Knowledge

Coleman–Weinberg potential

Source 📝

1127: 193: 272: 350: 534:, even if the renormalized mass is zero, spontaneous symmetry breaking still happens due to the radiative corrections (this introduces a mass scale into a classically conformal theory - the model has a 37: 664: 569:. There are non-minimal models that give a more realistic scenarios. Also the variations of this mechanism were proposed for the hypothetical spontaneously broken symmetries including 791: 829: 706: 622:
The three-dimensional version of the Coleman–Weinberg model governs the superconducting phase transition which can be both first- and second-order, depending on the ratio of the
471: 426: 393: 741: 524: 605: 559: 491: 370: 936: 914: 719:. Historically, the order of the superconducting phase transition was debated for a long time since the temperature interval where fluctuations are large ( 720: 201: 277: 755:) is large enough, vortex fluctuations becomes important which drive the transition to second order. The tricritical point lies at roughly 1192: 1168: 957: 565:, as a matter of fact even too light to explain the electroweak symmetry breaking in the minimal model - much lighter than 188:{\displaystyle L=-{\frac {1}{4}}(F_{\mu \nu })^{2}+|D_{\mu }\phi |^{2}-m^{2}|\phi |^{2}-{\frac {\lambda }{6}}|\phi |^{4}} 983: 628: 1197: 758: 1187: 623: 429: 1142: 796: 673: 1161: 752: 608: 541:
The same can happen in other gauge theories. In the broken phase the fluctuations of the scalar field
1065: 28: 1024:"Disorder Version of the Abelian Higgs Model and the Order of the Superconductive Phase Transition" 723:) is extremely small. The question was finally settled in 1982. If the Ginzburg–Landau parameter 24: 443: 398: 836: 832: 748: 713: 1066:"Vortex interactions and thermally induced crossover from type-I to type-II superconductivity" 378: 1154: 744: 726: 709: 496: 1090: 881: 583: 544: 476: 8: 999: 840: 1094: 885: 1106: 1080: 1046: 975: 897: 871: 355: 1134: 1050: 1023: 979: 953: 862: 716: 667: 612: 535: 1110: 1098: 1038: 945: 901: 889: 616: 577: 967: 927: 437: 949: 860:(1973). "Radiative Corrections as the Origin of Spontaneous Symmetry Breaking". 1138: 1102: 1019: 857: 853: 531: 527: 433: 267:{\displaystyle F_{\mu \nu }=\partial _{\mu }A_{\nu }-\partial _{\nu }A_{\mu }} 1181: 570: 893: 566: 1085: 562: 345:{\displaystyle D_{\mu }=\partial _{\mu }-\mathrm {i} (e/\hbar c)A_{\mu }} 1042: 931: 909: 876: 607:. The model is the four-dimensional analog of the three-dimensional 576:
Equivalently one may say that the model possesses a first-order
1126: 926: 493:
is zero. At the classical level the latter is true also if
852: 839:
superconductor. The prediction was confirmed in 2002 by
352:
the covariant derivative containing the electric charge
440:. On the other hand, if the squared mass is positive, 799: 761: 729: 676: 631: 586: 547: 499: 479: 446: 401: 381: 358: 280: 204: 40: 1063: 395:
is nonnegative. Then if the mass term is tachyonic,
912:(1937). "On the theory of phase transitions. II". 823: 785: 735: 700: 658: 599: 553: 518: 485: 465: 420: 387: 364: 344: 266: 187: 937:Zhurnal Eksperimental'noi i Teoreticheskoi Fiziki 915:Zhurnal Eksperimental'noi i Teoreticheskoi Fiziki 1179: 934:(1950). "On the theory of superconductivity". 561:will manifest themselves as a naturally light 1162: 659:{\displaystyle \kappa \equiv \lambda /e^{2}} 1018: 908: 1169: 1155: 27:of a scalar field in four-dimensions. The 1084: 974:. Dover Books on Physics (2nd ed.). 966: 875: 274:is the electromagnetic field tensor, and 786:{\displaystyle \kappa =0.76/{\sqrt {2}}} 1180: 824:{\displaystyle \kappa =1/{\sqrt {2}}} 701:{\displaystyle \kappa =1/{\sqrt {2}}} 1121: 473:the vacuum expectation of the field 198:where the scalar field is complex, 16:Potential arising from loop effects 13: 611:used to explain the properties of 436:at low energies, a variant of the 308: 295: 245: 222: 14: 1209: 1064:J. Hove; S. Mo; A. Sudbo (2002). 972:Introduction to Superconductivity 793:, i.e., slightly below the value 323: 1125: 841:Monte Carlo computer simulations 1057: 1012: 372:of the electromagnetic field. 329: 312: 175: 166: 142: 133: 109: 90: 77: 60: 1: 1193:Quantum mechanical potentials 1005: 846: 1141:. You can help Knowledge by 7: 993: 950:10.1007/978-3-540-68008-6_4 526:. However, as was shown by 10: 1214: 1120: 1103:10.1103/PhysRevB.66.064524 751:superconductors (see also 466:{\displaystyle m^{2}>0} 421:{\displaystyle m^{2}<0} 624:Ginzburg–Landau parameter 1031:Lettere al Nuovo Cimento 388:{\displaystyle \lambda } 894:10.1103/PhysRevD.7.1888 736:{\displaystyle \kappa } 519:{\displaystyle m^{2}=0} 25:quantum electrodynamics 1137:-related article is a 825: 787: 737: 702: 660: 609:Ginzburg–Landau theory 601: 555: 520: 487: 467: 422: 389: 366: 346: 268: 189: 21:Coleman–Weinberg model 1198:Quantum physics stubs 826: 788: 738: 703: 661: 602: 600:{\displaystyle m^{2}} 556: 554:{\displaystyle \phi } 521: 488: 486:{\displaystyle \phi } 468: 423: 390: 367: 347: 269: 190: 1188:Quantum field theory 797: 759: 727: 674: 629: 584: 545: 497: 477: 444: 430:spontaneous breaking 399: 379: 356: 278: 202: 38: 1095:2002PhRvB..66f4524H 1000:Quartic interaction 886:1973PhRvD...7.1888C 743:that distinguishes 1043:10.1007/BF02754760 821: 783: 733: 698: 656: 597: 551: 516: 483: 463: 418: 385: 362: 342: 264: 185: 1150: 1149: 1135:quantum mechanics 959:978-3-540-68004-8 863:Physical Review D 819: 781: 721:Ginzburg interval 717:superconductivity 696: 668:tricritical point 580:as a function of 536:conformal anomaly 365:{\displaystyle e} 163: 58: 31:for the model is 1205: 1171: 1164: 1157: 1129: 1122: 1115: 1114: 1088: 1086:cond-mat/0202215 1070: 1061: 1055: 1054: 1028: 1016: 989: 963: 923: 905: 879: 870:(6): 1888–1910. 830: 828: 827: 822: 820: 815: 813: 792: 790: 789: 784: 782: 777: 775: 742: 740: 739: 734: 708:which separates 707: 705: 704: 699: 697: 692: 690: 665: 663: 662: 657: 655: 654: 645: 617:phase transition 606: 604: 603: 598: 596: 595: 578:phase transition 560: 558: 557: 552: 525: 523: 522: 517: 509: 508: 492: 490: 489: 484: 472: 470: 469: 464: 456: 455: 427: 425: 424: 419: 411: 410: 394: 392: 391: 386: 371: 369: 368: 363: 351: 349: 348: 343: 341: 340: 322: 311: 303: 302: 290: 289: 273: 271: 270: 265: 263: 262: 253: 252: 240: 239: 230: 229: 217: 216: 194: 192: 191: 186: 184: 183: 178: 169: 164: 156: 151: 150: 145: 136: 131: 130: 118: 117: 112: 103: 102: 93: 85: 84: 75: 74: 59: 51: 1213: 1212: 1208: 1207: 1206: 1204: 1203: 1202: 1178: 1177: 1176: 1175: 1119: 1118: 1068: 1062: 1058: 1037:(13): 405–412. 1026: 1017: 1013: 1008: 996: 986: 960: 849: 835:goes over into 814: 809: 798: 795: 794: 776: 771: 760: 757: 756: 728: 725: 724: 691: 686: 675: 672: 671: 650: 646: 641: 630: 627: 626: 613:superconductors 591: 587: 585: 582: 581: 546: 543: 542: 504: 500: 498: 495: 494: 478: 475: 474: 451: 447: 445: 442: 441: 438:Higgs mechanism 406: 402: 400: 397: 396: 380: 377: 376: 357: 354: 353: 336: 332: 318: 307: 298: 294: 285: 281: 279: 276: 275: 258: 254: 248: 244: 235: 231: 225: 221: 209: 205: 203: 200: 199: 179: 174: 173: 165: 155: 146: 141: 140: 132: 126: 122: 113: 108: 107: 98: 94: 89: 80: 76: 67: 63: 50: 39: 36: 35: 17: 12: 11: 5: 1211: 1201: 1200: 1195: 1190: 1174: 1173: 1166: 1159: 1151: 1148: 1147: 1130: 1117: 1116: 1056: 1010: 1009: 1007: 1004: 1003: 1002: 995: 992: 991: 990: 984: 964: 958: 924: 906: 877:hep-th/0507214 848: 845: 818: 812: 808: 805: 802: 780: 774: 770: 767: 764: 732: 695: 689: 685: 682: 679: 653: 649: 644: 640: 637: 634: 594: 590: 550: 532:Erick Weinberg 528:Sidney Coleman 515: 512: 507: 503: 482: 462: 459: 454: 450: 434:gauge symmetry 417: 414: 409: 405: 384: 361: 339: 335: 331: 328: 325: 321: 317: 314: 310: 306: 301: 297: 293: 288: 284: 261: 257: 251: 247: 243: 238: 234: 228: 224: 220: 215: 212: 208: 196: 195: 182: 177: 172: 168: 162: 159: 154: 149: 144: 139: 135: 129: 125: 121: 116: 111: 106: 101: 97: 92: 88: 83: 79: 73: 70: 66: 62: 57: 54: 49: 46: 43: 15: 9: 6: 4: 3: 2: 1210: 1199: 1196: 1194: 1191: 1189: 1186: 1185: 1183: 1172: 1167: 1165: 1160: 1158: 1153: 1152: 1146: 1144: 1140: 1136: 1131: 1128: 1124: 1123: 1112: 1108: 1104: 1100: 1096: 1092: 1087: 1082: 1079:(6): 064524. 1078: 1074: 1067: 1060: 1052: 1048: 1044: 1040: 1036: 1032: 1025: 1021: 1015: 1011: 1001: 998: 997: 987: 985:0-486-43503-2 981: 977: 973: 969: 965: 961: 955: 951: 947: 943: 939: 938: 933: 929: 928:V.L. Ginzburg 925: 921: 917: 916: 911: 907: 903: 899: 895: 891: 887: 883: 878: 873: 869: 865: 864: 859: 855: 851: 850: 844: 842: 838: 834: 816: 810: 806: 803: 800: 778: 772: 768: 765: 762: 754: 750: 746: 730: 722: 718: 715: 711: 693: 687: 683: 680: 677: 669: 651: 647: 642: 638: 635: 632: 625: 620: 618: 614: 610: 592: 588: 579: 574: 572: 571:supersymmetry 568: 567:vector bosons 564: 548: 539: 537: 533: 529: 513: 510: 505: 501: 480: 460: 457: 452: 448: 439: 435: 431: 415: 412: 407: 403: 382: 373: 359: 337: 333: 326: 319: 315: 304: 299: 291: 286: 282: 259: 255: 249: 241: 236: 232: 226: 218: 213: 210: 206: 180: 170: 160: 157: 152: 147: 137: 127: 123: 119: 114: 104: 99: 95: 86: 81: 71: 68: 64: 55: 52: 47: 44: 41: 34: 33: 32: 30: 26: 22: 1143:expanding it 1132: 1076: 1072: 1059: 1034: 1030: 1014: 971: 941: 935: 919: 913: 867: 861: 621: 575: 540: 375:Assume that 374: 197: 20: 18: 1020:H. Kleinert 944:: 113–137. 932:L.D. Landau 910:L.D. Landau 858:E. Weinberg 563:Higgs boson 428:there is a 23:represents 1182:Categories 1006:References 854:S. Coleman 847:Literature 29:Lagrangian 1073:Phys. Rev 1051:121012850 968:M.Tinkham 801:κ 763:κ 731:κ 678:κ 666:, with a 639:λ 636:≡ 633:κ 615:near the 549:ϕ 481:ϕ 383:λ 338:μ 324:ℏ 305:− 300:μ 296:∂ 287:μ 260:μ 250:ν 246:∂ 242:− 237:ν 227:μ 223:∂ 214:ν 211:μ 171:ϕ 158:λ 153:− 138:ϕ 120:− 105:ϕ 100:μ 72:ν 69:μ 48:− 1111:13672575 1022:(1982). 994:See also 970:(2004). 1091:Bibcode 902:6898114 882:Bibcode 837:type-II 749:type-II 714:type II 432:of the 1109:  1049:  982:  956:  922:: 627. 900:  833:type-I 831:where 745:type-I 710:type I 1133:This 1107:S2CID 1081:arXiv 1069:(PDF) 1047:S2CID 1027:(PDF) 976:Dover 898:S2CID 872:arXiv 747:and 712:from 670:near 1139:stub 1077:B 66 980:ISBN 954:ISBN 930:and 856:and 769:0.76 753:here 530:and 458:> 413:< 19:The 1099:doi 1039:doi 946:doi 890:doi 538:). 1184:: 1105:. 1097:. 1089:. 1075:. 1071:. 1045:. 1035:35 1033:. 1029:. 978:. 952:. 942:20 940:. 918:. 896:. 888:. 880:. 866:. 843:. 619:. 573:. 1170:e 1163:t 1156:v 1145:. 1113:. 1101:: 1093:: 1083:: 1053:. 1041:: 988:. 962:. 948:: 920:7 904:. 892:: 884:: 874:: 868:7 817:2 811:/ 807:1 804:= 779:2 773:/ 766:= 694:2 688:/ 684:1 681:= 652:2 648:e 643:/ 593:2 589:m 514:0 511:= 506:2 502:m 461:0 453:2 449:m 416:0 408:2 404:m 360:e 334:A 330:) 327:c 320:/ 316:e 313:( 309:i 292:= 283:D 256:A 233:A 219:= 207:F 181:4 176:| 167:| 161:6 148:2 143:| 134:| 128:2 124:m 115:2 110:| 96:D 91:| 87:+ 82:2 78:) 65:F 61:( 56:4 53:1 45:= 42:L

Index

quantum electrodynamics
Lagrangian
spontaneous breaking
gauge symmetry
Higgs mechanism
Sidney Coleman
Erick Weinberg
conformal anomaly
Higgs boson
vector bosons
supersymmetry
phase transition
Ginzburg–Landau theory
superconductors
phase transition
Ginzburg–Landau parameter
tricritical point
type I
type II
superconductivity
Ginzburg interval
type-I
type-II
here
type-I
type-II
Monte Carlo computer simulations
S. Coleman
E. Weinberg
Physical Review D

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.