Knowledge

CLaMS

Source 📝

225:
from/to the gas phase. These particle parcels are simulated independently from the Lagrangian air parcels. Their trajectories are determined using the horizontal winds and their vertical settling velocity that depends on the size of the individual particles. NAT particles are nucleated assuming a
212:
Mixing is based on grid deformation of quasi uniform air parcel distributions. The contraction or elongation factors of the distances to neighboring air parcels are examined: if a critical elongation (contraction) is reached, new air parcels are introduced (taken away). This way, anisotropic
200:. More than 100 chemical reactions involving 40+ chemical species are considered. Integration time step is 10 minutes, species can be combined into chemical families to facilitate integration. The module includes a radiative transfer model for the determination of 913: 437: 47:. CLaMS was first described by McKenna et al. (2000a,b) and was expanded into three dimensions by Konopka et al. (2004). CLaMS has been employed in recent European field campaigns 430: 279: 347: 334: 82: 423: 961: 221:
Lagrangian sedimentation is calculated by following individual nitric acid trihydrate (NAT) particles that may grow or shrink by the uptake or release of HNO
622: 346:
McKenna, Daniel S.; Konopka, Paul; Grooß, Jens-Uwe; Günther, Gebhard; Müller, Rolf; Spang, Reinhold; Offermann, Dirk; Orsolini, Y. (2002-08-27).
1023: 882: 63: 56: 112: 59: 887: 52: 48: 642: 694: 561: 526: 193: 410: 718: 627: 689: 226:
constant nucleation rate and they evaporate where temperatures grow too high. With this, a vertical redistribution of HNO
755: 313: 836: 637: 242:
does not simulate the dynamics of the atmosphere. For CLaMS, the following meteorological data sets have been used
647: 496: 491: 471: 184:, integration time step 30 minutes. Vertical displacement of trajectories is calculated from radiation budget. 740: 679: 586: 415: 760: 660: 278:
If no observations are present, the chemical fields can be initialised from two-dimensional chemical models,
282:, climatologies, or from correlations between chemical species or chemical species and dynamical variables. 908: 591: 486: 267:
To initialize the chemical fields in CLaMS, data from a large variety of instruments have provided data.
291: 40: 617: 521: 116: 36: 348:"A new Chemical Lagrangian Model of the Stratosphere (CLaMS) 1. Formulation of advection and mixing" 1028: 506: 501: 239: 204:
rates. The module also includes heterogeneous reactions on NAT, ice and liquid particle surfaces.
831: 596: 516: 197: 329:
The details of the model CLaMS are well documented and published in the scientific literature.
632: 745: 340: 147: 997: 929: 511: 362: 8: 1002: 951: 750: 366: 318: 987: 966: 181: 119:): an air parcel is described by three space coordinates and a time coordinate. The 992: 956: 466: 380: 201: 398: 392: 138:
CLaMS operates on arbitrarily resolved horizontal grids. The space coordinates are
370: 158:
CLaMS is composed of four modules and several preprocessors. The four modules are
404: 296: 67: 877: 445: 120: 115:), CLaMS operates on a Lagrangian model grid (see section about model grids in 1017: 684: 652: 481: 384: 811: 71: 375: 301: 89: 841: 821: 801: 576: 476: 391:
Comparison of the chemistry module with other stratospheric models by
257: 132: 124: 263:
European Centre Hamburg Atmospheric Model (ECHAM4), in the DLR version
143: 128: 851: 139: 846: 826: 806: 571: 127:. A specialised mixing scheme ensures that physically realistic 108: 44: 796: 791: 786: 770: 702: 566: 251: 903: 856: 765: 601: 247: 131:
is imposed on an ensemble of trajectories in regions of high
816: 713: 581: 446:
Atmospheric, oceanographic, cryospheric, and climate models
345: 274:
on aircraft and balloons (HALOX, FISH, Mark IV, BONBON...)
77:
Major strengths of CLaMS in comparison to other CTMs are
213:
diffusion is simulated in a physically realistic manner.
339:
Formulation of chemistry-scheme and initialisation by
230:(denitrification and renitrification) is determined. 123:
path that an air parcels traces in space is called a
271:
on satellite (CRISTA, MIPAS, MLS, HALOE, ILAS, ...),
246:
European Centre for Medium-Range Weather Forecasts (
95:
its integrability with arbitrary observational data
1015: 431: 355:Journal of Geophysical Research: Atmospheres 180:Integration of trajectories with 4th order 216: 438: 424: 403:Extension to 3-dimension model version by 374: 333:Formulation of advection and mixing by 187: 1016: 543: 455: 419: 1024:Numerical climate and weather models 731:Regional and mesoscale oceanographic 207: 175: 544: 397:Calculation of photolysis rates by 13: 673:Regional and mesoscale atmospheric 250:), Predictions, Analyses, ERA-15, 233: 153: 98:its comprehensive chemistry scheme 14: 1040: 314:CLaMS at Forschungszentrum Jülich 307: 171:a Lagrangian sedimentation scheme 102: 497:Atmospheric dispersion modeling 492:Tropical cyclone forecast model 456: 319:Current field campaign SCOUT-O3 1: 324: 897:Land surface parametrization 487:Numerical weather prediction 409:Lagrangian sedimentation by 7: 285: 66:with a focus on simulating 10: 1045: 192:Chemistry is based on the 168:a Lagrangian mixing module 39:(CTM) system developed at 35:tratosphere) is a modular 983: 938: 922: 896: 865: 779: 730: 672: 610: 554: 550: 539: 522:Meteorological reanalysis 462: 451: 117:general circulation model 37:chemistry transport model 507:Upper-atmospheric models 502:Chemical transport model 292:Forschungszentrum Jülich 280:chemistry-climate models 240:chemical transport model 217:Lagrangian sedimentation 107:Unlike other CTMs (e.g. 41:Forschungszentrum Jülich 517:Model output statistics 198:University of Cambridge 780:Atmospheric dispersion 196:chemistry code of the 165:a box chemistry module 83:reverse domain filling 81:its applicability for 341:McKenna et al., 2002b 335:McKenna et al., 2002a 148:potential temperature 998:Scientific modelling 512:Ensemble forecasting 405:Konopka et al., 2004 376:10.1029/2000jd000114 188:Box chemistry module 1003:Computer simulation 472:Oceanographic model 399:Becker et al., 2000 393:Krämer et al., 2003 367:2002JGRD..107.4309M 162:a trajectory module 988:Mathematical model 923:Cryospheric models 866:Chemical transport 411:Grooß et al., 2005 182:Runge-Kutta method 1011: 1010: 993:Statistical model 979: 978: 975: 974: 535: 534: 477:Cryospheric model 467:Atmospheric model 361:(D16): ACH 15–1. 208:Lagrangian mixing 176:Trajectory module 1036: 552: 551: 541: 540: 453: 452: 440: 433: 426: 417: 416: 388: 378: 352: 1044: 1043: 1039: 1038: 1037: 1035: 1034: 1033: 1029:Ozone depletion 1014: 1013: 1012: 1007: 971: 934: 918: 892: 861: 775: 726: 668: 606: 546: 545:Specific models 531: 527:Parametrization 458: 447: 444: 350: 327: 310: 297:Ozone depletion 288: 256:United Kingdom 236: 234:CLaMS data sets 229: 224: 219: 210: 190: 178: 156: 154:CLaMS hierarchy 105: 68:ozone depletion 12: 11: 5: 1042: 1032: 1031: 1026: 1009: 1008: 1006: 1005: 1000: 995: 990: 984: 981: 980: 977: 976: 973: 972: 970: 969: 964: 959: 954: 949: 946: 942: 940: 936: 935: 933: 932: 926: 924: 920: 919: 917: 916: 911: 906: 900: 898: 894: 893: 891: 890: 885: 880: 875: 869: 867: 863: 862: 860: 859: 854: 849: 844: 839: 834: 829: 824: 819: 814: 809: 804: 799: 794: 789: 783: 781: 777: 776: 774: 773: 768: 763: 758: 753: 748: 743: 738: 734: 732: 728: 727: 725: 724: 721: 716: 711: 708: 705: 700: 697: 692: 687: 682: 676: 674: 670: 669: 667: 666: 663: 658: 655: 650: 645: 640: 635: 630: 625: 620: 614: 612: 611:Global weather 608: 607: 605: 604: 599: 594: 589: 584: 579: 574: 569: 564: 558: 556: 548: 547: 537: 536: 533: 532: 530: 529: 524: 519: 514: 509: 504: 499: 494: 489: 484: 479: 474: 469: 463: 460: 459: 449: 448: 443: 442: 435: 428: 420: 414: 413: 407: 401: 395: 389: 343: 337: 326: 323: 322: 321: 316: 309: 308:External links 306: 305: 304: 299: 294: 287: 284: 276: 275: 272: 265: 264: 261: 254: 235: 232: 227: 222: 218: 215: 209: 206: 189: 186: 177: 174: 173: 172: 169: 166: 163: 155: 152: 121:time evolution 104: 103:CLaMS gridding 101: 100: 99: 96: 93: 86: 74:transport. 9: 6: 4: 3: 2: 1041: 1030: 1027: 1025: 1022: 1021: 1019: 1004: 1001: 999: 996: 994: 991: 989: 986: 985: 982: 968: 965: 963: 960: 958: 955: 953: 950: 947: 944: 943: 941: 937: 931: 928: 927: 925: 921: 915: 912: 910: 907: 905: 902: 901: 899: 895: 889: 886: 884: 881: 879: 876: 874: 871: 870: 868: 864: 858: 855: 853: 850: 848: 845: 843: 840: 838: 835: 833: 830: 828: 825: 823: 820: 818: 815: 813: 810: 808: 805: 803: 800: 798: 795: 793: 790: 788: 785: 784: 782: 778: 772: 769: 767: 764: 762: 759: 757: 754: 752: 749: 747: 744: 742: 739: 736: 735: 733: 729: 722: 720: 717: 715: 712: 709: 706: 704: 701: 698: 696: 693: 691: 688: 686: 683: 681: 678: 677: 675: 671: 664: 662: 659: 656: 654: 651: 649: 646: 644: 641: 639: 636: 634: 631: 629: 626: 624: 621: 619: 616: 615: 613: 609: 603: 600: 598: 595: 593: 590: 588: 585: 583: 580: 578: 575: 573: 570: 568: 565: 563: 560: 559: 557: 553: 549: 542: 538: 528: 525: 523: 520: 518: 515: 513: 510: 508: 505: 503: 500: 498: 495: 493: 490: 488: 485: 483: 482:Climate model 480: 478: 475: 473: 470: 468: 465: 464: 461: 454: 450: 441: 436: 434: 429: 427: 422: 421: 418: 412: 408: 406: 402: 400: 396: 394: 390: 386: 382: 377: 372: 368: 364: 360: 356: 349: 344: 342: 338: 336: 332: 331: 330: 320: 317: 315: 312: 311: 303: 300: 298: 295: 293: 290: 289: 283: 281: 273: 270: 269: 268: 262: 259: 255: 253: 249: 245: 244: 243: 241: 231: 214: 205: 203: 199: 195: 185: 183: 170: 167: 164: 161: 160: 159: 151: 149: 145: 141: 136: 134: 130: 126: 122: 118: 114: 110: 97: 94: 92:mixing scheme 91: 87: 84: 80: 79: 78: 75: 73: 69: 65: 61: 58: 54: 50: 46: 42: 38: 34: 30: 26: 22: 18: 939:Discontinued 872: 812:DISPERSION21 358: 354: 328: 277: 266: 237: 220: 211: 191: 179: 157: 137: 106: 76: 72:water vapour 32: 31:odel of the 28: 24: 20: 16: 15: 618:IFS (ECMWF) 457:Model types 302:Meteorology 90:anisotropic 1018:Categories 842:PUFF-PLUME 802:AUSTAL2000 661:GME / ICON 628:GEM / GDPS 577:GFDL CM2.X 325:References 258:Met Office 202:photolysis 133:wind shear 125:trajectory 883:GEOS-Chem 385:2156-2202 144:longitude 129:diffusion 64:RECONCILE 57:TROCCINOX 27:grangian 852:SAFE AIR 685:RR / RAP 286:See also 140:latitude 113:REPROBUS 60:SCOUT-O3 23:hemical 888:CHIMERE 847:RIMPUFF 827:MERCURE 807:CALPUFF 657:JMA-GSM 572:HadGEM1 555:Climate 363:Bibcode 109:SLIMCAT 85:studies 45:Germany 962:NOGAPS 878:MOZART 797:ATSTEP 792:AERMOD 771:ADCIRC 761:MITgcm 703:HIRLAM 665:ARPEGE 648:NAVGEM 567:HadCM3 383:  260:(UKMO) 252:ERA-40 62:, and 53:EUPLEX 49:THESEO 909:CLASS 904:JULES 873:CLaMS 857:SILAM 766:FESOM 756:FVCOM 737:HyCOM 723:HRDPS 699:RAQMS 643:NAEFS 602:ECHAM 597:CFSv2 351:(PDF) 248:ECMWF 17:CLaMS 930:CICE 914:ISBA 837:OSPM 832:NAME 822:MEMO 817:ISC3 787:ADMS 741:ROMS 719:RGEM 714:HWRF 707:LAPS 690:RAMS 638:MPAS 592:CESM 587:CCSM 582:CGCM 562:IGCM 381:ISSN 194:ASAD 146:and 88:its 70:and 967:RUC 957:NGM 952:MM5 948:LFM 945:Eta 751:MOM 746:POM 710:RPM 695:WRF 680:NAM 633:GFS 623:FIM 371:doi 359:107 135:. 1020:: 653:UM 379:. 369:. 357:. 353:. 238:A 150:. 142:, 111:, 55:, 51:, 43:, 25:La 439:e 432:t 425:v 387:. 373:: 365:: 228:3 223:3 33:S 29:M 21:C 19:(

Index

chemistry transport model
Forschungszentrum Jülich
Germany
THESEO
EUPLEX
TROCCINOX
SCOUT-O3
RECONCILE
ozone depletion
water vapour
reverse domain filling
anisotropic
SLIMCAT
REPROBUS
general circulation model
time evolution
trajectory
diffusion
wind shear
latitude
longitude
potential temperature
Runge-Kutta method
ASAD
University of Cambridge
photolysis
chemical transport model
ECMWF
ERA-40
Met Office

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.