Knowledge

Bioturbation

Source 📝

20: 475:. Pocket gophers are thought to play an important role in the downslope transport of soil, as the soil that forms their mounds is more susceptible to erosion and subsequent transport. Similar to tree root effects, the construction of burrows-even when backfilled- decreases soil density. The formation of surface mounds also buries surface vegetation, creating nutrient hotspots when the vegetation decomposes, increasing soil organic matter. Due to the high metabolic demands of their burrow-excavating subterranean lifestyle, pocket gophers must consume large amounts of plant material. Though this has a detrimental effect on individual plants, the net effect of pocket gophers is increased plant growth from their positive effects on soil nutrient content and physical soil properties. 589:(area between surface water and groundwater) of rivers and effects the dispersion and retention of marine derived nutrients (MDN) within the river ecosystem. MDN are delivered to river and stream ecosystems by the fecal matter of spawning salmon and the decaying carcasses of salmon that have completed spawning and died. Numerical modeling suggests that residence time of MDN within a salmon spawning reach is inversely proportional to the amount of redd construction within the river. Measurements of respiration within a salmon-bearing river in Alaska further suggest that salmon bioturbation of the river bed plays a significant role in mobilizing MDN and limiting primary productivity while salmon spawning is active. The river ecosystem was found to switch from a net 664:(organic waste). These large quantities, in addition to typically small sediment grain size and dense populations, make bioturbators important in estuarine respiration. Bioturbators enhance the transport of oxygen into sediments through irrigation and increase the surface area of oxygenated sediments through burrow construction. Bioturbators also transport organic matter deeper into sediments through general reworking activities and production of fecal matter. This ability to replenish oxygen and other solutes at sediment depth allows for enhanced respiration by both bioturbators as well as the microbial community, thus altering estuarine elemental cycling. 264:
organic matter decomposition and sediment oxygen uptake. In addition to the effects of burrowing activity on microbial communities, studies suggest that bioturbator fecal matter provides a highly nutritious food source for microbes and other macrofauna, thus enhancing benthic microbial activity. This increased microbial activity by bioturbators can contribute to increased nutrient release to the overlying water column. Nutrients released from enhanced microbial decomposition of organic matter, notably limiting nutrients, such as ammonium, can have bottom-up effects on ecosystems and result in increased growth of phytoplankton and bacterioplankton.
635: 897:, sediments are important for preserving a wide variety of fossils. Evidence of bioturbation has been found in deep-sea sediment cores including into long records, although the act extracting the core can disturb the signs of bioturbation, especially at shallower depths. Arthropods, in particular are important to the geologic record of bioturbation of Eolian sediments. Dune records show traces of burrowing animals as far back as the lower Mesozoic (250 Million years ago), although bioturbation in other sediments has been seen as far back as 550 Ma. 532:(detritus worms) are important agents of bioturbation in these ecosystems and have different effects based on their respective feeding habits. Tubificid worms do not form burrows, they are upward conveyors. Chironomids, on the other hand, form burrows in the sediment, acting as bioirrigators and aerating the sediments and are downward conveyors. This activity, combined with chironomid's respiration within their burrows, decrease available oxygen in the sediment and increase the loss of nitrates through enhanced rates of 422: 225: 647: 238: 915:). Darwin spread chalk dust over a field to observe changes in the depth of the chalk layer over time. Excavations 30 years after the initial deposit of chalk revealed that the chalk was buried 18 centimeters under the sediment, which indicated a burial rate of 6 millimeters per year. Darwin attributed this burial to the activity of earthworms in the sediment and determined that these disruptions were important in soil formation. In 1891, geologist 517:). The major nutrients of interest in this flux are nitrogen and phosphorus, which often limit the levels of primary production in an ecosystem. Bioturbation increases the flux of mineralized (inorganic) forms of these elements, which can be directly used by primary producers. In addition, bioturbation increases the water column concentrations of nitrogen and phosphorus-containing organic matter, which can then be consumed by fauna and mineralized. 117:
of a categorization mode to a field of study (such as ecology or sediment biogeochemistry) and an attempt to concisely organize the wide variety of bioturbating organisms in classes that describe their function. Examples of categorizations include those based on feeding and motility, feeding and biological interactions, and mobility modes. The most common set of groupings are based on sediment transport and are as follows:
505: 582:) and porosity of the stream bed. In select rivers, if salmon congregate in large enough concentrations in a given area of the river, the total sediment transport from redd construction can equal or exceed the sediment transport from flood events. The net effect on sediment movement is the downstream transfer of gravel, sand and finer materials and enhancement of water mixing within the river substrate. 854: 598:
organic carbon, also attributed to sediment mobilization from salmon redd construction. While marine derived nutrients are generally thought to increase productivity in riparian and freshwater ecosystems, several studies have suggested that temporal effects of bioturbation should be considered when characterizing salmon influences on nutrient cycles.
677:
bioturbation, the effects of bioturbators on denitrification rates have been found to be greater than that on rates of nitrification, further promoting the removal of biologically available nitrogen. This increased removal of biologically available nitrogen has been suggested to be linked to increased rates of
437:, with root growth and stump decay also contributing to soil transport and mixing. Death and decay of tree roots first delivers organic matter to the soil and then creates voids, decreasing soil density. Tree uprooting causes considerable soil displacement by producing mounds, mixing the soil, or inverting 813:. As bioturbation increased, burrowing animals disturbed the microbial mat system and created a mixed sediment layer with greater biological and chemical diversity. This greater biological and chemical diversity is thought to have led to the evolution and diversification of seafloor-dwelling species. 775:
Parameterization of bioturbation, however, can vary, as newer and more complex models can be used to fit tracer profiles. Unlike the standard biodiffusion model, these more complex models, such as expanded versions of the biodiffusion model, random walk, and particle-tracking models, can provide more
325:
of larvae of conspecifics (those of the same species) and those of other species, as the resuspension of sediments and alteration of flow at the sediment-water interface can affect the ability of larvae to burrow and remain in sediments. This effect is largely species-specific, as species differences
919:
expanded Darwin's concept to include soil disruption by ants and trees. The term "bioturbation" was later coined by Rudolf Richter in 1952 to describe structures in sediment caused by living organisms. Since the 1980s, the term "bioturbation" has been widely used in soil and geomorphology literature
696:
Bioturbation by walrus feeding is a significant source of sediment and biological community structure and nutrient flux in the Bering Sea. Walruses feed by digging their muzzles into the sediment and extracting clams through powerful suction. By digging through the sediment, walruses rapidly release
676:
coupling contributes to greater removal of biologically available nitrogen in shallow and coastal environments, which can be further enhanced by the excretion of ammonium by bioturbators and other organisms residing in bioturbator burrows. While both nitrification and denitrification are enhanced by
520:
Lake and pond sediments often transition from the aerobic (oxygen containing) character of the overlaying water to the anaerobic (without oxygen) conditions of the lower sediment over sediment depths of only a few millimeters, therefore, even bioturbators of modest size can affect this transition of
345:
For example, bioturbating animals are hypothesized to have affected the cycling of sulfur in the early oceans. According to this hypothesis, bioturbating activities had a large effect on the sulfate concentration in the ocean. Around the Cambrian-Precambrian boundary (539 million years ago), animals
116:
Bioturbators have been organized by a variety of functional groupings based on either ecological characteristics or biogeochemical effects. While the prevailing categorization is based on the way bioturbators transport and interact with sediments, the various groupings likely stem from the relevance
304:
Bioturbators can also inhibit the presence of other benthic organisms by smothering, exposing other organisms to predators, or resource competition. While thalassinidean shrimps can provide shelter for some organisms and cultivate interspecies relationships within burrows, they have also been shown
248:
The evaluation of the ecological role of bioturbators has largely been species-specific. However, their ability to transport solutes, such as dissolved oxygen, enhance organic matter decomposition and diagenesis, and alter sediment structure has made them important for the survival and colonization
1542:. Aller, Josephine Y., Woodin, Sarah Ann, 1945–, Aller, Robert C., Belle W. Baruch Institute for Marine Biology and Coastal Research. Columbia, S.C.: Published for the Belle W. Baruch Institute for Marine Biology and Coastal Research by the University of South Carolina Press. 2001. pp. 73–86. 885:
within geology. The study of bioturbator ichnofabrics uses the depth of the fossils, the cross-cutting of fossils, and the sharpness (or how well defined) of the fossil to assess the activity that occurred in old sediments. Typically the deeper the fossil, the better preserved and well defined the
597:
system in response to decreased primary production and increased respiration. The decreased primary production in this study was attributed to the loss of benthic primary producers who were dislodged due to bioturbation, while increased respiration was thought to be due to increased respiration of
512:
The sediments of lake and pond ecosystems are rich in organic matter, with higher organic matter and nutrient contents in the sediments than in the overlying water. Nutrient re-regeneration through sediment bioturbation moves nutrients into the water column, thereby enhancing the growth of aquatic
350:
to overlying water causing sulfide to oxidize, which increased the sulfate composition in the ocean. During large extinction events, the sulfate concentration in the ocean was reduced. Although this is difficult to measure directly, seawater sulfur isotope compositions during these times indicates
275:
burrow and create mounds that have a complex system of air ducts and evaporation devices that create a suitable microclimate in an unfavorable physical environment. Many species are attracted to bioturbator burrows because of their protective capabilities. The shared use of burrows has enabled the
263:
occurring around burrows. As bioturbators burrow, they also increase the surface area of sediments across which oxidized and reduced solutes can be exchanged, thereby increasing the overall sediment metabolism. This increase in sediment metabolism and microbial activity further results in enhanced
359:
by increasing the sequestration of phosphorus above normal chemical rates. The sequestration of phosphorus limits oxygen concentrations by decreasing production on a geologic time scale. This decrease in production results in an overall decrease in oxygen levels, and it has been proposed that the
495:
for moving material between the sediments and water column, feeding on sediment organic matter and transporting mineralized nutrients into the water column. Both benthivorous and anadromous fish can affect ecosystems by decreasing primary production through sediment re-suspension, the subsequent
552:
phytoplankton colonies benefit from both increased suspended nutrients and from recruitment of buried phytoplankton cells released from the sediments by the fish bioturbation. Macrophyte growth has also been shown to be inhibited by displacement from the bottom sediments due to fish burrowing.
551:
by the re-suspension of benthic sediments. This increased turbidity limits light penetration and coupled with increased nutrient flux from the sediment into the water column, inhibits the growth of macrophytes (aquatic plants) favoring the growth of phytoplankton in the surface waters. Surface
539:
The increased oxygen input to sediments by macroinvertebrate bioirrigation coupled with bioturbation at the sediment-water interface complicates the total flux of phosphorus . While bioturbation results in a net flux of phosphorus into the water column, the bio-irrigation of the sediments with
1355:
Michaud, Emma; Desrosiers, Gaston; Mermillod-Blondin, Florian; Sundby, Bjorn; Stora, Georges (2006-10-03). "The functional group approach to bioturbation: II. The effects of the Macoma balthica community on fluxes of nutrients and dissolved organic carbon across the sediment–water interface".
717:
in solute concentration and mineral distribution in the sediment. It has been suggested that higher benthic diversity in the deep sea could lead to more bioturbation which, in turn, would increase the transport of organic matter and nutrients to benthic sediments. Through the consumption of
78:, and displacement of microorganisms and non-living particles. Bioturbation is sometimes confused with the process of bioirrigation, however these processes differ in what they are mixing; bioirrigation refers to the mixing of water and solutes in sediments and is an effect of bioturbation. 280:
between bioturbators and the many species that utilize their burrows. For example, gobies, scale-worms, and crabs live in the burrows made by innkeeper worms. Social interactions provide evidence of co-evolution between hosts and their burrow symbionts. This is exemplified by shrimp-goby
470:
also play an important role in the production of soil, possibly with an equal magnitude to abiotic processes. Pocket gophers form above-ground mounds, which moves soil from the lower soil horizons to the surface, exposing minimally weathered rock to surface erosion processes, speeding
360:
rise of bioturbation corresponds to a decrease in oxygen levels of that time. The negative feedback of animals sequestering phosphorus in the sediments and subsequently reducing oxygen concentrations in the environment limits the intensity of bioturbation in this early environment.
667:
The effects of bioturbation on the nitrogen cycle are well-documented. Coupled denitrification and nitrification are enhanced due to increased oxygen and nitrate delivery to deep sediments and increased surface area across which oxygen and nitrate can be exchanged. The enhanced
206:
are categorized by their ability to release sediment to the overlying water column, which is then dispersed as they burrow. After regenerators abandon their burrows, water flow at the sediment surface can push in and collapse the burrow. Examples of regenerator species include
697:
large amounts of organic material and nutrients, especially ammonium, from the sediment to the water column. Additionally, walrus feeding behavior mixes and oxygenates the sediment and creates pits in the sediment which serve as new habitat structures for invertebrate larvae.
869:, or the study of "trace fossils", which, in the case of bioturbators, are fossils left behind by digging or burrowing animals. This can be compared to the footprint left behind by these animals. In some cases bioturbation is so pervasive that it completely obliterates 829:
The fossil indicates a 5 centimeter depth of bioturbation in muddy sediments by a burrowing worm. This is consistent with food-seeking behavior, as there tended to be more food resources in the mud than the water column. However, this hypothesis requires more precise
2942:
Mermillod-Blondin, Florian; Gaudet, Jean-Paul; Gerino, Magali; Desrosiers, Gaston; Jose, Jacques; Châtelliers, Michel Creuzé des (2004-07-01). "Relative influence of bioturbation and predation on organic matter processing in river sediments: a microcosm experiment".
563:
show similar responses to bioturbation activities, with chironomid larvae and tubificid worm macroinvertebrates remaining as important benthic agents of bioturbation. These environments can also be subject to strong season bioturbation effects from anadromous fish.
800:
protection. It is hypothesized that bioturbation resulted from this skeleton formation. These new hard parts enabled animals to dig into the sediment to seek shelter from predators, which created an incentive for predators to search for prey in the sediment (see
767:
from nuclear fallout, introduced particles including glass beads tagged with radioisotopes or inert fluorescent particles, and chlorophyll a. Biodiffusion models are then fit to vertical distributions (profiles) of tracers in sediments to provide values for
3631:
Gerino, M.; Aller, R.C.; Lee, C.; Cochran, J.K.; Aller, J.Y.; Green, M.A.; Hirschberg, D. (1998). "Comparison of Different Tracers and Methods Used to Quantify Bioturbation During a Spring Bloom: 234-Thorium, Luminophores and Chlorophylla".
2600:
Granberg, Maria E.; Gunnarsson, Jonas S.; Hedman, Jenny E.; Rosenberg, Rutger; Jonsson, Per (2008). "Bioturbation-driven release of organic contaminants from Baltic Sea sediments mediated by the invading polychaete Marenzelleria neglecta".
65:
because they alter resource availability to other species through the physical changes they make to their environments. This type of ecosystem change affects the evolution of cohabitating species and the environment, which is evident in
297:, meaning their existence depends on the host bioturbator and its burrow. Although newly hatched blind gobies have fully developed eyes, their eyes become withdrawn and covered by skin as they develop. They show evidence of commensal 376:, bioturbating animals can mix the surface layer and cause the release of sequestered contaminants into the water column. Upward-conveyor species, like polychaete worms, are efficient at moving contaminated particles to the surface. 547:. Of the bioturbating, benthivorous fish species, carp in particular are important ecosystem engineers and their foraging and burrowing activities can alter the water quality characteristics of ponds and lakes. Carp increase water 124:
create complex tube networks within the upper sediment layers and transport sediment through feeding, burrow construction, and general movement throughout their galleries. Gallery-diffusers are heavily associated with burrowing
3031:
Buxton, Todd H.; Buffington, John M.; Tonina, Daniele; Fremier, Alexander K.; Yager, Elowyn M. (2015-04-13). "Modeling the influence of salmon spawning on hyporheic exchange of marine-derived nutrients in gravel stream beds".
521:
the chemical characteristics of sediments. By mixing anaerobic sediments into the water column, bioturbators allow aerobic processes to interact with the re-suspended sediments and the newly exposed bottom sediment surfaces.
354:
Bioturbators have also altered phosphorus cycling on geologic scales. Bioturbators mix readily available particulate organic phosphorus (P) deeper into ocean sediment layers which prevents the precipitation of phosphorus
3882:
Gingras, Murray; Hagadorn, James W.; Seilacher, Adolf; Lalonde, Stefan V.; Pecoits, Ernesto; Petrash, Daniel; Konhauser, Kurt O. (2011-05-15). "Possible evolution of mobile animals in association with microbial mats".
805:). Burrowing species fed on buried organic matter in the sediment which resulted in the evolution of deposit feeding (consumption of organic matter within sediment). Prior to the development of bioturbation, laminated 758:
term. This representation and subsequent variations account for the different modes of mixing by functional groups and bioirrigation that results from them. The biodiffusion coefficient is usually measured using
2846:
Matsuzaki, Shin-ichiro S.; Usio, Nisikawa; Takamura, Noriko; Washitani, Izumi (2007-01-01). "Effects of common carp on nutrient dynamics and littoral community composition: roles of excretion and bioturbation".
1216:
Humphreys, G. S., and Mitchell, P. B., 1983, A preliminary assessment of the role of bioturbation and rainwash on sandstone hillslopes in the Sydney Basin, in Australian and New Zealand Geomorphology Group, p.
3838:
Rogov, Vladimir; Marusin, Vasiliy; Bykova, Natalia; Goy, Yuriy; Nagovitsin, Konstantin; Kochnev, Boris; Karlova, Galina; Grazhdankin, Dmitriy (2012-05-01). "The oldest evidence of bioturbation on Earth".
3805:
Delmotte, Sebastien; Gerino, Magali; Thebault, Jean Marc; Meysman, Filip J. R. (2008-03-01). "Modeling effects of patchiness and biological variability on transport rates within bioturbated sediments".
42:
by animals or plants. It includes burrowing, ingestion, and defecation of sediment grains. Bioturbating activities have a profound effect on the environment and are thought to be a primary driver of
3770:
Wheatcroft, R. A.; Jumars, P. A.; Smith, C. R.; Nowell, A. R. M. (1990-02-01). "A mechanistic view of the particulate biodiffusion coefficient: Step lengths, rest periods and transport directions".
2698:
Reible, D.D.; Popov, V.; Valsaraj, K.T.; Thibodeaux, L.J.; Lin, F.; Dikshit, M.; Todaro, M.A.; Fleeger, J.W. (1996). "Contaminant fluxes from sediment due to tubificid oligochaete bioturbation".
3168:
Henriksen, K.; Rasmussen, M. B.; Jensen, A. (1983). "Effect of Bioturbation on Microbial Nitrogen Transformations in the Sediment and Fluxes of Ammonium and Nitrate to the Overlaying Water".
3133:
Kristensen, Erik; Jensen, Mikael Hjorth; Andersen, Torben Kjær (1985). "The impact of polychaete (Nereis virens Sars) burrows on nitrification and nitrate reduction in estuarine sediments".
1445:
Josefson, Alf B. (1985-12-30). "Distribution of diversity and functional groups of marine benthic infauna in the Skagerrak (eastern North Sea) - Can larval availability affect diversity?".
154:
species, but can also include larger vertebrates, such as bottom-dwelling fish and rays that feed along the sea floor. Biodiffusers can be further divided into two subgroups, which include
2554:
Josefsson, Sarah; Leonardsson, Kjell; Gunnarsson, Jonas S.; Wiberg, Karin (2010). "Bioturbation-driven release of buried PCBs and PBDEs from different depths in contaminated sediments".
402:
organic contaminants into the sediment. Burial of uncontaminated particles by bioturbating organisms provides more absorptive surfaces to sequester chemical pollutants in the sediments.
281:
associations. Shrimp burrows provide shelter for gobies and gobies serve as a scout at the mouth of the burrow, signaling the presence of potential danger. In contrast, the blind goby
433:
from the lower soil depths to the surface. Terrestrial bioturbation is important in soil production, burial, organic matter content, and downslope transport. Tree roots are sources of
2234:
Dumbauld, Brett R; Brooks, Kenneth M; Posey, Martin H (2001). "Response of an Estuarine Benthic Community to Application of the Pesticide Carbaryl and Cultivation of Pacific Oysters (
108:. The activities of these small invertebrates, which include burrowing and ingestion and defecation of sediment grains, contribute to mixing and the alteration of sediment structure. 394:
can burrow to 35-50 centimeters which is deeper than native animals, thereby releasing previously sequestered contaminants. However, bioturbating animals that live in the sediment (
92:
are examples of large bioturbators. Although the activities of these large macrofaunal bioturbators are more conspicuous, the dominant bioturbators are small invertebrates, such as
158:(organisms that live on the surface sediments) biodiffusers and surface biodiffusers. This subgrouping may also include gallery-diffusers, reducing the number of functional groups. 164:
are oriented head-down in sediments, where they feed at depth and transport sediment through their guts to the sediment surface. Major upward-conveyor groups include burrowing
190:
and defecation occurs at depth. Their activities transport sediment from the surface to deeper sediment layers as they feed. Notable downward-conveyors include those in the
784:
The onset of bioturbation had a profound effect on the environment and the evolution of other organisms. Bioturbation is thought to have been an important co-factor of the
3547:
Bunzl, K (2002). "Transport of fallout radiocesium in the soil by bioturbation: a random walk model and application to a forest soil with a high abundance of earthworms".
2891:
Holtgrieve, Gordon W.; Schindler, Daniel E. (2011-02-01). "Marine-derived nutrients, bioturbation, and ecosystem metabolism: reconsidering the role of salmon in streams".
1097:
Wilkinson, Marshall T.; Richards, Paul J.; Humphreys, Geoff S. (2009-12-01). "Breaking ground: Pedological, geological, and ecological implications of soil bioturbation".
911: 3504:
Sharma, P.; Gardner, L. R.; Moore, W. S.; Bollinger, M. S. (1987-03-01). "Sedimentation and bioturbation in a salt marsh as revealed by 210Pb, 137Cs, and 7Be studies12".
3318:
Aller, Robert C.; Hall, Per O.J.; Rude, Peter D.; Aller, J.Y. (1998). "Biogeochemical heterogeneity and suboxic diagenesis in hemipelagic sediments of the Panama Basin".
2790:
Adámek, Zdeněk; Maršálek, Blahoslav (2013-02-01). "Bioturbation of sediments by benthic macroinvertebrates and fish and its implication for pond ecosystems: a review".
3113:
Aller, Robert C. (1988). "13. Benthic fauna and biogeochemical processes in marine sediments: the role of burrow structures". In Blackburn, T.H.; Sørensen, J. (eds.).
1617:
Branch, G.M.; Pringle, A. (1987). "The impact of the sand prawn Callianassa kraussi Stebbing on sediment turnover and on bacteria, meiofauna, and benthic microflora".
1136:
Shaler, N. S., 1891, The origin and nature of soils, in Powell, J. W., ed., USGS 12th Annual report 1890–1891: Washington, D.C., Government Printing Office, p. 213-45.
722:(POC) into the sediment where it is consumed by sediment dwelling animals and bacteria. Incorporation of POC into the food webs of sediment dwelling animals promotes 3272:
Morys, C; Forster, S; Graf, G (2016-09-28). "Variability of bioturbation in various sediment types and on different spatial scales in the southwestern Baltic Sea".
726:
by removing carbon from the water column and burying it in the sediment. In some deep-sea sediments, intense bioturbation enhances manganese and nitrogen cycling.
3670:
Reed, Daniel C.; Huang, Katherine; Boudreau, Bernard P.; Meysman, Filip J.R. (2006). "Steady-state tracer dynamics in a lattice-automaton model of bioturbation".
574:(gravel depressions or "nests" containing eggs buried under a thin layer of sediment) in rivers and streams and by mobilization of nutrients. The construction of 4105:
Hertweck, G; Liebezeit, G (2007). "Bioturbation structures of polychaetes in modern shallow marine environments and their analogues to Chondrites group traces".
3590:
Solan, Martin; Wigham, Benjamin D.; Hudson, Ian R.; Kennedy, Robert; Coulon, Christopher H.; Norling, Karl; Nilsson, Hans C.; Rosenberg, Rutger (2004-04-28).
3223:
Danovaro, Roberto; Gambi, Cristina; Dell'Anno, Antonio; Corinaldesi, Cinzia; Fraschetti, Simonetta; Vanreusel, Ann; Vincx, Magda; Gooday, Andrew J. (2008).
301:
because it is hypothesized that the lack of light in the burrows where the blind gobies reside is responsible for the evolutionary loss of functional eyes.
58:
in aquatic sediment and overlying water, shelter to other species in the form of burrows in terrestrial and water ecosystems, and soil production on land.
2445:
Dale, A.W (2016). "A model for microbial phosphorus cycling in bioturbated marine sediments: Significance for phosphorus burial in the early Paleozoic".
543:
The presence of macroinvertebrates in sediment can initiate bioturbation due to their status as an important food source for benthivorous fish such as
540:
oxygenated water enhances the adsorption of phosphorus onto iron-oxide compounds, thereby reducing the total flux of phosphorus into the water column.
825:
is thought to be the earliest record of bioturbation, predating the Cambrian Period. The fossil is dated to 555 million years, which places it in the
317:. This has become a serious issue in the northwestern United States, as ghost and mud shrimp (thalassinidean shrimp) are considered pests to bivalve 3490: 309:, because thalassinidean shrimps can smother bivalves when they resuspend sediment. They have also been shown to exclude or inhibit polychaetes, 3982:"Terrestrial-marine teleconnections in the Devonian: links between the evolution of land plants, weathering processes, and marine anoxic events" 3592:"In situ quantification of bioturbation using time lapse fluorescent sediment profile imaging (f SPI), luminophore tracers and model simulation" 3413:
Smith, Craig R.; Berelson, Will; Demaster, David J.; Dobbs, Fred C.; Hammond, Doug; Hoover, Daniel J.; Pope, Robert H.; Stephens, Mark (1997).
570:
function as bioturbators on both gravel to sand-sized sediment and a nutrient scale, by moving and re-working sediments in the construction of
734:
The role of bioturbators in sediment biogeochemistry makes bioturbation a common parameter in sediment biogeochemical models, which are often
491:(migrating) fish such as salmon. Anadromous fish migrate from the sea into fresh-water rivers and streams to spawn. Macroinvertebrates act as 446:, such as earth worms and small mammals, form passageways for air and water transport which changes the soil properties, such as the vertical 146:
transport sediment particles randomly over short distances as they move through sediments. Animals mostly attributed to this category include
50:
experimenting in his garden. The disruption of aquatic sediments and terrestrial soils through bioturbating activities provides significant
1802:
Caliman, Adriano; Carneiro, Luciana S.; Leal, João J. F.; Farjalla, Vinicius F.; Bozelli, Reinaldo L.; Esteves, Francisco A. (2012-09-12).
342:, primarily through nutrient cycling. Bioturbators played, and continue to play, an important role in nutrient transport across sediments. 1804:"Community Biomass and Bottom up Multivariate Nutrient Complementarity Mediate the Effects of Bioturbator Diversity on Pelagic Production" 841:
enhanced soil weathering and increased the spread of soil due to bioturbation by tree roots. Root penetration and uprooting also enhanced
429:
Plants and animals utilize soil for food and shelter, disturbing the upper soil layers and transporting chemically weathered rock called
3191:
Kristensen, Erik (1985). "Oxygen and Inorganic Nitrogen Exchange in a "Nereis virens" (Polychaeta) Bioturbated Sediment-Water System".
1598:
Andersen, FO; Kristensen, E (1991). "Effects of burrowing macrofauna on organic matter decomposition in coastal marine sediments".
969:
Ray, G. Carleton; McCormick-Ray, Jerry; Berg, Peter; Epstein, Howard E. (2006). "Pacific walrus: Benthic bioturbator of Beringia".
2095:
Rhoads, DC; Young, DK (1970). "The influence of deposit-feeding organisms on sediment stability and community trophic structure".
19: 1871:"Sediment-to-water fluxes of particulate material and microbes by resuspension and their contribution to the planktonic food web" 487:(bottom-dwelling) fish, macroinvertebrates such as worms, insect larvae, crustaceans and molluscs, and seasonal influences from 2140:
Pillay, D.; Branch, G. M.; Forbes, A. T. (2007-09-01). "Experimental evidence for the effects of the thalassinidean sandprawn
1296:
Braeckman, U; Provoost, P; Gribsholt, B; Gansbeke, D Van; Middelburg, JJ; Soetaert, K; Vincx, M; Vanaverbeke, J (2010-01-28).
796:
arose during this time and promoted the development of hard skeletons, for example bristles, spines, and shells, as a form of
1391:
Weinberg, James R. (1984-08-28). "Interactions between functional groups in soft-substrata: Do species differences matter?".
1956:
Eisenberg, John F.; Kinlaw, Al (1999). "Introduction to the Special Issue: ecological significance of open burrow systems".
893:
from bioturbation have been found in marine sediments from tidal, coastal and deep sea sediments. In addition sand dune, or
413:
is still affected by bioturbation in the modern Earth. Some examples in the terrestrial and aquatic ecosystems are below.
1654:"Biodiversity of benthic microbial communities in bioturbated coastal sediments is controlled by geochemical microniches" 2118: 3466: 1999: 1547: 1538:"A new model of bioturbation for a functional approach to sediment reworking resulting from macrobenthic communities". 3075: 2284:
Olivier, Frédéric; Desroy, Nicolas; Retière, Christian (1996). "Habitat selection and adult-recruit interactions in
4162: 3415:"Latitudinal variations in benthic processes in the abyssal equatorial Pacific: control by biogenic particle flux" 496:
displacement of benthic primary producers, and recycling nutrients from the sediment back into the water column.
2498: 70:
left in marine and terrestrial sediments. Other bioturbation effects include altering the texture of sediments (
4182: 4147: 739: 660:, such as estuaries, are generally highly productive, which results in the accumulation of large quantities of 1332: 743: 714: 326:
in resuspension and burrowing modes have variable effects on fluid dynamics at the sediment-water interface.
2740:
Reichman, O.J.; Seabloom, Eric W. (2002). "The role of pocket gophers as subterranean ecosystem engineers".
2325:"Influence of adult density on recruitment into soft sediments: a short-term in situ sublittoral experiment" 372:
of contaminants from the sediment to the water column, depending on the mechanism of sediment transport. In
293:
shrimp burrows where there is not much light. The blind goby is an example of a species that is an obligate
1761:
Kristensen, Erik; Delefosse, Matthieu; Quintana, Cintia O.; Flindt, Mogens R.; Valdemarsen, Thomas (2014).
1711:"Aerobic Decomposition of Sediment and Detritus as a Function of Particle Surface Area and Organic Content" 735: 454:, and nutrient content. Invertebrates that burrow and consume plant detritus help produce an organic-rich 776:
accuracy, incorporate different modes of sediment transport, and account for more spatial heterogeneity.
3936:
Brasier, Martin D.; McIlroy, Duncan; Liu, Alexander G.; Antcliffe, Jonathan B.; Menon, Latha R. (2013).
3459:
Diagenetic Models and Their Implementation : Modelling Transport and Reactions in Aquatic Sediments
3099: 2023: 1571: 719: 718:
surface-derived organic matter, animals living on the sediment surface facilitate the incorporation of
607: 447: 252:
Microbial communities are greatly influenced by bioturbator activities, as increased transport of more
713:. In low energy regions (areas with relatively still water), bioturbation is the only force creating 682: 3905: 2039:"Macrofauna associated with echiuran burrows: a review with new observations of the innkeeper worm, 4167: 1165:
Kristensen, E; Penha-Lopes, G; Delefosse, M; Valdemarsen, T; Quintana, CO; Banta, GT (2012-02-02).
356: 305:
to have strong negative effects on other species, especially those of bivalves and surface-grazing
187: 1994:. Lacey, Eileen A., Patton, James L., Cameron, Guy N. Chicago: University of Chicago Press. 2000. 267:
Burrows offer protection from predation and harsh environmental conditions. For example, termites
298: 4091: 4032:
Taylor, A. M.; Goldring, R. (1993). "Description and analysis of bioturbation and ichnofabric".
1763:"Influence of benthic macrofauna community shifts on ecosystem functioning in shallow estuaries" 4187: 3900: 2119:"The effects of bioturbation on the infaunal community adjacent to an offshore hardbottom reef" 1033:
Meysman, F; Meddelburg, J; Heip, C (2006). "Bioturbation: a fresh look at Darwin's last idea".
870: 802: 579: 380:
animals can remobilize contaminants previously considered to be buried at a safe depth. In the
338:
Since its onset around 539 million years ago, bioturbation has been responsible for changes in
270: 3001:
Gottesfeld, AS; Hassan, MA; Tunnicliffe, JF (2008). "Salmon bioturbation and stream process".
3705:
Aquino, Tomás; Roche, Kevin R.; Aubeneau, Antoine; Packman, Aaron I.; Bolster, Diogo (2017).
651: 322: 2499:"Stabilization of the coupled oxygen and phosphorus cycles by the evolution of bioturbation" 1298:"Role of macrofauna functional traits and density in biogeochemical fluxes and bioturbation" 321:
operations. The presence of bioturbators can have both negative and positive effects on the
4114: 4041: 3949: 3892: 3848: 3718: 3679: 3641: 3603: 3556: 3513: 3426: 3369: 3327: 3281: 3236: 3225:"Exponential Decline of Deep-Sea Ecosystem Functioning Linked to Benthic Biodiversity Loss" 3142: 2952: 2900: 2799: 2707: 2662: 2610: 2563: 2513: 2454: 2388: 2336: 2297: 2247: 2208: 2153: 1965: 1922: 1882: 1815: 1722: 1665: 1626: 1493: 1400: 1365: 1309: 1255: 1178: 1106: 1042: 978: 929: 909:
was first realized by Charles Darwin, who devoted his last scientific book to the subject (
755: 723: 260: 2288:(Malmgren) (Annelida: Polychaeta) post-larval populations: Results of flume experiments". 1244:"Expanding the envelope: linking invertebrate bioturbators with micro-evolutionary change" 8: 2860: 816:
An alternate, less widely accepted hypothesis for the origin of bioturbation exists. The
634: 434: 131: 4118: 4045: 3953: 3896: 3852: 3722: 3683: 3645: 3607: 3560: 3517: 3430: 3373: 3331: 3285: 3240: 3146: 2956: 2904: 2803: 2711: 2666: 2614: 2567: 2517: 2458: 2392: 2340: 2301: 2251: 2212: 2157: 1969: 1926: 1886: 1819: 1726: 1669: 1630: 1497: 1404: 1369: 1313: 1259: 1182: 1110: 1046: 982: 4172: 4078:
Ahlbrandt, T. S.; Andrews, S.; Gwynne, D.T. (1978). "Bioturbation in eolian deposits".
4057: 4014: 3981: 3787: 3747: 3706: 3484: 3395: 3200: 3173: 3093: 2976: 2864: 2823: 2419: 2376: 2354: 2177: 2017: 1938: 1846: 1803: 1565: 1167:"What is bioturbation? The need for a precise definition for fauna in aquatic sciences" 785: 760: 751: 706: 62: 51: 3568: 3439: 3414: 3339: 2753: 2309: 2259: 2070: 1426:
Fauchald, K; Jumars, P (1979). "Diet of worms: a study of polychaete feeding guilds".
709:
functioning depends on the use and recycling of nutrients and organic inputs from the
681:
in microenvironments within burrows, as indicated by evidence of nitrogen fixation by
27:. Walrus bioturbations in Arctic benthic sediments have large-scale ecosystem effects. 4177: 4061: 4001: 3918: 3864: 3791: 3752: 3734: 3572: 3529: 3472: 3462: 3387: 3297: 3254: 3154: 3081: 3071: 3049: 2968: 2964: 2924: 2916: 2815: 2719: 2680: 2626: 2579: 2424: 2406: 2263: 2220: 2169: 2005: 1995: 1851: 1833: 1784: 1740: 1691: 1683: 1638: 1553: 1543: 1462: 1412: 1337: 1273: 1196: 1058: 678: 657: 514: 253: 3399: 2980: 2868: 2827: 2181: 1118: 585:
The construction of salmon redds increases sediment and nutrient fluxes through the
4122: 4087: 4049: 4009: 3993: 3957: 3910: 3856: 3815: 3779: 3742: 3726: 3687: 3649: 3611: 3564: 3521: 3434: 3377: 3335: 3289: 3244: 3150: 3041: 2960: 2908: 2856: 2807: 2749: 2715: 2670: 2618: 2571: 2529: 2521: 2470: 2462: 2414: 2396: 2344: 2305: 2255: 2216: 2161: 1973: 1930: 1890: 1841: 1823: 1774: 1730: 1673: 1634: 1501: 1458: 1454: 1408: 1373: 1327: 1317: 1263: 1186: 1114: 1050: 986: 916: 443: 410: 377: 373: 230: 3070:. American Geophysical Union. Washington, D.C.: American Geophysical Union. 2005. 4126: 1828: 809:
were the dominant biological structures of the ocean floor and drove much of the
673: 611: 560: 533: 529: 492: 339: 256: 3986:
Philosophical Transactions of the Royal Society of London B: Biological Sciences
1377: 990: 571: 3819: 3783: 3730: 3358:"Climate variation, carbon flux, and bioturbation in the abyssal North Pacific" 2195:
Tamaki, Akio (1988). "Effects of the bioturbating activity of the ghost shrimp
1054: 586: 575: 488: 472: 467: 459: 347: 330:
bioturbators may also hamper recruitment by consuming recently settled larvae.
327: 89: 47: 3691: 3525: 3382: 3357: 3249: 3224: 2811: 2466: 2165: 1735: 1710: 4156: 4053: 4005: 3922: 3868: 3738: 3533: 3476: 3391: 3301: 3085: 3053: 2972: 2920: 2819: 2410: 2377:"Animal evolution, bioturbation, and the sulfate concentration of the oceans" 2173: 1837: 1788: 1779: 1762: 1744: 1687: 1466: 1341: 1277: 1200: 934: 906: 878: 874: 862: 831: 806: 764: 669: 639: 484: 451: 421: 386: 177: 137: 101: 75: 3045: 2401: 2009: 1913:
Hansell, M. H. (1993). "The Ecological Impact of Animal Nests and Burrows".
1557: 1482:"Influence of relative mobilities on the composition of benthic communities" 259:, such as oxygen, to typically highly reduced sediments at depth alters the 3997: 3756: 3653: 3576: 3258: 2928: 2684: 2630: 2583: 2428: 2267: 1977: 1855: 1695: 1062: 890: 882: 817: 525: 463: 438: 294: 208: 195: 105: 67: 43: 1678: 1653: 398:) can also reduce the flux of contaminants to the water column by burying 3356:
Vardaro, Michael F.; Ruhl, Henry A.; Smith, Kenneth Jr. L. (2009-11-01).
1164: 894: 845:
storage by enabling mineral weathering and the burial of organic matter.
842: 710: 690: 594: 544: 318: 289: 3177: 2358: 1354: 646: 237: 224: 3616: 3591: 3204: 2941: 2534: 2475: 2349: 2324: 1942: 1895: 1870: 1506: 1481: 615: 399: 391: 381: 306: 283: 212: 165: 126: 97: 71: 3962: 3937: 3293: 2912: 2675: 2650: 2622: 2575: 1322: 1297: 1268: 1243: 1191: 1166: 920:
to describe the reworking of soil and sediment by plants and animals.
3914: 3860: 3222: 2525: 2117:
Dahlgren, Craig P.; Posey, Martin H.; Hulbert, Alan W. (1999-01-01).
2071:"The association between gobiid fishes and burrowing alpheid shrimps" 939: 866: 826: 821: 810: 793: 590: 548: 430: 314: 277: 191: 155: 151: 93: 2553: 1934: 838: 661: 623: 483:
Important sources of bioturbation in freshwater ecosystems include
147: 55: 39: 3068:
Interactions between macro- and microorganisms in marine sediments
2038: 1295: 2599: 1760: 797: 619: 455: 395: 310: 169: 614:, however, they are dominated by small invertebrates, including 3881: 789: 567: 504: 351:
bioturbators influenced the sulfur cycling in the early Earth.
241: 85: 81: 24: 2845: 3804: 3030: 2697: 853: 912:
The Formation of Vegetable Mould through the Action of Worms
3769: 3503: 3000: 1992:
Life underground : the biology of subterranean rodents
1801: 968: 369: 35: 3935: 3704: 3419:
Deep Sea Research Part II: Topical Studies in Oceanography
3412: 1096: 750:, or the biodiffusion coefficient, and is described by a 46:. The formal study of bioturbation began in the 1800s by 4142: 3669: 3589: 3167: 3132: 834:
to rule out an early Cambrian origin for this specimen.
3938:"The oldest evidence of bioturbation on Earth: COMMENT" 3707:"A Process-Based Model for Bioturbation-Induced Mixing" 3320:
Deep Sea Research Part I: Oceanographic Research Papers
4077: 3980:
Algeo, Thomas J.; Scheckler, Stephen E. (1998-01-29).
3837: 3630: 1032: 642:
in the sediment at the bottom of a coastal ecosystems
2283: 2116: 861:
Patterns or traces of bioturbation are preserved in
2890: 2375:Canfield, Donald E.; Farquhar, James (2009-05-19). 2233: 3461:. Berlin, Heidelberg: Springer Berlin Heidelberg. 3317: 3135:Journal of Experimental Marine Biology and Ecology 3034:Canadian Journal of Fisheries and Aquatic Sciences 2651:"The bioturbation-driven chemical release process" 2322: 2201:Journal of Experimental Marine Biology and Ecology 2139: 1652:Bertics, Victoria J; Ziebis, Wiebke (2009-05-21). 1619:Journal of Experimental Marine Biology and Ecology 1597: 1393:Journal of Experimental Marine Biology and Ecology 1358:Journal of Experimental Marine Biology and Ecology 971:Journal of Experimental Marine Biology and Ecology 705:Bioturbation is important in the deep sea because 610:invertebrates to fish and marine mammals. In most 578:functions to increase the ease of fluid movement ( 186:species are oriented with their heads towards the 4107:Palaeogeography, Palaeoclimatology, Palaeoecology 4104: 2649:Thibodeaux, Louis J.; Bierman, Victor J. (2003). 2648: 2323:Crowe, W. A.; Josefson, A. B.; Svane, I. (1987). 2078:Oceanography and Marine Biology: An Annual Review 1333:20.500.11755/e43f4d57-cf7f-494d-a724-a4b2aab2a772 905:Bioturbation's importance for soil processes and 792:appeared in the fossil record over a short time. 4154: 3355: 3271: 2739: 2374: 249:by other macrofaunal and microbial communities. 3115:Nitrogen Cycling in Coastal Marine Environments 2381:Proceedings of the National Academy of Sciences 1955: 4031: 3979: 3117:. John Wiley & Sons Ltd. pp. 301–338. 2789: 2199:Ortmann on migration of a mobile polychaete". 1425: 368:Bioturbation can either enhance or reduce the 1651: 1616: 16:Reworking of soils and sediments by organisms 3489:: CS1 maint: multiple names: authors list ( 1132: 1130: 1128: 746:. Bioturbation is typically represented as D 4092:10.1306/212f7586-2b24-11d7-8648000102c1865d 2094: 865:rock. The study of such patterns is called 606:Major marine bioturbators range from small 3190: 462:, and thus contribute to the formation of 4013: 3961: 3904: 3746: 3615: 3438: 3381: 3248: 2674: 2533: 2474: 2418: 2400: 2348: 1894: 1868: 1845: 1827: 1778: 1734: 1677: 1505: 1331: 1321: 1267: 1190: 1125: 729: 333: 1708: 1444: 1390: 852: 645: 633: 503: 420: 236: 223: 18: 4143:Nereis Park (the World of Bioturbation) 2785: 2783: 2068: 1912: 363: 4155: 4073: 4071: 4027: 4025: 3975: 3973: 3833: 3831: 3829: 3665: 3663: 3452: 3450: 3128: 3126: 3124: 2841: 2839: 2837: 2781: 2779: 2777: 2775: 2773: 2771: 2769: 2767: 2765: 2763: 2735: 2733: 2731: 2729: 2655:Environmental Science & Technology 2603:Environmental Science & Technology 2556:Environmental Science & Technology 2492: 2490: 2488: 2486: 2440: 2438: 2370: 2368: 2279: 2277: 2194: 2112: 2110: 2103:(2): 150–178 – via Researchgate. 2064: 2062: 2060: 1908: 1906: 1756: 1754: 1593: 1591: 1589: 1587: 1585: 1583: 1581: 1533: 1531: 1529: 1527: 1525: 1523: 1521: 1519: 1517: 1241: 1092: 1028: 1026: 1024: 1022: 1020: 877:. Thus, it affects the disciplines of 629: 3546: 3351: 3349: 3313: 3311: 3218: 3216: 3214: 3112: 3026: 3024: 3022: 3020: 3018: 3016: 2996: 2994: 2992: 2990: 2886: 2884: 2882: 2880: 2878: 2644: 2642: 2640: 2595: 2593: 2549: 2547: 2545: 2496: 2036: 1479: 1291: 1289: 1287: 1237: 1235: 1233: 1231: 1229: 1227: 1225: 1223: 1212: 1210: 1160: 1158: 1156: 1154: 1152: 1150: 1148: 1146: 1144: 1142: 1090: 1088: 1086: 1084: 1082: 1080: 1078: 1076: 1074: 1072: 1018: 1016: 1014: 1012: 1010: 1008: 1006: 1004: 1002: 1000: 964: 962: 960: 958: 956: 954: 555: 244:keeping watch outside a shrimp burrow 3634:Estuarine, Coastal and Shelf Science 3003:American Fisheries Society Symposium 2444: 405: 111: 4068: 4022: 3970: 3875: 3826: 3660: 3447: 3121: 3060: 2834: 2760: 2726: 2483: 2435: 2365: 2274: 2107: 2057: 2037:Anker, Arthur; et al. (2005). 1903: 1751: 1578: 1514: 900: 219: 13: 4098: 3456: 3346: 3308: 3211: 3013: 2987: 2875: 2637: 2590: 2542: 1284: 1220: 1207: 1139: 1069: 997: 951: 837:The evolution of trees during the 499: 54:. These include the alteration of 14: 4199: 4136: 4034:Journal of the Geological Society 2849:Fundamental and Applied Limnology 2742:Trends in Ecology & Evolution 1709:Hargrave, Barry T. (1972-07-01). 1606:: 69–88 – via researchgate. 1035:Trends in Ecology & Evolution 788:, during which most major animal 346:begin to mix reduced sulfur from 287:lives within the deep portion of 3549:Science of the Total Environment 2965:10.1111/j.1365-2427.2004.01233.x 2861:10.1127/1863-9135/2007/0168-0027 848: 4080:Journal of Sedimentary Research 3929: 3798: 3763: 3698: 3672:Geochimica et Cosmochimica Acta 3624: 3583: 3540: 3497: 3406: 3265: 3184: 3161: 3106: 2935: 2691: 2447:Geochimica et Cosmochimica Acta 2316: 2238:) in Willapa Bay, Washington". 2227: 2188: 2133: 2088: 2030: 1984: 1949: 1862: 1795: 1702: 1645: 1610: 1473: 1438: 1428:Oceanography and Marine Biology 1419: 1384: 1119:10.1016/j.earscirev.2009.09.005 528:(non-biting midges) larvae and 34:is defined as the reworking of 23:Sediment on the left tusk of a 3596:Marine Ecology Progress Series 3457:P., Boudreau, Bernard (1997). 3274:Marine Ecology Progress Series 2329:Marine Ecology Progress Series 2144:on macrobenthic communities". 1875:Marine Ecology Progress Series 1540:Organism-sediment interactions 1486:Marine Ecology Progress Series 1459:10.1080/00364827.1985.10419680 1348: 1302:Marine Ecology Progress Series 1248:Marine Ecology Progress Series 1171:Marine Ecology Progress Series 873:, such as laminated layers or 744:partial differential equations 416: 1: 3569:10.1016/s0048-9697(02)00014-1 3440:10.1016/s0967-0645(97)00022-2 3340:10.1016/s0967-0637(97)00049-6 2754:10.1016/s0169-5347(01)02329-1 2310:10.1016/s1385-1101(96)90791-1 2260:10.1016/s0025-326x(00)00230-7 945: 524:Macroinvertebrates including 478: 261:microbial metabolic processes 4127:10.1016/j.palaeo.2006.09.001 3155:10.1016/0022-0981(85)90015-2 2720:10.1016/0043-1354(95)00187-5 2221:10.1016/0022-0981(88)90219-5 1958:Journal of Arid Environments 1829:10.1371/journal.pone.0044925 1639:10.1016/0022-0981(87)90039-6 1413:10.1016/0022-0981(84)90091-1 779: 7: 3193:Journal of Coastal Research 1767:Frontiers in Marine Science 1378:10.1016/j.jembe.2006.06.025 991:10.1016/j.jembe.2005.12.043 923: 700: 561:River and stream ecosystems 284:Typhlogobius californiensis 10: 4204: 3820:10.1357/002224008785837158 3808:Journal of Marine Research 3784:10.1357/002224090784984560 3772:Journal of Marine Research 3731:10.1038/s41598-017-14705-1 3506:Limnology and Oceanography 3362:Limnology and Oceanography 2123:Bulletin of Marine Science 2097:Journal of Marine Research 2041:Ochetostoma erythrogrammon 1715:Limnology and Oceanography 1055:10.1016/j.tree.2006.08.002 720:particulate organic carbon 513:plants and phytoplankton ( 448:particle-size distribution 439:vertical sections of soil. 3692:10.1016/j.gca.2006.03.026 3526:10.4319/lo.1987.32.2.0313 3383:10.4319/lo.2009.54.6.2081 3250:10.1016/j.cub.2007.11.056 3009:– via researchgate. 2812:10.1007/s10499-012-9527-3 2792:Aquaculture International 2467:10.1016/j.gca.2016.05.046 2240:Marine Pollution Bulletin 2166:10.1007/s00227-007-0715-z 1736:10.4319/lo.1972.17.4.0583 683:sulfate-reducing bacteria 601: 4054:10.1144/gsjgs.150.1.0141 1780:10.3389/fmars.2014.00041 1242:Pillay, D (2010-06-23). 622:, burrowing shrimp, and 188:sediment-water interface 61:Bioturbators are deemed 4163:Biological oceanography 3046:10.1139/cjfas-2014-0413 2402:10.1073/pnas.0902037106 2290:Journal of Sea Research 299:morphological evolution 278:symbiotic relationships 254:energetically favorable 3998:10.1098/rstb.1998.0195 3654:10.1006/ecss.1997.0298 3098:: CS1 maint: others ( 2069:Karplus, Ilan (1987). 2022:: CS1 maint: others ( 1978:10.1006/jare.1998.0477 1869:Wainright, SC (1990). 1570:: CS1 maint: others ( 871:sedimentary structures 858: 803:Evolutionary Arms Race 730:Mathematical modelling 654: 643: 580:hydraulic conductivity 509: 466:Small mammals such as 426: 334:Biogeochemical effects 271:Macrotermes bellicosus 245: 234: 28: 4183:Physical oceanography 1679:10.1038/ismej.2009.62 1600:Symp. Zool. Soc. Lond 1099:Earth-Science Reviews 856: 652:marine nitrogen cycle 649: 637: 507: 425:Pocket gopher mounds 424: 240: 227: 22: 3170:Ecological Bulletins 2497:Boyle, R.A. (2014). 2197:Callianassa japonica 2043:Leuckart and Rüppel" 930:Argillipedoturbation 724:carbon sequestration 685:via the presence of 364:Organic contaminants 4119:2007PPP...245..382H 4046:1993JGSoc.150..141T 3954:2013Geo....41E.289B 3897:2011NatGe...4..372G 3853:2012Geo....40..395R 3723:2017NatSR...714287A 3684:2006GeCoA..70.5855R 3646:1998ECSS...46..531G 3608:2004MEPS..271....1S 3561:2002ScTEn.293..191B 3518:1987LimOc..32..313S 3431:1997DSRII..44.2295S 3425:(9–10): 2295–2317. 3374:2009LimOc..54.2081V 3332:1998DSRI...45..133A 3286:2016MEPS..557...31M 3241:2008CBio...18....1D 3147:1985JEMBE..85...75K 2957:2004FrBio..49..895M 2905:2011Ecol...92..373H 2804:2013AqInt..21....1A 2712:1996WatRe..30..704R 2667:2003EnST...37..252T 2615:2008EnST...42.1058G 2568:2010EnST...44.7456J 2518:2014NatGe...7..671B 2459:2016GeCoA.189..251D 2393:2009PNAS..106.8123C 2341:1987MEPS...41...61C 2302:1996JSR....36..217O 2252:2001MarPB..42..826D 2213:1988JEMBE.120...81T 2158:2007MarBi.152..611P 2142:Callianassa kraussi 1970:1999JArEn..41..123E 1927:1993FuEco...7....5H 1887:1990MEPS...62..271W 1820:2012PLoSO...744925C 1727:1972LimOc..17..583H 1670:2009ISMEJ...3.1269B 1631:1987JEMBE.107..219B 1498:1987MEPS...39...99P 1405:1984JEMBE..80...11W 1370:2006JEMBE.337..178M 1314:2010MEPS..399..173B 1260:2010MEPS..409..301P 1183:2012MEPS..446..285K 1111:2009ESRv...97..257W 1047:2006TEcoE..21..688M 983:2006JEMBE.330..403R 811:ecosystem functions 761:radioactive tracers 754:and, sometimes, an 630:Shallow and coastal 435:soil organic matter 150:such as clams, and 132:Nereis diversicolor 63:ecosystem engineers 3711:Scientific Reports 3617:10.3354/meps271001 2945:Freshwater Biology 2350:10.3354/meps041061 2047:Zoological Studies 1915:Functional Ecology 1896:10.3354/meps062271 1507:10.3354/meps039099 1480:Posey, MH (1987). 859: 786:Cambrian Explosion 707:deep-sea ecosystem 658:Coastal ecosystems 655: 644: 556:Rivers and streams 510: 508:Chironomid larvae. 427: 374:polluted sediments 246: 235: 138:Marenzelleria spp. 104:, mud shrimp, and 52:ecosystem services 29: 3992:(1365): 113–130. 3963:10.1130/g33606c.1 3885:Nature Geoscience 3678:(23): 5855–5867. 3294:10.3354/meps11837 2913:10.1890/09-1694.1 2676:10.1021/es032518j 2661:(13): 252A–258A. 2623:10.1021/es071607j 2576:10.1021/es100615g 2562:(19): 7456–7464. 2506:Nature Geoscience 2387:(20): 8123–8127. 2286:Pectinaria koreni 2236:Crassostrea gigas 1664:(11): 1269–1285. 1323:10.3354/meps08336 1269:10.3354/meps08628 1192:10.3354/meps09506 832:geological dating 827:Ediacaran Period. 679:nitrogen fixation 638:Bioturbation and 515:primary producers 444:Burrowing animals 406:Ecosystem impacts 184:Downward-conveyor 174:Arenicola marina, 122:Gallery-diffusers 112:Functional groups 4195: 4131: 4130: 4102: 4096: 4095: 4075: 4066: 4065: 4029: 4020: 4019: 4017: 3977: 3968: 3967: 3965: 3933: 3927: 3926: 3915:10.1038/ngeo1142 3908: 3879: 3873: 3872: 3861:10.1130/g32807.1 3835: 3824: 3823: 3802: 3796: 3795: 3767: 3761: 3760: 3750: 3702: 3696: 3695: 3667: 3658: 3657: 3628: 3622: 3621: 3619: 3587: 3581: 3580: 3555:(1–3): 191–200. 3544: 3538: 3537: 3501: 3495: 3494: 3488: 3480: 3454: 3445: 3444: 3442: 3410: 3404: 3403: 3385: 3368:(6): 2081–2088. 3353: 3344: 3343: 3315: 3306: 3305: 3269: 3263: 3262: 3252: 3220: 3209: 3208: 3188: 3182: 3181: 3165: 3159: 3158: 3130: 3119: 3118: 3110: 3104: 3103: 3097: 3089: 3064: 3058: 3057: 3040:(8): 1146–1158. 3028: 3011: 3010: 2998: 2985: 2984: 2939: 2933: 2932: 2888: 2873: 2872: 2843: 2832: 2831: 2787: 2758: 2757: 2737: 2724: 2723: 2695: 2689: 2688: 2678: 2646: 2635: 2634: 2609:(4): 1058–1065. 2597: 2588: 2587: 2551: 2540: 2539: 2537: 2526:10.1038/ngeo2213 2503: 2494: 2481: 2480: 2478: 2442: 2433: 2432: 2422: 2404: 2372: 2363: 2362: 2352: 2320: 2314: 2313: 2296:(3–4): 217–226. 2281: 2272: 2271: 2231: 2225: 2224: 2192: 2186: 2185: 2137: 2131: 2130: 2114: 2105: 2104: 2092: 2086: 2085: 2075: 2066: 2055: 2054: 2034: 2028: 2027: 2021: 2013: 1988: 1982: 1981: 1953: 1947: 1946: 1910: 1901: 1900: 1898: 1866: 1860: 1859: 1849: 1831: 1799: 1793: 1792: 1782: 1758: 1749: 1748: 1738: 1706: 1700: 1699: 1681: 1658:The ISME Journal 1649: 1643: 1642: 1614: 1608: 1607: 1595: 1576: 1575: 1569: 1561: 1535: 1512: 1511: 1509: 1477: 1471: 1470: 1442: 1436: 1435: 1423: 1417: 1416: 1388: 1382: 1381: 1352: 1346: 1345: 1335: 1325: 1293: 1282: 1281: 1271: 1239: 1218: 1214: 1205: 1204: 1194: 1162: 1137: 1134: 1123: 1122: 1094: 1067: 1066: 1030: 995: 994: 966: 917:Nathaniel Shaler 901:Research history 857:Planolite fossil 736:numerical models 612:marine sediments 493:biological pumps 411:Nutrient cycling 392:polychaete worms 357:(mineralization) 231:Arenicola marina 220:Ecological roles 162:Upward-conveyors 4203: 4202: 4198: 4197: 4196: 4194: 4193: 4192: 4168:Aquatic ecology 4153: 4152: 4139: 4134: 4103: 4099: 4076: 4069: 4030: 4023: 3978: 3971: 3934: 3930: 3906:10.1.1.717.5339 3880: 3876: 3836: 3827: 3803: 3799: 3768: 3764: 3703: 3699: 3668: 3661: 3629: 3625: 3588: 3584: 3545: 3541: 3502: 3498: 3482: 3481: 3469: 3455: 3448: 3411: 3407: 3354: 3347: 3316: 3309: 3270: 3266: 3229:Current Biology 3221: 3212: 3189: 3185: 3172:(35): 193–205. 3166: 3162: 3131: 3122: 3111: 3107: 3091: 3090: 3078: 3066: 3065: 3061: 3029: 3014: 2999: 2988: 2940: 2936: 2889: 2876: 2844: 2835: 2788: 2761: 2738: 2727: 2696: 2692: 2647: 2638: 2598: 2591: 2552: 2543: 2501: 2495: 2484: 2443: 2436: 2373: 2366: 2321: 2317: 2282: 2275: 2246:(10): 826–844. 2232: 2228: 2193: 2189: 2138: 2134: 2115: 2108: 2093: 2089: 2073: 2067: 2058: 2035: 2031: 2015: 2014: 2002: 1990: 1989: 1985: 1954: 1950: 1935:10.2307/2389861 1911: 1904: 1867: 1863: 1800: 1796: 1759: 1752: 1707: 1703: 1650: 1646: 1615: 1611: 1596: 1579: 1563: 1562: 1550: 1537: 1536: 1515: 1478: 1474: 1443: 1439: 1424: 1420: 1389: 1385: 1353: 1349: 1294: 1285: 1240: 1221: 1215: 1208: 1163: 1140: 1135: 1126: 1095: 1070: 1041:(12): 688–695. 1031: 998: 967: 952: 948: 926: 903: 851: 839:Devonian Period 782: 771: 749: 732: 703: 674:denitrification 632: 604: 558: 534:denitrification 530:tubificid worms 502: 500:Lakes and ponds 481: 419: 408: 384:, the invasive 366: 348:ocean sediments 340:ocean chemistry 336: 328:Deposit-feeding 222: 114: 17: 12: 11: 5: 4201: 4191: 4190: 4185: 4180: 4175: 4170: 4165: 4151: 4150: 4145: 4138: 4137:External links 4135: 4133: 4132: 4113:(3): 382–389. 4097: 4067: 4040:(1): 141–148. 4021: 3969: 3928: 3891:(6): 372–375. 3874: 3847:(5): 395–398. 3825: 3814:(2): 191–218. 3797: 3778:(1): 177–207. 3762: 3697: 3659: 3640:(4): 531–547. 3623: 3582: 3539: 3512:(2): 313–326. 3496: 3468:978-3642643996 3467: 3446: 3405: 3345: 3326:(1): 133–165. 3307: 3264: 3210: 3199:(2): 109–116. 3183: 3160: 3120: 3105: 3076: 3059: 3012: 2986: 2951:(7): 895–912. 2934: 2899:(2): 373–385. 2874: 2833: 2759: 2725: 2706:(3): 704–714. 2700:Water Research 2690: 2636: 2589: 2541: 2482: 2434: 2364: 2315: 2273: 2226: 2187: 2152:(3): 611–618. 2146:Marine Biology 2132: 2106: 2087: 2056: 2029: 2001:978-0226467283 2000: 1983: 1964:(2): 123–125. 1948: 1902: 1861: 1794: 1750: 1721:(4): 583–586. 1701: 1644: 1625:(3): 219–235. 1609: 1577: 1549:978-1570034312 1548: 1513: 1472: 1453:(4): 229–249. 1437: 1418: 1383: 1364:(2): 178–189. 1347: 1283: 1219: 1206: 1138: 1124: 1105:(1): 257–272. 1068: 996: 977:(1): 403–419. 949: 947: 944: 943: 942: 937: 932: 925: 922: 902: 899: 850: 847: 807:microbial mats 781: 778: 769: 747: 731: 728: 702: 699: 631: 628: 603: 600: 587:hyporheic zone 557: 554: 501: 498: 480: 477: 473:soil formation 468:pocket gophers 464:soil horizons. 460:soil biomantle 418: 415: 407: 404: 365: 362: 335: 332: 221: 218: 217: 216: 200: 199: 181: 159: 141: 113: 110: 90:pocket gophers 48:Charles Darwin 15: 9: 6: 4: 3: 2: 4200: 4189: 4188:Sedimentology 4186: 4184: 4181: 4179: 4176: 4174: 4171: 4169: 4166: 4164: 4161: 4160: 4158: 4149: 4146: 4144: 4141: 4140: 4128: 4124: 4120: 4116: 4112: 4108: 4101: 4093: 4089: 4085: 4081: 4074: 4072: 4063: 4059: 4055: 4051: 4047: 4043: 4039: 4035: 4028: 4026: 4016: 4011: 4007: 4003: 3999: 3995: 3991: 3987: 3983: 3976: 3974: 3964: 3959: 3955: 3951: 3947: 3943: 3939: 3932: 3924: 3920: 3916: 3912: 3907: 3902: 3898: 3894: 3890: 3886: 3878: 3870: 3866: 3862: 3858: 3854: 3850: 3846: 3842: 3834: 3832: 3830: 3821: 3817: 3813: 3809: 3801: 3793: 3789: 3785: 3781: 3777: 3773: 3766: 3758: 3754: 3749: 3744: 3740: 3736: 3732: 3728: 3724: 3720: 3716: 3712: 3708: 3701: 3693: 3689: 3685: 3681: 3677: 3673: 3666: 3664: 3655: 3651: 3647: 3643: 3639: 3635: 3627: 3618: 3613: 3609: 3605: 3601: 3597: 3593: 3586: 3578: 3574: 3570: 3566: 3562: 3558: 3554: 3550: 3543: 3535: 3531: 3527: 3523: 3519: 3515: 3511: 3507: 3500: 3492: 3486: 3478: 3474: 3470: 3464: 3460: 3453: 3451: 3441: 3436: 3432: 3428: 3424: 3420: 3416: 3409: 3401: 3397: 3393: 3389: 3384: 3379: 3375: 3371: 3367: 3363: 3359: 3352: 3350: 3341: 3337: 3333: 3329: 3325: 3321: 3314: 3312: 3303: 3299: 3295: 3291: 3287: 3283: 3279: 3275: 3268: 3260: 3256: 3251: 3246: 3242: 3238: 3234: 3230: 3226: 3219: 3217: 3215: 3206: 3202: 3198: 3194: 3187: 3179: 3175: 3171: 3164: 3156: 3152: 3148: 3144: 3140: 3136: 3129: 3127: 3125: 3116: 3109: 3101: 3095: 3087: 3083: 3079: 3077:9781118665442 3073: 3069: 3063: 3055: 3051: 3047: 3043: 3039: 3035: 3027: 3025: 3023: 3021: 3019: 3017: 3008: 3004: 2997: 2995: 2993: 2991: 2982: 2978: 2974: 2970: 2966: 2962: 2958: 2954: 2950: 2946: 2938: 2930: 2926: 2922: 2918: 2914: 2910: 2906: 2902: 2898: 2894: 2887: 2885: 2883: 2881: 2879: 2870: 2866: 2862: 2858: 2854: 2850: 2842: 2840: 2838: 2829: 2825: 2821: 2817: 2813: 2809: 2805: 2801: 2797: 2793: 2786: 2784: 2782: 2780: 2778: 2776: 2774: 2772: 2770: 2768: 2766: 2764: 2755: 2751: 2747: 2743: 2736: 2734: 2732: 2730: 2721: 2717: 2713: 2709: 2705: 2701: 2694: 2686: 2682: 2677: 2672: 2668: 2664: 2660: 2656: 2652: 2645: 2643: 2641: 2632: 2628: 2624: 2620: 2616: 2612: 2608: 2604: 2596: 2594: 2585: 2581: 2577: 2573: 2569: 2565: 2561: 2557: 2550: 2548: 2546: 2536: 2531: 2527: 2523: 2519: 2515: 2511: 2507: 2500: 2493: 2491: 2489: 2487: 2477: 2472: 2468: 2464: 2460: 2456: 2452: 2448: 2441: 2439: 2430: 2426: 2421: 2416: 2412: 2408: 2403: 2398: 2394: 2390: 2386: 2382: 2378: 2371: 2369: 2360: 2356: 2351: 2346: 2342: 2338: 2334: 2330: 2326: 2319: 2311: 2307: 2303: 2299: 2295: 2291: 2287: 2280: 2278: 2269: 2265: 2261: 2257: 2253: 2249: 2245: 2241: 2237: 2230: 2222: 2218: 2214: 2210: 2206: 2202: 2198: 2191: 2183: 2179: 2175: 2171: 2167: 2163: 2159: 2155: 2151: 2147: 2143: 2136: 2128: 2124: 2120: 2113: 2111: 2102: 2098: 2091: 2083: 2079: 2072: 2065: 2063: 2061: 2053:(2): 157–190. 2052: 2048: 2044: 2042: 2033: 2025: 2019: 2011: 2007: 2003: 1997: 1993: 1987: 1979: 1975: 1971: 1967: 1963: 1959: 1952: 1944: 1940: 1936: 1932: 1928: 1924: 1920: 1916: 1909: 1907: 1897: 1892: 1888: 1884: 1880: 1876: 1872: 1865: 1857: 1853: 1848: 1843: 1839: 1835: 1830: 1825: 1821: 1817: 1814:(9): e44925. 1813: 1809: 1805: 1798: 1790: 1786: 1781: 1776: 1772: 1768: 1764: 1757: 1755: 1746: 1742: 1737: 1732: 1728: 1724: 1720: 1716: 1712: 1705: 1697: 1693: 1689: 1685: 1680: 1675: 1671: 1667: 1663: 1659: 1655: 1648: 1640: 1636: 1632: 1628: 1624: 1620: 1613: 1605: 1601: 1594: 1592: 1590: 1588: 1586: 1584: 1582: 1573: 1567: 1559: 1555: 1551: 1545: 1541: 1534: 1532: 1530: 1528: 1526: 1524: 1522: 1520: 1518: 1508: 1503: 1499: 1495: 1491: 1487: 1483: 1476: 1468: 1464: 1460: 1456: 1452: 1448: 1441: 1433: 1429: 1422: 1414: 1410: 1406: 1402: 1398: 1394: 1387: 1379: 1375: 1371: 1367: 1363: 1359: 1351: 1343: 1339: 1334: 1329: 1324: 1319: 1315: 1311: 1307: 1303: 1299: 1292: 1290: 1288: 1279: 1275: 1270: 1265: 1261: 1257: 1253: 1249: 1245: 1238: 1236: 1234: 1232: 1230: 1228: 1226: 1224: 1213: 1211: 1202: 1198: 1193: 1188: 1184: 1180: 1176: 1172: 1168: 1161: 1159: 1157: 1155: 1153: 1151: 1149: 1147: 1145: 1143: 1133: 1131: 1129: 1120: 1116: 1112: 1108: 1104: 1100: 1093: 1091: 1089: 1087: 1085: 1083: 1081: 1079: 1077: 1075: 1073: 1064: 1060: 1056: 1052: 1048: 1044: 1040: 1036: 1029: 1027: 1025: 1023: 1021: 1019: 1017: 1015: 1013: 1011: 1009: 1007: 1005: 1003: 1001: 992: 988: 984: 980: 976: 972: 965: 963: 961: 959: 957: 955: 950: 941: 938: 936: 935:Bioirrigation 933: 931: 928: 927: 921: 918: 914: 913: 908: 907:geomorphology 898: 896: 892: 891:trace fossils 887: 884: 880: 879:sedimentology 876: 875:cross-bedding 872: 868: 864: 855: 849:Fossil record 846: 844: 840: 835: 833: 828: 824: 823: 819: 814: 812: 808: 804: 799: 795: 791: 787: 777: 773: 766: 765:radioisotopes 762: 757: 753: 745: 741: 737: 727: 725: 721: 716: 715:heterogeneity 712: 708: 698: 694: 692: 688: 684: 680: 675: 671: 670:nitrification 665: 663: 659: 653: 648: 641: 640:bioirrigation 636: 627: 625: 621: 617: 613: 609: 599: 596: 595:heterotrophic 592: 588: 583: 581: 577: 573: 569: 565: 562: 553: 550: 546: 541: 537: 535: 531: 527: 522: 518: 516: 506: 497: 494: 490: 486: 476: 474: 469: 465: 461: 458:known as the 457: 453: 452:soil porosity 449: 445: 441: 440: 436: 432: 423: 414: 412: 403: 401: 397: 393: 389: 388: 387:Marenzelleria 383: 379: 375: 371: 361: 358: 352: 349: 343: 341: 331: 329: 324: 320: 316: 312: 308: 302: 300: 296: 292: 291: 286: 285: 279: 276:evolution of 274: 272: 265: 262: 258: 255: 250: 243: 239: 233: 232: 226: 214: 210: 205: 202: 201: 197: 193: 189: 185: 182: 179: 175: 171: 167: 163: 160: 157: 153: 149: 145: 142: 140: 139: 134: 133: 128: 123: 120: 119: 118: 109: 107: 103: 99: 95: 91: 87: 83: 79: 77: 76:bioirrigation 73: 69: 68:trace fossils 64: 59: 57: 53: 49: 45: 41: 37: 33: 26: 21: 4110: 4106: 4100: 4083: 4079: 4037: 4033: 3989: 3985: 3945: 3941: 3931: 3888: 3884: 3877: 3844: 3840: 3811: 3807: 3800: 3775: 3771: 3765: 3717:(1): 14287. 3714: 3710: 3700: 3675: 3671: 3637: 3633: 3626: 3599: 3595: 3585: 3552: 3548: 3542: 3509: 3505: 3499: 3458: 3422: 3418: 3408: 3365: 3361: 3323: 3319: 3277: 3273: 3267: 3232: 3228: 3196: 3192: 3186: 3169: 3163: 3141:(1): 75–91. 3138: 3134: 3114: 3108: 3067: 3062: 3037: 3033: 3006: 3002: 2948: 2944: 2937: 2896: 2892: 2855:(1): 27–38. 2852: 2848: 2795: 2791: 2748:(1): 44–49. 2745: 2741: 2703: 2699: 2693: 2658: 2654: 2606: 2602: 2559: 2555: 2509: 2505: 2450: 2446: 2384: 2380: 2335:(1): 61–69. 2332: 2328: 2318: 2293: 2289: 2285: 2243: 2239: 2235: 2229: 2207:(1): 81–95. 2204: 2200: 2196: 2190: 2149: 2145: 2141: 2135: 2126: 2122: 2100: 2096: 2090: 2081: 2077: 2050: 2046: 2040: 2032: 1991: 1986: 1961: 1957: 1951: 1918: 1914: 1878: 1874: 1864: 1811: 1807: 1797: 1770: 1766: 1718: 1714: 1704: 1661: 1657: 1647: 1622: 1618: 1612: 1603: 1599: 1539: 1489: 1485: 1475: 1450: 1446: 1440: 1431: 1427: 1421: 1399:(1): 11–28. 1396: 1392: 1386: 1361: 1357: 1350: 1305: 1301: 1251: 1247: 1174: 1170: 1102: 1098: 1038: 1034: 974: 970: 910: 904: 888: 883:stratigraphy 860: 836: 820: 818:trace fossil 815: 783: 774: 763:such as Pb, 738:built using 733: 704: 695: 686: 666: 656: 605: 584: 576:salmon redds 566: 559: 542: 538: 523: 519: 511: 485:benthivorous 482: 442: 428: 409: 385: 367: 353: 344: 337: 303: 295:commensalist 288: 282: 268: 266: 251: 247: 229: 228:The lugworm 204:Regenerators 203: 196:Sipunculidae 183: 173: 161: 144:Biodiffusers 143: 136: 130: 121: 115: 106:midge larvae 102:ghost shrimp 80: 60: 44:biodiversity 32:Bioturbation 31: 30: 3948:(5): e289. 2798:(1): 1–17. 2535:10871/35799 2476:10871/23490 2453:: 251–268. 2129:(1): 21–34. 1921:(1): 5–12. 1881:: 271–281. 1308:: 173–186. 1254:: 301–303. 1177:: 285–302. 843:soil carbon 711:photic zone 691:nitrogenase 616:polychaetes 591:autotrophic 417:Terrestrial 400:hydrophobic 390:species of 323:recruitment 319:aquaculture 290:Callianassa 192:peanut worm 178:thalassinid 166:polychaetes 127:polychaetes 98:polychaetes 4157:Categories 3235:(1): 1–8. 2512:(9): 671. 2084:: 507–562. 1492:: 99–104. 946:References 889:Important 886:specimen. 526:chironomid 489:anadromous 479:Freshwater 382:Baltic Sea 307:gastropods 129:, such as 94:earthworms 72:diagenesis 4173:Limnology 4062:129182527 4006:0962-8436 3923:1752-0908 3901:CiteSeerX 3869:0091-7613 3792:129173448 3739:2045-2322 3534:1939-5590 3485:cite book 3477:851842693 3392:1939-5590 3302:0171-8630 3280:: 31–49. 3094:cite book 3086:798834896 3054:0706-652X 2973:1365-2427 2921:1939-9170 2820:0967-6120 2411:0027-8424 2174:0025-3162 2018:cite book 1838:1932-6203 1789:2296-7745 1745:1939-5590 1688:1751-7370 1566:cite book 1467:0036-4827 1342:0171-8630 1278:0171-8630 1201:0171-8630 940:Zoophycos 867:ichnology 863:lithified 822:Nenoxites 794:Predation 780:Evolution 756:advective 752:diffusion 693:) genes. 624:amphipods 549:turbidity 431:saprolite 315:amphipods 311:cumaceans 168:like the 156:epifaunal 56:nutrients 40:sediments 4178:Pedology 4148:Worm Cam 3757:29079758 3602:: 1–12. 3577:12109472 3400:53613556 3259:18164201 3178:20112854 2981:43255065 2929:21618917 2869:84815294 2828:15097632 2685:12875383 2631:18351072 2584:20831254 2429:19451639 2359:24827459 2268:11693637 2182:84904361 2010:43207081 1856:22984586 1808:PLOS ONE 1696:19458658 1558:47927758 1063:16901581 924:See also 740:ordinary 701:Deep sea 662:detritus 620:bivalves 608:infaunal 378:Invasive 257:oxidants 194:family, 180:shrimps. 152:amphipod 148:bivalves 82:Walruses 4115:Bibcode 4042:Bibcode 4015:1692181 3950:Bibcode 3942:Geology 3893:Bibcode 3849:Bibcode 3841:Geology 3748:5660215 3719:Bibcode 3680:Bibcode 3642:Bibcode 3604:Bibcode 3557:Bibcode 3514:Bibcode 3427:Bibcode 3370:Bibcode 3328:Bibcode 3282:Bibcode 3237:Bibcode 3205:4297030 3143:Bibcode 2953:Bibcode 2901:Bibcode 2893:Ecology 2800:Bibcode 2708:Bibcode 2663:Bibcode 2611:Bibcode 2564:Bibcode 2514:Bibcode 2455:Bibcode 2420:2688866 2389:Bibcode 2337:Bibcode 2298:Bibcode 2248:Bibcode 2209:Bibcode 2154:Bibcode 1966:Bibcode 1943:2389861 1923:Bibcode 1883:Bibcode 1847:3440345 1816:Bibcode 1723:Bibcode 1666:Bibcode 1627:Bibcode 1494:Bibcode 1401:Bibcode 1366:Bibcode 1310:Bibcode 1256:Bibcode 1179:Bibcode 1107:Bibcode 1043:Bibcode 979:Bibcode 798:armored 456:topsoil 396:infauna 209:fiddler 170:lugworm 4060:  4012:  4004:  3921:  3903:  3867:  3790:  3755:  3745:  3737:  3575:  3532:  3475:  3465:  3398:  3390:  3300:  3257:  3203:  3176:  3084:  3074:  3052:  2979:  2971:  2927:  2919:  2867:  2826:  2818:  2683:  2629:  2582:  2427:  2417:  2409:  2357:  2266:  2180:  2172:  2008:  1998:  1941:  1854:  1844:  1836:  1787:  1743:  1694:  1686:  1556:  1546:  1465:  1447:Sarsia 1340:  1276:  1217:66-80. 1199:  1061:  895:Eolian 602:Marine 568:Salmon 313:, and 242:Gobies 215:crabs. 88:, and 86:salmon 25:walrus 4086:(3). 4058:S2CID 3788:S2CID 3396:S2CID 3201:JSTOR 3174:JSTOR 2977:S2CID 2865:S2CID 2824:S2CID 2502:(PDF) 2355:JSTOR 2178:S2CID 2074:(PDF) 1939:JSTOR 790:phyla 572:redds 213:ghost 36:soils 4002:ISSN 3919:ISSN 3865:ISSN 3753:PMID 3735:ISSN 3573:PMID 3530:ISSN 3491:link 3473:OCLC 3463:ISBN 3388:ISSN 3298:ISSN 3255:PMID 3100:link 3082:OCLC 3072:ISBN 3050:ISSN 2969:ISSN 2925:PMID 2917:ISSN 2816:ISSN 2681:PMID 2627:PMID 2580:PMID 2425:PMID 2407:ISSN 2264:PMID 2170:ISSN 2024:link 2006:OCLC 1996:ISBN 1852:PMID 1834:ISSN 1785:ISSN 1741:ISSN 1692:PMID 1684:ISSN 1572:link 1554:OCLC 1544:ISBN 1463:ISSN 1338:ISSN 1274:ISSN 1197:ISSN 1059:PMID 881:and 742:and 650:The 545:carp 370:flux 211:and 176:and 135:and 38:and 4123:doi 4111:245 4088:doi 4050:doi 4038:150 4010:PMC 3994:doi 3990:353 3958:doi 3911:doi 3857:doi 3816:doi 3780:doi 3743:PMC 3727:doi 3688:doi 3650:doi 3612:doi 3600:271 3565:doi 3553:293 3522:doi 3435:doi 3378:doi 3336:doi 3290:doi 3278:557 3245:doi 3151:doi 3042:doi 2961:doi 2909:doi 2857:doi 2853:168 2808:doi 2750:doi 2716:doi 2671:doi 2619:doi 2572:doi 2530:hdl 2522:doi 2471:hdl 2463:doi 2451:189 2415:PMC 2397:doi 2385:106 2345:doi 2306:doi 2256:doi 2217:doi 2205:120 2162:doi 2150:152 1974:doi 1931:doi 1891:doi 1842:PMC 1824:doi 1775:doi 1731:doi 1674:doi 1635:doi 1623:107 1502:doi 1455:doi 1409:doi 1374:doi 1362:337 1328:hdl 1318:doi 1306:399 1264:doi 1252:409 1187:doi 1175:446 1115:doi 1051:doi 987:doi 975:330 689:H ( 687:nif 593:to 74:), 4159:: 4121:. 4109:. 4084:48 4082:. 4070:^ 4056:. 4048:. 4036:. 4024:^ 4008:. 4000:. 3988:. 3984:. 3972:^ 3956:. 3946:41 3944:. 3940:. 3917:. 3909:. 3899:. 3887:. 3863:. 3855:. 3845:40 3843:. 3828:^ 3812:66 3810:. 3786:. 3776:48 3774:. 3751:. 3741:. 3733:. 3725:. 3713:. 3709:. 3686:. 3676:70 3674:. 3662:^ 3648:. 3638:46 3636:. 3610:. 3598:. 3594:. 3571:. 3563:. 3551:. 3528:. 3520:. 3510:32 3508:. 3487:}} 3483:{{ 3471:. 3449:^ 3433:. 3423:44 3421:. 3417:. 3394:. 3386:. 3376:. 3366:54 3364:. 3360:. 3348:^ 3334:. 3324:45 3322:. 3310:^ 3296:. 3288:. 3276:. 3253:. 3243:. 3233:18 3231:. 3227:. 3213:^ 3195:. 3149:. 3139:85 3137:. 3123:^ 3096:}} 3092:{{ 3080:. 3048:. 3038:72 3036:. 3015:^ 3007:65 3005:. 2989:^ 2975:. 2967:. 2959:. 2949:49 2947:. 2923:. 2915:. 2907:. 2897:92 2895:. 2877:^ 2863:. 2851:. 2836:^ 2822:. 2814:. 2806:. 2796:21 2794:. 2762:^ 2746:17 2744:. 2728:^ 2714:. 2704:30 2702:. 2679:. 2669:. 2659:37 2657:. 2653:. 2639:^ 2625:. 2617:. 2607:42 2605:. 2592:^ 2578:. 2570:. 2560:44 2558:. 2544:^ 2528:. 2520:. 2508:. 2504:. 2485:^ 2469:. 2461:. 2449:. 2437:^ 2423:. 2413:. 2405:. 2395:. 2383:. 2379:. 2367:^ 2353:. 2343:. 2333:41 2331:. 2327:. 2304:. 2294:36 2292:. 2276:^ 2262:. 2254:. 2244:42 2242:. 2215:. 2203:. 2176:. 2168:. 2160:. 2148:. 2127:64 2125:. 2121:. 2109:^ 2101:28 2099:. 2082:25 2080:. 2076:. 2059:^ 2051:44 2049:. 2045:. 2020:}} 2016:{{ 2004:. 1972:. 1962:41 1960:. 1937:. 1929:. 1917:. 1905:^ 1889:. 1879:62 1877:. 1873:. 1850:. 1840:. 1832:. 1822:. 1810:. 1806:. 1783:. 1773:. 1769:. 1765:. 1753:^ 1739:. 1729:. 1719:17 1717:. 1713:. 1690:. 1682:. 1672:. 1660:. 1656:. 1633:. 1621:. 1604:63 1602:. 1580:^ 1568:}} 1564:{{ 1552:. 1516:^ 1500:. 1490:39 1488:. 1484:. 1461:. 1451:70 1449:. 1432:17 1430:. 1407:. 1397:80 1395:. 1372:. 1360:. 1336:. 1326:. 1316:. 1304:. 1300:. 1286:^ 1272:. 1262:. 1250:. 1246:. 1222:^ 1209:^ 1195:. 1185:. 1173:. 1169:. 1141:^ 1127:^ 1113:. 1103:97 1101:. 1071:^ 1057:. 1049:. 1039:21 1037:. 999:^ 985:. 973:. 953:^ 772:. 626:. 618:, 536:. 450:, 172:, 100:, 96:, 84:, 4129:. 4125:: 4117:: 4094:. 4090:: 4064:. 4052:: 4044:: 4018:. 3996:: 3966:. 3960:: 3952:: 3925:. 3913:: 3895:: 3889:4 3871:. 3859:: 3851:: 3822:. 3818:: 3794:. 3782:: 3759:. 3729:: 3721:: 3715:7 3694:. 3690:: 3682:: 3656:. 3652:: 3644:: 3620:. 3614:: 3606:: 3579:. 3567:: 3559:: 3536:. 3524:: 3516:: 3493:) 3479:. 3443:. 3437:: 3429:: 3402:. 3380:: 3372:: 3342:. 3338:: 3330:: 3304:. 3292:: 3284:: 3261:. 3247:: 3239:: 3207:. 3197:1 3180:. 3157:. 3153:: 3145:: 3102:) 3088:. 3056:. 3044:: 2983:. 2963:: 2955:: 2931:. 2911:: 2903:: 2871:. 2859:: 2830:. 2810:: 2802:: 2756:. 2752:: 2722:. 2718:: 2710:: 2687:. 2673:: 2665:: 2633:. 2621:: 2613:: 2586:. 2574:: 2566:: 2538:. 2532:: 2524:: 2516:: 2510:7 2479:. 2473:: 2465:: 2457:: 2431:. 2399:: 2391:: 2361:. 2347:: 2339:: 2312:. 2308:: 2300:: 2270:. 2258:: 2250:: 2223:. 2219:: 2211:: 2184:. 2164:: 2156:: 2026:) 2012:. 1980:. 1976:: 1968:: 1945:. 1933:: 1925:: 1919:7 1899:. 1893:: 1885:: 1858:. 1826:: 1818:: 1812:7 1791:. 1777:: 1771:1 1747:. 1733:: 1725:: 1698:. 1676:: 1668:: 1662:3 1641:. 1637:: 1629:: 1574:) 1560:. 1510:. 1504:: 1496:: 1469:. 1457:: 1434:. 1415:. 1411:: 1403:: 1380:. 1376:: 1368:: 1344:. 1330:: 1320:: 1312:: 1280:. 1266:: 1258:: 1203:. 1189:: 1181:: 1121:. 1117:: 1109:: 1065:. 1053:: 1045:: 993:. 989:: 981:: 770:B 768:D 748:B 672:- 273:) 269:( 198:.

Index

Walrus
walrus
soils
sediments
biodiversity
Charles Darwin
ecosystem services
nutrients
ecosystem engineers
trace fossils
diagenesis
bioirrigation
Walruses
salmon
pocket gophers
earthworms
polychaetes
ghost shrimp
midge larvae
polychaetes
Nereis diversicolor
Marenzelleria spp.
bivalves
amphipod
epifaunal
polychaetes
lugworm
thalassinid
sediment-water interface
peanut worm

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.