptPN..20...42M 1304:2011JAP...109a4916M 1255:2009ASAJ..125.3539M 1210:2006ASAJ..120.3518M 1128:2008AnPhy.323.2840M 1083:2009JPhA...42x5202M 1030:2009EPJE...28..469M 903:2008AnPhy.323.1604M 846:2017ASAJ..141L.574G 719:2007ASAJ..121..753M 680:10.1103/Physics.9.3 630:2011OptL...36..766M 589:2010NaPho...4..780F 532:2016PhRvE..94e3004J 477:2014EL....10624005J 454:Europhysics Letters 422:1992OptL...17..232C 379:1987PhRvL..58.1499D 331:2005ConPh..46...15M 286:10.1038/nature01007 278:2002Natur.419..145G 865:20.500.12210/55318 840:(6): EL574–EL578. 173:Helmholtz equation 169:Laplace's equation 53: 45: 37: 25: 1672:(17): 4001–4006. 1567:Journal of Optics 1312:10.1063/1.3518496 1263:10.1121/1.3119625 1218:10.1121/1.2361185 1122:(11): 2840–2850. 1115:Annals of Physics 940:10.1109/TUFFC.954 934:(11): 2469–2478. 890:Annals of Physics 855:10.1121/1.4985586 727:10.1121/1.2404931 659:Hill, M. (2016). 509:Physical Review E 373:(15): 1499–1501. 1965: 1921: 1919: 1871: 1870: 1860: 1834: 1819:Science Advances 1810: 1804: 1803: 1780:Nature Photonics 1771: 1765: 1764: 1754: 1722: 1716: 1715: 1681: 1661: 1655: 1654: 1636: 1606: 1600: 1599: 1561: 1555: 1554: 1516: 1510: 1509: 1473: 1464: 1458: 1457: 1421: 1412: 1406: 1405: 1367: 1361: 1360: 1322: 1316: 1315: 1281: 1275: 1274: 1249:(6): 3539–3547. 1236: 1230: 1229: 1204:(6): 3518–3524. 1191: 1185: 1184: 1159:(5): 1100–1103. 1146: 1140: 1139: 1109: 1103: 1102: 1064: 1058: 1057: 1011: 1005: 1004: 979:(5): 1059–1064. 966: 960: 959: 921: 915: 914: 897:(7): 1604–1620. 884: 878: 877: 867: 857: 823: 817: 816: 790: 784: 783: 745: 739: 738: 700: 694: 691: 685: 684: 682: 656: 650: 649: 607: 601: 600: 576:Nature Photonics 566: 560: 559: 525: 503: 497: 496: 470: 448: 442: 441: 405: 399: 398: 360: 351: 350: 312: 306: 305: 259: 146:optical tweezing 1973: 1972: 1968: 1967: 1966: 1964: 1963: 1962: 1948: 1947: 1928: 1880: 1878:Further reading 1875: 1874: 1825:(4): eaar4817. 1811: 1807: 1786:(11): 780–785. 1772: 1768: 1723: 1719: 1679:physics/0407128 1662: 1658: 1607: 1603: 1562: 1558: 1529:(14): 2129–31. 1517: 1513: 1471: 1465: 1461: 1419: 1413: 1409: 1368: 1364: 1323: 1319: 1282: 1278: 1237: 1233: 1192: 1188: 1147: 1143: 1110: 1106: 1065: 1061: 1012: 1008: 967: 963: 922: 918: 885: 881: 824: 820: 791: 787: 746: 742: 701: 697: 692: 688: 657: 653: 608: 604: 583:(11): 780–785. 567: 563: 504: 500: 449: 445: 406: 402: 361: 354: 313: 309: 272:(6903): 145–7. 260: 256: 251: 243: 241:Acoustofluidics 231: 226: 213: 199: 154:radiation force 142: 65:Electromagnetic 17: 12: 11: 5: 1971: 1961: 1960: 1946: 1945: 1940: 1935: 1927: 1926:External links 1924: 1923: 1922: 1879: 1876: 1873: 1872: 1805: 1766: 1731:Optics Express 1717: 1666:Optics Express 1656: 1619:(20): 2042–4. 1612:Optics Letters 1601: 1574:(12): 124002. 1556: 1522:Optics Letters 1511: 1484:(4): 498–500. 1477:Optics Letters 1459: 1432:(23): 5003–5. 1425:Optics Letters 1407: 1373:Optics Letters 1362: 1317: 1276: 1231: 1186: 1141: 1104: 1077:(24): 245202. 1059: 1024:(4): 469–478. 1006: 961: 916: 879: 818: 807:(5): 392–400. 785: 758:(2): 298–304. 740: 713:(2): 753–758. 695: 686: 651: 617:Optics Letters 602: 561: 498: 443: 416:(4): 232–234. 410:Optics Letters 400: 352: 307: 253: 252: 250: 247: 242: 239: 230: 227: 225: 222: 212: 209: 198: 195: 141: 138: 15: 9: 6: 4: 3: 2: 1970: 1959: 1958:Laser science 1956: 1955: 1953: 1944: 1941: 1939: 1936: 1933: 1930: 1929: 1918: 1917:1959.3/364652 1913: 1909: 1905: 1901: 1897: 1893: 1889: 1888: 1882: 1881: 1868: 1864: 1859: 1854: 1850: 1846: 1842: 1838: 1833: 1828: 1824: 1820: 1816: 1809: 1801: 1797: 1793: 1789: 1785: 1781: 1777: 1770: 1762: 1758: 1753: 1748: 1744: 1740: 1736: 1732: 1728: 1721: 1713: 1709: 1705: 1701: 1697: 1693: 1689: 1685: 1680: 1675: 1671: 1667: 1660: 1652: 1648: 1644: 1640: 1635: 1634:10.1.1.9.3156 1630: 1626: 1622: 1618: 1614: 1613: 1605: 1597: 1593: 1589: 1585: 1581: 1577: 1573: 1569: 1568: 1560: 1552: 1548: 1544: 1540: 1536: 1532: 1528: 1524: 1523: 1515: 1507: 1503: 1499: 1495: 1491: 1487: 1483: 1479: 1478: 1470: 1463: 1455: 1451: 1447: 1443: 1439: 1435: 1431: 1427: 1426: 1418: 1411: 1403: 1399: 1395: 1391: 1387: 1383: 1379: 1375: 1374: 1366: 1358: 1354: 1350: 1346: 1342: 1338: 1334: 1330: 1329: 1321: 1313: 1309: 1305: 1301: 1297: 1293: 1292: 1287: 1280: 1272: 1268: 1264: 1260: 1256: 1252: 1248: 1244: 1243: 1235: 1227: 1223: 1219: 1215: 1211: 1207: 1203: 1199: 1198: 1190: 1182: 1178: 1174: 1170: 1166: 1162: 1158: 1154: 1153: 1145: 1137: 1133: 1129: 1125: 1121: 1117: 1116: 1108: 1100: 1096: 1092: 1088: 1084: 1080: 1076: 1072: 1071: 1063: 1055: 1051: 1047: 1043: 1039: 1035: 1031: 1027: 1023: 1019: 1018: 1010: 1002: 998: 994: 990: 986: 982: 978: 974: 973: 965: 957: 953: 949: 945: 941: 937: 933: 929: 928: 920: 912: 908: 904: 900: 896: 892: 891: 883: 875: 871: 866: 861: 856: 851: 847: 843: 839: 835: 834: 829: 822: 814: 810: 806: 802: 801: 796: 789: 781: 777: 773: 769: 765: 761: 757: 753: 752: 744: 736: 732: 728: 724: 720: 716: 712: 708: 707: 699: 690: 681: 676: 672: 668: 667: 662: 655: 647: 643: 639: 635: 631: 627: 623: 619: 618: 613: 606: 598: 594: 590: 586: 582: 578: 577: 572: 565: 557: 553: 549: 545: 541: 537: 533: 529: 524: 519: 516:(5): 053004. 515: 511: 510: 502: 494: 490: 486: 482: 478: 474: 469: 464: 460: 456: 455: 447: 439: 435: 431: 427: 423: 419: 415: 411: 404: 396: 392: 388: 384: 380: 376: 372: 368: 367: 359: 357: 348: 344: 340: 336: 332: 328: 324: 320: 319: 311: 303: 299: 295: 291: 287: 283: 279: 275: 271: 267: 266: 258: 254: 246: 238: 236: 221: 218: 208: 205: 194: 191: 189: 185: 181: 177: 174: 170: 166: 162: 157: 155: 151: 147: 137: 135: 131: 127: 124: 120: 117: 113: 109: 108:Gaussian beam 105: 101: 97: 92: 90: 86: 82: 78: 74: 73:gravitational 70: 66: 62: 58: 49: 41: 34: 29: 21: 1894:(11): 1862. 1891: 1885: 1822: 1818: 1808: 1783: 1779: 1769: 1734: 1730: 1720: 1669: 1665: 1659: 1616: 1610: 1604: 1571: 1565: 1559: 1526: 1520: 1514: 1481: 1475: 1462: 1429: 1423: 1410: 1377: 1371: 1365: 1332: 1326: 1320: 1295: 1289: 1279: 1246: 1240: 1234: 1201: 1195: 1189: 1156: 1150: 1144: 1119: 1113: 1107: 1074: 1068: 1062: 1021: 1015: 1009: 976: 970: 964: 931: 925: 919: 894: 888: 882: 837: 831: 821: 804: 798: 788: 755: 749: 743: 710: 704: 698: 689: 670: 664: 654: 624:(5): 766–8. 621: 615: 605: 580: 574: 564: 513: 507: 501: 461:(2): 24005. 458: 452: 446: 413: 409: 403: 370: 364: 325:(1): 15–28. 322: 316: 310: 269: 263: 257: 244: 232: 224:Applications 214: 200: 197:Acceleration 192: 178: 161:mathematical 158: 143: 116:axisymmetric 93: 85:self-healing 84: 56: 54: 1380:(1): 44–6. 800:Wave Motion 57:Bessel beam 31:Diagram of 1832:1708.02612 1335:(12): 42. 523:1604.08353 249:References 186:, and can 140:Properties 96:plane wave 94:As with a 1629:CiteSeerX 1596:120332951 1357:122056218 1099:122118984 468:1401.6769 217:Airy beam 204:Airy beam 130:far field 89:beam axis 1952:Category 1867:29740614 1761:19724554 1712:14469395 1704:19483938 1651:19862244 1551:19823524 1506:23455115 1454:23202118 1402:14719655 1271:19507935 1226:17225382 1181:22404158 1173:19473927 1054:12972708 1046:19408023 1001:33955993 993:19473924 956:33064887 948:19049926 874:28679251 780:38969143 772:21342815 735:17348499 673:(3): 3. 646:21368976 556:27190492 548:27967159 493:55703345 438:19784285 395:10034453 347:31363603 294:12226659 184:velocity 171:and the 150:occluded 126:aperture 110:with an 81:diffract 69:acoustic 1896:Bibcode 1858:5938225 1837:Bibcode 1788:Bibcode 1739:Bibcode 1684:Bibcode 1621:Bibcode 1576:Bibcode 1531:Bibcode 1486:Bibcode 1434:Bibcode 1382:Bibcode 1337:Bibcode 1300:Bibcode 1251:Bibcode 1206:Bibcode 1124:Bibcode 1079:Bibcode 1026:Bibcode 899:Bibcode 842:Bibcode 715:Bibcode 666:Physics 626:Bibcode 585:Bibcode 528:Bibcode 473:Bibcode 418:Bibcode 375:Bibcode 327:Bibcode 302:4426776 274:Bibcode 180:X-waves 128:in the 123:annular 104:optical 1865:  1855:  1759:  1710:  1702:  1649:  1631:  1594:  1549:  1504:  1452:  1400:  1355:  1269:  1224:  1179:  1171:  1097:  1052:  1044:  999:  991:  954:  946:  872:  778:  770:  733:  644:  554:  546:  491:  436:  393:  345:  300:  292:  265:Nature 112:axicon 100:energy 77:matter 75:, and 33:axicon 1827:arXiv 1708:S2CID 1674:arXiv 1592:S2CID 1472:(PDF) 1420:(PDF) 1353:S2CID 1177:S2CID 1095:S2CID 1050:S2CID 997:S2CID 952:S2CID 776:S2CID 552:S2CID 518:arXiv 489:S2CID 463:arXiv 343:S2CID 298:S2CID 1863:PMID 1757:PMID 1700:PMID 1647:PMID 1547:PMID 1502:PMID 1450:PMID 1398:PMID 1267:PMID 1222:PMID 1169:PMID 1042:PMID 989:PMID 944:PMID 870:PMID 768:PMID 731:PMID 642:PMID 544:PMID 434:PMID 391:PMID 290:PMID 159:The 1912:hdl 1904:doi 1853:PMC 1845:doi 1796:doi 1747:doi 1692:doi 1639:doi 1584:doi 1539:doi 1494:doi 1442:doi 1390:doi 1345:doi 1308:doi 1296:109 1259:doi 1247:125 1214:doi 1202:120 1161:doi 1132:doi 1120:323 1087:doi 1034:doi 981:doi 936:doi 907:doi 895:323 860:hdl 850:doi 838:141 809:doi 760:doi 723:doi 711:121 675:doi 634:doi 593:doi 536:doi 481:doi 459:106 426:doi 383:doi 335:doi 282:doi 270:419 233:In 1954:: 1910:. 1902:. 1890:. 1861:. 1851:. 1843:. 1835:. 1821:. 1817:. 1794:. 1782:. 1778:. 1755:. 1745:. 1735:17 1733:. 1729:. 1706:. 1698:. 1690:. 1682:. 1670:12 1668:. 1645:. 1637:. 1627:. 1617:20 1615:. 1590:. 1582:. 1572:12 1570:. 1545:. 1537:. 1527:34 1525:. 1500:. 1492:. 1482:38 1480:. 1474:. 1448:. 1440:. 1430:37 1428:. 1422:. 1396:. 1388:. 1378:29 1376:. 1351:. 1343:. 1333:20 1331:. 1306:. 1294:. 1288:. 1265:. 1257:. 1245:. 1220:. 1212:. 1200:. 1175:. 1167:. 1157:56 1155:. 1130:. 1118:. 1093:. 1085:. 1075:42 1073:. 1048:. 1040:. 1032:. 1022:28 1020:. 995:. 987:. 977:56 975:. 950:. 942:. 932:55 930:. 905:. 893:. 868:. 858:. 848:. 836:. 830:. 805:48 803:. 797:. 774:. 766:. 756:58 754:. 729:. 721:. 709:. 669:. 663:. 640:. 632:. 622:36 620:. 614:. 591:. 579:. 573:. 550:. 542:. 534:. 526:. 514:94 512:. 487:. 479:. 471:. 457:. 432:. 424:. 414:17 412:. 389:. 381:. 371:58 369:. 355:^ 341:. 333:. 323:46 321:. 296:. 288:. 280:. 268:. 190:. 136:. 91:. 71:, 67:, 63:. 55:A 1920:. 1914:: 1906:: 1898:: 1892:3 1869:. 1847:: 1839:: 1829:: 1823:4 1802:. 1798:: 1790:: 1784:4 1763:. 1749:: 1741:: 1714:. 1694:: 1686:: 1676:: 1653:. 1641:: 1623:: 1598:. 1586:: 1578:: 1553:. 1541:: 1533:: 1508:. 1496:: 1488:: 1456:. 1444:: 1436:: 1404:. 1392:: 1384:: 1359:. 1347:: 1339:: 1314:. 1310:: 1302:: 1273:. 1261:: 1253:: 1228:. 1216:: 1208:: 1183:. 1163:: 1138:. 1134:: 1126:: 1101:. 1089:: 1081:: 1056:. 1036:: 1028:: 1003:. 983:: 958:. 938:: 913:. 909:: 901:: 876:. 862:: 852:: 844:: 815:. 811:: 782:. 762:: 737:. 725:: 717:: 683:. 677:: 671:9 648:. 636:: 628:: 599:. 595:: 587:: 581:4 558:. 538:: 530:: 520:: 495:. 483:: 475:: 465:: 440:. 428:: 420:: 397:. 385:: 377:: 349:. 337:: 329:: 304:. 284:: 276::

Index



axicon


Bessel function of the first kind
Electromagnetic
acoustic
gravitational
matter
diffract
beam axis
plane wave
energy
optical
Gaussian beam
axicon
axisymmetric
diffraction gratings
annular
aperture
far field
spiral diffraction gratings
optical tweezing
occluded
radiation force
mathematical
Bessel's differential equation
Laplace's equation
Helmholtz equation

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑