Knowledge

Implicit solvation

Source đź“ť

2230:-based models, this problem was treated using different solvation parameters for charged atoms or Henderson-Hasselbalch equation with some modifications. However even the latter approach does not solve the problem. Charged residues can remain charged even in the nonpolar environment if they are involved in intramolecular ion pairs and H-bonds. Thus, the energetic penalties can be overestimated even using the Henderson-Hasselbalch equation. More rigorous theoretical methods describing such ionization effects have been developed, and there are ongoing efforts to incorporate such methods into the implicit solvation models. 2226:. The low energetic costs of such ionization effects have indeed been observed for protein mutants with buried ionizable residues. and hydrophobic α-helical peptides in membranes with a single ionizable residue in the middle. However, all electrostatic methods, such as PB, GB, or GBSA assume that ionizable groups remain charged in the nonpolar environments, which leads to grossly overestimated electrostatic energy. In the simplest 2158:. Unfortunately, the simplified ASA-based model cannot capture the "specific" distance-dependent interactions between different types of atoms in the solid state which are responsible for clustering of atoms with similar polarities in protein structures and molecular crystals. Parameters of such interatomic interactions, together with atomic solvation parameters for the protein interior, have been approximately derived from 690: 2074:
tend to cluster together or occupy nonpolar media, whereas polar and charged groups of the solute tend to remain in water. However, it is important to properly balance the opposite energy contributions from different types of atoms. Several important points have been discussed and investigated over
2042:. Recent work has also been done developing thermostats based on fluctuating hydrodynamics to account for momentum transfer through the solvent and related thermal fluctuations. One should keep in mind, though, that the folding rate of proteins does not depend linearly on viscosity for all regimes. 1786:
Another possibility is to use ad hoc quick strategies to estimate solvation free energy. A first generation of fast implicit solvents is based on the calculation of a per-atom solvent accessible surface area. For each of group of atom types, a different parameter scales its contribution to solvation
2162:
data. The implicit solvation model breaks down when solvent molecules associate strongly with binding cavities in a protein, so that the protein and the solvent molecules form a continuous solid body. On the other hand, this model can be successfully applied for describing transfer from water to
2149:
carbon of ~40 cal/(Ă… mol), which is 2 times bigger than ~20 cal/(Ă… mol) obtained for transfer from water to liquid hydrocarbons, because the parameters derived by such fitting represent sum of the hydrophobic energy (i.e., 20 cal/Ă… mol) and energy of van der Waals attractions of aliphatic groups in
1206:
Although this equation has solid theoretical justification, it is computationally expensive to calculate without approximations. A number of numerical Poisson-Boltzmann equation solvers of varying generality and efficiency have been developed, including one application with a specialized computer
948: 152:
component of free energy. The continuum representation of solvent also significantly improves the computational speed and reduces errors in statistical averaging that arise from incomplete sampling of solvent conformations, so that the energy landscapes obtained with implicit and explicit solvent
2104:
scale for nonpolar atoms but intermediate between cyclohexane and octanol scales for polar atoms. Thus, different atomic solvation parameters should be applied for modeling of protein folding and protein-membrane binding. This issue remains controversial. The original idea of the method was to
1953:
It is possible to include a layer or sphere of water molecules around the solute, and model the bulk with an implicit solvent. Such an approach is proposed by M. J. Frisch and coworkers and by other authors. For instance in Ref. the bulk solvent is modeled with a Generalized Born approach and the
1995:
of the extent of the hydrophobic effect. Most authors place the extent of this effect between 5 and 45 cal/(Ă… mol). Note that this surface area pertains to the solute, while the hydrophobic effect is mostly entropic in nature at physiological temperatures and occurs on the side of the solvent.
1364: 2004:
Implicit solvent models such as PB, GB, and SASA lack the viscosity that water molecules impart by randomly colliding and impeding the motion of solutes through their van der Waals repulsion. In many cases, this is desirable because it makes sampling of configurations and
124:(ASA) that were historically the first, and more recent continuum electrostatics models, although various modifications and combinations of the different methods are possible. The accessible surface area (ASA) method is based on experimental linear relations between 1945:. EEF1 additionally uses a distance-dependent (non-constant) dielectric, and ionic side-chains of proteins are simply neutralized. It is only 50% slower than a vacuum simulation. This model was later augmented with the hydrophobic effect and called Charmm19/SASA. 1741:. The effective Born radius of an atom characterizes its degree of burial inside the solute; qualitatively it can be thought of as the distance from the atom to the molecular surface. Accurate estimation of the effective Born radii is critical for the GB model. 2009:
much faster. This acceleration means that more configurations are visited per simulated time unit, on top of whatever CPU acceleration is achieved in comparison to explicit solvent. It can, however, lead to misleading results when kinetics are of interest.
1219:(GB) model is an approximation to the exact (linearized) Poisson-Boltzmann equation. It is based on modeling the solute as a set of spheres whose internal dielectric constant differs from the external solvent. The model has the following functional form: 2021:
and choosing an appropriate damping constant for the particular solvent. In practical bimolecular simulations one can often speed-up conformational search significantly (up to 100 times in some cases) by using much lower collision frequency
2091:
would be a much better approximation. Investigation of passive permeability barriers for different compounds across lipid bilayers led to conclusion that 1,9-decadiene can serve as a good approximations of the bilayer interior, whereas
435: 2177:
More testing is needed to evaluate the performance of different implicit solvation models and parameter sets. They are often tested only for a small set of molecules with very simple structure, such as hydrophobic and amphiphilic
1578: 1917: 705: 1749:
The Generalized Born (GB) model augmented with the hydrophobic solvent accessible surface area (SA) term is GBSA. It is among the most commonly used implicit solvent model combinations. The use of this model in the context of
259: 153:
are different. Although the implicit solvent model is useful for simulations of biomolecules, this is an approximate method with certain limitations and problems related to parameterization and treatment of
1225: 1459: 3960:
Eriksson AE, Baase WA, Zhang XJ, Heinz DW, Blaber M, Baldwin EP, Matthews BW (Jan 1992). "Response of a protein structure to cavity-creating mutations and its relation to the hydrophobic effect".
2210:
equation and from experiments. However, since the charged protein residues are ionizable, they simply lose their charges in the nonpolar environment, which costs relatively little at the neutral
1762:, the conformational ensembles produced by GBSA models in other studies differ significantly from those produced by explicit solvent and do not identify the protein's native state. In particular, 3798:
Radzicka A, Wolfenden R (1988). "Comparing the polarities of the amino acids: side-chain distribution coefficients between the vapor phase, cyclohexane, 1-octanol, and neutral aqueous solution".
1991:. Implicit solvation models may be augmented with a term that accounts for the hydrophobic effect. The most popular way to do this is by taking the solvent accessible surface area (SASA) as a 4174:
Dao-pin S, Anderson DE, Baase WA, Dahlquist FW, Matthews BW (Dec 1991). "Structural and thermodynamic consequences of burying a charged residue within the hydrophobic core of T4 lysozyme".
4209:
Caputo GA, London E (Mar 2003). "Cumulative effects of amino acid substitutions and hydrophobic mismatch upon the transmembrane stability and conformation of hydrophobic alpha-helices".
1072: 989: 1193: 1770:
population was observed. Variants of the GB model have also been developed to approximate the electrostatic environment of membranes, which have had some success in folding the
3596:
Wang Y, Sigurdsson JK, Brandt E, Atzberger PJ (August 2013). "Dynamic implicit-solvent coarse-grained models of lipid bilayer membranes: fluctuating hydrodynamics thermostat".
1027: 1104: 1607: 330: 1631: 2716:
Shestakov AI, Milovich JL, Noy A (Mar 2002). "Solution of the nonlinear Poisson-Boltzmann equation using pseudo-transient continuation and the finite element method".
685:{\displaystyle {\vec {\nabla }}\cdot \left=-4\pi \rho ^{f}({\vec {r}})-4\pi \sum _{i}c_{i}^{\infty }z_{i}q\lambda ({\vec {r}})e^{\frac {-z_{i}q\Psi ({\vec {r}})}{kT}}} 2040: 295: 1700: 1735: 1662: 1135: 2285: 1954:
multi-grid method used for Coulombic pairwise particle interactions. It is reported to be faster than a full explicit solvent simulation with the particle mesh
113:
properties. These media are not necessarily uniform, since their properties can be described by different analytical functions, such as “polarity profiles” of
1467: 3825:
Mayer PT, Anderson BD (Mar 2002). "Transport across 1,9-decadiene precisely mimics the chemical selectivity of the barrier domain in egg lecithin bilayers".
943:{\displaystyle {\vec {\nabla }}\cdot \left=-\rho ^{f}({\vec {r}})-\sum _{i}c_{i}^{\infty }z_{i}q\lambda ({\vec {r}})e^{\frac {-z_{i}q\Psi ({\vec {r}})}{kT}}} 3296:
TA Keith, MJ Frisch (1994). "Chapter 3: Inclusion of Explicit Solvent Molecules in a Self-Consistent-Reaction Field Model of Solvation". In Smith D (ed.).
1800: 387:. Thus, the needed atomic solvation parameters were initially derived from water-gas partition data. However, the dielectric properties of proteins and 1958:(PME) method of electrostatic calculation. There are a range of hybrid methods available capable of accessing and acquiring information on solvation. 2117:
types of atoms. The non-existent “hydrophobic” interactions of polar atoms are overridden by large electrostatic energy penalties in such models.
181: 2761:"Computation of electrostatic forces between solvated molecules determined by the Poisson-Boltzmann equation using a boundary element method" 2673:
Fogolari F, Brigo A, Molinari H (Nov 2002). "The Poisson-Boltzmann equation for biomolecular electrostatics: a tool for structural biology".
1207:
hardware platform. However, performance from PB solvers does not yet equal that from the more commonly used generalized Born approximation.
97:
can be applied to approximate the averaged behavior of many highly dynamic solvent molecules. However, the interfaces and the interiors of
2981:
Onufriev A, Case DA, Bashford D (Nov 2002). "Effective Born radii in the generalized Born approximation: the importance of being perfect".
2109:
of organic molecules, which allows calculation of solvation free energy. However, some of the recently developed electrostatic models use
4285:
GarcĂ­a-Moreno EB, Fitch CA (2004). "Structural interpretation of pH and salt-dependent processes in proteins with computational methods".
3657:
Zagrovic B, Pande V (September 2003). "Solvent viscosity dependence of the folding rate of a small protein: distributed computing study".
3220: 3465:
Sharp KA, Nicholls A, Fine RF, Honig B (Apr 1991). "Reconciling the magnitude of the microscopic and macroscopic hydrophobic effects".
1926:
corresponds to a suitably chosen small molecule in which group i is essentially fully solvent-exposed. The integral is over the volume
1359:{\displaystyle G_{s}=-{\frac {1}{8\pi \epsilon _{0}}}\left(1-{\frac {1}{\epsilon }}\right)\sum _{i,j}^{N}{\frac {q_{i}q_{j}}{f_{GB}}}} 2954:
Still WC, Tempczyk A, Hawley RC, Hendrickson T (1990). "Semianalytical treatment of solvation for molecular mechanics and dynamics".
2270: 3751:"Anisotropic solvent model of the lipid bilayer. 2. Energetics of insertion of small molecules, peptides, and proteins in membranes" 3702:"Anisotropic solvent model of the lipid bilayer. 1. Parameterization of long-range electrostatics and first solvation shell effects" 3243:
Ferrara P, Apostolakis J, Caflisch A (Jan 2002). "Evaluation of a fast implicit solvent model for molecular dynamics simulations".
1375: 3328:
Lee MS, Salsbury FR, Olson MA (Dec 2004). "An efficient hybrid explicit/implicit solvent method for biomolecular simulations".
4302: 4261: 3523: 3309: 2494: 4023:"Are the parameters of various stabilization factors estimated from mutant human lysozymes compatible with other proteins?" 3095:"An implicit membrane generalized born theory for the study of structure, stability, and interactions of membrane proteins" 1975:
effects arising from solute-imposed constraints on the organization of the water or solvent molecules. This is termed the
392: 17: 1794:
19 force-field and is called EEF1. EEF1 is based on a Gaussian-shaped solvent exclusion. The solvation free energy is
4244:
Schaefer M, van Vlijmen HW, Karplus M (1998). "Electrostatic contributions to molecular free energies in solution".
4336: 1971:
Models like PB and GB allow estimation of the mean electrostatic free energy but do not account for the (mostly)
391:
are much more similar to those of nonpolar solvents than to vacuum. Newer parameters have thus been derived from
2087:
solution is a poor approximation of proteins or biological membranes because it contains ~2M of water, and that
2876:
Höfinger S (Aug 2005). "Solving the Poisson-Boltzmann equation with the specialized computer chip MD-GRAPE-2".
2219: 344:
of the particular atom i per surface unit area. The needed solvation parameters for different types of atoms (
3408:"A review of methods for the calculation of solution free energies and the modelling of systems in solution" 4331: 1032: 956: 372:
of these compounds between different solutions or media using standard mole concentrations of the solutes.
1160: 4341: 2240: 3541:"Speed of conformational change: comparing explicit and implicit solvent molecular dynamics simulations" 4346: 3860:
Walter A, Gutknecht J (1986). "Permeability of small nonelectrolytes through lipid bilayer membranes".
2442:
Zhou R (Nov 2003). "Free energy landscape of protein folding in water: explicit vs. implicit solvent".
1610: 1199:
to the ions in solution (often set to uniformly 1). If the potential is not large, the equation can be
994: 418: 412: 2760: 2206:
of ~3 (lipid bilayer) or 4 to 10 (interior of proteins) costs significant energy, as follows from the
1775: 1077: 47: 3982: 3910:"Interatomic potentials and solvation parameters from protein engineering data for buried residues" 3257: 2995: 1766:
are overstabilized, possibly due to insufficient electrostatic screening, and a higher-than-native
1585: 2280: 2265: 2227: 308: 298: 166: 121: 94: 2562:"Accessible surface areas as a measure of the thermodynamic parameters of hydration of peptides" 2096:
was a very poor approximation. A set of solvation parameters derived for protein interior from
3977: 3252: 2990: 1616: 38:
as a continuous medium instead of individual “explicit” solvent molecules, most often used in
2275: 2245: 2106: 2025: 2018: 1763: 369: 267: 59: 1675: 3969: 3615: 3552: 3474: 3419: 3106: 3047: 2830: 2775: 2725: 2631: 2576: 2323: 1713: 1665: 1640: 1113: 383:(gas phase). This energy can supplement the intramolecular energy in vacuum calculated in 8: 2622:
Eisenberg D, McLachlan AD (Jan 1986). "Solvation energy in protein folding and binding".
2511: 2255: 2203: 2195: 2159: 2138: 2097: 2062:. Their average energetic contribution can be reproduced with an implicit solvent model. 1771: 1754:
is termed MM/GBSA. Although this formulation has been shown to successfully identify the
1751: 1634: 696: 384: 141: 98: 87: 43: 3973: 3619: 3556: 3478: 3423: 3371:
Marini A, Muñoz-Losa A, Biancardi A, Mennucci B (Dec 2010). "What is solvatochromism?".
3110: 3051: 2834: 2779: 2729: 2635: 2580: 2382: 2327: 1573:{\displaystyle D=\left({\frac {r_{ij}}{2a_{ij}}}\right)^{2},a_{ij}={\sqrt {a_{i}a_{j}}}} 4151: 4123: 4094: 4066: 4003: 3937: 3909: 3885: 3775: 3750: 3726: 3701: 3682: 3639: 3605: 3573: 3540: 3353: 3298: 3278: 3179: 3151: 3127: 3094: 3070: 3035: 3016: 2901: 2799: 2698: 2655: 2542: 2467: 2250: 2199: 2133:
or uniform media. It is possible to express van der Waals interaction energies in the
1992: 1976: 1759: 1146: 39: 4294: 4253: 3118: 2599: 2561: 2417: 4308: 4298: 4267: 4257: 4226: 4191: 4156: 4099: 4047: 3995: 3942: 3877: 3842: 3780: 3731: 3674: 3643: 3631: 3578: 3519: 3490: 3447: 3388: 3345: 3305: 3270: 3225: 3203: 3184: 3132: 3075: 3008: 2936: 2893: 2858: 2853: 2818: 2791: 2741: 2690: 2647: 2604: 2534: 2490: 2459: 2421: 2386: 2351: 2346: 2311: 2014: 125: 4007: 3889: 3686: 3357: 3282: 3020: 2905: 2803: 2702: 2659: 2546: 2471: 1912:{\displaystyle \Delta G_{i}^{solv}=\Delta G_{i}^{ref}-\sum _{j}\int _{Vj}f_{i}(r)dr} 4290: 4249: 4218: 4183: 4146: 4138: 4089: 4081: 4037: 3987: 3932: 3924: 3869: 3834: 3807: 3770: 3762: 3721: 3713: 3666: 3623: 3568: 3560: 3482: 3437: 3427: 3380: 3337: 3262: 3215: 3174: 3166: 3152:"Atomic solvation parameters applied to molecular dynamics of proteins in solution" 3122: 3114: 3065: 3055: 3000: 2963: 2928: 2919:
Koehl P (Apr 2006). "Electrostatics calculations: latest methodological advances".
2885: 2848: 2838: 2783: 2733: 2682: 2639: 2594: 2584: 2526: 2451: 2413: 2378: 2341: 2331: 1988: 1984: 365: 4067:"Quantification of helix-helix binding affinities in micelles and lipid bilayers" 3060: 2055: 1980: 1955: 421:(PB) describes the electrostatic environment of a solute in a solvent containing 4042: 4022: 3627: 2823:
Proceedings of the National Academy of Sciences of the United States of America
2569:
Proceedings of the National Academy of Sciences of the United States of America
2316:
Proceedings of the National Academy of Sciences of the United States of America
2290: 2151: 2142: 2070:
All implicit solvation models rest on the simple idea that nonpolar atoms of a
75: 3564: 2932: 364:
fit of the calculated and experimental transfer free energies for a series of
4325: 3508: 2819:"Electrostatics of nanosystems: application to microtubules and the ribosome" 2191: 2051: 1200: 388: 361: 145: 114: 3991: 3486: 2589: 2137:
state in the surface energy units. This was sometimes done for interpreting
4312: 4230: 4160: 4103: 4051: 3946: 3846: 3784: 3735: 3678: 3635: 3582: 3451: 3392: 3349: 3274: 3229: 3221:
10.1002/(SICI)1097-0134(19990501)35:2<133::AID-PROT1>3.0.CO;2-N
3170: 3136: 3079: 3012: 2940: 2897: 2862: 2843: 2795: 2745: 2737: 2694: 2463: 2425: 2355: 2336: 1755: 129: 4271: 4195: 3999: 3881: 3494: 3188: 2651: 2608: 2538: 2530: 379:
is the free energy needed to transfer a solute molecule from a solvent to
4142: 2390: 2260: 2179: 2101: 2088: 2006: 1767: 1154: 4187: 4085: 3811: 3406:
Skyner RE, McDonagh JL, Groom CR, van Mourik T, Mitchell JB (Mar 2015).
2967: 2182:(α). This method was rarely tested for hundreds of protein structures. 254:{\displaystyle \Delta G_{\mathrm {solv} }=\sum _{i}\sigma _{i}\ ASA_{i}} 3928: 3873: 3432: 3407: 3266: 2455: 2215: 2125:
Strictly speaking, ASA-based models should only be applied to describe
154: 120:
There are two basic types of implicit solvent methods: models based on
110: 4222: 3838: 3766: 3717: 3670: 3538: 3442: 3384: 3341: 3004: 2889: 2787: 58:
interactions in structural and chemical processes, such as folding or
3539:
Anandakrishnan R, Drozdetski A, Walker RC, Onufriev AV (March 2015).
2643: 2369:
Richards FM (1977). "Areas, volumes, packing and protein structure".
2146: 2093: 2084: 341: 137: 106: 2686: 2207: 349: 149: 3610: 3370: 2058:
are important for solubility of organic molecules and especially
1972: 1195:
is a factor for the position-dependent accessibility of position
102: 63: 55: 35: 4124:"Positioning of proteins in membranes: a computational approach" 93:
The implicit solvation model is justified in liquids, where the
2202:. The transfer of an ion from water to a nonpolar medium with 2155: 2130: 2071: 1791: 357: 353: 345: 172: 133: 79: 51: 4248:. Advances in Protein Chemistry. Vol. 51. pp. 1–57. 2953: 2817:
Baker NA, Sept D, Joseph S, Holst MJ, McCammon JA (Aug 2001).
4173: 3595: 3513:
Molecular Modeling and Simulation: An Interdisciplinary Guide
3405: 2190:
Ionization of charged groups has been neglected in continuum
2165: 2134: 4121: 2100:
data was also different from octanol scale: it was close to
1948: 1454:{\displaystyle f_{GB}={\sqrt {r_{ij}^{2}+a_{ij}^{2}e^{-D}}}} 136:
molecule. This method operates directly with free energy of
4122:
Lomize AL, Pogozheva ID, Lomize MA, Mosberg HI (Jun 2006).
3515:
Interdisciplinary Applied Mathematics: Mathematical Biology
2105:
derive all solvation parameters directly from experimental
83: 4243: 3242: 2559: 2404:
Roux B, Simonson T (Apr 1999). "Implicit solvent models".
395:
or other similar data. Such parameters actually describe
2059: 426: 422: 71: 67: 4289:. Methods in Enzymology. Vol. 380. pp. 20–51. 1737:
is a quantity (with the dimension of length) termed the
175:
molecule in the simplest ASA-based method is given by:
3959: 3907: 2286:
Comparison of software for molecular mechanics modeling
2211: 160: 4064: 3748: 3699: 3464: 3036:"Folding very short peptides using molecular dynamics" 2560:
Ooi T, Oobatake M, NĂ©methy G, Scheraga HA (May 1987).
4246:
Linkage Thermodynamics of Macromolecular Interactions
4020: 2672: 2312:"Polarity and permeation profiles in lipid membranes" 2194:
models of implicit solvation, as well as in standard
2145:
energetics, which leads to “solvation” parameter for
2028: 1803: 1716: 1678: 1643: 1619: 1588: 1470: 1378: 1228: 1163: 1116: 1080: 1035: 997: 959: 708: 438: 311: 270: 184: 3204:"Effective energy function for proteins in solution" 2980: 2816: 2715: 3295: 4284: 3297: 2621: 2185: 2172: 2034: 1911: 1729: 1694: 1656: 1625: 1601: 1572: 1453: 1358: 1187: 1129: 1098: 1066: 1021: 983: 942: 684: 324: 289: 253: 3908:Lomize AL, Reibarkh MY, Pogozheva ID (Aug 2002). 3797: 3289: 368:. The experimental energies are determined from 4323: 4065:Lomize AL, Pogozheva ID, Mosberg HI (Oct 2004). 3749:Lomize AL, Pogozheva ID, Mosberg HI (Apr 2011). 3700:Lomize AL, Pogozheva ID, Mosberg HI (Apr 2011). 3327: 3201: 78:, association of biological macromolecules with 4287:Energetics of Biological Macromolecules, Part E 3859: 3323: 3321: 3149: 2758: 2512:"The "cratic correction" and related fallacies" 1781: 1744: 4117: 4115: 4113: 3903: 3901: 3899: 2371:Annual Review of Biophysics and Bioengineering 2214:: ~4 to 7 kcal/mol for Asp, Glu, Lys, and Arg 2045: 991:represents the position-dependent dielectric, 105:can also be considered as media with specific 3824: 3656: 1074:represents the charge density of the solute, 340:, i.e., a contribution to the free energy of 4278: 4208: 4202: 4021:Funahashi J, Takano K, Yutani K (Feb 2001). 4014: 3818: 3755:Journal of Chemical Information and Modeling 3742: 3706:Journal of Chemical Information and Modeling 3693: 3650: 3399: 3318: 3236: 3195: 3092: 3086: 3027: 2912: 2869: 2810: 2752: 2709: 2403: 4237: 4167: 4110: 4058: 3953: 3896: 3853: 3304:. Columbus, OH: American Chemical Society. 3143: 2666: 2484: 2437: 2435: 2397: 2303: 2120: 2065: 1110:at a distance of infinity from the solute, 46:. The method is often applied to estimate 2615: 2553: 2503: 2078: 1961: 399:energy between two condensed media or the 4150: 4093: 4041: 3981: 3936: 3774: 3725: 3609: 3572: 3441: 3431: 3256: 3219: 3178: 3126: 3069: 3059: 2994: 2852: 2842: 2598: 2588: 2362: 2345: 2335: 2271:Comparison of force field implementations 1966: 1949:Hybrid implicit-explicit solvation models 1210: 42:simulations and in other applications of 3791: 2974: 2875: 2718:Journal of Colloid and Interface Science 2432: 2368: 1790:Another strategy is implemented for the 1106:represents the concentration of the ion 1029:represents the electrostatic potential, 3507: 2759:Lu B, Zhang D, McCammon JA (Jun 2005). 2509: 2478: 2129:, i.e., energetics of transfer between 1922:The reference solvation free energy of 360:(S), etc.) are usually determined by a 14: 4324: 3033: 2150:the solid state, which corresponds to 2947: 2921:Current Opinion in Structural Biology 2918: 2309: 2013:Viscosity may be added back by using 1937:and the summation is over all groups 1787:("ASA-based model" described above). 1067:{\displaystyle \rho ^{f}({\vec {r}})} 984:{\displaystyle \epsilon ({\vec {r}})} 3093:Im W, Feig M, Brooks CL (Nov 2003). 2441: 1758:of short peptides with well-defined 1188:{\displaystyle \lambda ({\vec {r}})} 406: 393:octanol-water partition coefficients 161:Accessible surface area-based method 3412:Physical Chemistry Chemical Physics 3373:The Journal of Physical Chemistry B 3202:Lazaridis T, Karplus M (May 1999). 2383:10.1146/annurev.bb.06.060177.001055 2113:values of 20 or 40 cal/(Ă… mol) for 24: 3827:Journal of Pharmaceutical Sciences 3659:Journal of Computational Chemistry 3330:Journal of Computational Chemistry 3150:Wesson L, Eisenberg D (Feb 1992). 2983:Journal of Computational Chemistry 2878:Journal of Computational Chemistry 1834: 1804: 1702:is the distance between particles 1091: 998: 907: 845: 762: 753: 712: 649: 587: 492: 483: 442: 203: 200: 197: 194: 185: 171:The free energy of solvation of a 25: 4358: 1022:{\displaystyle \Psi ({\vec {r}})} 2675:Journal of Molecular Recognition 3862:The Journal of Membrane Biology 3589: 3532: 3501: 3458: 3364: 2768:The Journal of Chemical Physics 2186:Treatment of ionization effects 2173:Importance of extensive testing 1203:to be solved more efficiently. 1099:{\displaystyle c_{i}^{\infty }} 2220:Henderson-Hasselbalch equation 1900: 1894: 1637:of the solvent being modeled, 1182: 1176: 1167: 1061: 1055: 1046: 1016: 1010: 1001: 978: 972: 963: 925: 919: 910: 881: 875: 866: 819: 813: 804: 780: 774: 765: 756: 747: 741: 732: 715: 667: 661: 652: 623: 617: 608: 555: 549: 540: 510: 504: 495: 486: 477: 471: 462: 445: 148:methods that include only the 13: 1: 4295:10.1016/S0076-6879(04)80002-8 4254:10.1016/S0065-3233(08)60650-6 3119:10.1016/S0006-3495(03)74712-2 2418:10.1016/S0301-4622(98)00226-9 2297: 1979:and is a major factor in the 1602:{\displaystyle \epsilon _{0}} 3061:10.1371/journal.pcbi.0020027 1999: 1782:Ad hoc fast solvation models 1745:With accessible surface area 7: 3034:Ho BK, Dill KA (Apr 2006). 2241:Polarizable continuum model 2233: 2218:residues, according to the 2083:It has been noted that wet 2046:Hydrogen bonds with solvent 1141:is the charge of a proton, 1137:is the valence of the ion, 403:of two solvation energies. 325:{\displaystyle \sigma _{i}} 34:) is a method to represent 10: 4363: 3628:10.1103/PhysRevE.88.023301 3300:Modeling the hydrogen bond 3040:PLOS Computational Biology 2489:. New York: Plenum Press. 1776:integral membrane proteins 1611:permittivity of free space 419:Poisson-Boltzmann equation 413:Poisson-Boltzmann equation 410: 164: 60:conformational transitions 3565:10.1016/j.bpj.2014.12.047 2933:10.1016/j.sbi.2006.03.001 1626:{\displaystyle \epsilon } 4043:10.1093/protein/14.2.127 2487:Hydrophobic interactions 2121:Solid-state applications 2066:Problems and limitations 122:accessible surface areas 4337:Computational chemistry 3992:10.1126/science.1553543 3487:10.1126/science.2011744 2590:10.1073/pnas.84.10.3086 2281:Accessible surface area 2266:Force field (chemistry) 2228:accessible surface area 2079:Choice of model solvent 2035:{\displaystyle \gamma } 1962:Effects unaccounted for 425:. It can be written in 299:accessible surface area 290:{\displaystyle ASA_{i}} 167:Accessible surface area 95:potential of mean force 3518:. New York: Springer. 3171:10.1002/pro.5560010204 2844:10.1073/pnas.181342398 2738:10.1006/jcis.2001.8033 2510:Holtzer A (Jun 1995). 2337:10.1073/pnas.131023798 2107:partition coefficients 2036: 1967:The hydrophobic effect 1913: 1731: 1696: 1695:{\displaystyle r_{ij}} 1658: 1627: 1603: 1574: 1455: 1360: 1316: 1211:Generalized Born model 1189: 1131: 1100: 1068: 1023: 985: 944: 686: 370:partition coefficients 326: 291: 255: 2531:10.1002/bip.360350605 2406:Biophysical Chemistry 2246:COSMO solvation model 2037: 2019:Hamiltonian mechanics 1914: 1772:transmembrane helixes 1739:effective Born radius 1732: 1730:{\displaystyle a_{i}} 1697: 1659: 1657:{\displaystyle q_{i}} 1628: 1604: 1575: 1456: 1361: 1296: 1190: 1132: 1130:{\displaystyle z_{i}} 1101: 1069: 1024: 986: 945: 687: 327: 292: 256: 4143:10.1110/ps.062126106 2485:Ben-Naim AY (1980). 2310:Marsh D (Jul 2001). 2224:ΔG = 2.3RT (pH - pK) 2026: 1801: 1714: 1676: 1666:electrostatic charge 1641: 1617: 1586: 1468: 1376: 1226: 1161: 1114: 1078: 1033: 995: 957: 706: 436: 309: 268: 182: 128:of transfer and the 99:biological membranes 88:biological membranes 4332:Molecular modelling 4188:10.1021/bi00113a006 4086:10.1110/ps.04850804 4030:Protein Engineering 3974:1992Sci...255..178E 3812:10.1021/bi00405a042 3620:2013PhRvE..88b3301W 3557:2015BpJ...108.1153A 3545:Biophysical Journal 3479:1991Sci...252..106S 3424:2015PCCP...17.6174S 3111:2003BpJ....85.2900I 3099:Biophysical Journal 3052:2006PLSCB...2...27H 2968:10.1021/ja00172a038 2835:2001PNAS...9810037B 2780:2005JChPh.122u4102L 2730:2002JCIS..247...62S 2636:1986Natur.319..199E 2581:1987PNAS...84.3086O 2328:2001PNAS...98.7777M 2256:Molecular mechanics 2204:dielectric constant 2196:molecular mechanics 2160:protein engineering 2139:protein engineering 2098:protein engineering 1857: 1830: 1752:molecular mechanics 1635:dielectric constant 1435: 1414: 1095: 849: 591: 385:molecular mechanics 334:solvation parameter 142:molecular mechanics 44:molecular mechanics 32:continuum solvation 18:Continuum solvation 4342:Molecular dynamics 3929:10.1110/ps.0307002 3874:10.1007/BF01870127 3433:10.1039/C5CP00288E 3267:10.1002/prot.10001 2456:10.1002/prot.10483 2276:Poisson's equation 2251:Molecular dynamics 2200:molecular dynamics 2032: 1977:hydrophobic effect 1909: 1870: 1837: 1807: 1760:tertiary structure 1727: 1692: 1654: 1623: 1599: 1570: 1451: 1418: 1397: 1356: 1185: 1147:Boltzmann constant 1127: 1096: 1081: 1064: 1019: 981: 940: 835: 834: 682: 577: 576: 322: 287: 251: 221: 82:, or transport of 40:molecular dynamics 30:(sometimes termed 28:Implicit solvation 4347:Protein structure 4304:978-0-12-182784-7 4263:978-0-12-034251-8 4223:10.1021/bi026697d 3839:10.1002/jps.10067 3767:10.1021/ci200020k 3718:10.1021/ci2000192 3671:10.1002/jcc.10297 3598:Physical Review E 3525:978-0-387-95404-2 3385:10.1021/jp1097487 3342:10.1002/jcc.20119 3311:978-0-8412-2981-5 3005:10.1002/jcc.10126 2962:(16): 6127–6129. 2890:10.1002/jcc.20250 2788:10.1063/1.1924448 2630:(6050): 199–203. 2496:978-0-306-40222-7 2015:Langevin dynamics 1989:hydrophobic cores 1985:globular proteins 1861: 1568: 1515: 1449: 1354: 1289: 1268: 1179: 1058: 1013: 975: 937: 922: 878: 825: 816: 777: 759: 744: 718: 679: 664: 620: 567: 552: 507: 489: 474: 448: 407:Poisson-Boltzmann 366:organic compounds 234: 212: 126:Gibbs free energy 16:(Redirected from 4354: 4317: 4316: 4282: 4276: 4275: 4241: 4235: 4234: 4206: 4200: 4199: 4171: 4165: 4164: 4154: 4128: 4127:(Free full text) 4119: 4108: 4107: 4097: 4071: 4070:(Free full text) 4062: 4056: 4055: 4045: 4027: 4026:(Free full text) 4018: 4012: 4011: 3985: 3968:(5041): 178–83. 3957: 3951: 3950: 3940: 3923:(8): 1984–2000. 3914: 3913:(Free full text) 3905: 3894: 3893: 3857: 3851: 3850: 3822: 3816: 3815: 3806:(5): 1664–1670. 3795: 3789: 3788: 3778: 3746: 3740: 3739: 3729: 3697: 3691: 3690: 3654: 3648: 3647: 3613: 3593: 3587: 3586: 3576: 3536: 3530: 3529: 3505: 3499: 3498: 3462: 3456: 3455: 3445: 3435: 3403: 3397: 3396: 3379:(51): 17128–35. 3368: 3362: 3361: 3325: 3316: 3315: 3303: 3293: 3287: 3286: 3260: 3240: 3234: 3233: 3223: 3199: 3193: 3192: 3182: 3156: 3155:(Free full text) 3147: 3141: 3140: 3130: 3090: 3084: 3083: 3073: 3063: 3031: 3025: 3024: 2998: 2989:(14): 1297–304. 2978: 2972: 2971: 2951: 2945: 2944: 2916: 2910: 2909: 2873: 2867: 2866: 2856: 2846: 2829:(18): 10037–41. 2814: 2808: 2807: 2765: 2756: 2750: 2749: 2713: 2707: 2706: 2670: 2664: 2663: 2644:10.1038/319199a0 2619: 2613: 2612: 2602: 2592: 2566: 2565:(Free full text) 2557: 2551: 2550: 2516: 2515:(Free full text) 2507: 2501: 2500: 2482: 2476: 2475: 2439: 2430: 2429: 2401: 2395: 2394: 2366: 2360: 2359: 2349: 2339: 2307: 2041: 2039: 2038: 2033: 1918: 1916: 1915: 1910: 1893: 1892: 1883: 1882: 1869: 1856: 1845: 1829: 1815: 1736: 1734: 1733: 1728: 1726: 1725: 1701: 1699: 1698: 1693: 1691: 1690: 1663: 1661: 1660: 1655: 1653: 1652: 1632: 1630: 1629: 1624: 1608: 1606: 1605: 1600: 1598: 1597: 1579: 1577: 1576: 1571: 1569: 1567: 1566: 1557: 1556: 1547: 1542: 1541: 1526: 1525: 1520: 1516: 1514: 1513: 1512: 1496: 1495: 1483: 1460: 1458: 1457: 1452: 1450: 1448: 1447: 1434: 1429: 1413: 1408: 1396: 1391: 1390: 1365: 1363: 1362: 1357: 1355: 1353: 1352: 1340: 1339: 1338: 1329: 1328: 1318: 1315: 1310: 1295: 1291: 1290: 1282: 1269: 1267: 1266: 1265: 1246: 1238: 1237: 1217:Generalized Born 1194: 1192: 1191: 1186: 1181: 1180: 1172: 1136: 1134: 1133: 1128: 1126: 1125: 1105: 1103: 1102: 1097: 1094: 1089: 1073: 1071: 1070: 1065: 1060: 1059: 1051: 1045: 1044: 1028: 1026: 1025: 1020: 1015: 1014: 1006: 990: 988: 987: 982: 977: 976: 968: 949: 947: 946: 941: 939: 938: 936: 928: 924: 923: 915: 903: 902: 889: 880: 879: 871: 859: 858: 848: 843: 833: 818: 817: 809: 803: 802: 787: 783: 779: 778: 770: 761: 760: 752: 746: 745: 737: 720: 719: 711: 691: 689: 688: 683: 681: 680: 678: 670: 666: 665: 657: 645: 644: 631: 622: 621: 613: 601: 600: 590: 585: 575: 554: 553: 545: 539: 538: 517: 513: 509: 508: 500: 491: 490: 482: 476: 475: 467: 450: 449: 441: 377:solvation energy 331: 329: 328: 323: 321: 320: 296: 294: 293: 288: 286: 285: 260: 258: 257: 252: 250: 249: 232: 231: 230: 220: 208: 207: 206: 21: 4362: 4361: 4357: 4356: 4355: 4353: 4352: 4351: 4322: 4321: 4320: 4305: 4283: 4279: 4264: 4242: 4238: 4217:(11): 3275–85. 4207: 4203: 4182:(49): 11521–9. 4172: 4168: 4131:Protein Science 4126: 4120: 4111: 4080:(10): 2600–12. 4074:Protein Science 4069: 4063: 4059: 4025: 4019: 4015: 3983:10.1.1.461.7843 3958: 3954: 3917:Protein Science 3912: 3906: 3897: 3858: 3854: 3823: 3819: 3796: 3792: 3747: 3743: 3698: 3694: 3655: 3651: 3594: 3590: 3537: 3533: 3526: 3506: 3502: 3473:(5002): 106–9. 3463: 3459: 3404: 3400: 3369: 3365: 3336:(16): 1967–78. 3326: 3319: 3312: 3294: 3290: 3241: 3237: 3200: 3196: 3159:Protein Science 3154: 3148: 3144: 3091: 3087: 3032: 3028: 2979: 2975: 2952: 2948: 2917: 2913: 2884:(11): 1148–54. 2874: 2870: 2815: 2811: 2763: 2757: 2753: 2714: 2710: 2687:10.1002/jmr.577 2671: 2667: 2620: 2616: 2575:(10): 3086–90. 2564: 2558: 2554: 2514: 2508: 2504: 2497: 2483: 2479: 2440: 2433: 2402: 2398: 2367: 2363: 2322:(14): 7777–82. 2308: 2304: 2300: 2295: 2236: 2188: 2175: 2169:lipid bilayer. 2152:fusion enthalpy 2123: 2081: 2068: 2056:solvation shell 2050:Solute-solvent 2048: 2027: 2024: 2023: 2002: 1969: 1964: 1956:Ewald summation 1951: 1931: 1888: 1884: 1875: 1871: 1865: 1846: 1841: 1816: 1811: 1802: 1799: 1798: 1784: 1747: 1721: 1717: 1715: 1712: 1711: 1683: 1679: 1677: 1674: 1673: 1648: 1644: 1642: 1639: 1638: 1618: 1615: 1614: 1593: 1589: 1587: 1584: 1583: 1562: 1558: 1552: 1548: 1546: 1534: 1530: 1521: 1505: 1501: 1497: 1488: 1484: 1482: 1478: 1477: 1469: 1466: 1465: 1440: 1436: 1430: 1422: 1409: 1401: 1395: 1383: 1379: 1377: 1374: 1373: 1345: 1341: 1334: 1330: 1324: 1320: 1319: 1317: 1311: 1300: 1281: 1274: 1270: 1261: 1257: 1250: 1245: 1233: 1229: 1227: 1224: 1223: 1213: 1171: 1170: 1162: 1159: 1158: 1121: 1117: 1115: 1112: 1111: 1090: 1085: 1079: 1076: 1075: 1050: 1049: 1040: 1036: 1034: 1031: 1030: 1005: 1004: 996: 993: 992: 967: 966: 958: 955: 954: 929: 914: 913: 898: 894: 890: 888: 884: 870: 869: 854: 850: 844: 839: 829: 808: 807: 798: 794: 769: 768: 751: 750: 736: 735: 728: 724: 710: 709: 707: 704: 703: 671: 656: 655: 640: 636: 632: 630: 626: 612: 611: 596: 592: 586: 581: 571: 544: 543: 534: 530: 499: 498: 481: 480: 466: 465: 458: 454: 440: 439: 437: 434: 433: 415: 409: 316: 312: 310: 307: 306: 281: 277: 269: 266: 265: 245: 241: 226: 222: 216: 193: 192: 188: 183: 180: 179: 169: 163: 76:polysaccharides 23: 22: 15: 12: 11: 5: 4360: 4350: 4349: 4344: 4339: 4334: 4319: 4318: 4303: 4277: 4262: 4236: 4201: 4166: 4137:(6): 1318–33. 4109: 4057: 4013: 3952: 3895: 3852: 3817: 3790: 3741: 3692: 3665:(12): 1432–6. 3649: 3588: 3551:(5): 1153–64. 3531: 3524: 3500: 3457: 3418:(9): 6174–91. 3398: 3363: 3317: 3310: 3288: 3258:10.1.1.25.1195 3235: 3194: 3142: 3105:(5): 2900–18. 3085: 3026: 2996:10.1.1.107.962 2973: 2946: 2911: 2868: 2809: 2774:(21): 214102. 2751: 2708: 2665: 2614: 2552: 2525:(6): 595–602. 2502: 2495: 2477: 2431: 2396: 2361: 2301: 2299: 2296: 2294: 2293: 2291:Solvent models 2288: 2283: 2278: 2273: 2268: 2263: 2258: 2253: 2248: 2243: 2237: 2235: 2232: 2187: 2184: 2174: 2171: 2143:ligand binding 2122: 2119: 2080: 2077: 2067: 2064: 2052:hydrogen bonds 2047: 2044: 2031: 2001: 1998: 1968: 1965: 1963: 1960: 1950: 1947: 1929: 1920: 1919: 1908: 1905: 1902: 1899: 1896: 1891: 1887: 1881: 1878: 1874: 1868: 1864: 1860: 1855: 1852: 1849: 1844: 1840: 1836: 1833: 1828: 1825: 1822: 1819: 1814: 1810: 1806: 1783: 1780: 1746: 1743: 1724: 1720: 1689: 1686: 1682: 1651: 1647: 1622: 1596: 1592: 1565: 1561: 1555: 1551: 1545: 1540: 1537: 1533: 1529: 1524: 1519: 1511: 1508: 1504: 1500: 1494: 1491: 1487: 1481: 1476: 1473: 1462: 1461: 1446: 1443: 1439: 1433: 1428: 1425: 1421: 1417: 1412: 1407: 1404: 1400: 1394: 1389: 1386: 1382: 1367: 1366: 1351: 1348: 1344: 1337: 1333: 1327: 1323: 1314: 1309: 1306: 1303: 1299: 1294: 1288: 1285: 1280: 1277: 1273: 1264: 1260: 1256: 1253: 1249: 1244: 1241: 1236: 1232: 1212: 1209: 1184: 1178: 1175: 1169: 1166: 1124: 1120: 1093: 1088: 1084: 1063: 1057: 1054: 1048: 1043: 1039: 1018: 1012: 1009: 1003: 1000: 980: 974: 971: 965: 962: 951: 950: 935: 932: 927: 921: 918: 912: 909: 906: 901: 897: 893: 887: 883: 877: 874: 868: 865: 862: 857: 853: 847: 842: 838: 832: 828: 824: 821: 815: 812: 806: 801: 797: 793: 790: 786: 782: 776: 773: 767: 764: 758: 755: 749: 743: 740: 734: 731: 727: 723: 717: 714: 693: 692: 677: 674: 669: 663: 660: 654: 651: 648: 643: 639: 635: 629: 625: 619: 616: 610: 607: 604: 599: 595: 589: 584: 580: 574: 570: 566: 563: 560: 557: 551: 548: 542: 537: 533: 529: 526: 523: 520: 516: 512: 506: 503: 497: 494: 488: 485: 479: 473: 470: 464: 461: 457: 453: 447: 444: 411:Main article: 408: 405: 389:lipid bilayers 319: 315: 284: 280: 276: 273: 262: 261: 248: 244: 240: 237: 229: 225: 219: 215: 211: 205: 202: 199: 196: 191: 187: 165:Main article: 162: 159: 115:lipid bilayers 9: 6: 4: 3: 2: 4359: 4348: 4345: 4343: 4340: 4338: 4335: 4333: 4330: 4329: 4327: 4314: 4310: 4306: 4300: 4296: 4292: 4288: 4281: 4273: 4269: 4265: 4259: 4255: 4251: 4247: 4240: 4232: 4228: 4224: 4220: 4216: 4212: 4205: 4197: 4193: 4189: 4185: 4181: 4177: 4170: 4162: 4158: 4153: 4148: 4144: 4140: 4136: 4132: 4125: 4118: 4116: 4114: 4105: 4101: 4096: 4091: 4087: 4083: 4079: 4075: 4068: 4061: 4053: 4049: 4044: 4039: 4036:(2): 127–34. 4035: 4031: 4024: 4017: 4009: 4005: 4001: 3997: 3993: 3989: 3984: 3979: 3975: 3971: 3967: 3963: 3956: 3948: 3944: 3939: 3934: 3930: 3926: 3922: 3918: 3911: 3904: 3902: 3900: 3891: 3887: 3883: 3879: 3875: 3871: 3868:(3): 207–17. 3867: 3863: 3856: 3848: 3844: 3840: 3836: 3832: 3828: 3821: 3813: 3809: 3805: 3801: 3794: 3786: 3782: 3777: 3772: 3768: 3764: 3761:(4): 930–46. 3760: 3756: 3752: 3745: 3737: 3733: 3728: 3723: 3719: 3715: 3712:(4): 918–29. 3711: 3707: 3703: 3696: 3688: 3684: 3680: 3676: 3672: 3668: 3664: 3660: 3653: 3645: 3641: 3637: 3633: 3629: 3625: 3621: 3617: 3612: 3607: 3604:(2): 023301. 3603: 3599: 3592: 3584: 3580: 3575: 3570: 3566: 3562: 3558: 3554: 3550: 3546: 3542: 3535: 3527: 3521: 3517: 3514: 3510: 3504: 3496: 3492: 3488: 3484: 3480: 3476: 3472: 3468: 3461: 3453: 3449: 3444: 3439: 3434: 3429: 3425: 3421: 3417: 3413: 3409: 3402: 3394: 3390: 3386: 3382: 3378: 3374: 3367: 3359: 3355: 3351: 3347: 3343: 3339: 3335: 3331: 3324: 3322: 3313: 3307: 3302: 3301: 3292: 3284: 3280: 3276: 3272: 3268: 3264: 3259: 3254: 3250: 3246: 3239: 3231: 3227: 3222: 3217: 3214:(2): 133–52. 3213: 3209: 3205: 3198: 3190: 3186: 3181: 3176: 3172: 3168: 3165:(2): 227–35. 3164: 3160: 3153: 3146: 3138: 3134: 3129: 3124: 3120: 3116: 3112: 3108: 3104: 3100: 3096: 3089: 3081: 3077: 3072: 3067: 3062: 3057: 3053: 3049: 3045: 3041: 3037: 3030: 3022: 3018: 3014: 3010: 3006: 3002: 2997: 2992: 2988: 2984: 2977: 2969: 2965: 2961: 2957: 2956:J Am Chem Soc 2950: 2942: 2938: 2934: 2930: 2927:(2): 142–51. 2926: 2922: 2915: 2907: 2903: 2899: 2895: 2891: 2887: 2883: 2879: 2872: 2864: 2860: 2855: 2850: 2845: 2840: 2836: 2832: 2828: 2824: 2820: 2813: 2805: 2801: 2797: 2793: 2789: 2785: 2781: 2777: 2773: 2769: 2762: 2755: 2747: 2743: 2739: 2735: 2731: 2727: 2723: 2719: 2712: 2704: 2700: 2696: 2692: 2688: 2684: 2681:(6): 377–92. 2680: 2676: 2669: 2661: 2657: 2653: 2649: 2645: 2641: 2637: 2633: 2629: 2625: 2618: 2610: 2606: 2601: 2596: 2591: 2586: 2582: 2578: 2574: 2570: 2563: 2556: 2548: 2544: 2540: 2536: 2532: 2528: 2524: 2520: 2513: 2506: 2498: 2492: 2488: 2481: 2473: 2469: 2465: 2461: 2457: 2453: 2450:(2): 148–61. 2449: 2445: 2438: 2436: 2427: 2423: 2419: 2415: 2412:(1–2): 1–20. 2411: 2407: 2400: 2392: 2388: 2384: 2380: 2376: 2372: 2365: 2357: 2353: 2348: 2343: 2338: 2333: 2329: 2325: 2321: 2317: 2313: 2306: 2302: 2292: 2289: 2287: 2284: 2282: 2279: 2277: 2274: 2272: 2269: 2267: 2264: 2262: 2259: 2257: 2254: 2252: 2249: 2247: 2244: 2242: 2239: 2238: 2231: 2229: 2225: 2221: 2217: 2213: 2209: 2205: 2201: 2197: 2193: 2192:electrostatic 2183: 2181: 2180:alpha helixes 2170: 2168: 2167: 2161: 2157: 2153: 2148: 2144: 2140: 2136: 2132: 2128: 2118: 2116: 2112: 2108: 2103: 2099: 2095: 2090: 2086: 2076: 2073: 2063: 2061: 2057: 2054:in the first 2053: 2043: 2029: 2020: 2016: 2011: 2008: 1997: 1994: 1990: 1986: 1982: 1978: 1974: 1959: 1957: 1946: 1944: 1940: 1936: 1932: 1925: 1906: 1903: 1897: 1889: 1885: 1879: 1876: 1872: 1866: 1862: 1858: 1853: 1850: 1847: 1842: 1838: 1831: 1826: 1823: 1820: 1817: 1812: 1808: 1797: 1796: 1795: 1793: 1788: 1779: 1777: 1773: 1769: 1765: 1761: 1757: 1756:native states 1753: 1742: 1740: 1722: 1718: 1709: 1705: 1687: 1684: 1680: 1671: 1667: 1649: 1645: 1636: 1620: 1612: 1594: 1590: 1580: 1563: 1559: 1553: 1549: 1543: 1538: 1535: 1531: 1527: 1522: 1517: 1509: 1506: 1502: 1498: 1492: 1489: 1485: 1479: 1474: 1471: 1444: 1441: 1437: 1431: 1426: 1423: 1419: 1415: 1410: 1405: 1402: 1398: 1392: 1387: 1384: 1380: 1372: 1371: 1370: 1349: 1346: 1342: 1335: 1331: 1325: 1321: 1312: 1307: 1304: 1301: 1297: 1292: 1286: 1283: 1278: 1275: 1271: 1262: 1258: 1254: 1251: 1247: 1242: 1239: 1234: 1230: 1222: 1221: 1220: 1218: 1208: 1204: 1202: 1198: 1173: 1164: 1156: 1152: 1148: 1144: 1140: 1122: 1118: 1109: 1086: 1082: 1052: 1041: 1037: 1007: 969: 960: 933: 930: 916: 904: 899: 895: 891: 885: 872: 863: 860: 855: 851: 840: 836: 830: 826: 822: 810: 799: 795: 791: 788: 784: 771: 738: 729: 725: 721: 702: 701: 700: 698: 675: 672: 658: 646: 641: 637: 633: 627: 614: 605: 602: 597: 593: 582: 578: 572: 568: 564: 561: 558: 546: 535: 531: 527: 524: 521: 518: 514: 501: 468: 459: 455: 451: 432: 431: 430: 428: 424: 420: 414: 404: 402: 398: 394: 390: 386: 382: 378: 373: 371: 367: 363: 362:least squares 359: 355: 351: 347: 343: 339: 335: 317: 313: 304: 300: 282: 278: 274: 271: 246: 242: 238: 235: 227: 223: 217: 213: 209: 189: 178: 177: 176: 174: 168: 158: 156: 151: 147: 146:electrostatic 143: 139: 135: 131: 127: 123: 118: 116: 112: 108: 104: 100: 96: 91: 89: 85: 81: 77: 73: 69: 65: 61: 57: 53: 49: 45: 41: 37: 33: 29: 19: 4286: 4280: 4245: 4239: 4214: 4211:Biochemistry 4210: 4204: 4179: 4176:Biochemistry 4175: 4169: 4134: 4130: 4077: 4073: 4060: 4033: 4029: 4016: 3965: 3961: 3955: 3920: 3916: 3865: 3861: 3855: 3833:(3): 640–6. 3830: 3826: 3820: 3803: 3800:Biochemistry 3799: 3793: 3758: 3754: 3744: 3709: 3705: 3695: 3662: 3658: 3652: 3601: 3597: 3591: 3548: 3544: 3534: 3516: 3512: 3503: 3470: 3466: 3460: 3415: 3411: 3401: 3376: 3372: 3366: 3333: 3329: 3299: 3291: 3251:(1): 24–33. 3248: 3244: 3238: 3211: 3207: 3197: 3162: 3158: 3145: 3102: 3098: 3088: 3043: 3039: 3029: 2986: 2982: 2976: 2959: 2955: 2949: 2924: 2920: 2914: 2881: 2877: 2871: 2826: 2822: 2812: 2771: 2767: 2754: 2724:(1): 62–79. 2721: 2717: 2711: 2678: 2674: 2668: 2627: 2623: 2617: 2572: 2568: 2555: 2522: 2518: 2505: 2486: 2480: 2447: 2443: 2409: 2405: 2399: 2374: 2370: 2364: 2319: 2315: 2305: 2223: 2189: 2176: 2164: 2126: 2124: 2114: 2110: 2082: 2069: 2049: 2012: 2003: 1970: 1952: 1942: 1938: 1934: 1927: 1923: 1921: 1789: 1785: 1764:salt bridges 1748: 1738: 1707: 1703: 1669: 1668:on particle 1581: 1463: 1368: 1216: 1214: 1205: 1196: 1150: 1142: 1138: 1107: 952: 694: 416: 400: 396: 380: 376: 374: 337: 333: 302: 263: 170: 130:surface area 119: 92: 31: 27: 26: 2519:Biopolymers 2261:Water model 2102:cyclohexane 2089:cyclohexane 2075:the years. 2017:instead of 2007:phase space 1983:process of 1768:alpha helix 1155:temperature 48:free energy 4326:Categories 3443:10023/6096 3046:(4): e27. 2377:: 151–76. 2298:References 2216:amino acid 1201:linearized 429:units as: 401:difference 155:ionization 111:dielectric 3978:CiteSeerX 3644:118409341 3611:1212.0449 3509:Schlick T 3253:CiteSeerX 2991:CiteSeerX 2147:aliphatic 2127:solvation 2094:1-octanol 2085:1-octanol 2030:γ 2000:Viscosity 1933:of group 1873:∫ 1863:∑ 1859:− 1835:Δ 1805:Δ 1621:ϵ 1591:ϵ 1442:− 1298:∑ 1287:ϵ 1279:− 1259:ϵ 1255:π 1243:− 1177:→ 1165:λ 1092:∞ 1056:→ 1038:ρ 1011:→ 999:Ψ 973:→ 961:ϵ 920:→ 908:Ψ 892:− 876:→ 864:λ 846:∞ 827:∑ 823:− 814:→ 796:ρ 792:− 775:→ 763:Ψ 757:→ 754:∇ 742:→ 730:ϵ 722:⋅ 716:→ 713:∇ 662:→ 650:Ψ 634:− 618:→ 606:λ 588:∞ 569:∑ 565:π 559:− 550:→ 532:ρ 528:π 522:− 505:→ 493:Ψ 487:→ 484:∇ 472:→ 460:ϵ 452:⋅ 446:→ 443:∇ 375:Notably, 342:solvation 314:σ 224:σ 214:∑ 186:Δ 157:effects. 150:enthalpic 140:, unlike 138:solvation 107:solvation 4313:15051331 4231:12641459 4161:16731967 4104:15340167 4052:11297670 4008:12278880 3947:12142453 3890:23972379 3847:11920749 3785:21438606 3736:21438609 3687:16666252 3679:12868108 3636:24032960 3583:25762327 3511:(2002). 3452:25660403 3393:21128657 3358:16996683 3350:15470756 3283:17671699 3275:11746700 3245:Proteins 3230:10223287 3208:Proteins 3137:14581194 3080:16617376 3021:12244353 3013:12214312 2941:16540310 2906:19378083 2898:15942918 2863:11517324 2804:23731263 2796:15974723 2746:16290441 2703:17184352 2695:12501158 2660:21867582 2547:45118648 2472:22977210 2464:14517967 2444:Proteins 2426:17030302 2356:11438731 2234:See also 1973:entropic 397:transfer 350:nitrogen 336:of atom 301:of atom 103:proteins 64:proteins 4272:9615168 4196:1747370 4152:2242528 4095:2286553 4000:1553543 3970:Bibcode 3962:Science 3938:2373680 3882:3735402 3776:3091260 3727:3089899 3616:Bibcode 3574:4375717 3553:Bibcode 3495:2011744 3475:Bibcode 3467:Science 3420:Bibcode 3189:1304905 3180:2142195 3128:1303570 3107:Bibcode 3071:1435986 3048:Bibcode 2831:Bibcode 2776:Bibcode 2726:Bibcode 2652:3945310 2632:Bibcode 2609:3472198 2577:Bibcode 2539:7766825 2324:Bibcode 2156:alkanes 1981:folding 1941:around 1664:is the 1633:is the 1609:is the 1153:is the 1145:is the 695:or (in 305:, and 297:is the 86:across 80:ligands 56:solvent 36:solvent 4311:  4301:  4270:  4260:  4229:  4194:  4159:  4149:  4102:  4092:  4050:  4006:  3998:  3980:  3945:  3935:  3888:  3880:  3845:  3783:  3773:  3734:  3724:  3685:  3677:  3642:  3634:  3581:  3571:  3522:  3493:  3450:  3391:  3356:  3348:  3308:  3281:  3273:  3255:  3228:  3187:  3177:  3135:  3125:  3078:  3068:  3019:  3011:  2993:  2939:  2904:  2896:  2861:  2851:  2802:  2794:  2744:  2701:  2693:  2658:  2650:  2624:Nature 2607:  2600:304812 2597:  2545:  2537:  2493:  2470:  2462:  2424:  2391:326146 2389:  2354:  2344:  2131:liquid 2111:ad hoc 2072:solute 1792:CHARMM 1710:, and 1582:where 1369:where 1157:, and 953:where 381:vacuum 358:sulfur 354:oxygen 346:carbon 264:where 233:  173:solute 134:solute 74:, and 52:solute 4004:S2CID 3886:S2CID 3683:S2CID 3640:S2CID 3606:arXiv 3354:S2CID 3279:S2CID 3017:S2CID 2902:S2CID 2854:56910 2800:S2CID 2764:(PDF) 2699:S2CID 2656:S2CID 2543:S2CID 2468:S2CID 2347:35418 2166:fluid 2135:solid 1993:proxy 1987:with 356:(O), 352:(N), 348:(C), 132:of a 84:drugs 4309:PMID 4299:ISBN 4268:PMID 4258:ISBN 4227:PMID 4192:PMID 4157:PMID 4100:PMID 4048:PMID 3996:PMID 3943:PMID 3878:PMID 3843:PMID 3781:PMID 3732:PMID 3675:PMID 3632:PMID 3579:PMID 3520:ISBN 3491:PMID 3448:PMID 3389:PMID 3346:PMID 3306:ISBN 3271:PMID 3226:PMID 3185:PMID 3133:PMID 3076:PMID 3009:PMID 2937:PMID 2894:PMID 2859:PMID 2792:PMID 2742:PMID 2691:PMID 2648:PMID 2605:PMID 2535:PMID 2491:ISBN 2460:PMID 2422:PMID 2387:PMID 2352:PMID 2208:Born 2198:and 2163:the 2141:and 2060:ions 1706:and 1464:and 1215:The 423:ions 417:The 4291:doi 4250:doi 4219:doi 4184:doi 4147:PMC 4139:doi 4090:PMC 4082:doi 4038:doi 3988:doi 3966:255 3933:PMC 3925:doi 3870:doi 3835:doi 3808:doi 3771:PMC 3763:doi 3722:PMC 3714:doi 3667:doi 3624:doi 3569:PMC 3561:doi 3549:108 3483:doi 3471:252 3438:hdl 3428:doi 3381:doi 3377:114 3338:doi 3263:doi 3216:doi 3175:PMC 3167:doi 3123:PMC 3115:doi 3066:PMC 3056:doi 3001:doi 2964:doi 2960:112 2929:doi 2886:doi 2849:PMC 2839:doi 2784:doi 2772:122 2734:doi 2722:247 2683:doi 2640:doi 2628:319 2595:PMC 2585:doi 2527:doi 2452:doi 2414:doi 2379:doi 2342:PMC 2332:doi 2154:of 2115:all 1774:of 699:): 697:mks 427:cgs 332:is 144:or 117:. 109:or 101:or 72:RNA 68:DNA 62:of 50:of 4328:: 4307:. 4297:. 4266:. 4256:. 4225:. 4215:42 4213:. 4190:. 4180:30 4178:. 4155:. 4145:. 4135:15 4133:. 4129:. 4112:^ 4098:. 4088:. 4078:13 4076:. 4072:. 4046:. 4034:14 4032:. 4028:. 4002:. 3994:. 3986:. 3976:. 3964:. 3941:. 3931:. 3921:11 3919:. 3915:. 3898:^ 3884:. 3876:. 3866:90 3864:. 3841:. 3831:91 3829:. 3804:27 3802:. 3779:. 3769:. 3759:51 3757:. 3753:. 3730:. 3720:. 3710:51 3708:. 3704:. 3681:. 3673:. 3663:24 3661:. 3638:. 3630:. 3622:. 3614:. 3602:88 3600:. 3577:. 3567:. 3559:. 3547:. 3543:. 3489:. 3481:. 3469:. 3446:. 3436:. 3426:. 3416:17 3414:. 3410:. 3387:. 3375:. 3352:. 3344:. 3334:25 3332:. 3320:^ 3277:. 3269:. 3261:. 3249:46 3247:. 3224:. 3212:35 3210:. 3206:. 3183:. 3173:. 3161:. 3157:. 3131:. 3121:. 3113:. 3103:85 3101:. 3097:. 3074:. 3064:. 3054:. 3042:. 3038:. 3015:. 3007:. 2999:. 2987:23 2985:. 2958:. 2935:. 2925:16 2923:. 2900:. 2892:. 2882:26 2880:. 2857:. 2847:. 2837:. 2827:98 2825:. 2821:. 2798:. 2790:. 2782:. 2770:. 2766:. 2740:. 2732:. 2720:. 2697:. 2689:. 2679:15 2677:. 2654:. 2646:. 2638:. 2626:. 2603:. 2593:. 2583:. 2573:84 2571:. 2567:. 2541:. 2533:. 2523:35 2521:. 2517:. 2466:. 2458:. 2448:53 2446:. 2434:^ 2420:. 2410:78 2408:. 2385:. 2373:. 2350:. 2340:. 2330:. 2320:98 2318:. 2314:. 2222:, 2212:pH 1778:. 1672:, 1613:, 1149:, 90:. 70:, 66:, 4315:. 4293:: 4274:. 4252:: 4233:. 4221:: 4198:. 4186:: 4163:. 4141:: 4106:. 4084:: 4054:. 4040:: 4010:. 3990:: 3972:: 3949:. 3927:: 3892:. 3872:: 3849:. 3837:: 3814:. 3810:: 3787:. 3765:: 3738:. 3716:: 3689:. 3669:: 3646:. 3626:: 3618:: 3608:: 3585:. 3563:: 3555:: 3528:. 3497:. 3485:: 3477:: 3454:. 3440:: 3430:: 3422:: 3395:. 3383:: 3360:. 3340:: 3314:. 3285:. 3265:: 3232:. 3218:: 3191:. 3169:: 3163:1 3139:. 3117:: 3109:: 3082:. 3058:: 3050:: 3044:2 3023:. 3003:: 2970:. 2966:: 2943:. 2931:: 2908:. 2888:: 2865:. 2841:: 2833:: 2806:. 2786:: 2778:: 2748:. 2736:: 2728:: 2705:. 2685:: 2662:. 2642:: 2634:: 2611:. 2587:: 2579:: 2549:. 2529:: 2499:. 2474:. 2454:: 2428:. 2416:: 2393:. 2381:: 2375:6 2358:. 2334:: 2326:: 1943:i 1939:j 1935:j 1930:j 1928:V 1924:i 1907:r 1904:d 1901:) 1898:r 1895:( 1890:i 1886:f 1880:j 1877:V 1867:j 1854:f 1851:e 1848:r 1843:i 1839:G 1832:= 1827:v 1824:l 1821:o 1818:s 1813:i 1809:G 1723:i 1719:a 1708:j 1704:i 1688:j 1685:i 1681:r 1670:i 1650:i 1646:q 1595:0 1564:j 1560:a 1554:i 1550:a 1544:= 1539:j 1536:i 1532:a 1528:, 1523:2 1518:) 1510:j 1507:i 1503:a 1499:2 1493:j 1490:i 1486:r 1480:( 1475:= 1472:D 1445:D 1438:e 1432:2 1427:j 1424:i 1420:a 1416:+ 1411:2 1406:j 1403:i 1399:r 1393:= 1388:B 1385:G 1381:f 1350:B 1347:G 1343:f 1336:j 1332:q 1326:i 1322:q 1313:N 1308:j 1305:, 1302:i 1293:) 1284:1 1276:1 1272:( 1263:0 1252:8 1248:1 1240:= 1235:s 1231:G 1197:r 1183:) 1174:r 1168:( 1151:T 1143:k 1139:q 1123:i 1119:z 1108:i 1087:i 1083:c 1062:) 1053:r 1047:( 1042:f 1017:) 1008:r 1002:( 979:) 970:r 964:( 934:T 931:k 926:) 917:r 911:( 905:q 900:i 896:z 886:e 882:) 873:r 867:( 861:q 856:i 852:z 841:i 837:c 831:i 820:) 811:r 805:( 800:f 789:= 785:] 781:) 772:r 766:( 748:) 739:r 733:( 726:[ 676:T 673:k 668:) 659:r 653:( 647:q 642:i 638:z 628:e 624:) 615:r 609:( 603:q 598:i 594:z 583:i 579:c 573:i 562:4 556:) 547:r 541:( 536:f 525:4 519:= 515:] 511:) 502:r 496:( 478:) 469:r 463:( 456:[ 338:i 318:i 303:i 283:i 279:A 275:S 272:A 247:i 243:A 239:S 236:A 228:i 218:i 210:= 204:v 201:l 198:o 195:s 190:G 54:- 20:)

Index

Continuum solvation
solvent
molecular dynamics
molecular mechanics
free energy
solute
solvent
conformational transitions
proteins
DNA
RNA
polysaccharides
ligands
drugs
biological membranes
potential of mean force
biological membranes
proteins
solvation
dielectric
lipid bilayers
accessible surface areas
Gibbs free energy
surface area
solute
solvation
molecular mechanics
electrostatic
enthalpic
ionization

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑