Knowledge

Bijective proof

Source 📝

39:
that maps one set one-to-one onto the other. This technique can be useful as a way of finding a formula for the number of elements of certain sets, by corresponding them with other sets that are easier to count. Additionally, the nature of the bijection itself often provides powerful insights into
651:
Problems that admit bijective proofs are not limited to binomial coefficient identities. As the complexity of the problem increases, a bijective proof can become very sophisticated. This technique is particularly useful in areas of
641: 129: 346: 285: 567:
and thus a bijection. The result now follows since the existence of a bijection between these finite sets shows that they have the same size, that is,
877: 811: 792: 703: 570: 920: 831: 748: 743: 59: 823: 857: 925: 689: 302: 246: 718: 900: 753: 367: 199:
More abstractly and generally, the two quantities asserted to be equal count the subsets of size
870:"Bijective census and random generation of Eulerian planar maps with prescribed vertex degrees" 483:), using the fact that the complement of a complement of a set is the original set, to obtain 845: 869: 653: 8: 758: 679: 391: 32: 31:
technique for proving that two sets have equally many elements, or that the sets in two
850: 504: 36: 28: 675: 827: 819: 788: 711: 889: 882: 763: 738: 693: 878:"Kathy O'Hara's Constructive Proof of the Unimodality of the Gaussian Polynomials" 697: 725: 914: 707: 665: 657: 174:
The key idea of the proof may be understood from a simple example: selecting
20: 683: 661: 671:
The most classical examples of bijective proofs in combinatorics include:
135: 904: 48: 894: 862: 710:, giving a proof of a classical result on the number of certain 180:
children to be rewarded with ice cream cones, out of a group of
186:
children, has exactly the same effect as choosing instead the
564: 815: 787:, The Mathematical Association of America, p. 28, 602: 575: 307: 251: 53:
The symmetry of the binomial coefficients states that
858:"A direct bijective proof of the hook-length formula" 573: 305: 249: 62: 636:{\displaystyle {\tbinom {n}{k}}={\tbinom {n}{n-k}}} 438:. To show that f is a bijection, first assume that 348:. There is a simple bijection between the two sets 635: 340: 279: 123: 112: 91: 79: 66: 49:Proving the symmetry of the binomial coefficients 912: 124:{\displaystyle {n \choose k}={n \choose n-k}.} 626: 605: 591: 578: 331: 310: 267: 254: 390:. More formally, this can be written using 134:This means that there are exactly as many 16:Technique for proving sets have equal size 370:, which contains precisely the remaining 724:Bijective proofs of the formula for the 479:. Take the complements of each side (in 196:children to be denied ice cream cones. 537:-element subset, and so, an element of 913: 362:-element subset (that is, a member of 782: 169: 13: 804: 609: 582: 341:{\displaystyle {\tbinom {n}{n-k}}} 314: 258: 95: 70: 14: 937: 901:Garsia-Milne Involution Principle 838: 749:Double counting (proof technique) 646: 280:{\displaystyle {\tbinom {n}{k}}.} 43: 890:"Partition Bijections, a Survey" 776: 35:have equal size, by finding a 1: 785:Combinatorics / A Guided Tour 769: 160:things in a set of size  150:as there are combinations of 810:Loehr, Nicholas A. (2011). 690:Robinson-Schensted algorithm 434:and the complement taken in 7: 732: 386:, and hence is a member of 10: 942: 744:Schröder–Bernstein theorem 40:each or both of the sets. 921:Enumerative combinatorics 719:pentagonal number theorem 783:Mazur, David R. (2010), 754:Combinatorial principles 717:Bijective proofs of the 144:things in a set of size 873:– by Gilles Schaeffer. 812:Bijective Combinatorics 215:, respectively, of any 637: 356:: it associates every 342: 281: 125: 638: 343: 299:, the set B has size 282: 126: 33:combinatorial classes 692:, giving a proof of 678:, giving a proof of 654:discrete mathematics 571: 523:. Its complement in 303: 247: 235:-element subsets of 60: 926:Mathematical proofs 846:"Division by three" 759:Combinatorial proof 696:'s formula for the 511:-element subset of 430:-element subset of 392:functional notation 375: −  210: −  191: −  155: −  712:integer partitions 682:for the number of 633: 631: 596: 499:. This shows that 463:, that is to say, 338: 336: 291:be the set of all 277: 272: 231:be the set of all 121: 37:bijective function 794:978-0-88385-762-5 624: 589: 329: 265: 170:A bijective proof 110: 77: 933: 883:Doron Zeilberger 865:and Stoyanovsky. 798: 797: 780: 764:Categorification 739:Binomial theorem 680:Cayley's formula 642: 640: 639: 634: 632: 630: 629: 623: 608: 597: 595: 594: 581: 562: 558: 540: 536: 532: 526: 522: 518: 514: 510: 502: 498: 482: 478: 462: 437: 433: 429: 425: 421: 407: 389: 385: 379: 365: 361: 355: 351: 347: 345: 344: 339: 337: 335: 334: 328: 313: 298: 294: 290: 286: 284: 283: 278: 273: 271: 270: 257: 242: 238: 234: 230: 226: 220: 214: 204: 195: 185: 179: 165: 159: 149: 143: 130: 128: 127: 122: 117: 116: 115: 109: 94: 84: 83: 82: 69: 941: 940: 936: 935: 934: 932: 931: 930: 911: 910: 861:– by Novelli, 849:– by Doyle and 841: 807: 805:Further reading 802: 801: 795: 781: 777: 772: 735: 726:Catalan numbers 698:symmetric group 676:Prüfer sequence 649: 625: 613: 604: 603: 601: 590: 577: 576: 574: 572: 569: 568: 560: 542: 538: 534: 528: 524: 520: 516: 512: 508: 507:. Now take any 500: 497: 490: 484: 480: 477: 470: 464: 460: 449: 439: 435: 431: 427: 423: 409: 395: 387: 381: 371: 363: 357: 353: 349: 330: 318: 309: 308: 306: 304: 301: 300: 296: 292: 288: 266: 253: 252: 250: 248: 245: 244: 240: 236: 232: 228: 222: 216: 206: 200: 187: 181: 175: 172: 161: 151: 145: 139: 111: 99: 90: 89: 88: 78: 65: 64: 63: 61: 58: 57: 51: 46: 25:bijective proof 17: 12: 11: 5: 939: 929: 928: 923: 909: 908: 898: 886: 874: 866: 854: 840: 839:External links 837: 836: 835: 832:978-1439848845 806: 803: 800: 799: 793: 774: 773: 771: 768: 767: 766: 761: 756: 751: 746: 741: 734: 731: 730: 729: 722: 715: 708:Young diagrams 701: 687: 648: 647:Other examples 645: 628: 622: 619: 616: 612: 607: 600: 593: 588: 585: 580: 495: 488: 475: 468: 458: 447: 333: 327: 324: 321: 317: 312: 276: 269: 264: 261: 256: 171: 168: 132: 131: 120: 114: 108: 105: 102: 98: 93: 87: 81: 76: 73: 68: 50: 47: 45: 44:Basic examples 42: 15: 9: 6: 4: 3: 2: 938: 927: 924: 922: 919: 918: 916: 906: 902: 899: 896: 892: 891: 887: 884: 880: 879: 875: 872: 871: 867: 864: 860: 859: 855: 852: 848: 847: 843: 842: 833: 829: 825: 821: 817: 813: 809: 808: 796: 790: 786: 779: 775: 765: 762: 760: 757: 755: 752: 750: 747: 745: 742: 740: 737: 736: 727: 723: 720: 716: 713: 709: 705: 702: 699: 695: 691: 688: 685: 684:labeled trees 681: 677: 674: 673: 672: 669: 667: 666:number theory 663: 659: 658:combinatorics 655: 644: 620: 617: 614: 610: 598: 586: 583: 566: 557: 553: 549: 545: 531: 506: 494: 487: 474: 467: 457: 453: 446: 442: 420: 416: 412: 406: 402: 398: 393: 384: 378: 374: 369: 360: 325: 322: 319: 315: 274: 262: 259: 225: 221:-element set 219: 213: 209: 203: 197: 194: 190: 184: 178: 167: 164: 158: 154: 148: 142: 137: 118: 106: 103: 100: 96: 85: 74: 71: 56: 55: 54: 41: 38: 34: 30: 26: 22: 21:combinatorics 888: 876: 868: 856: 844: 784: 778: 670: 662:graph theory 650: 555: 551: 547: 543: 529: 492: 485: 472: 465: 455: 451: 444: 440: 418: 414: 410: 404: 400: 396: 382: 380:elements of 376: 372: 358: 223: 217: 211: 207: 201: 198: 192: 188: 182: 176: 173: 162: 156: 152: 146: 140: 136:combinations 133: 52: 24: 18: 704:Conjugation 408:defined by 366:) with its 295:subsets of 915:Categories 824:143984884X 770:References 505:one-to-one 368:complement 239:, the set 905:MathWorld 816:CRC Press 618:− 323:− 243:has size 104:− 895:Igor Pak 733:See also 694:Burnside 656:such as 563:is also 541:. Since 399: : 903:– from 533:, is a 851:Conway 830:  822:  791:  664:, and 519:, say 227:. Let 893:– by 881:– by 550:) = ( 29:proof 27:is a 828:ISBN 820:ISBN 789:ISBN 565:onto 554:) = 450:) = 426:any 422:for 417:) = 394:as, 352:and 287:Let 205:and 863:Pak 826:, 818:. 814:. 706:of 515:in 509:n−k 503:is 293:n−k 138:of 19:In 917:: 668:. 660:, 643:. 559:, 527:, 491:= 471:= 403:→ 166:. 23:, 907:. 897:. 885:. 853:. 834:. 728:. 721:. 714:. 700:. 686:. 627:) 621:k 615:n 611:n 606:( 599:= 592:) 587:k 584:n 579:( 561:f 556:Y 552:Y 548:Y 546:( 544:f 539:A 535:k 530:Y 525:S 521:Y 517:B 513:S 501:f 496:2 493:X 489:1 486:X 481:S 476:2 473:X 469:1 466:X 461:) 459:2 456:X 454:( 452:f 448:1 445:X 443:( 441:f 436:S 432:S 428:k 424:X 419:X 415:X 413:( 411:f 405:B 401:A 397:f 388:B 383:S 377:k 373:n 364:A 359:k 354:B 350:A 332:) 326:k 320:n 316:n 311:( 297:S 289:B 275:. 268:) 263:k 260:n 255:( 241:A 237:S 233:k 229:A 224:S 218:n 212:k 208:n 202:k 193:k 189:n 183:n 177:k 163:n 157:k 153:n 147:n 141:k 119:. 113:) 107:k 101:n 97:n 92:( 86:= 80:) 75:k 72:n 67:(

Index

combinatorics
proof
combinatorial classes
bijective function
combinations
complement
functional notation
one-to-one
onto
discrete mathematics
combinatorics
graph theory
number theory
Prüfer sequence
Cayley's formula
labeled trees
Robinson-Schensted algorithm
Burnside
symmetric group
Conjugation
Young diagrams
integer partitions
pentagonal number theorem
Catalan numbers
Binomial theorem
Schröder–Bernstein theorem
Double counting (proof technique)
Combinatorial principles
Combinatorial proof
Categorification

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.