Knowledge

Bring's curve

Source đź“ť

17: 62: 71: 626:) can be tessellated by 240 (2,4,5) triangles. The actions that transport one of these triangles to another give the full group of automorphisms of the surface (including reflections). Discounting reflections, we get the 120 automorphisms mentioned in the introduction. Note that 120 is less than 252, the maximum number of orientation preserving automorphisms allowed for a genus 4 surface, by 1285:
this hypothesis, particularly in the case of the Bolza surface, although providing a rigorous proof is still an open problem. Following this pattern, one may reasonably conjecture that Bring's surface maximizes the first positive eigenvalue of the Laplacian (among surfaces in its topological class).
1284:
and Klein quartic have the largest symmetry groups among compact Riemann surfaces of constant negative curvature in genera 2 and 3 respectively, and thus it has been conjectured that they maximize the first positive eigenvalue in the Laplace spectrum. There is strong numerical evidence to support
1169:, Bring's surface does not maximize the systole length among compact Riemann surfaces in its topological category (that is, surfaces having the same genus) despite maximizing the size of the automorphism group. The systole is presumably maximized by the surface referred to a M4 in ( 1160: 821: 330: 1263: 1048: 581: 462: 1066: 147: 643: 1424: 403: 500: 620: 905: 885: 865: 845: 155: 1179: 915:. In particular, the group has four 1 dimensional, four 4 dimensional, four 5 dimensional, and two 6 dimensional irreducible representations, and we have 1165:
and multiplicity 20, a geodesic loop of that length consisting of the concatenated altitudes of twelve of the 240 (2,4,5) triangles. Similarly to the
1527: 921: 1950: 2042: 1679: 1639: 1520: 1406: 2119: 1730: 1629: 2109: 627: 1808: 1513: 544: 1155:{\displaystyle 12\sinh ^{-1}\left({\tfrac {1}{2}}{\sqrt {{\tfrac {1}{2}}({\sqrt {5}}-1)}}\right)\approx 4.60318} 408: 1955: 1876: 1866: 1803: 33: 1553: 912: 114: 1773: 1669: 538: 80: 2032: 1996: 1695: 1608: 2006: 1644: 816:{\displaystyle \langle r,\,s,\,t\,|\,r^{5}=s^{2}=t^{2}=rtrt=stst=(rs)^{4}=(sr^{3}sr^{2})^{2}=e\rangle } 123: 2144: 2052: 41: 37: 1965: 1945: 1881: 1798: 1700: 1659: 526:
of the 5 coordinates. This is the largest possible automorphism group of a genus 4 complex curve.
360: 1856: 1664: 1649: 887:
is a rotation of order 2 at the vertex where 4 (2,4,5) triangles meet in the tessellation, and
1763: 467: 2027: 1725: 1674: 1563: 1309: 908: 541:. It has genus 4. The full group of symmetries (including reflections) is the direct product 45: 602: 2114: 1975: 1634: 1453: 1416: 1384: 623: 519: 1886: 8: 1940: 1818: 1783: 1740: 1720: 596: 340: 21: 591:
Bring's curve can be obtained as a Riemann surface by associating sides of a hyperbolic
325:{\displaystyle v+w+x+y+z=v^{2}+w^{2}+x^{2}+y^{2}+z^{2}=v^{3}+w^{3}+x^{3}+y^{3}+z^{3}=0.} 2081: 1861: 1841: 1654: 1398: 1258:{\displaystyle 2\cosh ^{-1}\left({\tfrac {1}{2}}(5+3{\sqrt {3}})\right)\approx 4.6245,} 890: 870: 850: 830: 599:). The identification pattern is given in the adjoining diagram. The icosagon (of area 505: 344: 84: 29: 1813: 1329:
Weber, Matthias (2005). "Kepler's small stellated dodecahedron as a Riemann surface".
1970: 1917: 1788: 1603: 1598: 1402: 1392: 1372: 1057: 907:
is reflection in the real line. From this presentation, information about the linear
1280:
of Bring's surface, however, it could potentially be of interest in this field. The
1960: 1823: 1493: 1469: 1439: 1364: 1304: 118: 343:
who studied a similar construction in 1786 in a Promotionschrift submitted to the
2086: 1891: 1833: 1735: 1558: 1537: 1460:
Schmutz, P. (1993), "Riemann surfaces with shortest geodesic of maximal length",
1449: 1412: 1380: 1277: 631: 534: 509: 16: 2060: 1758: 1583: 1568: 1545: 1368: 530: 61: 634:. This also tells us that there does not exist a Hurwitz surface of genus 4. 2138: 2101: 1871: 1851: 1778: 1573: 1505: 1498: 1444: 1394:
Lectures on the icosahedron and the solution of equations of the fifth degree
1376: 1348:
Meletemata quædam mathematica circa transformationem æquationem algebraicarum
1299: 1294: 1281: 1166: 355: 106: 2037: 2011: 2001: 1991: 1793: 1613: 1481: 1335: 1912: 1750: 523: 94: 1907: 1473: 867:
is a rotation of order 5 about the centre of the fundamental polygon,
1768: 70: 1043:{\displaystyle 4(1^{2})+4(4^{2})+4(5^{2})+2(6^{2})=4+64+100+72=240} 592: 25: 2091: 2076: 2071: 911:
of the symmetry group of Bring's surface can be computed using
637:
The full group of symmetries has the following presentation:
1482:"Kepler's small stellated dodecahedron as a Riemann surface" 1208: 1109: 1095: 1346:
Bring, Erland Samuel; Sommelius, Sven Gustaf (1786),
1182: 1069: 924: 893: 873: 853: 833: 646: 605: 547: 470: 411: 363: 158: 126: 51:
20-gon edges marked with the same letter are equal.
1257: 1154: 1042: 899: 879: 859: 839: 815: 614: 575: 494: 456: 397: 324: 141: 586: 2136: 533:of the sphere branched in 12 points, and is the 1535: 1422: 1345: 1521: 810: 647: 576:{\displaystyle S_{5}\times \mathbb {Z} _{2}} 1528: 1514: 1357:Journal of the London Mathematical Society 457:{\displaystyle \sum _{i=1}^{5}x_{i}^{k}=0} 24:for Bring's curve is a regular hyperbolic 1497: 1443: 673: 667: 663: 656: 563: 129: 15: 1459: 1170: 2137: 1951:Clifford's theorem on special divisors 1425:"The period matrices of Bring's curve" 1350:, Promotionschrift, University of Lund 630:. Therefore, Bring's surface is not a 1509: 1479: 1390: 1355:Edge, W. L. (1978), "Bring's curve", 1328: 336: 149:cut out by the homogeneous equations 1397:, Dover Phoenix Editions, New York: 1354: 13: 2120:Vector bundles on algebraic curves 2043:Weber's theorem (Algebraic curves) 1640:Hasse's theorem on elliptic curves 1630:Counting points on elliptic curves 1333:. Vol. 220. pp. 167–182. 1271: 14: 2156: 1423:Riera, G.; Rodriguez, R. (1992), 142:{\displaystyle \mathbb {P} ^{4}} 79:Bring's curve is related to the 69: 60: 1731:Hurwitz's automorphisms theorem 1173:). The systole length of M4 is 529:The curve can be realized as a 1956:Gonality of an algebraic curve 1867:Differential of the first kind 1322: 1238: 1219: 1136: 1120: 1007: 994: 985: 972: 963: 950: 941: 928: 795: 765: 753: 743: 669: 628:Hurwitz's automorphism theorem 587:Fundamental domain and systole 405:satisfies Bring's curve since 1: 2110:Birkhoff–Grothendieck theorem 1809:Nagata's conjecture on curves 1680:Schoof–Elkies–Atkin algorithm 1554:Five points determine a conic 1315: 1670:Supersingular elliptic curve 539:small stellated dodecahedron 398:{\displaystyle x^{5}+ax+b=0} 81:small stellated dodecahedron 7: 1877:Riemann's existence theorem 1804:Hilbert's sixteenth problem 1696:Elliptic curve cryptography 1609:Fundamental pair of periods 1288: 10: 2161: 2007:Moduli of algebraic curves 1276:Little is known about the 1060:of the surface has length 28:(20-gon), shown here with 2100: 2051: 2020: 1984: 1933: 1926: 1900: 1832: 1749: 1713: 1688: 1622: 1591: 1582: 1544: 1268:and has multiplicity 36. 105:and, by analogy with the 42:order-4 pentagonal tiling 1774:Cayley–Bacharach theorem 1701:Elliptic curve primality 1499:10.2140/pjm.2005.220.167 1480:Weber, Matthias (2005), 1445:10.2140/pjm.1992.154.179 1369:10.1112/jlms/s2-18.3.539 847:is the identity action, 495:{\displaystyle k=1,2,3.} 2033:Riemann–Hurwitz formula 1997:Gromov–Witten invariant 1857:Compact Riemann surface 1645:Mazur's torsion theorem 583:, which has order 240. 1650:Modular elliptic curve 1391:Klein, Felix (2003) , 1259: 1156: 1044: 901: 881: 861: 841: 817: 616: 615:{\displaystyle 12\pi } 577: 496: 458: 432: 399: 347:. Note that the roots 326: 143: 53: 1564:Rational normal curve 1310:First Hurwitz triplet 1260: 1157: 1045: 909:representation theory 902: 882: 862: 842: 818: 617: 578: 497: 459: 412: 400: 327: 144: 19: 2115:Stable vector bundle 1976:Weil reciprocity law 1966:Riemann–Roch theorem 1946:Brill–Noether theory 1882:Riemann–Roch theorem 1799:Genus–degree formula 1660:Mordell–Weil theorem 1635:Division polynomials 1180: 1067: 922: 891: 871: 851: 831: 644: 624:Gauss-Bonnet theorem 603: 545: 508:of the curve is the 468: 409: 361: 156: 124: 1927:Structure of curves 1819:Quartic plane curve 1741:Hyperelliptic curve 1721:De Franchis theorem 1665:Nagell–Lutz theorem 597:fundamental polygon 447: 341:Erland Samuel Bring 36:in violet. It is a 32:graph in green and 22:fundamental polygon 1934:Divisors on curves 1726:Faltings's theorem 1675:Schoof's algorithm 1655:Modularity theorem 1474:10.1007/BF01896258 1399:Dover Publications 1255: 1217: 1152: 1118: 1104: 1040: 897: 877: 857: 837: 813: 612: 573: 537:associated to the 506:automorphism group 492: 454: 433: 395: 345:University of Lund 322: 139: 85:dodecadodecahedron 54: 30:dodecadodecahedral 2132: 2131: 2128: 2127: 2028:Hasse–Witt matrix 1971:Weierstrass point 1918:Smooth completion 1887:TeichmĂĽller space 1789:Cubic plane curve 1709: 1708: 1623:Arithmetic theory 1604:Elliptic integral 1599:Elliptic function 1408:978-0-486-49528-6 1236: 1216: 1139: 1128: 1117: 1103: 900:{\displaystyle t} 880:{\displaystyle s} 860:{\displaystyle r} 840:{\displaystyle e} 52: 2152: 2145:Algebraic curves 1961:Jacobian variety 1931: 1930: 1834:Riemann surfaces 1824:Real plane curve 1784:Cramer's paradox 1764:BĂ©zout's theorem 1589: 1588: 1538:algebraic curves 1530: 1523: 1516: 1507: 1506: 1502: 1501: 1486:Pacific J. Math. 1476: 1456: 1447: 1432:Pacific J. Math. 1429: 1419: 1387: 1351: 1338: 1334: 1326: 1305:Macbeath surface 1264: 1262: 1261: 1256: 1245: 1241: 1237: 1232: 1218: 1209: 1198: 1197: 1161: 1159: 1158: 1153: 1145: 1141: 1140: 1129: 1124: 1119: 1110: 1107: 1105: 1096: 1085: 1084: 1049: 1047: 1046: 1041: 1006: 1005: 984: 983: 962: 961: 940: 939: 906: 904: 903: 898: 886: 884: 883: 878: 866: 864: 863: 858: 846: 844: 843: 838: 822: 820: 819: 814: 803: 802: 793: 792: 780: 779: 761: 760: 709: 708: 696: 695: 683: 682: 672: 621: 619: 618: 613: 582: 580: 579: 574: 572: 571: 566: 557: 556: 501: 499: 498: 493: 463: 461: 460: 455: 446: 441: 431: 426: 404: 402: 401: 396: 373: 372: 335:It was named by 331: 329: 328: 323: 315: 314: 302: 301: 289: 288: 276: 275: 263: 262: 250: 249: 237: 236: 224: 223: 211: 210: 198: 197: 148: 146: 145: 140: 138: 137: 132: 119:projective space 111:the Bring sextic 73: 64: 50: 2160: 2159: 2155: 2154: 2153: 2151: 2150: 2149: 2135: 2134: 2133: 2124: 2096: 2087:Delta invariant 2065: 2047: 2016: 1980: 1941:Abel–Jacobi map 1922: 1896: 1892:Torelli theorem 1862:Dessin d'enfant 1842:Belyi's theorem 1828: 1814:PlĂĽcker formula 1745: 1736:Hurwitz surface 1705: 1684: 1618: 1592:Analytic theory 1584:Elliptic curves 1578: 1559:Projective line 1546:Rational curves 1540: 1534: 1427: 1409: 1342: 1341: 1331:Pacific J. Math 1327: 1323: 1318: 1291: 1278:spectral theory 1274: 1272:Spectral theory 1231: 1207: 1206: 1202: 1190: 1186: 1181: 1178: 1177: 1123: 1108: 1106: 1094: 1093: 1089: 1077: 1073: 1068: 1065: 1064: 1001: 997: 979: 975: 957: 953: 935: 931: 923: 920: 919: 892: 889: 888: 872: 869: 868: 852: 849: 848: 832: 829: 828: 798: 794: 788: 784: 775: 771: 756: 752: 704: 700: 691: 687: 678: 674: 668: 645: 642: 641: 632:Hurwitz surface 604: 601: 600: 589: 567: 562: 561: 552: 548: 546: 543: 542: 535:Riemann surface 517: 510:symmetric group 469: 466: 465: 442: 437: 427: 416: 410: 407: 406: 368: 364: 362: 359: 358: 353: 339:, p.157) after 310: 306: 297: 293: 284: 280: 271: 267: 258: 254: 245: 241: 232: 228: 219: 215: 206: 202: 193: 189: 157: 154: 153: 133: 128: 127: 125: 122: 121: 103:Bring's surface 91: 90: 89: 88: 76: 75: 74: 66: 65: 49: 12: 11: 5: 2158: 2148: 2147: 2130: 2129: 2126: 2125: 2123: 2122: 2117: 2112: 2106: 2104: 2102:Vector bundles 2098: 2097: 2095: 2094: 2089: 2084: 2079: 2074: 2069: 2063: 2057: 2055: 2049: 2048: 2046: 2045: 2040: 2035: 2030: 2024: 2022: 2018: 2017: 2015: 2014: 2009: 2004: 1999: 1994: 1988: 1986: 1982: 1981: 1979: 1978: 1973: 1968: 1963: 1958: 1953: 1948: 1943: 1937: 1935: 1928: 1924: 1923: 1921: 1920: 1915: 1910: 1904: 1902: 1898: 1897: 1895: 1894: 1889: 1884: 1879: 1874: 1869: 1864: 1859: 1854: 1849: 1844: 1838: 1836: 1830: 1829: 1827: 1826: 1821: 1816: 1811: 1806: 1801: 1796: 1791: 1786: 1781: 1776: 1771: 1766: 1761: 1755: 1753: 1747: 1746: 1744: 1743: 1738: 1733: 1728: 1723: 1717: 1715: 1711: 1710: 1707: 1706: 1704: 1703: 1698: 1692: 1690: 1686: 1685: 1683: 1682: 1677: 1672: 1667: 1662: 1657: 1652: 1647: 1642: 1637: 1632: 1626: 1624: 1620: 1619: 1617: 1616: 1611: 1606: 1601: 1595: 1593: 1586: 1580: 1579: 1577: 1576: 1571: 1569:Riemann sphere 1566: 1561: 1556: 1550: 1548: 1542: 1541: 1533: 1532: 1525: 1518: 1510: 1504: 1503: 1477: 1468:(6): 564–631, 1457: 1438:(1): 179–200, 1420: 1407: 1388: 1363:(3): 539–545, 1352: 1340: 1339: 1320: 1319: 1317: 1314: 1313: 1312: 1307: 1302: 1297: 1290: 1287: 1273: 1270: 1266: 1265: 1254: 1251: 1248: 1244: 1240: 1235: 1230: 1227: 1224: 1221: 1215: 1212: 1205: 1201: 1196: 1193: 1189: 1185: 1163: 1162: 1151: 1148: 1144: 1138: 1135: 1132: 1127: 1122: 1116: 1113: 1102: 1099: 1092: 1088: 1083: 1080: 1076: 1072: 1051: 1050: 1039: 1036: 1033: 1030: 1027: 1024: 1021: 1018: 1015: 1012: 1009: 1004: 1000: 996: 993: 990: 987: 982: 978: 974: 971: 968: 965: 960: 956: 952: 949: 946: 943: 938: 934: 930: 927: 896: 876: 856: 836: 825: 824: 812: 809: 806: 801: 797: 791: 787: 783: 778: 774: 770: 767: 764: 759: 755: 751: 748: 745: 742: 739: 736: 733: 730: 727: 724: 721: 718: 715: 712: 707: 703: 699: 694: 690: 686: 681: 677: 671: 666: 662: 659: 655: 652: 649: 611: 608: 588: 585: 570: 565: 560: 555: 551: 522:120, given by 515: 491: 488: 485: 482: 479: 476: 473: 453: 450: 445: 440: 436: 430: 425: 422: 419: 415: 394: 391: 388: 385: 382: 379: 376: 371: 367: 351: 333: 332: 321: 318: 313: 309: 305: 300: 296: 292: 287: 283: 279: 274: 270: 266: 261: 257: 253: 248: 244: 240: 235: 231: 227: 222: 218: 214: 209: 205: 201: 196: 192: 188: 185: 182: 179: 176: 173: 170: 167: 164: 161: 136: 131: 78: 77: 68: 67: 59: 58: 57: 56: 55: 9: 6: 4: 3: 2: 2157: 2146: 2143: 2142: 2140: 2121: 2118: 2116: 2113: 2111: 2108: 2107: 2105: 2103: 2099: 2093: 2090: 2088: 2085: 2083: 2080: 2078: 2075: 2073: 2070: 2068: 2066: 2059: 2058: 2056: 2054: 2053:Singularities 2050: 2044: 2041: 2039: 2036: 2034: 2031: 2029: 2026: 2025: 2023: 2019: 2013: 2010: 2008: 2005: 2003: 2000: 1998: 1995: 1993: 1990: 1989: 1987: 1983: 1977: 1974: 1972: 1969: 1967: 1964: 1962: 1959: 1957: 1954: 1952: 1949: 1947: 1944: 1942: 1939: 1938: 1936: 1932: 1929: 1925: 1919: 1916: 1914: 1911: 1909: 1906: 1905: 1903: 1901:Constructions 1899: 1893: 1890: 1888: 1885: 1883: 1880: 1878: 1875: 1873: 1872:Klein quartic 1870: 1868: 1865: 1863: 1860: 1858: 1855: 1853: 1852:Bolza surface 1850: 1848: 1847:Bring's curve 1845: 1843: 1840: 1839: 1837: 1835: 1831: 1825: 1822: 1820: 1817: 1815: 1812: 1810: 1807: 1805: 1802: 1800: 1797: 1795: 1792: 1790: 1787: 1785: 1782: 1780: 1779:Conic section 1777: 1775: 1772: 1770: 1767: 1765: 1762: 1760: 1759:AF+BG theorem 1757: 1756: 1754: 1752: 1748: 1742: 1739: 1737: 1734: 1732: 1729: 1727: 1724: 1722: 1719: 1718: 1716: 1712: 1702: 1699: 1697: 1694: 1693: 1691: 1687: 1681: 1678: 1676: 1673: 1671: 1668: 1666: 1663: 1661: 1658: 1656: 1653: 1651: 1648: 1646: 1643: 1641: 1638: 1636: 1633: 1631: 1628: 1627: 1625: 1621: 1615: 1612: 1610: 1607: 1605: 1602: 1600: 1597: 1596: 1594: 1590: 1587: 1585: 1581: 1575: 1574:Twisted cubic 1572: 1570: 1567: 1565: 1562: 1560: 1557: 1555: 1552: 1551: 1549: 1547: 1543: 1539: 1531: 1526: 1524: 1519: 1517: 1512: 1511: 1508: 1500: 1495: 1491: 1487: 1483: 1478: 1475: 1471: 1467: 1463: 1458: 1455: 1451: 1446: 1441: 1437: 1433: 1426: 1421: 1418: 1414: 1410: 1404: 1400: 1396: 1395: 1389: 1386: 1382: 1378: 1374: 1370: 1366: 1362: 1358: 1353: 1349: 1344: 1343: 1337: 1332: 1325: 1321: 1311: 1308: 1306: 1303: 1301: 1300:Klein quartic 1298: 1296: 1295:Bolza surface 1293: 1292: 1286: 1283: 1282:Bolza surface 1279: 1269: 1252: 1249: 1246: 1242: 1233: 1228: 1225: 1222: 1213: 1210: 1203: 1199: 1194: 1191: 1187: 1183: 1176: 1175: 1174: 1172: 1168: 1167:Klein quartic 1149: 1146: 1142: 1133: 1130: 1125: 1114: 1111: 1100: 1097: 1090: 1086: 1081: 1078: 1074: 1070: 1063: 1062: 1061: 1059: 1054: 1053:as expected. 1037: 1034: 1031: 1028: 1025: 1022: 1019: 1016: 1013: 1010: 1002: 998: 991: 988: 980: 976: 969: 966: 958: 954: 947: 944: 936: 932: 925: 918: 917: 916: 914: 910: 894: 874: 854: 834: 807: 804: 799: 789: 785: 781: 776: 772: 768: 762: 757: 749: 746: 740: 737: 734: 731: 728: 725: 722: 719: 716: 713: 710: 705: 701: 697: 692: 688: 684: 679: 675: 664: 660: 657: 653: 650: 640: 639: 638: 635: 633: 629: 625: 609: 606: 598: 594: 584: 568: 558: 553: 549: 540: 536: 532: 527: 525: 521: 514: 511: 507: 502: 489: 486: 483: 480: 477: 474: 471: 451: 448: 443: 438: 434: 428: 423: 420: 417: 413: 392: 389: 386: 383: 380: 377: 374: 369: 365: 357: 356:Bring quintic 350: 346: 342: 338: 319: 316: 311: 307: 303: 298: 294: 290: 285: 281: 277: 272: 268: 264: 259: 255: 251: 246: 242: 238: 233: 229: 225: 220: 216: 212: 207: 203: 199: 194: 190: 186: 183: 180: 177: 174: 171: 168: 165: 162: 159: 152: 151: 150: 134: 120: 116: 112: 108: 107:Klein quartic 104: 101:(also called 100: 99:Bring's curve 96: 86: 82: 72: 63: 47: 46:square tiling 44:and its dual 43: 39: 35: 31: 27: 23: 18: 2061: 2038:Prym variety 2012:Stable curve 2002:Hodge bundle 1992:ELSV formula 1846: 1794:Fermat curve 1751:Plane curves 1714:Higher genus 1689:Applications 1614:Modular form 1489: 1485: 1465: 1461: 1435: 1431: 1393: 1360: 1356: 1347: 1330: 1324: 1275: 1267: 1171:Schmutz 1993 1164: 1055: 1052: 826: 636: 590: 531:triple cover 528: 524:permutations 512: 503: 348: 334: 110: 102: 98: 92: 2067:singularity 1913:Polar curve 1492:: 167–182, 337:Klein (2003 95:mathematics 1908:Dual curve 1536:Topics in 1316:References 2021:Morphisms 1769:Bitangent 1377:0024-6107 1247:≈ 1200:⁡ 1192:− 1147:≈ 1131:− 1087:⁡ 1079:− 811:⟩ 648:⟨ 622:, by the 610:π 559:× 414:∑ 113:) is the 2139:Category 1289:See also 593:icosagon 83:and the 38:quotient 34:its dual 26:icosagon 2092:Tacnode 2077:Crunode 1454:1154738 1417:0080930 1385:0518240 1150:4.60318 1058:systole 354:of the 117:in the 40:of the 2072:Acnode 1985:Moduli 1452:  1415:  1405:  1383:  1375:  1250:4.6245 827:where 1428:(PDF) 595:(see 520:order 115:curve 2082:Cusp 1462:GAFA 1403:ISBN 1373:ISSN 1188:cosh 1075:sinh 1056:The 504:The 464:for 20:The 1494:doi 1490:220 1470:doi 1440:doi 1436:154 1365:doi 1336:pdf 1038:240 1026:100 913:GAP 518:of 93:In 2141:: 1488:, 1484:, 1464:, 1450:MR 1448:, 1434:, 1430:, 1413:MR 1411:, 1401:, 1381:MR 1379:, 1371:, 1361:18 1359:, 1071:12 1032:72 1020:64 607:12 490:3. 320:0. 109:, 97:, 2064:k 2062:A 1529:e 1522:t 1515:v 1496:: 1472:: 1466:3 1442:: 1367:: 1253:, 1243:) 1239:) 1234:3 1229:3 1226:+ 1223:5 1220:( 1214:2 1211:1 1204:( 1195:1 1184:2 1143:) 1137:) 1134:1 1126:5 1121:( 1115:2 1112:1 1101:2 1098:1 1091:( 1082:1 1035:= 1029:+ 1023:+ 1017:+ 1014:4 1011:= 1008:) 1003:2 999:6 995:( 992:2 989:+ 986:) 981:2 977:5 973:( 970:4 967:+ 964:) 959:2 955:4 951:( 948:4 945:+ 942:) 937:2 933:1 929:( 926:4 895:t 875:s 855:r 835:e 823:, 808:e 805:= 800:2 796:) 790:2 786:r 782:s 777:3 773:r 769:s 766:( 763:= 758:4 754:) 750:s 747:r 744:( 741:= 738:t 735:s 732:t 729:s 726:= 723:t 720:r 717:t 714:r 711:= 706:2 702:t 698:= 693:2 689:s 685:= 680:5 676:r 670:| 665:t 661:, 658:s 654:, 651:r 569:2 564:Z 554:5 550:S 516:5 513:S 487:, 484:2 481:, 478:1 475:= 472:k 452:0 449:= 444:k 439:i 435:x 429:5 424:1 421:= 418:i 393:0 390:= 387:b 384:+ 381:x 378:a 375:+ 370:5 366:x 352:i 349:x 317:= 312:3 308:z 304:+ 299:3 295:y 291:+ 286:3 282:x 278:+ 273:3 269:w 265:+ 260:3 256:v 252:= 247:2 243:z 239:+ 234:2 230:y 226:+ 221:2 217:x 213:+ 208:2 204:w 200:+ 195:2 191:v 187:= 184:z 181:+ 178:y 175:+ 172:x 169:+ 166:w 163:+ 160:v 135:4 130:P 87:. 48:.

Index


fundamental polygon
icosagon
dodecadodecahedral
its dual
quotient
order-4 pentagonal tiling
square tiling


small stellated dodecahedron
dodecadodecahedron
mathematics
Klein quartic
curve
projective space
Klein (2003
Erland Samuel Bring
University of Lund
Bring quintic
automorphism group
symmetric group
order
permutations
triple cover
Riemann surface
small stellated dodecahedron
icosagon
fundamental polygon
Gauss-Bonnet theorem

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑