Knowledge

Coleman–Mandula theorem

Source 📝

544:, with the associated symmetry known as supersymmetry. The Haag–Łopuszański–Sohnius theorem is the generalization of the Coleman–Mandula theorem to Lie superalgebras, with it stating that supersymmetry is the only new spacetime dependent symmetry that is allowed. For a theory with massless particles, the theorem is again evaded by conformal symmetry which can be present in addition to supersymmetry giving a 556:
In a one or two dimensional theory the only possible scattering is forwards and backwards scattering so analyticity of the scattering angles is no longer possible and the theorem no longer holds. Spacetime dependent internal symmetries are then possible, such as in the massive
327:
could belong to the same multiplet. Such a symmetry could then account for the mass splitting found in mesons and baryons. It was only later understood that this is instead a consequence of the differing up-, down-, and strange-quark masses which leads to a breakdown of the
362:
These two motivations led to a series of no-go theorems to show that spacetime symmetries and internal symmetries could not be combined in any but a trivial way. The first notable theorem was proved by William McGlinn in 1964, with a subsequent generalization by
379:, rather than from any attempts to overcome the no-go theorem. Similarly, the Haag–Łopuszański–Sohnius theorem, a supersymmetric generalization of the Coleman–Mandula theorem, was proved in 1975 after the study of supersymmetry was already underway. 59:
who proved it in 1967 as the culmination of a series of increasingly generalized no-go theorems investigating how internal symmetries can be combined with spacetime symmetries. The supersymmetric generalization is known as the
474:
the amplitudes, making them nonzero only at discrete scattering angles. Since this conflicts with the assumption of the analyticity of the scattering angles, such additional spacetime dependent symmetries are ruled out.
370:
Little notice was given to this theorem in subsequent years. As a result, the theorem played no role in the early development of supersymmetry, which instead emerged in the early 1970s from the study of
470:. The argument is that Poincaré symmetry acts as a very strong constraint on elastic scattering, leaving only the scattering angle unknown. Any additional spacetime dependent symmetry would 357: 314: 256: 225: 182: 151: 104: 277:
decuplets into a 56-dimensional multiplet. While this was reasonably successful in describing various aspects of the hadron spectrum, from the perspective of
1155:
Fotopoulos, A.; Tsulaia, M. (2010). "On the Tensionless Limit of String theory, Off - Shell Higher Spin Interaction Vertices and BCFW Recursion Relations".
1447: 1295: 1594: 1543: 61: 1579: 1569: 1548: 455:
of the Poincaré group and an internal symmetry group. The last technical assumption is unnecessary if the theory is described by a
1882: 1589: 39:
can only combine in a trivial way. This means that the charges associated with internal symmetries must always transform as
1599: 1268: 1288: 1053: 1025: 948: 842: 810: 1715: 1604: 1328: 968: 505: 1642: 1637: 1574: 492:, with these allowing for conformal symmetry as an additional spacetime dependent symmetry. In particular, the 367:
in 1965. These efforts culminated with the most general theorem by Sidney Coleman and Jeffrey Mandula in 1967.
1872: 1281: 617: 497: 323:
At the time it was also an open question whether there existed a symmetry for which particles of different
1622: 1507: 1462: 1323: 897: 444: 364: 73: 1522: 440: 185: 1492: 1376: 541: 331: 288: 230: 199: 156: 125: 78: 1517: 452: 1887: 592:
symmetries which avoid the theorem because the corresponding algebra is no longer a Lie algebra.
436: 107: 1877: 1627: 1477: 1381: 629: 605: 545: 537: 281:
this success is merely a consequence of the flavour and spin independence of the force between
278: 1263: 708:"On the Consequences of the Symmetry of the Nuclear Hamiltonian on the Spectroscopy of Nuclei" 1657: 1652: 1564: 1502: 1406: 1386: 639: 581: 569: 471: 1442: 1391: 1227: 1174: 1121: 1082: 984: 913: 871: 767: 719: 677: 634: 493: 456: 451:
The Coleman–Mandula theorem states that the symmetry group of this theory is necessarily a
421: 372: 317: 32: 8: 1662: 1647: 1632: 1401: 609: 562: 500:, which consists of the Poincaré algebra together with the commutation relations for the 396: 111: 20: 1239: 1231: 1178: 1125: 1086: 988: 917: 875: 771: 723: 681: 620:
since these do not act on the S-matrix level and thus do not commute with the S-matrix.
1771: 1343: 1338: 1243: 1217: 1190: 1164: 1137: 783: 757: 588:
of one-particle states, evade the theorem. Such an evasion is found more generally for
425: 263: 44: 36: 1070: 972: 859: 1194: 1141: 1094: 1049: 1041: 1021: 996: 944: 901: 838: 806: 779: 613: 489: 429: 1247: 787: 404: 1472: 1371: 1358: 1235: 1182: 1129: 1090: 992: 921: 879: 775: 727: 685: 600:
For other spacetime symmetries besides the Poincaré group, such as theories with a
525: 521: 707: 1801: 1766: 1487: 1482: 1013: 826: 665: 601: 189: 56: 1831: 1186: 1821: 1806: 1452: 1437: 883: 830: 661: 585: 558: 119: 52: 40: 925: 584:
symmetries whose charges do not act on multiparticle states as if they were a
1866: 1846: 1826: 1776: 1411: 1348: 1318: 1304: 703: 689: 589: 467: 376: 193: 48: 28: 16:
No-go theorem pertaining the triviality of space-time and internal symmetries
1851: 1836: 1796: 1786: 1781: 1672: 1614: 1497: 1366: 1333: 731: 259: 1841: 1816: 1811: 1761: 1740: 1705: 1700: 1427: 964: 860:"Problem of Combining Interaction Symmetries and Relativistic Invariance" 745: 529: 517: 516:
The Coleman–Mandula theorem assumes that the only symmetry algebras are
1745: 1735: 1720: 1512: 1432: 1396: 1133: 463: 1791: 1695: 1584: 1109: 501: 400: 270: 1730: 1725: 1710: 1685: 388: 1222: 1169: 762: 1690: 410:
Below any mass, there are only a finite number of particle types,
1273: 1467: 1457: 566: 533: 414: 285:. There were many attempts to generalize this non-relativistic 274: 115: 1680: 413:
Any two-particle state undergoes some reaction at almost all
282: 266: 1208:
Fabrizio, N.; Percacci, R. (2008). "Graviweak Unification".
973:"All possible generators of supersymmetries of the S-matrix" 520:, but the theorem can be generalized by instead considering 459:
and is only needed to apply the theorem in a wider context.
1110:"Quantum group symmetries and non-local currents in 2D QFT" 1020:. Vol. 3. Cambridge University Press. pp. 12–22. 612:, the theorem no longer applies. It also does not hold for 324: 188:
and spin, an idea similar to that previously considered in
432:
of the scattering angle at almost all energies and angles,
466:
argument for why the theorem should hold was provided by
963: 835:
The Supersymmetric World:The Beginnings of the Theory
334: 291: 233: 202: 159: 128: 81: 668:(1967). "All Possible Symmetries of the S Matrix". 43:. Some notable exceptions to the no-go theorem are 1071:"Conserved currents in the massive thirring model" 896: 351: 308: 250: 219: 176: 145: 98: 1154: 837:. World Scientific Publishing. pp. 184–185. 1864: 1207: 1068: 1269:Sascha Leonhardt on the Coleman–Mandula theorem 1107: 941:Conceptual Foundations of Quantum Field Theory 660: 387:Consider a theory that can be described by an 1289: 1046:The Unity of the Fundamental Interactions: 19 391:and that satisfies the following conditions 1069:Berg, B.; Karowski, M.; Thun, H.J. (1976). 1018:The Quantum Theory of Fields: Supersymmetry 1008: 1006: 943:. Cambridge University Press. p. 282. 825: 122:. This led to efforts to expand the global 1296: 1282: 902:"Lorentz Invariance and Internal Symmetry" 748:(2009). "From symmetry to supersymmetry". 488:The theorem does not apply to a theory of 1221: 1168: 761: 616:, since these are not Lie groups, or for 1040: 1012: 1003: 269:of different spin into a 35-dimensional 1264:Coleman–Mandula theorem on Scholarpedia 857: 110:was shown to successfully describe the 1865: 1114:Communications in Mathematical Physics 800: 702: 435:A technical assumption that the group 1277: 803:Concise Encyclopedia of Supersymmetry 561:which can admit an infinite tower of 483: 744: 656: 654: 595: 106:flavor symmetry associated with the 938: 540:. This extension gives rise to the 524:. Doing this allows for additional 13: 1257: 14: 1899: 1303: 1108:Bernard, D.; LeClair, A. (1991). 651: 575: 551: 506:special conformal transformations 1329:Supersymmetric quantum mechanics 511: 227:symmetry. This non-relativistic 62:Haag–Łopuszański–Sohnius theorem 1201: 1148: 1101: 1062: 1034: 750:The European Physical Journal C 618:spontaneously broken symmetries 1048:. Springer. pp. 305–315. 957: 932: 890: 851: 819: 805:. Springer. pp. 265–266. 794: 780:10.1140/epjc/s10052-008-0837-6 738: 696: 478: 352:{\displaystyle {\text{SU}}(3)} 346: 340: 309:{\displaystyle {\text{SU}}(6)} 303: 297: 251:{\displaystyle {\text{SU}}(6)} 245: 239: 220:{\displaystyle {\text{SU}}(4)} 214: 208: 177:{\displaystyle {\text{SU}}(6)} 171: 165: 146:{\displaystyle {\text{SU}}(3)} 140: 134: 99:{\displaystyle {\text{SU}}(3)} 93: 87: 1: 1883:Theorems in quantum mechanics 1240:10.1088/1751-8113/41/7/075405 375:, which are the precursor to 1095:10.1016/0370-2693(76)90203-3 997:10.1016/0550-3213(75)90279-5 7: 1324:Supersymmetric gauge theory 623: 320:one, but these all failed. 273:and it also united the two 10: 1904: 1623:Pure 4D N = 1 supergravity 884:10.1103/PhysRevLett.12.467 382: 359:internal flavor symmetry. 67: 1754: 1671: 1613: 1557: 1531: 1523:Electric–magnetic duality 1420: 1357: 1311: 926:10.1103/PhysRev.139.B1052 1544:Haag–Łopuszański–Sohnius 1518:Little hierarchy problem 939:Cao, T.Y. (2004). "19". 690:10.1103/PhysRev.159.1251 645: 428:two-body scattering are 365:Lochlainn O'Raifeartaigh 72:In the early 1960s, the 1600:6D (2,0) superconformal 1187:10.1007/JHEP11(2010)086 538:Lorentz transformations 25:Coleman–Mandula theorem 1580:N = 4 super Yang–Mills 1570:N = 1 super Yang–Mills 1478:Supersymmetry breaking 1382:Superconformal algebra 1377:Super-Poincaré algebra 971:; Sohnius, M. (1975). 858:McGlinn, W.D. (1964). 732:10.1103/PhysRev.51.106 630:Extended supersymmetry 546:superconformal algebra 542:super-Poincaré algebra 353: 310: 279:quantum chromodynamics 252: 221: 178: 147: 100: 1658:Type IIB supergravity 1653:Type IIA supergravity 1628:4D N = 1 supergravity 1493:Seiberg–Witten theory 1407:Super Minkowski space 1387:Supersymmetry algebra 640:Supersymmetry algebra 496:of this group is the 373:dual resonance models 354: 311: 253: 222: 184:symmetry mixing both 179: 153:symmetry to a larger 148: 101: 1873:Quantum field theory 1443:Short supermultiplet 604:or non-relativistic 602:de Sitter background 528:generators known as 457:quantum field theory 332: 289: 231: 200: 157: 126: 79: 51:. It is named after 1663:Gauged supergravity 1648:Type I supergravity 1605:ABJM superconformal 1402:Harmonic superspace 1232:2008JPhA...41g5405N 1179:2010JHEP...11..086F 1126:1991CMaPh.142...99B 1087:1976PhLB...64..286B 989:1975NuPhB..88..257H 918:1965PhRv..139.1052O 912:(4B): B1052–B1062. 876:1964PhRvL..12..467M 801:Duplij, S. (2003). 772:2009EPJC...59..177W 724:1937PhRv...51..106W 682:1967PhRv..159.1251C 614:discrete symmetries 610:Galilean invariance 532:which transform as 403:which includes the 316:model into a fully 21:theoretical physics 1638:Higher dimensional 1633:N = 8 supergravity 1549:Nonrenormalization 1344:Super vector space 1339:Superstring theory 1134:10.1007/BF02099173 898:O'Raifeartaigh, L. 504:generator and the 490:massless particles 484:Conformal symmetry 430:analytic functions 349: 306: 248: 217: 174: 143: 96: 45:conformal symmetry 1860: 1859: 1503:Wess–Zumino gauge 1075:Physics Letters B 977:Nuclear Physics B 969:Łopuszański, J.T. 596:Other limitations 563:conserved charges 522:Lie superalgebras 498:conformal algebra 338: 295: 237: 206: 163: 132: 85: 1895: 1643:11D supergravity 1372:Lie superalgebra 1359:Supermathematics 1298: 1291: 1284: 1275: 1274: 1252: 1251: 1225: 1205: 1199: 1198: 1172: 1152: 1146: 1145: 1105: 1099: 1098: 1066: 1060: 1059: 1038: 1032: 1031: 1010: 1001: 1000: 961: 955: 954: 936: 930: 929: 894: 888: 887: 855: 849: 848: 823: 817: 816: 798: 792: 791: 765: 742: 736: 735: 700: 694: 693: 676:(5): 1251–1256. 658: 358: 356: 355: 350: 339: 336: 315: 313: 312: 307: 296: 293: 257: 255: 254: 249: 238: 235: 226: 224: 223: 218: 207: 204: 183: 181: 180: 175: 164: 161: 152: 150: 149: 144: 133: 130: 105: 103: 102: 97: 86: 83: 1903: 1902: 1898: 1897: 1896: 1894: 1893: 1892: 1863: 1862: 1861: 1856: 1750: 1667: 1609: 1553: 1539:Coleman–Mandula 1527: 1488:Seiberg duality 1483:Konishi anomaly 1416: 1353: 1307: 1302: 1260: 1258:Further reading 1255: 1206: 1202: 1153: 1149: 1106: 1102: 1067: 1063: 1056: 1039: 1035: 1028: 1011: 1004: 962: 958: 951: 937: 933: 895: 891: 870:(16): 467–469. 864:Phys. Rev. Lett 856: 852: 845: 824: 820: 813: 799: 795: 743: 739: 701: 697: 659: 652: 648: 626: 598: 578: 565:of ever higher 554: 526:anticommutating 514: 486: 481: 385: 335: 333: 330: 329: 292: 290: 287: 286: 234: 232: 229: 228: 203: 201: 198: 197: 196:in 1937 for an 190:nuclear physics 160: 158: 155: 154: 129: 127: 124: 123: 112:hadron spectrum 82: 80: 77: 76: 70: 57:Jeffrey Mandula 41:Lorentz scalars 17: 12: 11: 5: 1901: 1891: 1890: 1888:No-go theorems 1885: 1880: 1875: 1858: 1857: 1855: 1854: 1849: 1844: 1839: 1834: 1829: 1824: 1819: 1814: 1809: 1804: 1799: 1794: 1789: 1784: 1779: 1774: 1769: 1764: 1758: 1756: 1752: 1751: 1749: 1748: 1743: 1738: 1733: 1728: 1723: 1718: 1713: 1708: 1703: 1698: 1693: 1688: 1683: 1677: 1675: 1669: 1668: 1666: 1665: 1660: 1655: 1650: 1645: 1640: 1635: 1630: 1625: 1619: 1617: 1611: 1610: 1608: 1607: 1602: 1597: 1592: 1587: 1582: 1577: 1572: 1567: 1561: 1559: 1558:Field theories 1555: 1554: 1552: 1551: 1546: 1541: 1535: 1533: 1529: 1528: 1526: 1525: 1520: 1515: 1510: 1505: 1500: 1495: 1490: 1485: 1480: 1475: 1470: 1465: 1460: 1455: 1453:Superpotential 1450: 1445: 1440: 1438:Supermultiplet 1435: 1430: 1424: 1422: 1418: 1417: 1415: 1414: 1409: 1404: 1399: 1394: 1389: 1384: 1379: 1374: 1369: 1363: 1361: 1355: 1354: 1352: 1351: 1346: 1341: 1336: 1331: 1326: 1321: 1315: 1313: 1312:General topics 1309: 1308: 1301: 1300: 1293: 1286: 1278: 1272: 1271: 1266: 1259: 1256: 1254: 1253: 1200: 1147: 1100: 1081:(3): 286–288. 1061: 1055:978-1461336570 1054: 1033: 1027:978-0521670555 1026: 1016:(2005). "24". 1002: 983:(2): 257–274. 956: 950:978-0521602723 949: 931: 889: 850: 844:978-9810245221 843: 818: 812:978-1402013386 811: 793: 756:(2): 177–183. 737: 718:(2): 106–119. 695: 649: 647: 644: 643: 642: 637: 632: 625: 622: 606:field theories 597: 594: 586:tensor product 577: 576:Quantum groups 574: 559:Thirring model 553: 552:Low dimensions 550: 513: 510: 485: 482: 480: 477: 453:direct product 449: 448: 445:momentum space 433: 418: 411: 408: 407:as a subgroup, 405:Poincaré group 384: 381: 348: 345: 342: 305: 302: 299: 247: 244: 241: 216: 213: 210: 173: 170: 167: 142: 139: 136: 95: 92: 89: 69: 66: 53:Sidney Coleman 15: 9: 6: 4: 3: 2: 1900: 1889: 1886: 1884: 1881: 1879: 1878:Supersymmetry 1876: 1874: 1871: 1870: 1868: 1853: 1850: 1848: 1845: 1843: 1840: 1838: 1835: 1833: 1830: 1828: 1825: 1823: 1820: 1818: 1815: 1813: 1810: 1808: 1805: 1803: 1800: 1798: 1795: 1793: 1790: 1788: 1785: 1783: 1780: 1778: 1775: 1773: 1770: 1768: 1765: 1763: 1760: 1759: 1757: 1753: 1747: 1744: 1742: 1739: 1737: 1734: 1732: 1729: 1727: 1724: 1722: 1719: 1717: 1714: 1712: 1709: 1707: 1704: 1702: 1699: 1697: 1694: 1692: 1689: 1687: 1684: 1682: 1679: 1678: 1676: 1674: 1673:Superpartners 1670: 1664: 1661: 1659: 1656: 1654: 1651: 1649: 1646: 1644: 1641: 1639: 1636: 1634: 1631: 1629: 1626: 1624: 1621: 1620: 1618: 1616: 1612: 1606: 1603: 1601: 1598: 1596: 1593: 1591: 1588: 1586: 1583: 1581: 1578: 1576: 1573: 1571: 1568: 1566: 1563: 1562: 1560: 1556: 1550: 1547: 1545: 1542: 1540: 1537: 1536: 1534: 1530: 1524: 1521: 1519: 1516: 1514: 1511: 1509: 1506: 1504: 1501: 1499: 1496: 1494: 1491: 1489: 1486: 1484: 1481: 1479: 1476: 1474: 1471: 1469: 1466: 1464: 1461: 1459: 1456: 1454: 1451: 1449: 1446: 1444: 1441: 1439: 1436: 1434: 1431: 1429: 1426: 1425: 1423: 1419: 1413: 1412:Supermanifold 1410: 1408: 1405: 1403: 1400: 1398: 1395: 1393: 1390: 1388: 1385: 1383: 1380: 1378: 1375: 1373: 1370: 1368: 1365: 1364: 1362: 1360: 1356: 1350: 1349:Supergeometry 1347: 1345: 1342: 1340: 1337: 1335: 1332: 1330: 1327: 1325: 1322: 1320: 1319:Supersymmetry 1317: 1316: 1314: 1310: 1306: 1305:Supersymmetry 1299: 1294: 1292: 1287: 1285: 1280: 1279: 1276: 1270: 1267: 1265: 1262: 1261: 1249: 1245: 1241: 1237: 1233: 1229: 1224: 1219: 1216:(7): 075405. 1215: 1211: 1204: 1196: 1192: 1188: 1184: 1180: 1176: 1171: 1166: 1162: 1158: 1151: 1143: 1139: 1135: 1131: 1127: 1123: 1120:(1): 99–138. 1119: 1115: 1111: 1104: 1096: 1092: 1088: 1084: 1080: 1076: 1072: 1065: 1057: 1051: 1047: 1043: 1037: 1029: 1023: 1019: 1015: 1009: 1007: 998: 994: 990: 986: 982: 978: 974: 970: 966: 960: 952: 946: 942: 935: 927: 923: 919: 915: 911: 907: 903: 899: 893: 885: 881: 877: 873: 869: 865: 861: 854: 846: 840: 836: 832: 828: 822: 814: 808: 804: 797: 789: 785: 781: 777: 773: 769: 764: 759: 755: 751: 747: 741: 733: 729: 725: 721: 717: 713: 709: 705: 699: 691: 687: 683: 679: 675: 671: 667: 663: 662:Coleman, S.R. 657: 655: 650: 641: 638: 636: 633: 631: 628: 627: 621: 619: 615: 611: 607: 603: 593: 591: 590:quantum group 587: 583: 573: 571: 568: 564: 560: 549: 547: 543: 539: 535: 531: 527: 523: 519: 512:Supersymmetry 509: 507: 503: 499: 495: 491: 476: 473: 472:overdetermine 469: 468:Edward Witten 465: 460: 458: 454: 446: 442: 441:distributions 438: 434: 431: 427: 423: 419: 416: 412: 409: 406: 402: 398: 395:The symmetry 394: 393: 392: 390: 380: 378: 377:string theory 374: 368: 366: 360: 343: 326: 321: 319: 300: 284: 280: 276: 272: 268: 265: 261: 258:model united 242: 211: 195: 194:Eugene Wigner 191: 187: 168: 137: 121: 117: 113: 109: 108:eightfold way 90: 75: 65: 63: 58: 54: 50: 49:supersymmetry 46: 42: 38: 35:and internal 34: 31:stating that 30: 29:no-go theorem 26: 22: 1615:Supergravity 1538: 1508:Localization 1498:Witten index 1473:Moduli space 1367:Superalgebra 1334:Supergravity 1213: 1209: 1203: 1160: 1156: 1150: 1117: 1113: 1103: 1078: 1074: 1064: 1045: 1042:Zichichi, A. 1036: 1017: 1014:Weinberg, S. 980: 976: 959: 940: 934: 909: 905: 892: 867: 863: 853: 834: 821: 802: 796: 753: 749: 740: 715: 711: 698: 673: 669: 599: 580:Models with 579: 555: 530:supercharges 518:Lie algebras 515: 487: 461: 450: 386: 369: 361: 322: 318:relativistic 264:pseudoscalar 118:of the same 71: 24: 18: 1755:Researchers 1741:Stop squark 1706:Graviscalar 1701:Graviphoton 1565:Wess–Zumino 1428:Supercharge 1163:(11): 086. 827:Shifman, M. 666:Mandula, J. 508:generator. 479:Limitations 1867:Categories 1802:Iliopoulos 1746:Superghost 1736:Sgoldstino 1721:Neutralino 1513:Mu problem 1433:R-symmetry 1397:Superspace 1392:Supergroup 1210:J. Phys. A 704:Wigner, E. 635:Supergroup 437:generators 422:amplitudes 37:symmetries 1772:Batchelor 1696:Goldstino 1585:Super QCD 1463:FI D-term 1448:BPS state 1223:0706.3307 1195:119287675 1170:1009.0727 1142:119026420 906:Phys. Rev 763:0902.2201 712:Phys. Rev 670:Phys. Rev 567:tensorial 464:kinematic 401:Lie group 271:multiplet 33:spacetime 1807:Montonen 1731:Sfermion 1726:R-hadron 1711:Higgsino 1686:Chargino 1575:4D N = 1 1532:Theorems 1421:Concepts 1248:15045658 1044:(2012). 965:Haag, R. 900:(1965). 833:(2000). 831:Kane, G. 788:14917968 746:Wess, J. 706:(1937). 624:See also 582:nonlocal 415:energies 389:S-matrix 1822:Seiberg 1797:Golfand 1777:Berezin 1762:Affleck 1691:Gaugino 1228:Bibcode 1175:Bibcode 1122:Bibcode 1083:Bibcode 985:Bibcode 914:Bibcode 872:Bibcode 768:Bibcode 720:Bibcode 678:Bibcode 534:spinors 502:dilaton 494:algebra 426:elastic 383:Theorem 186:flavour 116:hadrons 68:History 1852:Zumino 1847:Witten 1837:Rogers 1827:Siegel 1767:Bagger 1468:F-term 1458:D-term 1246:  1193:  1140:  1052:  1024:  947:  841:  809:  786:  536:under 325:masses 283:quarks 275:baryon 267:mesons 260:vector 74:global 23:, the 1832:Roček 1817:Salam 1812:Olive 1792:Gates 1787:Fayet 1681:Axino 1595:NMSSM 1244:S2CID 1218:arXiv 1191:S2CID 1165:arXiv 1138:S2CID 784:S2CID 758:arXiv 646:Notes 608:with 399:is a 397:group 27:is a 1842:Wess 1782:Dine 1590:MSSM 1161:2010 1157:JHEP 1050:ISBN 1022:ISBN 945:ISBN 839:ISBN 807:ISBN 570:rank 439:are 424:for 420:The 262:and 120:spin 114:for 55:and 47:and 1716:LSP 1236:doi 1183:doi 1130:doi 1118:142 1091:doi 993:doi 922:doi 910:139 880:doi 776:doi 728:doi 686:doi 674:159 443:in 192:by 19:In 1869:: 1242:. 1234:. 1226:. 1214:41 1212:. 1189:. 1181:. 1173:. 1159:. 1136:. 1128:. 1116:. 1112:. 1089:. 1079:64 1077:. 1073:. 1005:^ 991:. 981:88 979:. 975:. 967:; 920:. 908:. 904:. 878:. 868:12 866:. 862:. 829:; 782:. 774:. 766:. 754:59 752:. 726:. 716:51 714:. 710:. 684:. 672:. 664:; 653:^ 572:. 548:. 462:A 337:SU 294:SU 236:SU 205:SU 162:SU 131:SU 84:SU 64:. 1297:e 1290:t 1283:v 1250:. 1238:: 1230:: 1220:: 1197:. 1185:: 1177:: 1167:: 1144:. 1132:: 1124:: 1097:. 1093:: 1085:: 1058:. 1030:. 999:. 995:: 987:: 953:. 928:. 924:: 916:: 886:. 882:: 874:: 847:. 815:. 790:. 778:: 770:: 760:: 734:. 730:: 722:: 692:. 688:: 680:: 447:. 417:, 347:) 344:3 341:( 304:) 301:6 298:( 246:) 243:6 240:( 215:) 212:4 209:( 172:) 169:6 166:( 141:) 138:3 135:( 94:) 91:3 88:(

Index

theoretical physics
no-go theorem
spacetime
symmetries
Lorentz scalars
conformal symmetry
supersymmetry
Sidney Coleman
Jeffrey Mandula
Haag–Łopuszański–Sohnius theorem
global
eightfold way
hadron spectrum
hadrons
spin
flavour
nuclear physics
Eugene Wigner
vector
pseudoscalar
mesons
multiplet
baryon
quantum chromodynamics
quarks
relativistic
masses
Lochlainn O'Raifeartaigh
dual resonance models
string theory

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.