Knowledge

Cis effect

Source 📝

249: 418:-labilizing ligands, which can be explained by stabilization of the intermediate that results upon CO dissociation. This can be attributed to the partial interaction of the oxygen from the thiobenzoate and the metal, which can eliminate 158:
to ligand X. CO is a neutral ligand that donates 2 electrons to the complex, and therefore lacks anionic or cationic properties that would affect the electron count of the complex. For transition metal complexes that have the formula
590:
Atwood, J.; Brown, Theodore L. (1976). "Cis labilization of ligand dissociation. 3. Survey of group 6 and 7 six-coordinate carbonyl compounds. The site preference model for ligand labilization effects".
437:
to X, which is hypothesized to be due to the weak pi-accepting and/or sigma donating behavior of ligand X. This lack of strong sigma donation/pi-accepting will allow the CO (a strong pi-acceptor)
678:
Kovacs, A.; Frenking, Gernot (2001). "Stability and Bonding Situation of Electron-Deficient Transition-Metal Complexes. Theoretical Study of the CO-Labilizing Effect of Ligands L in (L = C
225:
position to the X, followed by the association of ligand Y. This is an example of a dissociative mechanism, where an 18 e complex loses a CO ligand, making a 16 e
523: 425:
Note that the strongest labilizing effects come from ligands that are weak sigma donors with virtually no pi-accepting behavior. The
172:, group 6 metals (M, where the oxidation state of the metal is zero) paired with neutral ligand X, and group 7 metals (M, where the 662: 445:
toward it, strengthening the M-CO bond. This phenomenon is further supported by the evidence from extensive studies on the
229:, and a final complex of 18 e results from an incoming ligand inserting in place of the CO. This mechanism resembles the 571: 546: 507: 461:
effects seem to have generally opposite trends, the electronic argument supports both phenomena. Further evidence for
812: 802: 449:
effect, which in turn shows how ligands that are actually strong sigma donors and pi-acceptors weaken the M-L bond
95: 402:
complexes. This is because these ligands will stabilize the 16 e intermediate by electron donation from the p-pi
184:, and 18 electrons will in turn fill these valences shells, creating a very stable complex, which satisfies the 65: 807: 214: 45: 35: 242: 414:-containing ligands, particularly thiobenzoate, are other examples of particularly useful CO 226: 433:. It has also been determined that labilizing X ligands do in fact strengthen the M-CO bond 627: 68: 8: 20: 631: 778: 517: 57: 658: 567: 542: 503: 465:
labilization of CO can be attributed to the CO ligands being in competition for the d
407: 238: 196:
position creates a square pyramidal transition state, which lowers the energy of the
782: 770: 743: 635: 600: 442: 430: 210: 185: 177: 103: 419: 294: 173: 138: 134: 28: 53: 774: 192:-labilization of 18 e complexes suggests that dissociation of ligand X in the 154:
have been found to be the most prominent in regards to dissociation of the CO
796: 181: 230: 88: 422:
that can occur during ligand dissociation in transition metal complexes.
302: 604: 761:
Asali, K. J.; Janaydeh, Husam Al (2003). "Transition Metal Chemistry".
107: 747: 176:
of the metal is +1), paired anionic ligands, will create very stable
639: 403: 385: 429:
effect can be attributed to the role of ligand X in stabilizing the
381: 377: 364: 734:) and the Structure of the 16-Valence-Electron Complexes and ". 478: 368: 360: 271:
complexes. If ligands X and Y are neutral donors to the complex:
41: 31: 129: 411: 352: 332: 477:
orbitals. This argument especially holds true when the X is a
248: 389: 106:
complexes. It has been determined that ligands that are weak
325: 16:
Destabilization of CO ligands that are cis to other ligands
618:
Jensen, W. (2005). "The Origin of the 18-Electron Rule".
280: 110:
donors and non-pi acceptors seem to have the strongest
27:
is defined as the labilization (or destabilization) of
122:-effect, which effectively labilizes ligands that are 83:
where X is the ligand that will labilize a CO ligand
502:(2nd ed.). New York: Oxford University Press. 126:to strong pi accepting and sigma donating ligands. 392:have particularly strong CO labilizing effects in 794: 566:(5th ed.). New York: W. H. Freeman and Co. 539:Inorganic and organometallic reaction mechanisms 94:, which is most often observed in 4-coordinate 677: 102:effect is observed in 6-coordinate octahedral 760: 180:complexes. Transition metal complexes have 9 130:Electron counting in metal carbonyl complexes 522:: CS1 maint: multiple names: authors list ( 498:Miessler, Gary O. Spessard, Gary L. (2010). 40:to other ligands. CO is a well-known strong 589: 564:Shriver & Atkins' inorganic chemistry 52:position when adjacent to ligands due to 652: 497: 60:. The system most often studied for the 258:. Intermediates in the substitution of 795: 617: 561: 536: 541:(2. ed.). New York : Wiley-VCH. 118:effect has the opposite trend of the 655:Advances in Organometallic Chemistry 585: 583: 293:-labilizing effects are as follows: 114:-labilizing effects. Therefore, the 289:The order of ligands which possess 13: 247: 14: 824: 580: 754: 671: 646: 611: 555: 530: 491: 213:. The scheme below shows the 1: 484: 710:, F, Cl, OH, SH) and (L = O 7: 277:M = Group 7 metal (m = +1) 141:transition metal complexes 10: 829: 274:M = Group 6 metal (m = 0) 48:that will labilize in the 653:Hill AF, Fink MJ (2010). 813:Chemical bond properties 803:Organometallic chemistry 500:Organometallic chemistry 376:Anionic ligands such as 46:organometallic chemistry 775:10.1023/A:1022953903025 657:. Oxford: Academic Pr. 537:Atwood, Jim D. (1997). 209:complex, enhancing the 562:Atkins, Peter (2010). 281:Ligands effects on CO 252: 243:coordination compounds 217:of a CO ligand in the 251: 44:-accepting ligand in 441:to ligand X to pull 215:dissociation pathway 632:2005JChEd..82...28J 605:10.1021/ja00427a017 453:to them. Since the 21:inorganic chemistry 808:Carbonyl complexes 763:Transit. Met. Chem 253: 87:to it. Unlike the 58:electronic effects 748:10.1021/om0101893 742:(12): 2510–2524. 664:978-0-12-378649-4 599:(11): 3160–3166. 241:, and applies to 239:organic chemistry 820: 787: 786: 758: 752: 751: 675: 669: 668: 650: 644: 643: 640:10.1021/ed082p28 615: 609: 608: 593:J. Am. Chem. Soc 587: 578: 577: 559: 553: 552: 534: 528: 527: 521: 513: 495: 443:electron density 431:transition state 401: 400: 399: 319: 270: 268: 267: 211:rate of reaction 208: 206: 205: 186:18-electron rule 182:valence orbitals 171: 169: 168: 153: 151: 150: 104:transition metal 82: 80: 79: 828: 827: 823: 822: 821: 819: 818: 817: 793: 792: 791: 790: 759: 755: 736:Organometallics 733: 729: 725: 721: 717: 713: 709: 705: 701: 697: 693: 689: 685: 681: 676: 672: 665: 651: 647: 616: 612: 588: 581: 574: 560: 556: 549: 535: 531: 515: 514: 510: 496: 492: 487: 476: 472: 468: 420:solvent effects 398: 396: 395: 394: 393: 372: 356: 350: 346: 342: 338: 329: 323: 318: 314: 312: 308: 300: 287: 266: 263: 262: 261: 259: 234: 204: 201: 200: 199: 197: 174:oxidation state 167: 164: 163: 162: 160: 149: 146: 145: 144: 142: 132: 98:complexes, the 78: 75: 74: 73: 71: 17: 12: 11: 5: 826: 816: 815: 810: 805: 789: 788: 769:(2): 193–198. 753: 731: 727: 723: 719: 715: 711: 707: 703: 699: 695: 691: 687: 683: 679: 670: 663: 645: 610: 579: 573:978-1429218207 572: 554: 548:978-0471188971 547: 529: 509:978-0195330991 508: 489: 488: 486: 483: 474: 470: 466: 397: 370: 354: 348: 344: 340: 336: 327: 321: 316: 310: 306: 298: 286: 279: 264: 232: 202: 165: 147: 131: 128: 76: 15: 9: 6: 4: 3: 2: 825: 814: 811: 809: 806: 804: 801: 800: 798: 784: 780: 776: 772: 768: 764: 757: 749: 745: 741: 737: 674: 666: 660: 656: 649: 641: 637: 633: 629: 625: 621: 620:J. Chem. Educ 614: 606: 602: 598: 594: 586: 584: 575: 569: 565: 558: 550: 544: 540: 533: 525: 519: 511: 505: 501: 494: 490: 482: 480: 464: 460: 456: 452: 448: 444: 440: 436: 432: 428: 423: 421: 417: 413: 409: 405: 391: 387: 383: 379: 374: 373: 366: 362: 358: 334: 330: 304: 296: 292: 285:-labilization 284: 278: 275: 272: 257: 250: 246: 244: 240: 237:mechanism in 236: 228: 224: 220: 216: 212: 195: 191: 187: 183: 179: 175: 157: 140: 136: 127: 125: 121: 117: 113: 109: 105: 101: 97: 96:square planar 93: 91: 86: 70: 67: 64:effect is an 63: 59: 55: 51: 47: 43: 39: 38: 33: 30: 26: 22: 766: 762: 756: 739: 735: 673: 654: 648: 623: 619: 613: 596: 592: 563: 557: 538: 532: 499: 493: 462: 458: 454: 450: 446: 438: 434: 426: 424: 415: 375: 290: 288: 282: 276: 273: 255: 254: 227:intermediate 222: 218: 193: 189: 155: 133: 123: 119: 115: 111: 99: 89: 84: 61: 49: 36: 24: 18: 363:, NCO < 320:< P(O)Ph 178:18 electron 797:Categories 485:References 66:octahedral 25:cis effect 626:(1): 28. 518:cite book 410:. Other 404:lone pair 245:as well. 34:that are 783:91996293 686:, NCH, N 256:Figure 1 628:Bibcode 479:halogen 473:, and d 408:orbital 335:< CH 297:, AuPPh 139:group 7 135:Group 6 69:complex 32:ligands 781:  661:  570:  545:  506:  412:sulfur 406:donor 388:, and 309:, GePh 305:, SnPh 188:. The 92:effect 54:steric 23:, the 779:S2CID 459:trans 451:trans 447:trans 439:trans 435:trans 367:< 359:< 351:< 331:< 324:< 315:M(CO) 260:M(CO) 223:trans 198:M(CO) 161:M(CO) 143:M(CO) 124:trans 120:trans 108:sigma 90:trans 72:M(CO) 706:, NH 702:, SH 698:, OH 659:ISBN 568:ISBN 543:ISBN 524:link 504:ISBN 457:and 343:, NC 221:and 137:and 56:and 771:doi 744:doi 722:, S 690:, C 636:doi 601:doi 469:, d 463:cis 455:cis 427:cis 416:cis 326:PPh 291:cis 283:cis 219:cis 194:cis 190:cis 156:cis 116:cis 112:cis 100:cis 85:cis 62:cis 50:cis 37:cis 19:In 799:: 777:. 767:28 765:. 740:20 738:. 634:. 624:82 622:. 597:98 595:. 582:^ 520:}} 516:{{ 481:. 475:xz 471:yz 467:xy 390:SH 386:OH 384:, 382:Cl 380:, 369:NO 365:Cl 361:Br 357:CO 353:CH 339:SO 313:, 301:, 295:CO 42:pi 29:CO 785:. 773:: 750:. 746:: 732:2 730:H 728:2 726:C 724:2 720:2 718:H 716:2 714:C 712:2 708:3 704:2 700:2 696:4 694:H 692:2 688:2 684:2 682:H 680:2 667:. 642:. 638:: 630:: 607:. 603:: 576:. 551:. 526:) 512:. 378:F 371:3 355:3 349:5 347:H 345:5 341:2 337:3 333:I 328:3 322:3 317:n 311:3 307:3 303:H 299:3 269:X 265:5 235:1 233:N 231:S 207:X 203:4 170:X 166:5 152:X 148:5 81:X 77:5

Index

inorganic chemistry
CO
ligands
cis
pi
organometallic chemistry
steric
electronic effects
octahedral
complex
trans effect
square planar
transition metal
sigma
Group 6
group 7
oxidation state
18 electron
valence orbitals
18-electron rule
rate of reaction
dissociation pathway
intermediate
SN1
organic chemistry
coordination compounds

CO
H
PPh3

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.