Knowledge

Borel–Weil–Bott theorem

Source 📝

1589: 1447: 3064:(1954) , "Représentations linéaires et espaces homogènes kählériens des groupes de Lie compacts (d'après Armand Borel et André Weil)" [Linear representations and Kähler homogeneous spaces of compact Lie groups (after Armand Borel and André Weil)], 2727: 2468: 1452: 1584:{\displaystyle {\begin{aligned}H&=x{\frac {\partial }{\partial x}}-y{\frac {\partial }{\partial y}},\\X&=x{\frac {\partial }{\partial y}},\\Y&=y{\frac {\partial }{\partial x}}.\end{aligned}}} 470: 1439: 1290: 1067: 2876: 979: 2236: 1840: 1701: 873: 798: 532: 1374: 1332: 1940: 335: 2566: 669: 1205: 908: 1962: 366: 122: 1735: 1009: 727: 611: 1866: 1761: 1637: 1109: 701: 637: 585: 404: 2007:
of the group. The Borel–Weil–Bott theorem is its generalization to higher cohomology spaces. The theorem dates back to the early 1950s and can be found in
3127: 2643: 2370: 17: 1384:. We even have a unified description of the action of the Lie algebra, derived from its realization as vector fields on the Riemann sphere: if 3187: 3192: 66:, dealing just with the space of sections (the zeroth cohomology group), the extension to higher cohomology groups being provided by 1884:
is an arbitrary integral weight, it is in fact a large unsolved problem in representation theory to describe the cohomology modules
2139: 2988: 2941: 421: 2305:. (A holomorphic representation of a complex Lie group is one for which the corresponding Lie algebra representation is 1399: 1250: 1018: 2278: 2819: 917: 3100: 372:-module structure on these groups; and the Borel–Weil–Bott theorem gives an explicit description of these groups as 2185: 1781: 1642: 814: 739: 495: 1337: 1295: 2960: 1887: 282: 147: 3043: 3033: 2972: 2913: 2256: 2508: 2610:, with a Borel subgroup consisting of upper triangular matrices with determinant one. Integral weights for 1872:-module is simple in general, although it does contain the unique highest weight module of highest weight 3038: 642: 2964: 1981: 1610: 1177: 95: 75: 46:, showing how a family of representations can be obtained from holomorphic sections of certain complex 878: 3136: 1945: 344: 105: 2752: 2743: 2000: 1768: 235: 2620:, with dominant weights corresponding to nonnegative integers, and the corresponding characters 1714: 988: 706: 590: 2030: 1996: 1213: 1209: 543: 99: 39: 1845: 1740: 1616: 1088: 680: 616: 564: 386: 3157: 2998: 2600: 1992: 480:. It is straightforward to check that this defines a group action, although this action is 8: 272: 3171: 3096: 3061: 3026: 3002: 2984: 2937: 2102: 1985: 194: 3050: 1771:. However, the other statements of the theorem do not remain valid in this setting. 3145: 3016: 2976: 2722:{\displaystyle \chi _{n}{\begin{pmatrix}a&b\\0&a^{-1}\end{pmatrix}}=a^{n}.} 2089: 1605:
One also has a weaker form of this theorem in positive characteristic. Namely, let
1174: 276: 216: 79: 51: 3153: 2994: 2463:{\displaystyle f:G\to \mathbb {C} _{\lambda }:f(gb)=\chi _{\lambda }(b^{-1})f(g)} 2362: 2323:
gives rise to a character (one-dimensional representation) of the Borel subgroup
2129: 2045: 1989: 1381: 3114:, Princeton Landmarks in Mathematics, Princeton, NJ: Princeton University Press 2055: 1148: 182: 132: 2980: 3181: 3006: 2004: 125: 47: 63: 3078: 2079: 1964:, Mumford gave an example showing that it need not be the case for a fixed 59: 3149: 3112:
Representation theory of semisimple groups: An overview based on examples
3054: 257: 31: 3167: 1595: 380: 67: 2975:, Readings in Mathematics. Vol. 129. New York: Springer-Verlag. 2801:
and forms an irreducible representation under the standard action of
43: 3095:, Graduate Texts in Mathematics, vol. 235, New York: Springer, 2023:
The theorem can be stated either for a complex semisimple Lie group
3166:
This article incorporates material from Borel–Bott–Weil theorem on
2775:
is identified with the space of homogeneous polynomials of degree
3021:
The Penrose Transform: its Interaction with Representation Theory
2617: 3085:, Acad. Roy. Belg. Cl. Sci. Mém. Coll. (in French), vol. 29 981:
is the dual of the irreducible highest-weight representation of
1125: 54:
groups associated to such bundles. It is built on the earlier
1995:. These representations are realized in the spaces of global 1015:
It is worth noting that case (1) above occurs if and only if
3083:
Sur certaines classes d'espaces homogènes de groupes de Lie
484:
linear, unlike the usual Weyl group action. Also, a weight
71: 1968:
that these modules are all zero except in a single degree
1778:
be a dominant integral weight; then it is still true that
158:
defines in a natural way a one-dimensional representation
2764:
and the space of the global sections of the line bundle
3130:(1998). "Borel–Weil–Bott theory on the moduli stack of 1247:
This gives us at a stroke the representation theory of
1151:, an integral weight is specified simply by an integer 368:
by bundle automorphisms, this action naturally gives a
27:
Basic result in the representation theory of Lie groups
2662: 2340:. Holomorphic sections of the holomorphic line bundle 2101:. The flag variety can also be described as a compact 613:
is dominant, equivalently, there exists a nonidentity
2822: 2646: 2511: 2373: 2188: 1980:
The Borel–Weil theorem provides a concrete model for
1948: 1890: 1848: 1784: 1743: 1717: 1645: 1619: 1450: 1402: 1340: 1298: 1253: 1180: 1091: 1021: 991: 920: 881: 817: 742: 709: 683: 645: 619: 593: 567: 498: 465:{\displaystyle w*\lambda :=w(\lambda +\rho )-\rho \,} 424: 389: 347: 285: 108: 733:The theorem states that in the first case, we have 2936:(second ed.). American Mathematical Society. 2870: 2721: 2560: 2462: 2230: 1956: 1934: 1860: 1834: 1755: 1729: 1695: 1631: 1583: 1434:{\displaystyle {\mathfrak {sl}}_{2}(\mathbf {C} )} 1433: 1368: 1326: 1285:{\displaystyle {\mathfrak {sl}}_{2}(\mathbf {C} )} 1284: 1199: 1103: 1062:{\displaystyle (\lambda +\rho )(\beta ^{\vee })=0} 1061: 1003: 973: 902: 867: 792: 721: 695: 663: 631: 605: 579: 526: 464: 398: 360: 329: 116: 2293:, and each irreducible unitary representation of 3179: 3172:Creative Commons Attribution/Share-Alike License 2871:{\displaystyle X^{i}Y^{n-i},\quad 0\leq i\leq n} 974:{\displaystyle H^{\ell (w)}(G/B,\,L_{\lambda })} 1988:and irreducible holomorphic representations of 3014: 2299:is obtained in this way for a unique value of 2251:integral weight then this representation is a 2959: 2231:{\displaystyle \Gamma (G/B,L_{\lambda }).\ } 1077:as a special case of this theorem by taking 2018: 1835:{\displaystyle H^{i}(G/B,\,L_{\lambda })=0} 1696:{\displaystyle H^{i}(G/B,\,L_{\lambda })=0} 868:{\displaystyle H^{i}(G/B,\,L_{\lambda })=0} 793:{\displaystyle H^{i}(G/B,\,L_{\lambda })=0} 527:{\displaystyle \mu (\alpha ^{\vee })\geq 0} 201:. Since we can think of the projection map 1600: 1369:{\displaystyle \Gamma ({\mathcal {O}}(n))} 1327:{\displaystyle \Gamma ({\mathcal {O}}(1))} 476:denotes the half-sum of positive roots of 2388: 1950: 1935:{\displaystyle H^{i}(G/B,\,L_{\lambda })} 1918: 1812: 1767:is "close to zero". This is known as the 1673: 957: 845: 770: 461: 330:{\displaystyle H^{i}(G/B,\,L_{\lambda })} 313: 275:of holomorphic sections, we consider the 110: 3090: 2813:. Weight vectors are given by monomials 1609:be a semisimple algebraic group over an 173:, by pulling back the representation on 70:. One can equivalently, through Serre's 3126: 2931: 2312: 14: 3180: 3051:A Proof of the Borel–Weil–Bott Theorem 2925: 2561:{\displaystyle g\cdot f(h)=f(g^{-1}h)} 2241:The Borel–Weil theorem states that if 2179:acts on its space of global sections, 341:acts on the total space of the bundle 256:(note the sign), which is obviously a 3109: 3060: 2969:Representation theory. A first course 2008: 1975: 1868:, but it is no longer true that this 3077: 2361:may be described more concretely as 2012: 1334:is the standard representation, and 3188:Representation theory of Lie groups 2934:Representations of algebraic groups 1409: 1406: 1260: 1257: 1236:, and is canonically isomorphic to 664:{\displaystyle w*\lambda =\lambda } 50:, and, more generally, from higher 24: 3120: 2279:irreducible unitary representation 2189: 1565: 1561: 1530: 1526: 1495: 1491: 1474: 1470: 1349: 1341: 1307: 1299: 1183: 25: 3204: 3193:Theorems in representation theory 1228:, the sections can be written as 1200:{\displaystyle {\mathcal {O}}(n)} 2892:, and the highest weight vector 1424: 1275: 1073:. Also, we obtain the classical 808:and in the second case, we have 3116:. Reprint of the 1986 original. 2852: 2502:on these sections is given by 1396:are the standard generators of 3170:, which is licensed under the 2932:Jantzen, Jens Carsten (2003). 2555: 2536: 2527: 2521: 2457: 2451: 2445: 2429: 2413: 2404: 2383: 2219: 2192: 2048:complex semisimple Lie group, 1929: 1901: 1823: 1795: 1684: 1656: 1428: 1420: 1363: 1360: 1354: 1344: 1321: 1318: 1312: 1302: 1279: 1271: 1194: 1188: 1050: 1037: 1034: 1022: 968: 940: 935: 929: 903:{\displaystyle i\neq \ell (w)} 897: 891: 856: 828: 781: 753: 515: 502: 452: 440: 379:We first need to describe the 324: 296: 85: 13: 1: 3057:. Retrieved on Jul. 13, 2014. 2973:Graduate Texts in Mathematics 2953: 2914:Theorem of the highest weight 2257:highest weight representation 2588: 2092:and a nonsingular algebraic 1957:{\displaystyle \mathbb {C} } 1639:. Then it remains true that 361:{\displaystyle L_{\lambda }} 117:{\displaystyle \mathbb {C} } 7: 3039:Encyclopedia of Mathematics 2907: 2794:, this space has dimension 2742:may be identified with the 1982:irreducible representations 1085:to be the identity element 74:, view this as a result in 10: 3209: 3110:Knapp, Anthony W. (2001), 3091:Sepanski, Mark R. (2007), 2807:on the polynomial algebra 1730:{\displaystyle w*\lambda } 1611:algebraically closed field 1593: 1224:). As a representation of 1114: 1004:{\displaystyle w*\lambda } 722:{\displaystyle w*\lambda } 606:{\displaystyle w*\lambda } 557:, one of two cases occur: 406:. For any integral weight 76:complex algebraic geometry 3034:"Bott–Borel–Weil theorem" 3023:, Oxford University Press 2981:10.1007/978-1-4612-0979-9 553:Given an integral weight 38:is a basic result in the 3137:Inventiones Mathematicae 3134:-bundles over a curve". 2919: 2156:holomorphic line bundle 2019:Statement of the theorem 2001:holomorphic line bundles 1942:in general. Unlike over 1737:is non-dominant for all 2753:homogeneous coordinates 2744:complex projective line 2616:may be identified with 1769:Kempf vanishing theorem 1601:Positive characteristic 1214:homogeneous polynomials 1069:for some positive root 236:associated fiber bundle 36:Borel–Weil–Bott theorem 18:Borel–Bott–Weil theorem 2872: 2723: 2562: 2464: 2232: 1958: 1936: 1862: 1861:{\displaystyle i>0} 1836: 1757: 1756:{\displaystyle w\in W} 1731: 1711:is a weight such that 1697: 1633: 1632:{\displaystyle p>0} 1585: 1435: 1370: 1328: 1286: 1201: 1119:For example, consider 1105: 1104:{\displaystyle e\in W} 1063: 1005: 975: 904: 869: 794: 723: 697: 696:{\displaystyle w\in W} 665: 633: 632:{\displaystyle w\in W} 607: 581: 580:{\displaystyle w\in W} 528: 466: 400: 399:{\displaystyle -\rho } 362: 331: 118: 3150:10.1007/s002220050257 2873: 2724: 2563: 2465: 2271:. Its restriction to 2233: 1993:semisimple Lie groups 1959: 1937: 1863: 1837: 1774:More explicitly, let 1758: 1732: 1698: 1634: 1594:Further information: 1586: 1436: 1371: 1329: 1287: 1202: 1106: 1064: 1006: 976: 905: 870: 795: 724: 698: 666: 634: 608: 582: 534:for all simple roots 529: 467: 401: 363: 332: 119: 40:representation theory 3017:Eastwood, Michael G. 2820: 2644: 2601:special linear group 2509: 2371: 2313:Concrete description 2287:with highest weight 2265:with highest weight 2186: 2082:. In this scenario, 1946: 1888: 1846: 1782: 1741: 1715: 1643: 1617: 1448: 1400: 1338: 1296: 1251: 1178: 1089: 1019: 989: 985:with highest weight 918: 879: 815: 740: 707: 681: 643: 617: 591: 565: 496: 422: 387: 345: 283: 106: 3128:Teleman, Constantin 3093:Compact Lie groups. 3015:Baston, Robert J.; 2329:, which is denoted 1081:to be dominant and 383:action centered at 3066:Séminaire Bourbaki 3062:Serre, Jean-Pierre 2868: 2719: 2697: 2558: 2460: 2228: 1986:compact Lie groups 1976:Borel–Weil theorem 1954: 1932: 1858: 1832: 1753: 1727: 1693: 1629: 1613:of characteristic 1581: 1579: 1431: 1366: 1324: 1282: 1197: 1162:. The line bundle 1101: 1075:Borel–Weil theorem 1059: 1001: 971: 900: 865: 790: 719: 693: 661: 629: 603: 577: 524: 462: 414:in the Weyl group 396: 358: 327: 114: 56:Borel–Weil theorem 2990:978-0-387-97495-8 2943:978-0-8218-3527-2 2732:The flag variety 2227: 2103:homogeneous space 1572: 1537: 1502: 1481: 195:unipotent radical 16:(Redirected from 3200: 3161: 3115: 3105: 3086: 3073: 3047: 3024: 3010: 2948: 2947: 2929: 2903: 2897: 2891: 2877: 2875: 2874: 2869: 2848: 2847: 2832: 2831: 2812: 2806: 2800: 2793: 2786: 2780: 2774: 2763: 2750: 2741: 2728: 2726: 2725: 2720: 2715: 2714: 2702: 2701: 2694: 2693: 2656: 2655: 2636: 2630: 2615: 2609: 2598: 2584: 2567: 2565: 2564: 2559: 2551: 2550: 2501: 2492: 2482: 2469: 2467: 2466: 2461: 2444: 2443: 2428: 2427: 2397: 2396: 2391: 2363:holomorphic maps 2360: 2350: 2339: 2328: 2322: 2304: 2298: 2292: 2286: 2276: 2270: 2264: 2246: 2237: 2235: 2234: 2229: 2225: 2218: 2217: 2202: 2178: 2172: 2166: 2155: 2153: 2146: 2137: 2127: 2113: 2100: 2098: 2090:complex manifold 2087: 2077: 2063: 2053: 2043: 2037: 2028: 1971: 1967: 1963: 1961: 1960: 1955: 1953: 1941: 1939: 1938: 1933: 1928: 1927: 1911: 1900: 1899: 1883: 1879: 1875: 1871: 1867: 1865: 1864: 1859: 1841: 1839: 1838: 1833: 1822: 1821: 1805: 1794: 1793: 1777: 1766: 1762: 1760: 1759: 1754: 1736: 1734: 1733: 1728: 1710: 1706: 1702: 1700: 1699: 1694: 1683: 1682: 1666: 1655: 1654: 1638: 1636: 1635: 1630: 1608: 1590: 1588: 1587: 1582: 1580: 1573: 1571: 1560: 1538: 1536: 1525: 1503: 1501: 1490: 1482: 1480: 1469: 1440: 1438: 1437: 1432: 1427: 1419: 1418: 1413: 1412: 1395: 1391: 1387: 1379: 1375: 1373: 1372: 1367: 1353: 1352: 1333: 1331: 1330: 1325: 1311: 1310: 1291: 1289: 1288: 1283: 1278: 1270: 1269: 1264: 1263: 1243: 1235: 1227: 1219: 1206: 1204: 1203: 1198: 1187: 1186: 1172: 1161: 1154: 1146: 1136: 1110: 1108: 1107: 1102: 1084: 1080: 1072: 1068: 1066: 1065: 1060: 1049: 1048: 1010: 1008: 1007: 1002: 984: 980: 978: 977: 972: 967: 966: 950: 939: 938: 909: 907: 906: 901: 874: 872: 871: 866: 855: 854: 838: 827: 826: 803: 799: 797: 796: 791: 780: 779: 763: 752: 751: 728: 726: 725: 720: 702: 700: 699: 694: 670: 668: 667: 662: 638: 636: 635: 630: 612: 610: 609: 604: 586: 584: 583: 578: 556: 549: 541: 537: 533: 531: 530: 525: 514: 513: 487: 479: 475: 471: 469: 468: 463: 417: 413: 409: 405: 403: 402: 397: 375: 371: 367: 365: 364: 359: 357: 356: 340: 336: 334: 333: 328: 323: 322: 306: 295: 294: 277:sheaf cohomology 270: 255: 245: 233: 220: 214: 200: 192: 188: 172: 168: 157: 153: 145: 141: 137: 130: 123: 121: 120: 115: 113: 93: 80:Zariski topology 52:sheaf cohomology 21: 3208: 3207: 3203: 3202: 3201: 3199: 3198: 3197: 3178: 3177: 3123: 3121:Further reading 3103: 3032: 2991: 2961:Fulton, William 2956: 2951: 2944: 2930: 2926: 2922: 2910: 2899: 2893: 2882: 2837: 2833: 2827: 2823: 2821: 2818: 2817: 2808: 2802: 2795: 2788: 2782: 2776: 2773: 2765: 2755: 2746: 2733: 2710: 2706: 2696: 2695: 2686: 2682: 2680: 2674: 2673: 2668: 2658: 2657: 2651: 2647: 2645: 2642: 2641: 2632: 2629: 2621: 2611: 2603: 2599:be the complex 2594: 2591: 2572: 2543: 2539: 2510: 2507: 2506: 2497: 2484: 2474: 2436: 2432: 2423: 2419: 2392: 2387: 2386: 2372: 2369: 2368: 2352: 2349: 2341: 2338: 2330: 2324: 2318: 2315: 2300: 2294: 2288: 2282: 2272: 2266: 2260: 2242: 2213: 2209: 2198: 2187: 2184: 2183: 2174: 2168: 2165: 2157: 2149: 2148: 2142: 2140:integral weight 2133: 2130:Cartan subgroup 2128:is a (compact) 2115: 2105: 2094: 2093: 2083: 2065: 2059: 2049: 2039: 2033: 2024: 2021: 1978: 1969: 1965: 1949: 1947: 1944: 1943: 1923: 1919: 1907: 1895: 1891: 1889: 1886: 1885: 1881: 1880:-submodule. If 1877: 1873: 1869: 1847: 1844: 1843: 1817: 1813: 1801: 1789: 1785: 1783: 1780: 1779: 1775: 1764: 1742: 1739: 1738: 1716: 1713: 1712: 1708: 1704: 1678: 1674: 1662: 1650: 1646: 1644: 1641: 1640: 1618: 1615: 1614: 1606: 1603: 1598: 1578: 1577: 1564: 1559: 1549: 1543: 1542: 1529: 1524: 1514: 1508: 1507: 1494: 1489: 1473: 1468: 1458: 1451: 1449: 1446: 1445: 1423: 1414: 1405: 1404: 1403: 1401: 1398: 1397: 1393: 1389: 1385: 1382:symmetric power 1377: 1348: 1347: 1339: 1336: 1335: 1306: 1305: 1297: 1294: 1293: 1274: 1265: 1256: 1255: 1254: 1252: 1249: 1248: 1237: 1229: 1225: 1217: 1182: 1181: 1179: 1176: 1175: 1171: 1163: 1156: 1152: 1138: 1129: 1120: 1117: 1090: 1087: 1086: 1082: 1078: 1070: 1044: 1040: 1020: 1017: 1016: 990: 987: 986: 982: 962: 958: 946: 925: 921: 919: 916: 915: 880: 877: 876: 850: 846: 834: 822: 818: 816: 813: 812: 801: 775: 771: 759: 747: 743: 741: 738: 737: 708: 705: 704: 682: 679: 678: 644: 641: 640: 618: 615: 614: 592: 589: 588: 566: 563: 562: 554: 547: 544:length function 539: 535: 509: 505: 497: 494: 493: 485: 477: 473: 423: 420: 419: 415: 411: 407: 388: 385: 384: 373: 369: 352: 348: 346: 343: 342: 338: 318: 314: 302: 290: 286: 284: 281: 280: 269: 261: 247: 244: 238: 232: 224: 218: 202: 198: 190: 174: 170: 167: 159: 155: 151: 148:integral weight 143: 139: 138:which contains 135: 128: 109: 107: 104: 103: 100:algebraic group 91: 88: 28: 23: 22: 15: 12: 11: 5: 3206: 3196: 3195: 3190: 3163: 3162: 3122: 3119: 3118: 3117: 3107: 3101: 3088: 3075: 3072:(100): 447–454 3058: 3048: 3030: 3012: 2989: 2955: 2952: 2950: 2949: 2942: 2923: 2921: 2918: 2917: 2916: 2909: 2906: 2879: 2878: 2867: 2864: 2861: 2858: 2855: 2851: 2846: 2843: 2840: 2836: 2830: 2826: 2769: 2730: 2729: 2718: 2713: 2709: 2705: 2700: 2692: 2689: 2685: 2681: 2679: 2676: 2675: 2672: 2669: 2667: 2664: 2663: 2661: 2654: 2650: 2637:have the form 2625: 2590: 2587: 2569: 2568: 2557: 2554: 2549: 2546: 2542: 2538: 2535: 2532: 2529: 2526: 2523: 2520: 2517: 2514: 2496:The action of 2471: 2470: 2459: 2456: 2453: 2450: 2447: 2442: 2439: 2435: 2431: 2426: 2422: 2418: 2415: 2412: 2409: 2406: 2403: 2400: 2395: 2390: 2385: 2382: 2379: 2376: 2345: 2334: 2314: 2311: 2239: 2238: 2224: 2221: 2216: 2212: 2208: 2205: 2201: 2197: 2194: 2191: 2173:and the group 2161: 2056:Borel subgroup 2020: 2017: 1977: 1974: 1952: 1931: 1926: 1922: 1917: 1914: 1910: 1906: 1903: 1898: 1894: 1857: 1854: 1851: 1831: 1828: 1825: 1820: 1816: 1811: 1808: 1804: 1800: 1797: 1792: 1788: 1752: 1749: 1746: 1726: 1723: 1720: 1692: 1689: 1686: 1681: 1677: 1672: 1669: 1665: 1661: 1658: 1653: 1649: 1628: 1625: 1622: 1602: 1599: 1592: 1591: 1576: 1570: 1567: 1563: 1558: 1555: 1552: 1550: 1548: 1545: 1544: 1541: 1535: 1532: 1528: 1523: 1520: 1517: 1515: 1513: 1510: 1509: 1506: 1500: 1497: 1493: 1488: 1485: 1479: 1476: 1472: 1467: 1464: 1461: 1459: 1457: 1454: 1453: 1430: 1426: 1422: 1417: 1411: 1408: 1365: 1362: 1359: 1356: 1351: 1346: 1343: 1323: 1320: 1317: 1314: 1309: 1304: 1301: 1281: 1277: 1273: 1268: 1262: 1259: 1196: 1193: 1190: 1185: 1167: 1149:Riemann sphere 1127: 1116: 1113: 1100: 1097: 1094: 1058: 1055: 1052: 1047: 1043: 1039: 1036: 1033: 1030: 1027: 1024: 1013: 1012: 1000: 997: 994: 970: 965: 961: 956: 953: 949: 945: 942: 937: 934: 931: 928: 924: 912: 911: 899: 896: 893: 890: 887: 884: 864: 861: 858: 853: 849: 844: 841: 837: 833: 830: 825: 821: 806: 805: 789: 786: 783: 778: 774: 769: 766: 762: 758: 755: 750: 746: 731: 730: 718: 715: 712: 692: 689: 686: 672: 660: 657: 654: 651: 648: 628: 625: 622: 602: 599: 596: 576: 573: 570: 523: 520: 517: 512: 508: 504: 501: 488:is said to be 460: 457: 454: 451: 448: 445: 442: 439: 436: 433: 430: 427: 395: 392: 355: 351: 326: 321: 317: 312: 309: 305: 301: 298: 293: 289: 265: 260:. Identifying 242: 228: 163: 133:Borel subgroup 112: 87: 84: 48:vector bundles 26: 9: 6: 4: 3: 2: 3205: 3194: 3191: 3189: 3186: 3185: 3183: 3176: 3175: 3173: 3169: 3159: 3155: 3151: 3147: 3143: 3139: 3138: 3133: 3129: 3125: 3124: 3113: 3108: 3104: 3102:9780387302638 3098: 3094: 3089: 3084: 3080: 3079:Tits, Jacques 3076: 3071: 3068:(in French), 3067: 3063: 3059: 3056: 3052: 3049: 3045: 3041: 3040: 3035: 3031: 3028: 3022: 3018: 3013: 3008: 3004: 3000: 2996: 2992: 2986: 2982: 2978: 2974: 2970: 2966: 2962: 2958: 2957: 2945: 2939: 2935: 2928: 2924: 2915: 2912: 2911: 2905: 2902: 2896: 2890: 2886: 2865: 2862: 2859: 2856: 2853: 2849: 2844: 2841: 2838: 2834: 2828: 2824: 2816: 2815: 2814: 2811: 2805: 2798: 2791: 2785: 2779: 2772: 2768: 2762: 2758: 2754: 2749: 2745: 2740: 2736: 2716: 2711: 2707: 2703: 2698: 2690: 2687: 2683: 2677: 2670: 2665: 2659: 2652: 2648: 2640: 2639: 2638: 2635: 2628: 2624: 2619: 2614: 2607: 2602: 2597: 2586: 2583: 2579: 2575: 2552: 2547: 2544: 2540: 2533: 2530: 2524: 2518: 2515: 2512: 2505: 2504: 2503: 2500: 2494: 2491: 2487: 2481: 2477: 2454: 2448: 2440: 2437: 2433: 2424: 2420: 2416: 2410: 2407: 2401: 2398: 2393: 2380: 2377: 2374: 2367: 2366: 2365: 2364: 2359: 2355: 2348: 2344: 2337: 2333: 2327: 2321: 2310: 2308: 2303: 2297: 2291: 2285: 2280: 2275: 2269: 2263: 2258: 2254: 2250: 2245: 2222: 2214: 2210: 2206: 2203: 2199: 2195: 2182: 2181: 2180: 2177: 2171: 2164: 2160: 2152: 2147:determines a 2145: 2141: 2136: 2131: 2126: 2122: 2118: 2112: 2108: 2104: 2097: 2091: 2086: 2081: 2076: 2072: 2068: 2062: 2057: 2052: 2047: 2042: 2036: 2032: 2027: 2016: 2014: 2010: 2006: 2005:flag manifold 2002: 1998: 1994: 1991: 1987: 1983: 1973: 1924: 1920: 1915: 1912: 1908: 1904: 1896: 1892: 1855: 1852: 1849: 1829: 1826: 1818: 1814: 1809: 1806: 1802: 1798: 1790: 1786: 1772: 1770: 1750: 1747: 1744: 1724: 1721: 1718: 1690: 1687: 1679: 1675: 1670: 1667: 1663: 1659: 1651: 1647: 1626: 1623: 1620: 1612: 1597: 1574: 1568: 1556: 1553: 1551: 1546: 1539: 1533: 1521: 1518: 1516: 1511: 1504: 1498: 1486: 1483: 1477: 1465: 1462: 1460: 1455: 1444: 1443: 1442: 1415: 1383: 1357: 1315: 1266: 1245: 1241: 1233: 1223: 1215: 1211: 1207: 1191: 1170: 1166: 1159: 1150: 1145: 1141: 1135: 1133: 1123: 1112: 1098: 1095: 1092: 1076: 1056: 1053: 1045: 1041: 1031: 1028: 1025: 998: 995: 992: 963: 959: 954: 951: 947: 943: 932: 926: 922: 914: 913: 894: 888: 885: 882: 862: 859: 851: 847: 842: 839: 835: 831: 823: 819: 811: 810: 809: 787: 784: 776: 772: 767: 764: 760: 756: 748: 744: 736: 735: 734: 716: 713: 710: 690: 687: 684: 677: 673: 658: 655: 652: 649: 646: 626: 623: 620: 600: 597: 594: 574: 571: 568: 560: 559: 558: 551: 545: 521: 518: 510: 506: 499: 491: 483: 458: 455: 449: 446: 443: 437: 434: 431: 428: 425: 393: 390: 382: 377: 353: 349: 319: 315: 310: 307: 303: 299: 291: 287: 278: 274: 268: 264: 259: 254: 250: 241: 237: 231: 227: 222: 213: 209: 205: 196: 187: 184: 181: 177: 166: 162: 149: 134: 131:along with a 127: 126:maximal torus 101: 98:Lie group or 97: 83: 81: 77: 73: 69: 65: 61: 57: 53: 49: 45: 41: 37: 33: 19: 3165: 3164: 3141: 3135: 3131: 3111: 3092: 3082: 3069: 3065: 3037: 3020: 2968: 2933: 2927: 2900: 2894: 2888: 2884: 2880: 2809: 2803: 2796: 2789: 2783: 2777: 2770: 2766: 2760: 2756: 2747: 2738: 2734: 2731: 2633: 2626: 2622: 2612: 2605: 2595: 2592: 2581: 2577: 2573: 2570: 2498: 2495: 2489: 2485: 2479: 2475: 2472: 2357: 2353: 2346: 2342: 2335: 2331: 2325: 2319: 2316: 2306: 2301: 2295: 2289: 2283: 2273: 2267: 2261: 2255:irreducible 2252: 2248: 2243: 2240: 2175: 2169: 2162: 2158: 2154:-equivariant 2150: 2143: 2134: 2124: 2120: 2116: 2110: 2106: 2095: 2084: 2080:flag variety 2074: 2070: 2066: 2060: 2050: 2040: 2034: 2031:compact form 2025: 2022: 2009:Serre (1954) 1979: 1773: 1604: 1246: 1239: 1231: 1222:binary forms 1221: 1168: 1164: 1157: 1143: 1139: 1137:, for which 1131: 1121: 1118: 1074: 1014: 807: 732: 729:is dominant. 675: 561:There is no 552: 489: 481: 378: 266: 262: 252: 248: 239: 229: 225: 211: 207: 203: 185: 179: 175: 164: 160: 124:, and fix a 89: 60:Armand Borel 55: 35: 29: 3144:(1): 1–57. 3055:Jacob Lurie 2965:Harris, Joe 2898:has weight 2881:of weights 2317:The weight 2253:holomorphic 2029:or for its 2013:Tits (1955) 1763:as long as 674:There is a 542:denote the 258:line bundle 223:, for each 86:Formulation 32:mathematics 3182:Categories 3168:PlanetMath 2954:References 1596:Jordan map 1220:(i.e. the 1216:of degree 703:such that 639:such that 587:such that 381:Weyl group 376:-modules. 234:we get an 217:principal 96:semisimple 68:Raoul Bott 64:André Weil 44:Lie groups 3044:EMS Press 3029:by Dover) 3027:reprinted 3007:246650103 2863:≤ 2857:≤ 2842:− 2792:≥ 0 2688:− 2649:χ 2545:− 2516:⋅ 2438:− 2425:λ 2421:χ 2394:λ 2384:→ 2309:linear.) 2215:λ 2190:Γ 2046:connected 1925:λ 1819:λ 1748:∈ 1725:λ 1722:∗ 1680:λ 1566:∂ 1562:∂ 1531:∂ 1527:∂ 1496:∂ 1492:∂ 1484:− 1475:∂ 1471:∂ 1342:Γ 1300:Γ 1096:∈ 1046:∨ 1042:β 1032:ρ 1026:λ 999:λ 996:∗ 964:λ 927:ℓ 889:ℓ 886:≠ 852:λ 777:λ 717:λ 714:∗ 688:∈ 659:λ 653:λ 650:∗ 624:∈ 601:λ 598:∗ 572:∈ 519:≥ 511:∨ 507:α 500:μ 459:ρ 456:− 450:ρ 444:λ 432:λ 429:∗ 418:, we set 394:ρ 391:− 354:λ 320:λ 271:with its 189:, where 3081:(1955), 3019:(1989), 2967:(1991). 2908:See also 2887:− 2618:integers 2580:∈ 2488:∈ 2478:∈ 2473:for all 2249:dominant 2123:∩ 2114:, where 2099:-variety 1997:sections 1842:for all 1703:for all 1441:, then 1212:are the 1210:sections 1208:, whose 875:for all 800:for all 540:ℓ 490:dominant 472:, where 337:. Since 3158:1646586 3046:, 2001 2999:1153249 2589:Example 2307:complex 2003:on the 1990:complex 1376:is its 1147:is the 1115:Example 910:, while 279:groups 221:-bundle 193:is the 78:in the 3156:  3099:  3005:  2997:  2987:  2940:  2787:. For 2604:SL(2, 2277:is an 2226:  2064:, and 2038:. Let 1155:, and 676:unique 538:. Let 146:be an 142:. Let 34:, the 3053:, by 2920:Notes 2751:with 2351:over 2247:is a 2138:. An 2088:is a 2044:be a 1876:as a 273:sheaf 215:as a 102:over 94:be a 3097:ISBN 3003:OCLC 2985:ISBN 2938:ISBN 2593:Let 2571:for 2483:and 2078:the 2011:and 1853:> 1624:> 1238:Sym( 1230:Sym( 671:; or 410:and 90:Let 72:GAGA 62:and 3146:doi 3142:134 3025:. ( 2977:doi 2799:+ 1 2781:on 2631:of 2281:of 2259:of 2167:on 2132:of 2058:of 1999:of 1984:of 1707:if 1380:th 1244:. 1173:is 1160:= 1 546:on 492:if 482:not 246:on 197:of 169:of 150:of 58:of 42:of 30:In 3184:: 3154:MR 3152:. 3140:. 3042:, 3036:, 3001:. 2995:MR 2993:. 2983:. 2971:. 2963:; 2904:. 2759:, 2748:CP 2585:. 2576:, 2493:. 2119:= 2069:= 2054:a 2015:. 1972:. 1392:, 1388:, 1292:: 1234:)* 1126:SL 1124:= 1111:. 550:. 435::= 243:−λ 206:→ 178:= 154:; 82:. 3174:. 3160:. 3148:: 3132:G 3106:. 3087:. 3074:. 3070:2 3011:. 3009:. 2979:: 2946:. 2901:n 2895:X 2889:n 2885:i 2883:2 2866:n 2860:i 2854:0 2850:, 2845:i 2839:n 2835:Y 2829:i 2825:X 2810:C 2804:G 2797:n 2790:n 2784:C 2778:n 2771:n 2767:L 2761:Y 2757:X 2739:B 2737:/ 2735:G 2717:. 2712:n 2708:a 2704:= 2699:) 2691:1 2684:a 2678:0 2671:b 2666:a 2660:( 2653:n 2634:B 2627:n 2623:χ 2613:G 2608:) 2606:C 2596:G 2582:G 2578:h 2574:g 2556:) 2553:h 2548:1 2541:g 2537:( 2534:f 2531:= 2528:) 2525:h 2522:( 2519:f 2513:g 2499:G 2490:B 2486:b 2480:G 2476:g 2458:) 2455:g 2452:( 2449:f 2446:) 2441:1 2434:b 2430:( 2417:= 2414:) 2411:b 2408:g 2405:( 2402:f 2399:: 2389:C 2381:G 2378:: 2375:f 2358:B 2356:/ 2354:G 2347:λ 2343:L 2336:λ 2332:χ 2326:B 2320:λ 2302:λ 2296:K 2290:λ 2284:K 2274:K 2268:λ 2262:G 2244:λ 2223:. 2220:) 2211:L 2207:, 2204:B 2200:/ 2196:G 2193:( 2176:G 2170:X 2163:λ 2159:L 2151:G 2144:λ 2135:K 2125:B 2121:K 2117:T 2111:T 2109:/ 2107:K 2096:G 2085:X 2075:B 2073:/ 2071:G 2067:X 2061:G 2051:B 2041:G 2035:K 2026:G 1970:i 1966:λ 1951:C 1930:) 1921:L 1916:, 1913:B 1909:/ 1905:G 1902:( 1897:i 1893:H 1882:λ 1878:G 1874:λ 1870:G 1856:0 1850:i 1830:0 1827:= 1824:) 1815:L 1810:, 1807:B 1803:/ 1799:G 1796:( 1791:i 1787:H 1776:λ 1765:λ 1751:W 1745:w 1719:w 1709:λ 1705:i 1691:0 1688:= 1685:) 1676:L 1671:, 1668:B 1664:/ 1660:G 1657:( 1652:i 1648:H 1627:0 1621:p 1607:G 1575:. 1569:x 1557:y 1554:= 1547:Y 1540:, 1534:y 1522:x 1519:= 1512:X 1505:, 1499:y 1487:y 1478:x 1466:x 1463:= 1456:H 1429:) 1425:C 1421:( 1416:2 1410:l 1407:s 1394:Y 1390:X 1386:H 1378:n 1364:) 1361:) 1358:n 1355:( 1350:O 1345:( 1322:) 1319:) 1316:1 1313:( 1308:O 1303:( 1280:) 1276:C 1272:( 1267:2 1261:l 1258:s 1242:) 1240:C 1232:C 1226:G 1218:n 1195:) 1192:n 1189:( 1184:O 1169:n 1165:L 1158:ρ 1153:n 1144:B 1142:/ 1140:G 1134:) 1132:C 1130:( 1128:2 1122:G 1099:W 1093:e 1083:w 1079:λ 1071:β 1057:0 1054:= 1051:) 1038:( 1035:) 1029:+ 1023:( 1011:. 993:w 983:G 969:) 960:L 955:, 952:B 948:/ 944:G 941:( 936:) 933:w 930:( 923:H 898:) 895:w 892:( 883:i 863:0 860:= 857:) 848:L 843:, 840:B 836:/ 832:G 829:( 824:i 820:H 804:; 802:i 788:0 785:= 782:) 773:L 768:, 765:B 761:/ 757:G 754:( 749:i 745:H 711:w 691:W 685:w 656:= 647:w 627:W 621:w 595:w 575:W 569:w 555:λ 548:W 536:α 522:0 516:) 503:( 486:μ 478:G 474:ρ 453:) 447:+ 441:( 438:w 426:w 416:W 412:w 408:λ 374:G 370:G 350:L 339:G 325:) 316:L 311:, 308:B 304:/ 300:G 297:( 292:i 288:H 267:λ 263:L 253:B 251:/ 249:G 240:L 230:λ 226:C 219:B 212:B 210:/ 208:G 204:G 199:B 191:U 186:U 183:/ 180:B 176:T 171:B 165:λ 161:C 156:λ 152:T 144:λ 140:T 136:B 129:T 111:C 92:G 20:)

Index

Borel–Bott–Weil theorem
mathematics
representation theory
Lie groups
vector bundles
sheaf cohomology
Armand Borel
André Weil
Raoul Bott
GAGA
complex algebraic geometry
Zariski topology
semisimple
algebraic group
maximal torus
Borel subgroup
integral weight
/
unipotent radical
principal B-bundle
associated fiber bundle
line bundle
sheaf
sheaf cohomology
Weyl group
length function
SL2(C)
Riemann sphere
O ( n ) {\displaystyle {\mathcal {O}}(n)}
sections

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.