Knowledge

Cosmic ray

Source 📝

2246:. Svensmark is one of several scientists outspokenly opposed to the mainstream scientific assessment of global warming, leading to concerns that the proposition that cosmic rays are connected to global warming could be ideologically biased rather than scientifically based. Other scientists have vigorously criticized Svensmark for sloppy and inconsistent work: one example is adjustment of cloud data that understates error in lower cloud data, but not in high cloud data; another example is "incorrect handling of the physical data" resulting in graphs that do not show the correlations they claim to show. Despite Svensmark's assertions, galactic cosmic rays have shown no statistically significant influence on changes in cloud cover, and have been demonstrated in studies to have no causal relationship to changes in global temperature. 9289: 2151: 726: 8033: 37: 1157: 9301: 1128:. Some of these subsequently decay into muons and neutrinos, which are able to reach the surface of the Earth. Some high-energy muons even penetrate for some distance into shallow mines, and most neutrinos traverse the Earth without further interaction. Others decay into photons, subsequently producing electromagnetic cascades. Hence, next to photons, electrons and positrons usually dominate in air showers. These particles as well as muons can be easily detected by many types of particle detectors, such as 49: 778: 841: 9262: 9349: 8015: 9226: 1054: 401: 8024: 9325: 1352: 9337: 9250: 1076: 1364:
prototypes for space and balloon-borne detection of air showers, currently operating experiments for high-energy cosmic rays are ground based. Generally direct detection is more accurate than indirect detection. However the flux of cosmic rays decreases with energy, which hampers direct detection for the energy range above 1 PeV. Both direct and indirect detection are realized by several techniques.
9238: 466: 9313: 451: 989:. At higher energies, up to 500 GeV, the ratio of positrons to electrons begins to fall again. The absolute flux of positrons also begins to fall before 500 GeV, but peaks at energies far higher than electron energies, which peak about 10 GeV. These results on interpretation have been suggested to be due to positron production in annihilation events of massive 282:
surface of the Earth is such that about one per second passes through a volume the size of a person's head. Together with natural local radioactivity, these muons are a significant cause of the ground level atmospheric ionisation that first attracted the attention of scientists, leading to the eventual discovery of the primary cosmic rays arriving from beyond our atmosphere.
1473:) Collaboration released the first version of its completely open source app for Android devices. Since then the collaboration has attracted the interest and support of many scientific institutions, educational institutions, and members of the public around the world. Future research has to show in what aspects this new technique can compete with dedicated EAS arrays. 565:, unaware of Rossi's earlier report, detected the same phenomenon and investigated it in some detail. He concluded that high-energy primary cosmic-ray particles interact with air nuclei high in the atmosphere, initiating a cascade of secondary interactions that ultimately yield a shower of electrons, and photons that reach ground level. 666:
satellite gamma-ray observatories have mapped the gamma-ray sky. The most recent is the Fermi Observatory, which has produced a map showing a narrow band of gamma ray intensity produced in discrete and diffuse sources in our galaxy, and numerous point-like extra-galactic sources distributed over the celestial sphere.
744:, although the authors specifically stated that further investigation would be required to confirm Centaurus A as a source of cosmic rays. However, no correlation was found between the incidence of gamma-ray bursts and cosmic rays, causing the authors to set upper limits as low as 3.4 × 10×  5726: 4716:
Pierre Auger Collaboration; Aab, A.; Abreu, P.; Aglietta, M.; Al Samarai, I.; Albuquerque, I. F. M.; Allekotte, I.; Almela, A.; Alvarez Castillo, J.; Alvarez-Muñiz, J.; Anastasi, G. A.; Anchordoqui, L.; Andrada, B.; Andringa, S.; Aramo, C.; Arqueros, F.; Arsene, N.; Asorey, H.; Assis, P.; Aublin, J.;
1496:
Another method detects radio waves emitted by air showers. This technique has a high duty cycle similar to that of particle detectors. The accuracy of this technique was improved in the last years as shown by various prototype experiments, and may become an alternative to the detection of atmospheric
1424:
There are several ground-based methods of detecting cosmic rays currently in use, which can be divided in two main categories: the detection of secondary particles forming extensive air showers (EAS) by various types of particle detectors, and the detection of electromagnetic radiation emitted by EAS
1441:
to make them detectable. Therefore, several arrays use water/ice-Cherenkov detectors as alternative or in addition to scintillators. By the combination of several detectors, some EAS arrays have the capability to distinguish muons from lighter secondary particles (photons, electrons, positrons). The
1407:
solution, that removes the surface material at a slow, known rate. The caustic sodium hydroxide dissolves the plastic at a faster rate along the path of the ionized plastic. The net result is a conical etch pit in the plastic. The etch pits are measured under a high-power microscope (typically 1600×
1363:
There are two main classes of detection methods. First, the direct detection of the primary cosmic rays in space or at high altitude by balloon-borne instruments. Second, the indirect detection of secondary particle, i.e., extensive air showers at higher energies. While there have been proposals and
996:
Cosmic ray antiprotons also have a much higher average energy than their normal-matter counterparts (protons). They arrive at Earth with a characteristic energy maximum of 2 GeV, indicating their production in a fundamentally different process from cosmic ray protons, which on average have only
1488:
in their medium, the atmosphere. While these telescopes are extremely good at distinguishing between background radiation and that of cosmic-ray origin, they can only function well on clear nights without the Moon shining, have very small fields of view, and are only active for a few percent of the
1334:
The magnitude of the energy of cosmic ray flux in interstellar space is very comparable to that of other deep space energies: cosmic ray energy density averages about one electron-volt per cubic centimetre of interstellar space, or ≈1 eV/cm, which is comparable to the energy density of visible
665:
MeV photons) were finally discovered in the primary cosmic radiation by an MIT experiment carried on the OSO-3 satellite in 1967. Components of both galactic and extra-galactic origins were separately identified at intensities much less than 1% of the primary charged particles. Since then, numerous
509:
who made measurements of ionization due to cosmic rays from deep under water to high altitudes and around the globe. Millikan believed that his measurements proved that the primary cosmic rays were gamma rays; i.e., energetic photons. And he proposed a theory that they were produced in interstellar
126:
Direct measurement of cosmic rays, especially at lower energies, has been possible since the launch of the first satellites in the late 1950s. Particle detectors similar to those used in nuclear and high-energy physics are used on satellites and space probes for research into cosmic rays. Data from
785:
Supernovae do not produce all cosmic rays, however, and the proportion of cosmic rays that they do produce is a question which cannot be answered without deeper investigation. To explain the actual process in supernovae and active galactic nuclei that accelerates the stripped atoms, physicists use
281:
Of secondary cosmic rays, the charged pions produced by primary cosmic rays in the atmosphere swiftly decay, emitting muons. Unlike pions, these muons do not interact strongly with matter, and can travel through the atmosphere to penetrate even below ground level. The rate of muons arriving at the
1411:
This technique yields a unique curve for each atomic nucleus from 1 to 92, allowing identification of both the charge and energy of the cosmic ray that traverses the plastic stack. The more extensive the ionization along the path, the higher the charge. In addition to its uses for cosmic-ray
797:
in the arrival directions of the highest energy cosmic rays. Since the Galactic Center is in the deficit region, this anisotropy can be interpreted as evidence for the extragalactic origin of cosmic rays at the highest energies. This implies that there must be a transition energy from galactic to
650:, and later by scientists of the international Pierre Auger Collaboration. Their aim is to explore the properties and arrival directions of the very highest-energy primary cosmic rays. The results are expected to have important implications for particle physics and cosmology, due to a theoretical 430:
observed simultaneous variations of the rate of ionization over a lake, over the sea, and at a depth of 3 metres from the surface. Pacini concluded from the decrease of radioactivity underwater that a certain part of the ionization must be due to sources other than the radioactivity of the Earth.
1492:
A second method detects the light from nitrogen fluorescence caused by the excitation of nitrogen in the atmosphere by particles moving through the atmosphere. This method is the most accurate for cosmic rays at highest energies, in particular when combined with EAS arrays of particle detectors.
984:
show that positrons in the cosmic rays arrive with no directionality. In September 2014, new results with almost twice as much data were presented in a talk at CERN and published in Physical Review Letters. A new measurement of positron fraction up to 500 GeV was reported, showing that positron
5973:
Vepsäläinen, Antti P.; Karamlou, Amir H.; Orrell, John L.; Dogra, Akshunna S.; Loer, Ben; Vasconcelos, Francisca; Kim, David K.; Melville, Alexander J.; Niedzielski, Bethany M.; Yoder, Jonilyn L.; Gustavsson, Simon; Formaggio, Joseph A.; VanDevender, Brent A.; Oliver, William D. (August 2020).
2214:
in 1975. It has been postulated that cosmic rays may have been responsible for major climatic change and mass extinction in the past. According to Adrian Mellott and Mikhail Medvedev, 62-million-year cycles in biological marine populations correlate with the motion of the Earth relative to the
543:
predicted a difference between the intensities of cosmic rays arriving from the east and the west that depends upon the charge of the primary particles—the so-called "east–west effect". Three independent experiments found that the intensity is, in fact, greater from the west, proving that most
594:, published in 1937 described how primary cosmic rays from space interact with the upper atmosphere to produce particles observed at the ground level. Bhabha and Heitler explained the cosmic ray shower formation by the cascade production of gamma rays and positive and negative electron pairs. 52:
Left image: cosmic ray muon passing through a cloud chamber undergoes scattering by a small angle in the middle metal plate and leaves the chamber. Right image: cosmic ray muon losing considerable energy after passing through the plate as indicated by the increased curvature of the track in a
1402:
in the plastic. At the top of the plastic stack the ionization is less, due to the high cosmic ray speed. As the cosmic ray speed decreases due to deceleration in the stack, the ionization increases along the path. The resulting plastic sheets are "etched" or slowly dissolved in warm caustic
968:
Satellite experiments have found evidence of positrons and a few antiprotons in primary cosmic rays, amounting to less than 1% of the particles in primary cosmic rays. These do not appear to be the products of large amounts of antimatter from the Big Bang, or indeed complex antimatter in the
560:
was larger than the expected accidental rate. In his report on the experiment, Rossi wrote "... it seems that once in a while the recording equipment is struck by very extensive showers of particles, which causes coincidences between the counters, even placed at large distances from one
442:
flight. He found the ionization rate increased approximately fourfold over the rate at ground level. Hess ruled out the Sun as the radiation's source by making a balloon ascent during a near-total eclipse. With the moon blocking much of the Sun's visible radiation, Hess still measured rising
848:
Cosmic rays originate as primary cosmic rays, which are those originally produced in various astrophysical processes. Primary cosmic rays are composed mainly of protons and alpha particles (99%), with a small amount of heavier nuclei (≈1%) and an extremely minute proportion of positrons and
1428:
Extensive air shower arrays made of particle detectors measure the charged particles which pass through them. EAS arrays can observe a broad area of the sky and can be active more than 90% of the time. However, they are less able to segregate background effects from cosmic rays than can
4717:
Avila, G.; Badescu, A. M.; Balaceanu, A.; Barbato, F.; Barreira Luz, R. J.; Beatty, J. J.; Becker, K. H.; Bellido, J. A.; Berat, C.; et al. (The Pierre Auger Collaboration) (2017). "Observation of a large-scale anisotropy in the arrival directions of cosmic rays above 8×10eV".
4809:
Koch, L.; Engelmann, J. J.; Goret, P.; Juliusson, E.; Petrou, N.; Rio, Y.; Soutoul, A.; Byrnak, B.; Lund, N.; Peters, B. (October 1981). "The relative abundances of the elements scandium to manganese in relativistic cosmic rays and the possible radioactive decay of manganese 54".
526:
found evidence, later confirmed in many experiments, that cosmic ray intensity increases from the tropics to mid-latitudes, which indicated that the primary cosmic rays are deflected by the geomagnetic field and must therefore be charged particles, not photons. In 1929,
5733: 1147:
Cosmic rays impacting other planetary bodies in the Solar System are detected indirectly by observing high-energy gamma ray emissions by gamma-ray telescope. These are distinguished from radioactive decay processes by their higher energies above about 10 MeV.
5117:
Aguilar, M.; Alcaraz, J.; Allaby, J.; Alpat, B.; Ambrosi, G.; Anderhub, H.; et al. (AMS Collaboration) (August 2002). "The Alpha Magnetic Spectrometer (AMS) on the International Space Station: Part I – Results from the test flight on the space shuttle".
497:
stated in 1931 that "thanks to the fine experiments of Professor Millikan and the even more far-reaching experiments of Professor Regener, we have now got for the first time, a curve of absorption of these radiations in water which we may safely rely upon".
3146:"Potential benefit of retrospective use of neutron monitors in improving ionising radiation exposure assessment on international flights: issues raised by neutron passive dosimeter measurements and EPCARD simulations during sudden changes in solar activity" 1184:
acts as a barrier to cosmic rays, decreasing the flux at lower energies (≤ 1 GeV) by about 90%. However, the strength of the solar wind is not constant, and hence it has been observed that cosmic ray flux is correlated with solar activity.
485:
In the late 1920s and early 1930s the technique of self-recording electroscopes carried by balloons into the highest layers of the atmosphere or sunk to great depths under water was brought to an unprecedented degree of perfection by the German physicist
6160:
Zeitlin, C.; Hassler, D. M.; Cucinotta, F. A.; Ehresmann, B.; Wimmer-Schweingruber, R.F.; Brinza, D. E.; Kang, S.; Weigle, G.; et al. (31 May 2013). "Measurements of Energetic Particle Radiation in Transit to Mars on the Mars Science Laboratory".
2109:
Galactic cosmic rays are one of the most important barriers standing in the way of plans for interplanetary travel by crewed spacecraft. Cosmic rays also pose a threat to electronics placed aboard outgoing probes. In 2010, a malfunction aboard the
544:
primaries are positive. During the years from 1930 to 1945, a wide variety of investigations confirmed that the primary cosmic rays are mostly protons, and the secondary radiation produced in the atmosphere is primarily electrons, photons and
1203:
The combined effects of all of the factors mentioned contribute to the flux of cosmic rays at Earth's surface. The following table of participial frequencies reach the planet and are inferred from lower-energy radiation reaching the ground.
347:) baseball. As a result of these discoveries, there has been interest in investigating cosmic rays of even greater energies. Most cosmic rays, however, do not have such extreme energies; the energy distribution of cosmic rays peaks at 300 1330:
In the past, it was believed that the cosmic ray flux remained fairly constant over time. However, recent research suggests one-and-a-half- to two-fold millennium-timescale changes in the cosmic ray flux in the past forty thousand years.
1660:
mSv per year for higher-altitude cities, raising cosmic radiation exposure to a quarter of total background radiation exposure for populations of said cities. Airline crews flying long-distance high-altitude routes can be exposed to
443:
radiation at rising altitudes. He concluded that "The results of the observations seem most likely to be explained by the assumption that radiation of very high penetrating power enters from above into our atmosphere." In 1913–1914,
290:
Cosmic rays attract great interest practically, due to the damage they inflict on microelectronics and life outside the protection of an atmosphere and magnetic field, and scientifically, because the energies of the most energetic
763:, which revealed that "spectral shapes of are different and cannot be described well by a single power law", suggesting a more complex process of cosmic ray formation. In February 2013, though, research analyzing data from 1524:
Cosmic rays kept the level of carbon-14 in the atmosphere roughly constant (70 tons) for at least the past 100,000 years, until the beginning of above-ground nuclear weapons testing in the early 1950s. This fact is used in
391:
they produce. Measurements of increasing ionization rates at increasing heights above the ground during the decade from 1900 to 1910 could be explained as due to absorption of the ionizing radiation by the intervening air.
535:
discovered charged cosmic-ray particles that could penetrate 4.1 cm of gold. Charged particles of such high energy could not possibly be produced by photons from Millikan's proposed interstellar fusion process.
1449:
to detect the secondary muons created when a pion decays. Cloud chambers in particular can be built from widely available materials and can be constructed even in a high-school laboratory. A fifth method, involving
6859:
Fimiani, L.; Cook, D. L.; Faestermann, T.; Gómez-Guzmán, J. M.; Hain, K.; Herzog, G.; Knie, K.; Korschinek, G.; Ludwig, P.; Park, J.; Reedy, R. C.; Rugel, G. (2016). "Interstellar 60Fe on the Surface of the Moon".
222:
Of primary cosmic rays, which originate outside of Earth's atmosphere, about 99% are the bare nuclei of common atoms (stripped of their electron shells), and about 1% are solitary electrons (that is, one type of
626:. From that work, and from many other experiments carried out all over the world, the energy spectrum of the primary cosmic rays is now known to extend beyond 10 eV. A huge air shower experiment called the 6590: 2120:, probably caused by a cosmic ray. Strategies such as physical or magnetic shielding for spacecraft have been considered in order to minimize the damage to electronics and human beings caused by cosmic rays. 552:
carried by balloons to near the top of the atmosphere showed that approximately 10% of the primaries are helium nuclei (alpha particles) and 1% are nuclei of heavier elements such as carbon, iron, and lead.
5318:
Lal, D.; Jull, A.J.T.; Pollard, D.; Vacher, L. (2005). "Evidence for large century time-scale changes in solar activity in the past 32 Kyr, based on in-situ cosmogenic C in ice at Summit, Greenland".
3022: 781:
Shock front acceleration (theoretical model for supernovae and active galactic nuclei): Incident proton gets accelerated between two shock fronts up to energies of the high-energy component of cosmic rays.
2080:, resulting in injuries to multiple passengers and crew members. Cosmic rays were investigated among other possible causes of the data corruption, but were ultimately ruled out as being very unlikely. 2546: 954:
At high energies the composition changes and heavier nuclei have larger abundances in some energy ranges. Current experiments aim at more accurate measurements of the composition at high energies.
658:
origin of the universe. Currently the Pierre Auger Observatory is undergoing an upgrade to improve its accuracy and find evidence for the yet unconfirmed origin of the most energetic cosmic rays.
2757:
Ackermann, M.; Ajello, M.; Allafort, A.; Baldini, L.; Ballet, J.; Barbiellini, G.; et al. (15 February 2013). "Detection of the characteristic pion decay-signature in supernova remnants".
2462: 1510:
Cosmic rays ionize nitrogen and oxygen molecules in the atmosphere, which leads to a number of chemical reactions. Cosmic rays are also responsible for the continuous production of a number of
760: 767:
revealed through an observation of neutral pion decay that supernovae were indeed a source of cosmic rays, with each explosion producing roughly 3 × 10 – 3 × 10
6934:
R.G. Harrison and D.B. Stephenson, Detection of a galactic cosmic ray influence on clouds, Geophysical Research Abstracts, Vol. 8, 07661, 2006 SRef-ID: 1607-7962/gra/EGU06-A-07661
5007:"First result from the Alpha Magnetic Spectrometer on the International Space Station: Precision measurement of the positron fraction in primary cosmic rays of 0.5–350 GeV" 4618:
Adriani, O.; Barbarino, G.C.; Bazilevskaya, G.A.; Bellotti, R.; Boezio, M.; Bogomolov, E.A.; et al. (2011). "PAMELA measurements of cosmic-ray proton and helium spectra".
576:
to perform cosmic ray readings with an instrument carried to high altitude by a balloon. On 1 April 1935, he took measurements at heights up to 13.6 kilometres using a pair of
3552:(1912). "Über Beobachtungen der durchdringenden Strahlung bei sieben Freiballonfahrten" [On observations of penetrating radiation during seven free balloon flights]. 5047: 654:
to the energies of cosmic rays from long distances (about 160 million light years) which occurs above 10 eV because of interactions with the remnant photons from the
8575: 8345: 8305: 7797: 4839:"High statistics measurement of the positron fraction in primary cosmic rays of 0.5–500 GeV with the alpha magnetic spectrometer on the International Space Station" 2905:
Aartsen, Mark; et al. (IceCube Collaboration) (12 July 2018). "Neutrino emission from the direction of the blazar TXS 0506+056 prior to the IceCube-170922A alert".
2215:
galactic plane and increases in exposure to cosmic rays. The researchers suggest that this and gamma ray bombardments deriving from local supernovae could have affected
881:. When they interact with Earth's atmosphere, they are converted to secondary particles. The mass ratio of helium to hydrogen nuclei, 28%, is similar to the primordial 682:
through which cosmic rays propagate to Earth. This results in a modulation of the arriving fluxes at lower energies, as detected indirectly by the globally distributed
5360:(2012). "Astrophysics of Galactic charged cosmic rays". In Oswalt, T.D.; McLean, I.S.; Bond, H.E.; French, L.; Kalas, P.; Barstow, M.; Gilmore, G.F.; Keel, W. (eds.). 6598: 1144:
detectors. The observation of a secondary shower of particles in multiple detectors at the same time is an indication that all of the particles came from that event.
8506: 8481: 8471: 3964:
Freier, Phyllis; Lofgren, E.; Ney, E.; Oppenheimer, F.; Bradt, H.; Peters, B.; et al. (July 1948). "Evidence for Heavy Nuclei in the Primary Cosmic radiation".
5064:
Moskalenko, I.V.; Strong, A.W.; Ormes, J.F.; Potgieter, M.S. (January 2002). "Secondary antiprotons and propagation of cosmic rays in the Galaxy and heliosphere".
4102: 7128:
M. D. Ngobeni, Aspects of the modulation of cosmic rays in the outer heliosphere, MSc Dissertation, Northwest University (Potchefstroom campus) South Africa 2006.
3026: 5789: 8877: 8205: 8146: 8054: 6431:
Melott, A. L.; Thomas, B. C. (2009). "Late Ordovician geographic patterns of extinction compared with simulations of astrophysical ionizing radiation damage".
1188:
In addition, the Earth's magnetic field acts to deflect cosmic rays from its surface, giving rise to the observation that the flux is apparently dependent on
912:
This abundance difference is a result of the way in which secondary cosmic rays are formed. Carbon and oxygen nuclei collide with interstellar matter to form
8966: 8782: 8717: 8657: 8585: 8491: 8385: 8255: 8210: 7881: 5770: 4980: 1109:, mainly oxygen and nitrogen. The interaction produces a cascade of lighter particles, a so-called air shower secondary radiation that rains down, including 9046: 8511: 8355: 8325: 6244: 416:, a device to measure the rate of ion production inside a hermetically sealed container, and used it to show higher levels of radiation at the top of the 8441: 8421: 8094: 6572: 2828: 737:
by scientists at the Pierre Auger Observatory in Argentina showed ultra-high energy cosmic rays originating from a location in the sky very close to the
556:
During a test of his equipment for measuring the east–west effect, Rossi observed that the rate of near-simultaneous discharges of two widely separated
490:
and his group. To these scientists we owe some of the most accurate measurements ever made of cosmic-ray ionization as a function of altitude and depth.
8466: 5923: 4879: 1652:
mSv per year (13% of total background) for the Earth's population. However, the background radiation from cosmic rays increases with altitude, from 0.3
1398:
polycarbonate, are stacked together and exposed directly to cosmic rays in space or high altitude. The nuclear charge causes chemical bond breaking or
897:. These nuclei appear in cosmic rays in greater abundance (≈1%) than in the solar atmosphere, where they are only about 10 as abundant (by number) as 6409: 1117:. All of the secondary particles produced by the collision continue onward on paths within about one degree of the primary particle's original path. 885:
ratio of these elements, 24%. The remaining fraction is made up of the other heavier nuclei that are typical nucleosynthesis end products, primarily
5809: 8104: 7806: 2338: 8461: 7790: 4552: 4515: 2083:
In August 2020, scientists reported that ionizing radiation from environmental radioactive materials and cosmic rays may substantially limit the
3004: 2198:", seeded by cosmic ray secondaries. Subsequent development of the lightning discharge then occurs through "conventional breakdown" mechanisms. 8131: 3999:
Freier, Phyllis; Peters, B.; et al. (December 1948). "Investigation of the Primary Cosmic Radiation with Nuclear Photographic Emulsions".
3284:
Anchordoqui, L.; Paul, T.; Reucroft, S.; Swain, J. (2003). "Ultrahigh energy cosmic rays: The state of the art before the Auger Observatory".
8677: 8074: 7704: 6621: 5450: 5404: 3097: 5288: 8225: 6745:
Melott, Adrian L.; Marinho, F.; Paulucci, L. (2019). "Muon Radiation Dose and Marine Megafaunal Extinction at the end-Pliocene Supernova".
2403: 1470: 8136: 7689: 6216: 6055: 278:
composition of the particle cascade increases at lower elevations, reaching between 40% and 80% of the radiation at aircraft altitudes.
7783: 5446: 3262: 3239: 7222:
Carlson, Per; De Angelis, Alessandro (2011). "Nationalism and internationalism in science: the case of the discovery of cosmic rays".
4779: 9004: 8320: 3286: 755:
In 2009, supernovae were said to have been "pinned down" as a source of cosmic rays, a discovery made by a group using data from the
3582: 2003:. Human-made values by UNSCEAR are from the Japanese National Institute of Radiological Sciences, which summarized the UNSCEAR data. 1442:
fraction of muons among the secondary particles is one traditional way to estimate the mass composition of the primary cosmic rays.
3764: 3605: 3424: 2323: 2242:
modulates the cosmic ray flux on Earth, it would consequently affect the rate of cloud formation and hence be an indirect cause of
1137: 5006: 1465:
cameras have been proposed as a practical distributed network to detect air showers from ultra-high-energy cosmic rays. The first
5906: 4256:
Clark, G.; Earl, J.; Kraushaar, W.; Linsley, J.; Rossi, B.; Scherb, F.; Scott, D. (1961). "Cosmic-Ray Air Showers at Sea Level".
2264:
marine megafauna extinction event by substantially increasing radiation levels to hazardous amounts for large seafaring animals.
1376:, on satellites, or high-altitude balloons. However, there are constraints in weight and size limiting the choices of detectors. 5258: 8536: 8295: 8215: 7658: 733:
Later experiments have helped to identify the sources of cosmic rays with greater certainty. In 2009, a paper presented at the
6925: 5698: 5511: 5369: 5212: 3691: 2738: 2654: 2447: 2439: 651: 615: 316: 8917: 2842:
Abramowski, A.; et al. (HESS Collaboration) (2016). "Acceleration of petaelectronvolt protons in the Galactic Centre".
849:
antiprotons. Secondary cosmic rays, caused by a decay of primary cosmic rays as they impact an atmosphere, include photons,
7684: 7653: 7598: 3119: 2494: 5829: 7317: 5601: 5321: 4295: 4204: 734: 198:, which are quanta of electromagnetic radiation (and so have no intrinsic mass) are known by their common names, such as 5228: 4089: 3206: 2726: 710:
as a source of cosmic rays. Since then, a wide variety of potential sources for cosmic rays began to surface, including
447:
confirmed Victor Hess's earlier results by measuring the increased ionization enthalpy rate at an altitude of 9 km.
9169: 7633: 5475:
Chu, W.; Kim, Y.; Beam, W.; Kwak, N. (1970). "Evidence of a Quark in a High-Energy Cosmic-Ray Bubble-Chamber Picture".
4783: 2975: 2614: 2467: 2000: 798:
extragalactic sources, and there may be different types of cosmic-ray sources contributing to different energy ranges.
24: 7125:
M. D. Ngobeni and M. S. Potgieter, Cosmic ray anisotropies in the outer heliosphere, Advances in Space Research, 2007.
5786: 3231: 258:
Upon striking the atmosphere, cosmic rays violently burst atoms into other bits of matter, producing large amounts of
9069: 7163: 7146: 7136: 7055: 7041: 7031: 7017: 3407: 3380: 2049:
becoming smaller and smaller, this is becoming an increasing concern in ground-level electronics as well. Studies by
251:. The precise nature of this remaining fraction is an area of active research. An active search from Earth orbit for 4452:
Sekido, Y.; Masuda, T.; Yoshida, S.; Wada, M. (1951). "The Crab Nebula as an observed point source of cosmic rays".
1085:, in gamma rays with energies greater than 20 MeV. These are produced by cosmic ray bombardment on its surface. 969:
universe. Rather, they appear to consist of only these two elementary particles, newly made in energetic processes.
602:
Measurements of the energy and arrival directions of the ultra-high-energy primary cosmic rays by the techniques of
7699: 6484: 5232: 9288: 6910:
Introduction to particle and astroparticle physics (multimessenger astronomy and its particle physics foundations)
4969: 4553:"Correlation of the highest energy cosmic rays with nearby extragalactic objects in Pierre Auger Observatory data" 4516:"Correlation of the Highest Energy Cosmic Rays with Nearby Extragalactic Objects in Pierre Auger Observatory Data" 239:. These fractions vary highly over the energy range of cosmic rays. A very small fraction are stable particles of 9194: 5549: 2434: 2333: 2053:
in the 1990s suggest that computers typically experience about one cosmic-ray-induced error per 256 megabytes of
1665:
mSv of extra radiation each year due to cosmic rays, nearly doubling their total exposure to ionizing radiation.
128: 6503: 6394: 6369: 6252: 4034:
Rossi, Bruno (1934). "Misure sulla distribuzione angolare di intensita della radiazione penetrante all'Asmara".
1532: 1160:
An overview of the space environment shows the relationship between the solar activity and galactic cosmic rays.
9394: 9374: 5688: 5390: 2587: 2504: 2452: 2104: 1644:
Cosmic rays constitute a fraction of the annual radiation exposure of human beings on the Earth, averaging 0.39
1469:
to exploit this proposition was the CRAYFIS (Cosmic RAYs Found in Smartphones) experiment. In 2017, the CREDO (
1004:
nuclei (i.e., anti-alpha particles), in cosmic rays. These are actively being searched for. A prototype of the
131:(2013) have been interpreted as evidence that a significant fraction of primary cosmic rays originate from the 6529: 3707:
Geiger, H.; Rutherford, Lord; Regener, E.; Lindemann, F.A.; Wilson, C.T.R.; Chadwick, J.; et al. (1931).
9119: 7765: 6974:
Boezio, M.; et al. (2000). "Measurement of the flux of atmospheric muons with the CAPRICE94 apparatus".
5437:"Cloud Chambers and Cosmic Rays: A Lesson Plan and Laboratory Activity for the High School Science Classroom" 4098: 2417: 2155: 2132: 1445:
An historic method of secondary particle detection still used for demonstration purposes involves the use of
1082: 6642: 5904:"In-flight upset, 154 km west of Learmonth, Western Australia, 7 October 2008, VH-QPA, Airbus A330-303" 5758: 4838: 4688: 170:) seems to have arisen from an initial belief, due to their penetrating power, that cosmic rays were mostly 9154: 5773: 2619: 2532: 2343: 2288: 2150: 1388: 292: 6417: 9379: 8350: 7521: 7224: 5806: 2824: 2557: 2552: 2523: 2422: 1340: 981: 973: 963: 623: 20: 5531: 9384: 9279: 7753: 7608: 7581: 7278: 6291: 6279: 3660: 3631: 2703: 2383: 2194:. It has been proposed that essentially all lightning is triggered through a relativistic process, or " 2091:
if they are not shielded adequately which may be critical for realizing fault-tolerant superconducting
1911: 1437:. Also water (liquid or frozen) is used as a detection medium through which particles pass and produce 790: 586:
derived an expression for the probability of scattering positrons by electrons, a process now known as
299:(This is slightly greater than 21 million times the design energy of particles accelerated by the 174:. Nevertheless, following wider recognition of cosmic rays as being various high-energy particles with 5870: 4563: 4526: 3193: 9109: 9104: 8285: 7638: 7491: 7036:
P. K. F. Grieder, Cosmic Rays at Earth: Researcher's Reference Manual and Data Book, Elsevier, 2001.
5583: 4488: 3929:
Rossi, Bruno (May 1934). "Directional Measurements on the Cosmic Rays Near the Geomagnetic Equator".
3008: 2608: 1169: 825: 422: 171: 105: 9399: 9389: 9149: 7576: 7486: 7350: 6559: 3348: 2566: – very-high-energy particles that flow into the Solar System from beyond the Milky Way galaxy 2563: 2373: 2293: 2154:
Comparison of radiation doses, including the amount detected on the trip from Earth to Mars by the
1336: 627: 510:
space as by-products of the fusion of hydrogen atoms into the heavier elements, and that secondary
252: 7061:
Kremer, J.; et al. (1999). "Measurement of Ground-Level Muons at Two Geomagnetic Locations".
5436: 5411: 3894:
Alvarez, Luis; Compton, Arthur Holly (May 1933). "A Positively Charged Component of Cosmic Rays".
3270: 3089: 9229: 7516: 7310: 6537: 5874: 5296: 2670: 2388: 2159: 2136: 1907: 1141: 1019: 454:
Increase of ionization with altitude as measured by Hess in 1912 (left) and by Kolhörster (right)
5948: 2308: 1408:
oil-immersion), and the etch rate is plotted as a function of the depth in the stacked plastic.
985:
fraction peaks at a maximum of about 16% of total electron+positron events, around an energy of
725: 9084: 8049: 7959: 7836: 7831: 7757: 7668: 7342: 7141:
C. E. Rolfs and S. R. William, Cauldrons in the Cosmos, The University of Chicago Press, 1988.
6554: 5169: 3340: 3046: 2596: 2273: 1181: 459: 320: 151: 120: 6308: 5005:
Aguilar, M.; Alberti, G.; Alpat, B.; Alvino, A.; Ambrosi, G.; Andeen, K.; et al. (2013).
3397: 702:
suggested that magnetic variable stars could be a source of cosmic rays. Subsequently, Sekido
9139: 9114: 8752: 8370: 7917: 7761: 7496: 6063: 3370: 3235: 2578: 2124: 1543: 1533:
Reaction products of primary cosmic rays, radioisotope half-lifetime, and production reaction
1098: 925: 639: 622:
arranged within a circle 460 metres in diameter on the grounds of the Agassiz Station of the
380: 300: 5584:"CREDO's first light: The global particle detector begins its collection of scientific data" 5334: 4823: 905:. Due to the high charge and heavy nature of HZE ions, their contribution to an astronaut's 438:
carried three enhanced-accuracy Wulf electrometers to an altitude of 5,300 metres in a
9369: 9200: 9184: 8809: 8180: 8151: 8032: 7856: 7618: 7506: 7463: 7413: 7243: 7218:
TRACER Long Duration Balloon Project: the largest cosmic ray detector launched on balloons.
7199: 7178: 7169:
Taylor, M.; Molla, M. (2010). "Towards a unified source-propagation model of cosmic rays".
7106: 7070: 6993: 6954: 6869: 6817: 6717: 6672: 6546: 6450: 6381: 6334: 6170: 6123: 5997: 5650: 5484: 5330: 5200: 5127: 5083: 5021: 4919: 4853: 4819: 4787: 4736: 4637: 4592: 4461: 4426: 4363: 4322: 4265: 4178: 4128: 4062: 4008: 3973: 3938: 3903: 3868: 3833: 3790: 3757:
Proceedings of the Section of Sciences, Koninklijke Akademie van Wetenschappen te Amsterdam
3720: 3635: 3515: 3467: 3305: 2924: 2863: 2778: 2443: 2363: 2054: 2026: 1480:, designed to detect low-energy (<200 GeV) cosmic rays by means of analyzing their 1391:
for use in high-altitude balloons. In this method, sheets of clear plastic, like 0.25 
830: 756: 611: 101: 93: 65: 6114:
Kerr, Richard (31 May 2013). "Radiation Will Make Astronauts' Trip to Mars Even Riskier".
3120:"Extremely powerful cosmic rays are raining down on us. No one knows where they come from" 1063:'s cosmic ray shadow, as seen in secondary muons detected 700 m below ground, at the 532: 444: 8: 9341: 9144: 9124: 8937: 8627: 8115: 7979: 7954: 7922: 7841: 7735: 7613: 7526: 7091: 6939: 6507: 5866: 5845: 5410:. Michigan State University National Superconducting Cyclotron Laboratory. Archived from 3656: 3627: 3585:[Measurements of the penetrating radiation in a free balloon at high altitudes]. 3549: 2428: 2260:
A handful of studies conclude that a nearby supernova or series of supernovas caused the
2211: 2084: 2013: 1481: 1438: 1156: 948: 882: 647: 562: 435: 340: 116: 89: 36: 7694: 7247: 7203: 7182: 7110: 7074: 6997: 6958: 6873: 6821: 6721: 6676: 6550: 6454: 6385: 6338: 6174: 6127: 6001: 5654: 5488: 5204: 5131: 5087: 5025: 4923: 4857: 4740: 4641: 4465: 4430: 4367: 4326: 4269: 4221:
Braunschweig, W.; et al. (1988). "A study of Bhabha scattering at PETRA energies".
4182: 4132: 4066: 4012: 3977: 3942: 3907: 3872: 3837: 3794: 3749: 3724: 3519: 3471: 3309: 3042:"Data-driven model of the cosmic-ray flux and mass composition from 10 GeV to 10^11 GeV" 2928: 2867: 2782: 1493:
Similar to the detection of Cherenkov-light, this method is restricted to clear nights.
634:
of Argentina by an international consortium of physicists. The project was first led by
9329: 9305: 9242: 9164: 9134: 9079: 8956: 8932: 8431: 8365: 8230: 8190: 8041: 8004: 7964: 7943: 7886: 7861: 7730: 7551: 7531: 7511: 7395: 7303: 7259: 7233: 6983: 6940:"Cloud Chamber Observations of Cosmic Rays at 4300 Meters Elevation and Near Sea-Level" 6841: 6807: 6780: 6754: 6730: 6705: 6466: 6440: 6350: 6221: 6194: 6029: 5987: 5666: 5640: 5443: 5151: 5099: 5073: 4951: 4909: 4760: 4726: 4669: 4627: 4394: 4381: 4351: 4238: 4144: 3806: 3561: 3531: 3505: 3483: 3457: 3321: 3295: 3170: 3145: 3071: 3051: 2956: 2914: 2887: 2853: 2802: 2768: 2602: 2117: 2022: 1580: 1526: 1180:, from supersonic to subsonic speeds. The region between the termination shock and the 844:
Primary cosmic particle collides with a molecule of atmosphere, creating an air shower.
643: 515: 336: 97: 7289: 7190:
Ziegler, J. F. (1981). "The Background in Detectors Caused By Sea Level Cosmic Rays".
5903: 5139: 5063: 4970:"New results from the Alpha Magnetic$ Spectrometer on the International Space Station" 2378: 2127:
may involve a greater radiation risk than previously believed, based on the amount of
1941:
Average annual occupational exposure is 0.7 mSv; mining workers have higher exposure.
694:
Early speculation on the sources of cosmic rays included a 1934 proposal by Baade and
9300: 9189: 8772: 8672: 8642: 8560: 8300: 8185: 8141: 8089: 7896: 7891: 7823: 7623: 7501: 7438: 7403: 7211: 7159: 7142: 7132: 7051: 7037: 7027: 7013: 6921: 6885: 6833: 6772: 6701: 6186: 6139: 6033: 6021: 6013: 5694: 5670: 5365: 5266: 5208: 5155: 5039: 4943: 4871: 4752: 4661: 4560:
Proceedings of the 31st ICRC, Łódź, Poland 2009 – International Cosmic Ray Conference
4399: 4242: 4196: 3810: 3687: 3535: 3487: 3446:
Pacini, D. (1912). "La radiazione penetrante alla superficie ed in seno alle acque".
3403: 3376: 3325: 3175: 2960: 2948: 2940: 2879: 2794: 2759: 2734: 2650: 2499: 2353: 2195: 2061:
has proposed a cosmic ray detector that could be integrated into future high-density
2058: 1177: 1173: 699: 587: 494: 368: 28: 7775: 6845: 6784: 6643:"Solar activity and terrestrial climate: an analysis of some purported correlations" 6470: 5975: 5887: 3661:"Unsolved Problems in Physics: Tasks for the Immediate Future in Cosmic Ray Studies" 3075: 2806: 2510: 9266: 9254: 9174: 9074: 8979: 8927: 8360: 8235: 8200: 8121: 8109: 8069: 7974: 7907: 7628: 7263: 7251: 7207: 7114: 7078: 7001: 6962: 6913: 6881: 6877: 6825: 6764: 6725: 6680: 6564: 6458: 6389: 6354: 6342: 6178: 6131: 6005: 5658: 5492: 5338: 5143: 5135: 5103: 5091: 5034: 5029: 4955: 4935: 4931: 4927: 4866: 4861: 4764: 4744: 4673: 4653: 4645: 4469: 4434: 4389: 4371: 4330: 4273: 4230: 4186: 4171:
Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences
4148: 4136: 4070: 4016: 3981: 3946: 3911: 3876: 3841: 3798: 3781:
Bothe, Walther; Werner Kolhörster (November 1929). "Das Wesen der Höhenstrahlung".
3728: 3523: 3496: 3475: 3448: 3427:[Observations of radiation of high penetration power at the Eiffel tower]. 3425:"Beobachtungen über die Strahlung hoher Durchdringungsfähigkeit auf dem Eiffelturm" 3313: 3165: 3157: 3061: 2932: 2891: 2871: 2844: 2786: 2572: 2393: 2235: 2224: 2179: 2092: 2077: 1404: 837:
However, the term "cosmic ray" is often used to refer to only the extrasolar flux.
549: 7283: 6829: 6798:
Benitez, Narciso; et al. (2002). "Evidence for Nearby Supernova Explosions".
6198: 6135: 5849: 4119:
S. Vernoff (1935). "Radio-Transmission of Cosmic Ray Data from the Stratosphere".
3859:
Johnson, Thomas H. (May 1933). "The Azimuthal Asymmetry of the Cosmic Radiation".
2065:, allowing the processor to repeat the last command following a cosmic-ray event. 1943:
Populations near nuclear plants have an additional ≈0.02 mSv of exposure annually.
8862: 8837: 8375: 8315: 8099: 7999: 7984: 7969: 7876: 7866: 7740: 7725: 7541: 7453: 7443: 7295: 7255: 5910: 5833: 5813: 5793: 5631:
Letessier-Selvon, Antoine; Stanev, Todor (2011). "Ultrahigh energy cosmic rays".
5553: 5535: 5357: 4588: 4525:. International Cosmic Ray Conference. Łódź, Poland. pp. 6–9. Archived from 2527: 2239: 2223:, and might be linked to decisive alterations in the Earth's climate, and to the 1413: 1384: 829:, high-energy particles (predominantly protons) emitted by the sun, primarily in 719: 683: 506: 439: 427: 372: 19:"Cosmic radiation" redirects here. For some other types of cosmic radiation, see 7082: 6568: 2018:
Cosmic rays have sufficient energy to alter the states of circuit components in
387:
from radioactive elements in the ground or the radioactive gases or isotopes of
235:, identical to helium nuclei; and 1% are the nuclei of heavier elements, called 9353: 9293: 9099: 9064: 8847: 8737: 8702: 8687: 8622: 8617: 8516: 8416: 8335: 8310: 8275: 8220: 8195: 8064: 7912: 7588: 7546: 7536: 7458: 7448: 7418: 7005: 6462: 5826: 5684: 5496: 5342: 4356:
Proceedings of the National Academy of Sciences of the United States of America
3494:
de Angelis, A. (2010). "Penetrating Radiation at the Surface of and in Water".
2243: 2062: 1485: 1451: 1133: 906: 614:
were first carried out in 1954 by members of the Rossi Cosmic Ray Group at the
591: 583: 577: 557: 344: 315:).) One can show that such enormous energies might be achieved by means of the 232: 187: 175: 77: 48: 6917: 6685: 6660: 6273: 6086: 6009: 5662: 5609: 4808: 4291: 4163: 4074: 3608:[Measurements of the penetrating radiation up to heights of 9300 m.]. 3317: 3161: 2255: 2190:
Cosmic rays have been implicated in the triggering of electrical breakdown in
1484:, which for cosmic rays are gamma rays emitted as they travel faster than the 1412:
detection, the technique is also used to detect nuclei created as products of
9363: 9129: 8984: 8867: 8842: 8823: 8767: 8647: 8605: 8600: 8340: 8330: 8290: 8165: 8059: 8014: 7989: 7871: 7851: 7663: 7423: 7408: 6017: 5236: 4473: 4200: 2944: 2220: 2207: 1601: 1446: 1380: 1339:
energy density (assumed 3 microgauss) which is ≈0.25 eV/cm, or the
1164:
The flux of incoming cosmic rays at the upper atmosphere is dependent on the
1129: 1014: 569: 528: 487: 224: 211: 191: 147: 73: 6182: 4748: 4649: 4277: 4020: 3283: 2979: 2936: 2790: 786:
shock front acceleration as a plausibility argument (see picture at right).
9317: 9205: 9059: 8912: 8852: 8832: 8804: 8732: 8612: 8595: 8550: 8501: 8406: 8126: 8079: 7927: 7643: 7603: 7468: 7118: 6966: 6889: 6837: 6776: 6591:"No, a new study does not show cosmic-rays are connected to global warming" 6190: 6143: 6025: 5043: 4947: 4875: 4756: 4693: 4665: 4438: 4403: 4191: 3985: 3950: 3915: 3880: 3845: 3733: 3708: 3179: 2952: 2883: 2798: 2167: 1776: 1670: 1570: 1511: 1434: 1218: 1053: 874: 738: 695: 635: 619: 417: 413: 409: 348: 332: 312: 304: 85: 6768: 4715: 4376: 9179: 9089: 9054: 9021: 8947: 8922: 8762: 8667: 8637: 8521: 8436: 8426: 8156: 8084: 7385: 6812: 6275:"Converting Cosmic Rays to Sound During a Transatlantic Flight to Zurich" 5825:
Ministry of Education, Culture, Sports, Science, and Technology of Japan
5078: 4417:
Babcock, H. (1948). "Magnetic variable stars as sources of cosmic rays".
3824:
Rossi, Bruno (August 1930). "On the Magnetic Deflection of Cosmic Rays".
3583:"Messungen der durchdringenden Strahlung im Freiballon in größeren Höhen" 2547:
Central nervous system effects from radiation exposure during spaceflight
2175: 2073: 2038: 2019: 1616: 990: 777: 741: 707: 675: 540: 478: 339:
recorded in 1991) have energies comparable to the kinetic energy of a 90-
179: 178:, the term "rays" was still consistent with then known particles such as 167: 109: 5924:"Quantum computers may be destroyed by high-energy particles from space" 5147: 4939: 3066: 3041: 2875: 901:. Cosmic rays composed of charged nuclei heavier than helium are called 840: 580:
in an anti-coincidence circuit to avoid counting secondary ray showers.
9036: 8999: 8974: 8872: 8682: 8545: 7380: 6988: 6325:
Ney, Edward P. (14 February 1959). "Cosmic Radiation and the Weather".
4234: 3802: 3527: 3479: 3300: 2228: 2069:
is used to protect data against data corruption caused by cosmic rays.
2066: 2046: 2034: 1631: 1539: 1466: 1462: 1399: 1392: 1372:
Direct detection is possible by all kinds of particle detectors at the
1165: 1120:
Typical particles produced in such collisions are neutrons and charged
1001: 821:, i.e., high-energy particles originating outside the solar system, and 794: 679: 573: 523: 376: 248: 240: 9348: 7158:
Martin Walt, Introduction to Geomagnetically Trapped Radiation, 1994.
5546: 4657: 4140: 698:
suggesting cosmic rays originated from supernovae. A 1948 proposal by
9026: 8891: 8727: 8531: 8411: 8265: 8240: 7720: 7593: 7428: 7375: 7365: 7326: 6410:"Ancient Mass Extinctions Caused by Cosmic Radiation, Scientists Say" 6346: 5727:"Natürliche, durch kosmische Strahlung laufend erzeugte Radionuklide" 5355: 4897: 4385: 3123: 2626:) – Cosmic-ray particle with a kinetic energy greater than 1 EeV 2479: 2473: 2278:
There are a number of cosmic-ray research initiatives, listed below.
2191: 2171: 2128: 2112: 2042: 1916:
For the United States, fallout is incorporated into other categories.
1576: 1515: 1193: 947:
in cosmic rays produced by collisions of iron and nickel nuclei with
941: 917: 890: 878: 711: 400: 384: 200: 183: 140: 132: 6159: 5704: 4617: 4087: 4053:
Auger, P.; et al. (July 1939), "Extensive Cosmic-Ray Showers",
3963: 3606:"Messungen der durchdringenden Strahlungen bis in Höhen von 9300 m." 2590: – Cancer causing exposure to ionizing radiation in spaceflight 2170:
are exposed to at least 10 times the cosmic ray dose that people at
2166:
Flying 12 kilometres (39,000 ft) high, passengers and crews of
1113:, protons, alpha particles, pions, muons, electrons, neutrinos, and 8994: 8906: 8707: 8570: 8555: 8526: 8395: 8170: 7994: 7938: 7932: 7901: 7846: 7814: 7370: 7355: 6759: 5992: 5846:"IBM experiments in soft fails in computer electronics (1978–1994)" 5384: 5095: 4914: 4731: 4335: 4310: 3566: 3194:
https://home.cern/science/physics/cosmic-rays-particles-outer-space
3056: 2919: 2858: 2358: 2318: 2261: 1555: 1549: 1497:
Cherenkov-light and fluorescence light, at least at high energies.
1379:
An example for the direct detection technique is a method based on
1189: 1106: 1064: 937: 933: 929: 902: 858: 655: 511: 271: 244: 236: 136: 7238: 7131:
D. Perkins, Particle Astrophysics, Oxford University Press, 2003.
6858: 6445: 5645: 4837:
Accardo, L.; et al. (AMS Collaboration) (18 September 2014).
4632: 3893: 3510: 3462: 2773: 1000:
There is no evidence of complex antimatter atomic nuclei, such as
119:
in 1912 in balloon experiments, for which he was awarded the 1936
9159: 8989: 8942: 8901: 8857: 8799: 8794: 8757: 8747: 8742: 8697: 8692: 8632: 8565: 8456: 8451: 8401: 8280: 8270: 8023: 7648: 5976:"Impact of ionizing radiation on superconducting qubit coherence" 2515: 2398: 2348: 1681: 1561: 1356: 1197: 1114: 913: 886: 375:
in 1896, it was generally believed that atmospheric electricity,
335:), the highest-energy ultra-high-energy cosmic rays (such as the 275: 195: 16:
High-energy particle, mainly originating outside the Solar System
7012:
R. Clay and B. Dawson, Cosmic Bullets, Allen & Unwin, 1997.
5693:. Washington, D.C.: American Geophysical Union. pp. 41–59. 4164:"The Passage of Fast Electrons and the Theory of Cosmic Showers" 3706: 1807:
Depends on soil composition and building material of structures.
1546:
from nitrogen and oxygen, decay of neutrons from such spallation
1476:
The first detection method in the second category is called the
1351: 1176:
from the Sun, the solar wind undergoes a transition, called the
909:
in space is significant even though they are relatively scarce.
865:. The latter three of these were first detected in cosmic rays. 9210: 9031: 9013: 8476: 8446: 7948: 4097:. Smithsonian Studies in History and Technology. Vol. 53. 3780: 2298: 2216: 2025:, causing transient errors to occur (such as corrupted data in 1110: 1025: 898: 854: 850: 715: 228: 144: 88:
in our own galaxy, and from distant galaxies. Upon impact with
69: 6485:"Did Supernova Explosion Contribute to Earth Mass Extinction?" 5972: 5608:. Los Alamos National Laboratory. 3 April 2002. Archived from 2756: 2072:
In 2008, data corruption in a flight control system caused an
1172:, and the energy of the cosmic rays. At distances of ≈94  759:. This analysis, however, was disputed in 2011 with data from 8245: 8175: 7473: 7360: 5528: 2520: 2457: 2328: 2313: 2303: 2140: 2088: 1395: 1121: 1075: 921: 894: 771: 631: 465: 388: 356: 324: 206: 6395:
10.1175/1520-0477(1975)056<1240:SVATLA>2.0.CO;2
5173: 2825:"Evidence shows that cosmic rays come from exploding stars" 2368: 2144: 1477: 1458: 1430: 1125: 1102: 1060: 1037: 862: 545: 519: 267: 263: 259: 41: 9312: 1028:
in June 1998. By not detecting any antihelium at all, the
450: 6622:"'Cosmoclimatology' – tired old arguments in new clothes" 5687:(2000). J. S. Noller; J. M. Sowers; W. R. Lettis (eds.). 5565: 5116: 5004: 4255: 3399:
Cosmos: An Illustrated History of Astronomy and Cosmology
2123:
On 31 May 2013, NASA scientists reported that a possible
2050: 2030: 1373: 1307: 1281: 1262: 1237: 944: 745: 81: 4052: 2560: – Radioactivity naturally present within the Earth 5265:. Cosmic rays. Pierre Auger Observatory. Archived from 4451: 3610:
Verhandlungen der Deutschen Physikalischen Gesellschaft
3207:"Astronomy without a telescope – 'Oh-my-God' particles" 2592:
Pages displaying short descriptions of redirect targets
928:. Spallation is also responsible for the abundances of 44:
versus particle energy at the top of Earth's atmosphere
5630: 873:
Primary cosmic rays mostly originate from outside the
729:
Sources of ionizing radiation in interplanetary space.
9277: 7805: 6744: 5512:"Cosmic ray particle shower? There's an app for that" 5387:
Nuclear tracks in solids: Principles and applications
3998: 2605: – Ultra-high-energy cosmic ray detected in 1991 638:, winner of the 1980 Nobel Prize in Physics from the 6647:
Journal of Atmospheric and Solar-Terrestrial Physics
6217:"Data Point to Radiation Risk for Travelers to Mars" 5317: 4898:"Synopsis: More dark matter hints from cosmic rays?" 2583:
Pages displaying wikidata descriptions as a fallback
2568:
Pages displaying wikidata descriptions as a fallback
2201: 1343:(CMB) radiation energy density at ≈0.25 eV/cm. 1212:
Relative particle energies and rates of cosmic rays
7089: 6937: 5865: 4777: 3143: 3007:. Goddard Space Flight Center. NASA. Archived from 2829:
American Association for the Advancement of Science
2704:"Nobel Prize in Physics 1936 – Presentation Speech" 2671:"Detecting cosmic rays from a galaxy far, far away" 2206:A role for cosmic rays in climate was suggested by 2098: 1505: 68:or clusters of particles (primarily represented by 7325: 6309:"Runaway Breakdown and the Mysteries of Lightning" 5690:Quaternary Geochronology: Methods and Applications 3858: 2822: 2249: 1914:; still high near nuclear test and accident sites. 1518:, in the Earth's atmosphere through the reaction: 1433:. Most state-of-the-art EAS arrays employ plastic 420:than at its base. However, his paper published in 7221: 6907: 6661:"Solar Influence on Global and Regional Climates" 6155: 6153: 6109: 6107: 4088:J.L. DuBois; R.P. Multhauf; C.A. Ziegler (2002). 2818: 2816: 2698: 2696: 2694: 2692: 972:Preliminary results from the presently operating 9361: 6210: 6208: 5856:, Vol. 40, No. 1, 1996. Retrieved 16 April 2008. 5385:R.L. Fleischer; P.B. Price; R.M. Walker (1975). 4587: 4308: 3372:Radioactivity: A History of a Mysterious Science 2752: 2750: 957: 6908:De Angelis, Alessandro; Pimenta, Mario (2018). 6699: 6374:Bulletin of the American Meteorological Society 6084: 5949:"Cosmic rays may soon stymie quantum computing" 4091:The Invention and Development of the Radiosonde 3260: 2999: 2997: 678:causes variations in the magnetic field of the 6150: 6104: 5474: 3493: 3204: 3033: 2813: 2733:. Vol. I. Eolss Publishers. p. 165. 2689: 2458:Langton Ultimate Cosmic-Ray Intensity Detector 1454:, can be used to detect cosmic ray particles. 255:as of 2019 had found no unequivocal evidence. 135:explosions of stars. Based on observations of 7791: 7311: 6706:"Cosmic rays, solar activity and the climate" 6530:"Influence of Cosmic Rays on Earth's Climate" 6205: 5170:"EGRET detection of gamma rays from the Moon" 4161: 3098:National Aeronautics and Space Administration 3039: 2747: 2731:Earth System: History and Natural Variability 2724: 2339:High Resolution Fly's Eye Cosmic Ray Detector 1573:(1.39 million years): N(n,p α)Be (spallation) 7092:"Note on the Nature of Cosmic-Ray Particles" 7090:Neddermeyer, S. H.; Anderson, C. D. (1937). 6938:Anderson, C. D.; Neddermeyer, S. H. (1936). 6430: 6370:"Solar Variability and the Lower Atmosphere" 4220: 4033: 3928: 3823: 3713:Proceedings of the Royal Society of London A 3402:. University of Chicago Press. p. 686. 3137: 2994: 2976:"Are cosmic rays electromagnetic radiation?" 2599: – Unit of nuclear and particle physics 2549: – Space radiation effects on the brain 2404:Washington Large Area Time Coincidence Array 1750:depends on indoor accumulation of radon gas. 1639: 1471:Cosmic-Ray Extremely Distributed Observatory 469:Hess lands after his balloon flight in 1912. 7168: 5913:(2011). Australian Transport Safety Bureau. 5759:"Sources and Effects of Ionizing Radiation" 4550: 4513: 4349: 3375:. Oxford University Press. pp. 78–79. 2973: 2267: 806:Cosmic rays can be divided into two types: 518:of gamma rays. In 1927, while sailing from 270:, which have a short half-life) as well as 7798: 7784: 7318: 7304: 6245:"The Effects of Space Weather on Aviation" 6053: 5447:Laboratory for Elementary-Particle Physics 5295:. Pierre Auger Observatory. Archived from 4118: 3655: 3626: 3603: 3580: 3548: 3445: 3240:European Organization for Nuclear Research 2841: 2611: – High-energy particles from the Sun 2057:per month. To alleviate this problem, the 7237: 6987: 6811: 6758: 6729: 6684: 6558: 6527: 6444: 6393: 6367: 5991: 5888:"Intel plans to tackle cosmic ray threat" 5850:"Terrestrial cosmic rays and soft errors" 5644: 5077: 5033: 4913: 4865: 4730: 4697:. London, UK: Guardian News and Media Ltd 4686: 4631: 4393: 4375: 4334: 4190: 3732: 3565: 3509: 3461: 3338: 3299: 3287:International Journal of Modern Physics A 3169: 3065: 3055: 2918: 2857: 2772: 1558:(stable): spallation producing alpha rays 7284:BBC news, Cosmic rays find uranium, 2003 6658: 6619: 6242: 5894:, 8 April 2008. Retrieved 16 April 2008. 5683: 5289:"The mystery of high-energy cosmic rays" 4895: 3747: 2649:. Pearson Education India. p. 478. 2575: – Decrease in cosmic ray intensity 2238:has controversially argued that because 2149: 2007: 1350: 1155: 1092: 839: 776: 724: 464: 449: 399: 76:) that move through space at nearly the 47: 35: 7189: 6797: 6504:"Sun's Shifts May Cause Global Warming" 5854:IBM Journal of Research and Development 5197:Introduction to Astronomy and Cosmology 5194: 4836: 4523:Proceedings of the 31st ICRC, Łódź 2009 4416: 3144:Sovilj MP, Vuković B, Stanić D (2020). 3117: 2904: 2823:Pinholster, Ginger (13 February 2013). 2511:HEAT (High Energy Antimatter Telescope) 2041:at extremely high-altitude, such as in 1656:mSv per year for sea-level areas to 1.0 1124:such as positive or negative pions and 630:is currently operated at a site on the 227:). Of the nuclei, about 90% are simple 9362: 7659:Wireless electronic devices and health 7060: 6973: 6368:Dickinson, Robert E. (December 1975). 5509: 5199:. John Wiley & Sons. p. 198. 4986:from the original on 23 September 2014 4309:Kraushaar, W. L.; et al. (1972). 4298:from the original on 3 September 2018. 3709:"Discussion on Ultra-Penetrating Rays" 3663:. Nobel Lectures. The Nobel Foundation 3369:Malley, Marjorie C. (25 August 2011). 3368: 3150:Arhiv Za Higijenu Rada I Toksikologiju 2644: 868: 597: 7779: 7299: 6900: 6588: 6214: 4885:from the original on 17 October 2014. 3770:from the original on 6 February 2016. 3681: 3395: 2835: 2116:space probe was credited to a single 1419: 616:Massachusetts Institute of Technology 317:centrifugal mechanism of acceleration 7685:List of civilian radiation accidents 7654:Wireless device radiation and health 7649:Biological dose units and quantities 7599:Electromagnetic radiation and health 7026:, Cambridge University Press, 1990. 6620:Benestad, Rasmus E. (9 March 2007). 6501: 6113: 5053:from the original on 13 August 2017. 4486: 4210:from the original on 2 January 2016. 3422: 3343:. Physics and Astronomy Department. 2495:Advanced Thin Ionization Calorimeter 2185: 1999:Figures are for the time before the 1552:(stable): spallation or from tritium 1346: 793:published the observation of a weak 266:(produced from the decay of charged 154:also appear to produce cosmic rays. 6578:from the original on 9 August 2017. 6324: 6087:"Magnetic shielding for spacecraft" 6085:Atkinson, Nancy (24 January 2005). 5362:Planets, Stars, and Stellar Systems 5322:Earth and Planetary Science Letters 4593:"Source of cosmic rays pinned down" 4162:Bhabha, H. J.; Heitler, W. (1937). 3111: 3040:Dembinski, H.; et al. (2018). 2418:ACE (Advanced Composition Explorer) 1832:Generally increases with elevation. 1775:Mainly from radioisotopes in food ( 1669:Average annual radiation exposure ( 1564:(12.3 years): N(n, H)C (spallation) 1367: 752:cosmic rays from gamma-ray bursts. 735:International Cosmic Ray Conference 514:were produced in the atmosphere by 404:Pacini makes a measurement in 1910. 13: 9170:Nexus for Exoplanet System Science 7634:Radioactivity in the life sciences 7290:Introduction to Cosmic Ray Showers 6243:Phillips, Tony (25 October 2013). 4784:California Institute of Technology 4495:. NASA Goddard Space Flight Center 4487:Gibb, Meredith (3 February 2010). 2706:. Nobelprize.org. 10 December 1936 2615:Track Imaging Cherenkov Experiment 2468:Solar and Heliospheric Observatory 2001:Fukushima Daiichi nuclear disaster 1359:array of air Cherenkov telescopes. 1151: 1012:, was flown into space aboard the 590:. His classic paper, jointly with 426:was not widely accepted. In 1911, 25:Cosmic background (disambiguation) 14: 9411: 9070:Atomic and molecular astrophysics 7807:Molecules detected in outer space 7272: 6292:"NAIRAS Real-time radiation Dose" 6060:Space Settlements: A Design Study 5805:Washington state Dept. of Health 4108:from the original on 5 June 2011. 3632:"The Nobel Prize in Physics 1936" 3261:Gaensler, Brian (November 2011). 2827:(Press release). Washington, DC: 2202:Postulated role in climate change 1335:starlight at 0.3 eV/cm, the 618:. The experiment employed eleven 473: 9347: 9335: 9323: 9311: 9299: 9287: 9260: 9248: 9236: 9225: 9224: 8031: 8022: 8013: 7024:Cosmic Rays and Particle Physics 6852: 6791: 6738: 6693: 6652: 6635: 6613: 6582: 6521: 6495: 6477: 6424: 6402: 6361: 6318: 6302: 6284: 6267: 6236: 6078: 5510:Timmer, John (13 October 2014). 5456:from the original on 6 June 2013 5233:National Geophysical Data Center 3492:: Translated with commentary in 2727:"Cosmic Influences on the Earth" 2487: 2099:Significance to aerospace travel 1506:Changes in atmospheric chemistry 1074: 1052: 231:(i.e., hydrogen nuclei); 9% are 9195:Polycyclic aromatic hydrocarbon 7192:Nuclear Instruments and Methods 7050:, Pergamon Press, Oxford, 1972 6047: 5966: 5941: 5916: 5897: 5881: 5859: 5839: 5819: 5799: 5779: 5764: 5761:page 339 retrieved 29 June 2011 5751: 5719: 5677: 5624: 5594: 5576: 5558: 5540: 5522: 5503: 5468: 5429: 5397: 5378: 5349: 5311: 5281: 5251: 5221: 5188: 5162: 5110: 5057: 4998: 4962: 4889: 4830: 4802: 4771: 4709: 4680: 4611: 4581: 4544: 4507: 4480: 4445: 4410: 4343: 4302: 4284: 4249: 4214: 4155: 4112: 4081: 4046: 4027: 3992: 3957: 3922: 3887: 3852: 3817: 3774: 3741: 3700: 3682:Rossi, Bruno Benedetto (1964). 3675: 3649: 3620: 3597: 3574: 3542: 3439: 3416: 3389: 3362: 3332: 3277: 3254: 3224: 3205:Nerlich, Steve (12 June 2011). 3198: 3186: 3118:Resnick, Brian (25 July 2019). 3092:. Goddard Space Flight Center. 3082: 2435:Fermi Gamma-ray Space Telescope 2334:High Energy Stereoscopic System 2281: 2250:Possible mass extinction factor 1383:developed by Robert Fleischer, 877:and sometimes even outside the 295:have been observed to approach 115:Cosmic rays were discovered by 7279:Aspera European network portal 7155:, McGraw-Hill, New York, 1964. 6882:10.1103/PhysRevLett.116.151104 6710:Environmental Research Letters 6659:Lockwood, Mike (16 May 2012). 6589:Plait, Phil (31 August 2011). 6215:Chang, Kenneth (30 May 2013). 5602:"The Detection of Cosmic Rays" 5547:CRAYFIS detector array paper. 5391:University of California Press 5229:"Extreme Space Weather Events" 5035:10.1103/PhysRevLett.110.141102 4932:10.1103/PhysRevLett.113.121102 4867:10.1103/PhysRevLett.113.121101 4687:Jha, Alok (14 February 2013). 4352:"Cosmic rays from super-novae" 4350:Baade, W.; Zwicky, F. (1934). 4292:"The Pierre Auger Observatory" 2967: 2898: 2718: 2663: 2638: 2588:Health threat from cosmic rays 2505:Cosmic Ray Energetics and Mass 2453:Interstellar Boundary Explorer 2105:Health threat from cosmic rays 2037:". This has been a problem in 1032:established an upper limit of 661:High-energy gamma rays (>50 217: 94:showers of secondary particles 1: 9120:Extraterrestrial liquid water 6830:10.1103/PhysRevLett.88.081101 6502:Long, Marion (25 June 2007). 6136:10.1126/science.340.6136.1031 5776:page 8 retrieved 29 June 2011 5606:Milagro Gamma-Ray Observatory 5140:10.1016/S0370-1573(02)00013-3 4099:Smithsonian Institution Press 3269:. No. 41. Archived from 2631: 1906:Peaked in 1963 (prior to the 1083:Compton Gamma Ray Observatory 1036:for the antihelium to helium 958:Primary cosmic ray antimatter 669: 652:Greisen–Zatsepin–Kuzmin limit 548:. In 1948, observations with 293:ultra-high-energy cosmic rays 7212:10.1016/0029-554x(81)91039-9 6731:10.1088/1748-9326/8/4/045022 6056:"Appendix E: Mass Shielding" 4778:Mewaldt, Richard A. (1996). 3396:North, John (15 July 2008). 3023:"mirror copy, also archived" 2620:Ultra-high-energy cosmic ray 2533:TRACER (cosmic ray detector) 2410: 2289:Akeno Giant Air Shower Array 2129:energetic particle radiation 2029:or incorrect performance of 395: 157: 7: 8351:Protonated hydrogen cyanide 7522:Cosmic background radiation 7225:European Physical Journal H 7083:10.1103/physrevlett.83.4241 6569:10.1103/PhysRevLett.81.5027 6054:Globus, Al (10 July 2002). 5732:(in German). Archived from 4689:"Cosmic ray mystery solved" 3581:Kolhörster, Werner (1913). 2725:Cilek, Vaclav, ed. (2009). 2558:Environmental radioactivity 2553:Cosmic ray visual phenomena 2539: 2423:Alpha Magnetic Spectrometer 1341:cosmic microwave background 1097:When cosmic rays enter the 982:International Space Station 974:Alpha Magnetic Spectrometer 964:Alpha Magnetic Spectrometer 624:Harvard College Observatory 462:in 1936 for his discovery. 21:Cosmic background radiation 10: 9416: 7751: 7609:Lasers and aviation safety 7256:10.1140/epjh/e2011-10033-6 7006:10.1103/physrevd.62.032007 6597:. Kalmbach. Archived from 6528:Svensmark, Henrik (1998). 6463:10.1666/0094-8373-35.3.311 5871:"Solar Storms: Fast Facts" 5827:"Radiation in environment" 5497:10.1103/PhysRevLett.24.917 5343:10.1016/j.epsl.2005.02.011 4896:Schirber, Michael (2014). 4812:Astronomy and Astrophysics 3238:. FAQ: Facts and figures. 2647:Atomic and Nuclear Physics 2645:Sharma, Shatendra (2008). 2581: – American physicist 2271: 2256:Pliocene § Supernovae 2253: 2102: 2011: 1622:Chlorine-38 (37.2 minutes) 1613:Chlorine-34 m (32 minutes) 1500: 961: 791:Pierre Auger Collaboration 714:, active galactic nuclei, 689: 362: 96:, some of which reach the 80:. They originate from the 18: 9219: 9110:Earliest known life forms 9105:Diffuse interstellar band 9045: 8965: 8890: 8781: 8716: 8656: 8584: 8576:Protonated cyanoacetylene 8490: 8384: 8346:Protonated carbon dioxide 8306:Hydromagnesium isocyanide 8254: 8040: 8011: 7822: 7813: 7749: 7713: 7677: 7639:Radioactive contamination 7564: 7492:Electromagnetic radiation 7482: 7394: 7341: 7334: 6918:10.1007/978-3-319-78181-5 6686:10.1007/s10712-012-9181-3 6010:10.1038/s41586-020-2619-8 5663:10.1103/RevModPhys.83.907 5633:Reviews of Modern Physics 5066:The Astrophysical Journal 4551:Hague, J.D. (July 2009). 4514:Hague, J.D. (July 2009). 4315:The Astrophysical Journal 4075:10.1103/RevModPhys.11.288 4055:Reviews of Modern Physics 3686:. New York: McGraw-Hill. 3587:Physikalische Zeitschrift 3554:Physikalische Zeitschrift 3429:Physikalische Zeitschrift 3318:10.1142/S0217751X03013879 3162:10.2478/aiht-2020-71-3403 2609:Solar energetic particles 2174:receive. Aircraft flying 2139:while traveling from the 2027:electronic memory devices 1972: 1861: 1724: 1694: 1680: 1677: 1640:Role in ambient radiation 1592:Magnesium-28 (20.9 hours) 1298: 1272: 1253: 1228: 1223: 1216: 997:one-sixth of the energy. 826:solar energetic particles 819:extragalactic cosmic rays 423:Physikalische Zeitschrift 285: 194:. Meanwhile "cosmic" ray 172:electromagnetic radiation 9155:Iron–sulfur world theory 9150:Photodissociation region 8853:Methyl-cyano-diacetylene 7752:See also the categories 7690:1996 Costa Rica accident 7351:Acoustic radiation force 5364:(1 ed.). Springer. 4474:10.1103/PhysRev.83.658.2 4223:Zeitschrift für Physik C 3349:Georgia State University 2564:Extragalactic cosmic ray 2374:Pierre Auger Observatory 2294:Chicago Air Shower Array 2268:Research and experiments 2182:are at particular risk. 2033:) often referred to as " 1625:Chlorine-39 (56 minutes) 1579:(5730 years): N(n, p)C ( 1431:air Cherenkov telescopes 1081:The Moon as seen by the 861:, positrons, muons, and 801: 100:, although the bulk are 9230:Category:Astrochemistry 8820:, fullerene, buckyball) 8507:Cyanobutadiynyl radical 8482:Silicon-carbide cluster 8472:Protonated formaldehyde 7664:Radiation heat-transfer 7517:Gravitational radiation 6862:Physical Review Letters 6800:Physical Review Letters 6538:Physical Review Letters 6296:sol.spacenvironment.net 6183:10.1126/science.1235989 5875:Nature Publishing Group 5552:14 October 2014 at the 5534:14 October 2014 at the 5477:Physical Review Letters 5405:"What are cosmic rays?" 5356:Castellina, Antonella; 5335:2005E&PSL.234..335L 5014:Physical Review Letters 4902:Physical Review Letters 4846:Physical Review Letters 4824:1981A&A...102L...9K 4749:10.1126/science.aan4338 4650:10.1126/science.1199172 4562:: 36–39. Archived from 4278:10.1103/PhysRev.122.637 4021:10.1103/PhysRev.74.1828 3750:"Penetrating Radiation" 3604:Kolhörster, W. (1914). 3242:(CERN). 2021. p. 3 3005:"What are cosmic rays?" 2937:10.1126/science.aat2890 2791:10.1126/science.1231160 2389:Telescope Array Project 2137:Mars Science Laboratory 2078:plunge hundreds of feet 1908:Partial Test Ban Treaty 1648:mSv out of a total of 3 1567:Beryllium-7 (53.3 days) 1478:air Cherenkov telescope 1337:galactic magnetic field 1046:The moon in cosmic rays 620:scintillation detectors 501:In the 1920s, the term 367:After the discovery of 9243:Outer space portal 9085:Circumstellar envelope 8050:Aluminium(I) hydroxide 7960:Phosphorus mononitride 7837:Aluminium monofluoride 7832:Aluminium monochloride 7705:1990 Zaragoza accident 7700:1984 Moroccan accident 7669:Linear energy transfer 7343:Non-ionizing radiation 7171:Publ. Astron. Soc. Pac 7119:10.1103/physrev.51.884 6967:10.1103/physrev.50.263 6416:. 2007. Archived from 6251:. NASA. Archived from 6062:. NASA. Archived from 5836:retrieved 29 June 2011 5816:retrieved 29 June 2011 5807:"Background radiation" 5796:retrieved 29 June 2011 5787:"Background radiation" 4439:10.1103/PhysRev.74.489 4192:10.1098/rspa.1937.0082 3986:10.1103/PhysRev.74.213 3951:10.1103/PhysRev.45.212 3916:10.1103/PhysRev.43.835 3881:10.1103/PhysRev.43.834 3846:10.1103/PhysRev.36.606 3783:Zeitschrift für Physik 3734:10.1098/rspa.1931.0104 3423:Wulf, Theodor (1910). 3047:Proceedings of Science 2978:. NASA. Archived from 2597:Meter water equivalent 2274:Cosmic-ray observatory 2163: 2125:crewed mission to Mars 1610:Sulfur-38 (2.84 hours) 1598:Silicon-32 (101 years) 1595:Silicon-31 (2.6 hours) 1360: 1170:Earth's magnetic field 1161: 845: 782: 730: 706:(1951) identified the 492: 470: 460:Nobel Prize in Physics 455: 405: 321:active galactic nuclei 152:active galactic nuclei 121:Nobel Prize in Physics 104:off into space by the 92:, cosmic rays produce 84:, from outside of the 54: 45: 9395:Concepts in astronomy 9375:Astroparticle physics 9140:Interplanetary medium 9115:Extraterrestrial life 8753:Octatetraynyl radical 8371:Tricarbon monosulfide 7918:Magnesium monohydride 7695:1987 Goiânia accident 7497:Synchrotron radiation 7487:Earth's energy budget 7469:Radioactive materials 7464:Particle accelerators 6769:10.1089/ast.2018.1902 6665:Surveys in Geophysics 5832:22 March 2011 at the 5529:Collaboration website 5195:Morison, Ian (2008). 5176:. NASA. 1 August 2005 4377:10.1073/pnas.20.5.259 3339:Nave, Carl R. (ed.). 3236:Large Hadron Collider 3094:imagine.gsfc.nasa.gov 2579:Gilbert Jerome Perlow 2153: 2008:Effect on electronics 1747:Primarily from radon, 1607:Sulfur-35 (87.5 days) 1586:Sodium-22 (2.6 years) 1461:devices in pervasive 1389:Robert M. Walker 1354: 1294:(a few times a year) 1159: 1093:Secondary cosmic rays 926:cosmic ray spallation 843: 780: 728: 640:University of Chicago 612:extensive air showers 572:was the first to use 483: 468: 453: 403: 383:, was caused only by 301:Large Hadron Collider 210:, depending on their 129:Fermi Space Telescope 66:high-energy particles 51: 39: 9267:Chemistry portal 9255:Astronomy portal 9201:RNA world hypothesis 9185:PAH world hypothesis 8878:Heptatrienyl radical 8810:Buckminsterfullerene 8698:Methylcyanoacetylene 8206:Silicon carbonitride 8181:Methylidynephosphane 8147:Magnesium isocyanide 8055:Aluminium isocyanide 7857:Carbon monophosphide 7766:Radiation protection 7619:Radiation protection 7507:Black-body radiation 7414:Background radiation 7329:(physics and health) 6255:on 28 September 2019 4599:. Tech Media Network 4493:Imagine the Universe 3636:The Nobel Foundation 1628:Argon-39 (269 years) 1589:Sodium-24 (15 hours) 1385:P. Buford Price 1101:, they collide with 811:galactic cosmic rays 757:Very Large Telescope 522:to the Netherlands, 253:anti-alpha particles 27:. For the film, see 9145:Interstellar medium 9125:Forbidden mechanism 8938:Hydrogen isocyanide 8628:Hexatriynyl radical 8211:c-Silicon dicarbide 8116:Hydrogen isocyanide 7980:Silicon monosulfide 7955:Phosphorus monoxide 7923:Methylidyne radical 7882:Fluoromethylidynium 7842:Aluminium(II) oxide 7736:Radiation hardening 7678:Radiation incidents 7614:Medical radiography 7573:Radiation syndrome 7527:Cherenkov radiation 7292:by Konrad Bernlöhr. 7248:2010EPJH...35..309C 7204:1981NIMPR.191..419Z 7183:2010ASPC..424...98T 7111:1937PhRv...51..884N 7075:1999PhRvL..83.4241K 6998:2000PhRvD..62c2007B 6959:1936PhRv...50..263A 6874:2016PhRvL.116o1104F 6822:2002PhRvL..88h1101B 6722:2013ERL.....8d5022S 6704:(7 November 2013). 6677:2012SGeo...33..503L 6551:1998PhRvL..81.5027S 6455:2009Pbio...35..311M 6414:National Geographic 6386:1975BAMS...56.1240D 6339:1959Natur.183..451N 6175:2013Sci...340.1080Z 6169:(6136): 1080–1084. 6128:2013Sci...340.1031K 6002:2020Natur.584..551V 5867:Scientific American 5792:9 June 2011 at the 5774:UNSCEAR 2008 report 5655:2011RvMP...83..907L 5489:1970PhRvL..24..917C 5205:2008iac..book.....M 5132:2002PhR...366..331A 5088:2002ApJ...565..280M 5026:2013PhRvL.110n1102A 4924:2014PhRvL.113l1102A 4858:2014PhRvL.113l1101A 4741:2017Sci...357.1266P 4725:(6357): 1266–1270. 4642:2011Sci...332...69A 4466:1951PhRv...83..658S 4431:1948PhRv...74..489B 4368:1934PNAS...20..259B 4327:1972ApJ...177..341K 4270:1961PhRv..122..637C 4183:1937RSPSA.159..432B 4133:1935Natur.135.1072V 4127:(3426): 1072–1073. 4067:1939RvMP...11..288A 4036:Ricerca Scientifica 4013:1948PhRv...74.1828B 3978:1948PhRv...74..213F 3943:1934PhRv...45..212R 3908:1933PhRv...43..835A 3873:1933PhRv...43..834J 3838:1930PhRv...36..606R 3795:1929ZPhy...56..751B 3763:(9–10): 1115–1127. 3725:1931RSPSA.132..331G 3520:1912NCim....3...93P 3472:1912NCim....3...93P 3310:2003IJMPA..18.2229A 3096:. Science Toolbox. 3067:10.22323/1.301.0533 2929:2018Sci...361..147I 2876:10.1038/nature17147 2868:2016Natur.531..476H 2783:2013Sci...339..807A 2677:. 21 September 2017 2212:Robert E. Dickinson 2023:integrated circuits 2014:Radiation hardening 1674: 1482:Cherenkov radiation 1457:More recently, the 1439:Cherenkov radiation 1425:in the atmosphere. 1224:Particle rate (ms) 1213: 949:interstellar matter 883:elemental abundance 869:Primary cosmic rays 748:·cm on the flux of 648:University of Leeds 598:Energy distribution 561:another." In 1937, 9380:Ionizing radiation 9165:Molecules in stars 9135:Intergalactic dust 9080:Circumstellar dust 9022:Naphthalene cation 8957:Trihydrogen cation 8933:Hydrogen deuteride 8858:Methyltriacetylene 8693:Hexapentaenylidene 8512:E-Cyanomethanimine 8432:Cyclopropenylidene 8366:Tricarbon monoxide 8356:Silicon tricarbide 8326:Methylene amidogen 8316:Isothiocyanic acid 8231:Thioxoethenylidene 8191:Trihydrogen cation 8005:Titanium(II) oxide 7965:Potassium chloride 7944:Sulfur mononitride 7887:Helium hydride ion 7862:Carbon monosulfide 7731:Radioactive source 7552:Radiation exposure 7532:Askaryan radiation 7512:Particle radiation 7396:Ionizing radiation 6901:Further references 6601:on 12 January 2018 6222:The New York Times 5909:5 May 2022 at the 5812:2 May 2012 at the 5739:on 3 February 2010 5444:Cornell University 5269:on 12 October 2012 4235:10.1007/BF01579904 3803:10.1007/BF01340137 3789:(11–12): 751–777. 3528:10.1007/BF02957440 3480:10.1007/BF02957440 3011:on 28 October 2012 2603:Oh-My-God particle 2526:3 May 2012 at the 2164: 2076:airliner to twice 1668: 1581:neutron activation 1527:radiocarbon dating 1420:Indirect detection 1361: 1211: 1162: 1099:Earth's atmosphere 846: 783: 731: 516:Compton scattering 471: 458:Hess received the 456: 406: 341:kilometre-per-hour 90:Earth's atmosphere 55: 46: 9385:Stellar phenomena 9275: 9274: 9190:Pseudo-panspermia 8886: 8885: 8833:Cyanodecapentayne 8773:N-Methylformamide 8748:Methyldiacetylene 8673:Aminoacetonitrile 8643:Methyl isocyanate 8561:Methyl isocyanide 8442:Isocyanoacetylene 8422:Cyanoformaldehyde 8301:Hydrogen peroxide 8186:Potassium cyanide 8142:Magnesium cyanide 8095:Disilicon carbide 8090:Dicarbon monoxide 7897:Hydrogen fluoride 7892:Hydrogen chloride 7773: 7772: 7754:Radiation effects 7624:Radiation therapy 7560: 7559: 7502:Thermal radiation 7439:Neutron radiation 7404:Radioactive decay 7069:(21): 4241–4244. 6927:978-3-319-78181-5 6702:Wolfendale, A. W. 6649:65 (2003) 801–812 6545:(22): 5027–5030. 6420:on 23 April 2007. 6380:(12): 1240–1248. 6333:(4659): 451–452. 5986:(7822): 551–556. 5700:978-0-87590-950-9 5371:978-90-481-8817-8 5214:978-0-470-03333-3 4790:on 30 August 2009 4294:. Auger Project. 4141:10.1038/1351072c0 4007:(12): 1828–1837. 3748:Clay, J. (1927). 3693:978-0-07-053890-0 3294:(13): 2229–2366. 3050:. ICRC2017: 533. 2974:Christian, Eric. 2913:(6398): 147–151. 2852:(7595): 476–479. 2767:(6424): 807–811. 2740:978-1-84826-104-4 2656:978-81-317-1924-4 2234:Danish physicist 2196:runaway breakdown 2186:Role in lightning 2180:geomagnetic poles 2093:quantum computers 2059:Intel Corporation 2004: 1996: 1995: 1944: 1917: 1833: 1808: 1783: 1780: 1751: 1748: 1512:unstable isotopes 1347:Detection methods 1324: 1323: 1320:(once a century) 1217:Particle energy ( 1178:termination shock 700:Horace W. Babcock 588:Bhabha scattering 568:Soviet physicist 550:nuclear emulsions 495:Ernest Rutherford 445:Werner Kolhörster 349:megaelectronvolts 305:teraelectronvolts 29:Cosmic Ray (film) 9407: 9352: 9351: 9340: 9339: 9338: 9328: 9327: 9326: 9316: 9315: 9304: 9303: 9292: 9291: 9283: 9265: 9264: 9263: 9253: 9252: 9251: 9241: 9240: 9239: 9228: 9227: 9175:Organic compound 9075:Chemical formula 8980:Dihydroxyacetone 8928:Hydrogen cyanide 8613:Cyanodiacetylene 8467:Propadienylidene 8361:Thioformaldehyde 8236:Titanium dioxide 8201:Sodium hydroxide 8122:Hydrogen sulfide 8110:Hydrogen cyanide 8070:Carbonyl sulfide 8035: 8026: 8017: 7975:Silicon monoxide 7908:Hydroxyl radical 7820: 7819: 7800: 7793: 7786: 7777: 7776: 7714:Related articles 7629:Radiation damage 7454:Nuclear reactors 7339: 7338: 7320: 7313: 7306: 7297: 7296: 7267: 7241: 7215: 7186: 7122: 7096: 7086: 7009: 6991: 6970: 6944: 6931: 6894: 6893: 6856: 6850: 6849: 6815: 6813:astro-ph/0201018 6795: 6789: 6788: 6762: 6742: 6736: 6735: 6733: 6697: 6691: 6690: 6688: 6671:(3–4): 503–534. 6656: 6650: 6639: 6633: 6632: 6630: 6628: 6617: 6611: 6610: 6608: 6606: 6586: 6580: 6579: 6577: 6562: 6534: 6525: 6519: 6518: 6516: 6514: 6499: 6493: 6492: 6481: 6475: 6474: 6448: 6428: 6422: 6421: 6406: 6400: 6399: 6397: 6365: 6359: 6358: 6347:10.1038/183451a0 6322: 6316: 6306: 6300: 6299: 6288: 6282: 6276: 6271: 6265: 6264: 6262: 6260: 6240: 6234: 6233: 6231: 6229: 6212: 6203: 6202: 6157: 6148: 6147: 6111: 6102: 6101: 6099: 6097: 6091:The Space Review 6082: 6076: 6075: 6073: 6071: 6051: 6045: 6044: 6042: 6040: 5995: 5970: 5964: 5963: 5961: 5959: 5945: 5939: 5938: 5936: 5934: 5920: 5914: 5901: 5895: 5885: 5879: 5878: 5869:(21 July 2008). 5863: 5857: 5843: 5837: 5823: 5817: 5803: 5797: 5783: 5777: 5768: 5762: 5755: 5749: 5748: 5746: 5744: 5738: 5731: 5723: 5717: 5716: 5714: 5712: 5703:. Archived from 5681: 5675: 5674: 5648: 5628: 5622: 5621: 5619: 5617: 5598: 5592: 5591: 5580: 5574: 5573: 5562: 5556: 5544: 5538: 5526: 5520: 5519: 5507: 5501: 5500: 5472: 5466: 5465: 5463: 5461: 5455: 5441: 5433: 5427: 5426: 5424: 5422: 5416: 5409: 5401: 5395: 5394: 5382: 5376: 5375: 5358:Donato, Fiorenza 5353: 5347: 5346: 5329:(3–4): 335–349. 5315: 5309: 5308: 5306: 5304: 5285: 5279: 5278: 5276: 5274: 5255: 5249: 5248: 5246: 5244: 5235:. Archived from 5225: 5219: 5218: 5192: 5186: 5185: 5183: 5181: 5166: 5160: 5159: 5114: 5108: 5107: 5081: 5079:astro-ph/0106567 5061: 5055: 5054: 5052: 5037: 5011: 5002: 4996: 4995: 4993: 4991: 4985: 4974: 4966: 4960: 4959: 4917: 4893: 4887: 4886: 4884: 4869: 4843: 4834: 4828: 4827: 4806: 4800: 4799: 4797: 4795: 4786:. Archived from 4775: 4769: 4768: 4734: 4713: 4707: 4706: 4704: 4702: 4684: 4678: 4677: 4635: 4615: 4609: 4608: 4606: 4604: 4591:(25 June 2009). 4589:Moskowitz, Clara 4585: 4579: 4578: 4576: 4574: 4568: 4557: 4548: 4542: 4541: 4539: 4537: 4531: 4520: 4511: 4505: 4504: 4502: 4500: 4484: 4478: 4477: 4449: 4443: 4442: 4414: 4408: 4407: 4397: 4379: 4347: 4341: 4340: 4338: 4306: 4300: 4299: 4288: 4282: 4281: 4253: 4247: 4246: 4218: 4212: 4211: 4209: 4194: 4177:(898): 432–458. 4168: 4159: 4153: 4152: 4116: 4110: 4109: 4107: 4096: 4085: 4079: 4078: 4061:(3–4): 288–291, 4050: 4044: 4043: 4031: 4025: 4024: 3996: 3990: 3989: 3961: 3955: 3954: 3926: 3920: 3919: 3891: 3885: 3884: 3856: 3850: 3849: 3821: 3815: 3814: 3778: 3772: 3771: 3769: 3754: 3745: 3739: 3738: 3736: 3704: 3698: 3697: 3679: 3673: 3672: 3670: 3668: 3653: 3647: 3646: 3644: 3642: 3624: 3618: 3617: 3601: 3595: 3594: 3578: 3572: 3571: 3569: 3546: 3540: 3539: 3513: 3497:Il Nuovo Cimento 3491: 3465: 3449:Il Nuovo Cimento 3443: 3437: 3436: 3420: 3414: 3413: 3393: 3387: 3386: 3366: 3360: 3359: 3357: 3355: 3336: 3330: 3329: 3303: 3281: 3275: 3274: 3273:on 7 April 2013. 3258: 3252: 3251: 3249: 3247: 3232:"LHC: The guide" 3228: 3222: 3221: 3219: 3217: 3202: 3196: 3190: 3184: 3183: 3173: 3141: 3135: 3134: 3132: 3130: 3115: 3109: 3108: 3106: 3104: 3086: 3080: 3079: 3069: 3059: 3037: 3031: 3030: 3029:on 4 March 2016. 3025:. Archived from 3020: 3018: 3016: 3001: 2992: 2991: 2989: 2987: 2971: 2965: 2964: 2922: 2902: 2896: 2895: 2861: 2839: 2833: 2832: 2820: 2811: 2810: 2776: 2754: 2745: 2744: 2722: 2716: 2715: 2713: 2711: 2700: 2687: 2686: 2684: 2682: 2667: 2661: 2660: 2642: 2625: 2593: 2584: 2573:Forbush decrease 2569: 2394:Tunka experiment 2236:Henrik Svensmark 2225:mass extinctions 2131:detected by the 1998: 1940: 1905: 1831: 1806: 1782:depends on diet. 1781: 1774: 1749: 1746: 1675: 1667: 1664: 1659: 1655: 1651: 1647: 1405:sodium hydroxide 1368:Direct detection 1319: 1317: 1305: 1303: 1293: 1291: 1279: 1277: 1260: 1258: 1249: 1247: 1235: 1233: 1214: 1210: 1078: 1056: 1035: 1017: 988: 924:, an example of 774:of cosmic rays. 770: 751: 720:gamma-ray bursts 664: 604:density sampling 354: 330: 310: 298: 297:3 × 10 eV  9415: 9414: 9410: 9409: 9408: 9406: 9405: 9404: 9400:1912 in science 9390:Solar phenomena 9360: 9359: 9358: 9346: 9336: 9334: 9324: 9322: 9310: 9298: 9286: 9278: 9276: 9271: 9261: 9259: 9249: 9247: 9237: 9235: 9215: 9041: 9017: 9008: 8961: 8951: 8894: 8882: 8863:Propionaldehyde 8838:Ethylene glycol 8827: 8819: 8815: 8786: 8784: 8777: 8733:Cyanohexatriyne 8719: 8712: 8659: 8652: 8587: 8580: 8540: 8493: 8486: 8457:Methoxy radical 8387: 8380: 8376:Thiocyanic acid 8257: 8250: 8160: 8100:Ethynyl radical 8036: 8030: 8029: 8028: 8027: 8021: 8020: 8019: 8018: 8009: 8000:Sulfur monoxide 7985:Sodium chloride 7970:Silicon carbide 7877:Diatomic carbon 7867:Carbon monoxide 7809: 7804: 7774: 7769: 7768: 7745: 7741:Havana syndrome 7726:Nuclear physics 7709: 7673: 7566: 7556: 7542:Unruh radiation 7478: 7459:Nuclear weapons 7444:Nuclear fission 7390: 7330: 7324: 7275: 7270: 7105:(10): 884–886. 7094: 7063:Phys. Rev. Lett 7022:T. K. Gaisser, 6942: 6928: 6903: 6898: 6897: 6857: 6853: 6796: 6792: 6743: 6739: 6698: 6694: 6657: 6653: 6640: 6636: 6626: 6624: 6618: 6614: 6604: 6602: 6587: 6583: 6575: 6532: 6526: 6522: 6512: 6510: 6500: 6496: 6491:. 11 July 2016. 6483: 6482: 6478: 6429: 6425: 6408: 6407: 6403: 6366: 6362: 6323: 6319: 6307: 6303: 6290: 6289: 6285: 6274: 6272: 6268: 6258: 6256: 6241: 6237: 6227: 6225: 6213: 6206: 6158: 6151: 6112: 6105: 6095: 6093: 6083: 6079: 6069: 6067: 6052: 6048: 6038: 6036: 5971: 5967: 5957: 5955: 5947: 5946: 5942: 5932: 5930: 5922: 5921: 5917: 5911:Wayback Machine 5902: 5898: 5886: 5882: 5864: 5860: 5844: 5840: 5834:Wayback Machine 5824: 5820: 5814:Wayback Machine 5804: 5800: 5794:Wayback Machine 5784: 5780: 5769: 5765: 5756: 5752: 5742: 5740: 5736: 5729: 5725: 5724: 5720: 5710: 5708: 5701: 5685:Trumbore, Susan 5682: 5678: 5629: 5625: 5615: 5613: 5612:on 5 March 2013 5600: 5599: 5595: 5582: 5581: 5577: 5564: 5563: 5559: 5554:Wayback Machine 5545: 5541: 5536:Wayback Machine 5527: 5523: 5508: 5504: 5483:(16): 917–923. 5473: 5469: 5459: 5457: 5453: 5439: 5435: 5434: 5430: 5420: 5418: 5417:on 12 July 2012 5414: 5407: 5403: 5402: 5398: 5383: 5379: 5372: 5354: 5350: 5316: 5312: 5302: 5300: 5299:on 8 March 2021 5287: 5286: 5282: 5272: 5270: 5257: 5256: 5252: 5242: 5240: 5227: 5226: 5222: 5215: 5193: 5189: 5179: 5177: 5168: 5167: 5163: 5120:Physics Reports 5115: 5111: 5062: 5058: 5050: 5009: 5003: 4999: 4989: 4987: 4983: 4972: 4968: 4967: 4963: 4894: 4890: 4882: 4841: 4835: 4831: 4807: 4803: 4793: 4791: 4776: 4772: 4714: 4710: 4700: 4698: 4685: 4681: 4626:(6025): 69–72. 4616: 4612: 4602: 4600: 4586: 4582: 4572: 4570: 4566: 4555: 4549: 4545: 4535: 4533: 4529: 4518: 4512: 4508: 4498: 4496: 4485: 4481: 4454:Physical Review 4450: 4446: 4419:Physical Review 4415: 4411: 4348: 4344: 4307: 4303: 4290: 4289: 4285: 4258:Physical Review 4254: 4250: 4219: 4215: 4207: 4166: 4160: 4156: 4117: 4113: 4105: 4094: 4086: 4082: 4051: 4047: 4032: 4028: 4001:Physical Review 3997: 3993: 3966:Physical Review 3962: 3958: 3931:Physical Review 3927: 3923: 3902:(10): 835–836. 3896:Physical Review 3892: 3888: 3867:(10): 834–835. 3861:Physical Review 3857: 3853: 3826:Physical Review 3822: 3818: 3779: 3775: 3767: 3752: 3746: 3742: 3705: 3701: 3694: 3680: 3676: 3666: 3664: 3654: 3650: 3640: 3638: 3625: 3621: 3602: 3598: 3579: 3575: 3547: 3543: 3444: 3440: 3421: 3417: 3410: 3394: 3390: 3383: 3367: 3363: 3353: 3351: 3337: 3333: 3282: 3278: 3263:"Extreme speed" 3259: 3255: 3245: 3243: 3230: 3229: 3225: 3215: 3213: 3203: 3199: 3191: 3187: 3142: 3138: 3128: 3126: 3116: 3112: 3102: 3100: 3088: 3087: 3083: 3038: 3034: 3021: 3014: 3012: 3003: 3002: 2995: 2985: 2983: 2972: 2968: 2903: 2899: 2840: 2836: 2821: 2814: 2755: 2748: 2741: 2723: 2719: 2709: 2707: 2702: 2701: 2690: 2680: 2678: 2669: 2668: 2664: 2657: 2643: 2639: 2634: 2629: 2623: 2591: 2582: 2567: 2542: 2537: 2528:Wayback Machine 2490: 2485: 2429:Cassini–Huygens 2413: 2408: 2384:Spaceship Earth 2284: 2276: 2270: 2258: 2252: 2240:solar variation 2210:in 1959 and by 2204: 2188: 2107: 2101: 2095:in the future. 2063:microprocessors 2016: 2010: 1942: 1915: 1912:a spike in 1986 1707: 1662: 1657: 1653: 1649: 1645: 1642: 1637: 1619:(300,000 years) 1535: 1522: 1508: 1503: 1452:bubble chambers 1422: 1414:nuclear fission 1370: 1349: 1315: 1313: 1301: 1299: 1289: 1287: 1275: 1273: 1256: 1254: 1245: 1243: 1231: 1229: 1154: 1152:Cosmic-ray flux 1138:water-Cherenkov 1134:bubble chambers 1095: 1090: 1089: 1088: 1087: 1086: 1079: 1070: 1069: 1068: 1057: 1048: 1047: 1033: 1013: 986: 980:) on board the 966: 960: 871: 831:solar eruptions 804: 768: 749: 692: 684:neutron monitor 672: 662: 600: 578:Geiger counters 558:Geiger counters 507:Robert Millikan 481:wrote in 1964: 476: 428:Domenico Pacini 398: 373:Henri Becquerel 365: 352: 328: 308: 296: 288: 233:alpha particles 220: 160: 53:magnetic field. 32: 17: 12: 11: 5: 9413: 9403: 9402: 9397: 9392: 9387: 9382: 9377: 9372: 9357: 9356: 9344: 9332: 9320: 9308: 9296: 9273: 9272: 9270: 9269: 9257: 9245: 9233: 9220: 9217: 9216: 9214: 9213: 9208: 9203: 9198: 9192: 9187: 9182: 9177: 9172: 9167: 9162: 9157: 9152: 9147: 9142: 9137: 9132: 9127: 9122: 9117: 9112: 9107: 9102: 9100:Cosmochemistry 9097: 9092: 9087: 9082: 9077: 9072: 9067: 9065:Astrochemistry 9062: 9057: 9051: 9049: 9043: 9042: 9040: 9039: 9034: 9029: 9024: 9019: 9015: 9011: 9006: 9002: 8997: 8992: 8987: 8982: 8977: 8971: 8969: 8963: 8962: 8960: 8959: 8954: 8949: 8945: 8940: 8935: 8930: 8925: 8920: 8918:Formyl radical 8915: 8910: 8904: 8898: 8896: 8888: 8887: 8884: 8883: 8881: 8880: 8875: 8870: 8865: 8860: 8855: 8850: 8848:Methyl acetate 8845: 8840: 8835: 8830: 8825: 8821: 8817: 8813: 8807: 8802: 8797: 8791: 8789: 8779: 8778: 8776: 8775: 8770: 8765: 8760: 8755: 8750: 8745: 8740: 8738:Dimethyl ether 8735: 8730: 8724: 8722: 8714: 8713: 8711: 8710: 8705: 8703:Methyl formate 8700: 8695: 8690: 8688:Glycolaldehyde 8685: 8680: 8675: 8670: 8664: 8662: 8654: 8653: 8651: 8650: 8645: 8640: 8635: 8630: 8625: 8623:Glycolonitrile 8620: 8618:Ethylene oxide 8615: 8610: 8609: 8608: 8598: 8592: 8590: 8582: 8581: 8579: 8578: 8573: 8568: 8563: 8558: 8553: 8548: 8543: 8538: 8534: 8529: 8524: 8519: 8517:Cyclopropenone 8514: 8509: 8504: 8498: 8496: 8488: 8487: 8485: 8484: 8479: 8474: 8469: 8464: 8459: 8454: 8449: 8444: 8439: 8434: 8429: 8424: 8419: 8417:Cyanoacetylene 8414: 8409: 8404: 8399: 8392: 8390: 8382: 8381: 8379: 8378: 8373: 8368: 8363: 8358: 8353: 8348: 8343: 8338: 8336:Methyl radical 8333: 8328: 8323: 8318: 8313: 8311:Isocyanic acid 8308: 8303: 8298: 8293: 8288: 8283: 8278: 8276:Isocyanic acid 8273: 8268: 8262: 8260: 8252: 8251: 8249: 8248: 8243: 8238: 8233: 8228: 8223: 8221:Sulfur dioxide 8218: 8213: 8208: 8203: 8198: 8196:Sodium cyanide 8193: 8188: 8183: 8178: 8173: 8168: 8163: 8158: 8154: 8149: 8144: 8139: 8134: 8129: 8124: 8119: 8113: 8107: 8105:Formyl radical 8102: 8097: 8092: 8087: 8082: 8077: 8072: 8067: 8065:Carbon dioxide 8062: 8057: 8052: 8046: 8044: 8038: 8037: 8012: 8010: 8008: 8007: 8002: 7997: 7992: 7987: 7982: 7977: 7972: 7967: 7962: 7957: 7952: 7946: 7941: 7936: 7930: 7925: 7920: 7915: 7913:Iron(II) oxide 7910: 7905: 7899: 7894: 7889: 7884: 7879: 7874: 7869: 7864: 7859: 7854: 7849: 7844: 7839: 7834: 7828: 7826: 7817: 7811: 7810: 7803: 7802: 7795: 7788: 7780: 7771: 7770: 7750: 7747: 7746: 7744: 7743: 7738: 7733: 7728: 7723: 7717: 7715: 7711: 7710: 7708: 7707: 7702: 7697: 7692: 7687: 7681: 7679: 7675: 7674: 7672: 7671: 7666: 7661: 7656: 7651: 7646: 7641: 7636: 7631: 7626: 7621: 7616: 7611: 7606: 7601: 7596: 7591: 7589:Health physics 7586: 7585: 7584: 7579: 7570: 7568: 7562: 7561: 7558: 7557: 7555: 7554: 7549: 7547:Dark radiation 7544: 7539: 7537:Bremsstrahlung 7534: 7529: 7524: 7519: 7514: 7509: 7504: 7499: 7494: 7489: 7483: 7480: 7479: 7477: 7476: 7471: 7466: 7461: 7456: 7451: 7449:Nuclear fusion 7446: 7441: 7436: 7431: 7426: 7421: 7419:Alpha particle 7416: 7411: 7406: 7400: 7398: 7392: 7391: 7389: 7388: 7383: 7378: 7373: 7368: 7363: 7358: 7353: 7347: 7345: 7336: 7332: 7331: 7323: 7322: 7315: 7308: 7300: 7294: 7293: 7287: 7281: 7274: 7273:External links 7271: 7269: 7268: 7232:(4): 309–329. 7219: 7216: 7198:(1): 419–424. 7187: 7166: 7156: 7149: 7139: 7129: 7126: 7123: 7087: 7058: 7046:A. M. Hillas, 7044: 7034: 7020: 7010: 6989:hep-ex/0004014 6971: 6953:(4): 263–271. 6935: 6932: 6926: 6904: 6902: 6899: 6896: 6895: 6868:(15): 151104. 6851: 6790: 6753:(6): 825–830. 6737: 6692: 6651: 6634: 6612: 6581: 6560:10.1.1.522.585 6520: 6494: 6476: 6439:(3): 311–320. 6423: 6401: 6360: 6317: 6301: 6283: 6266: 6235: 6204: 6149: 6122:(6136): 1031. 6103: 6077: 6066:on 31 May 2010 6046: 5965: 5940: 5915: 5896: 5880: 5858: 5838: 5818: 5798: 5785:Princeton.edu 5778: 5763: 5750: 5718: 5707:on 21 May 2013 5699: 5676: 5639:(3): 907–942. 5623: 5593: 5575: 5557: 5539: 5521: 5502: 5467: 5428: 5396: 5377: 5370: 5348: 5310: 5280: 5250: 5239:on 22 May 2012 5220: 5213: 5187: 5161: 5126:(6): 331–405. 5109: 5096:10.1086/324402 5072:(1): 280–296. 5056: 5020:(14): 141102. 4997: 4977:AMS-02 at NASA 4961: 4908:(12): 121102. 4888: 4852:(12): 121101. 4829: 4801: 4770: 4708: 4679: 4610: 4580: 4569:on 28 May 2013 4543: 4532:on 28 May 2013 4506: 4479: 4460:(3): 658–659. 4444: 4409: 4362:(5): 259–263. 4342: 4336:10.1086/151713 4301: 4283: 4264:(2): 637–654. 4248: 4229:(2): 171–177. 4213: 4154: 4111: 4080: 4045: 4026: 3991: 3972:(2): 213–217. 3956: 3937:(3): 212–214. 3921: 3886: 3851: 3816: 3773: 3740: 3699: 3692: 3674: 3648: 3619: 3596: 3573: 3541: 3438: 3415: 3408: 3388: 3381: 3361: 3331: 3301:hep-ph/0206072 3276: 3253: 3223: 3211:Universe Today 3197: 3185: 3156:(2): 152–157. 3136: 3110: 3081: 3032: 2993: 2982:on 31 May 2000 2966: 2897: 2834: 2812: 2746: 2739: 2717: 2688: 2662: 2655: 2636: 2635: 2633: 2630: 2628: 2627: 2617: 2612: 2606: 2600: 2594: 2585: 2576: 2570: 2561: 2555: 2550: 2543: 2541: 2538: 2536: 2535: 2530: 2518: 2513: 2508: 2502: 2497: 2491: 2489: 2486: 2484: 2483: 2470: 2465: 2460: 2455: 2450: 2437: 2432: 2425: 2420: 2414: 2412: 2409: 2407: 2406: 2401: 2396: 2391: 2386: 2381: 2376: 2371: 2366: 2361: 2356: 2351: 2346: 2341: 2336: 2331: 2326: 2321: 2316: 2311: 2306: 2301: 2296: 2291: 2285: 2283: 2280: 2269: 2266: 2251: 2248: 2244:global warming 2221:mutation rates 2203: 2200: 2187: 2184: 2147:in 2011–2012. 2103:Main article: 2100: 2097: 2009: 2006: 1994: 1993: 1991: 1988: 1985: 1982: 1979: 1976: 1970: 1969: 1967: 1964: 1961: 1958: 1955: 1952: 1946: 1945: 1938: 1935: 1932: 1929: 1926: 1923: 1919: 1918: 1903: 1900: 1897: 1894: 1891: 1888: 1884: 1883: 1881: 1878: 1875: 1872: 1869: 1866: 1863: 1859: 1858: 1856: 1853: 1850: 1847: 1844: 1841: 1835: 1834: 1829: 1826: 1823: 1820: 1817: 1814: 1810: 1809: 1804: 1801: 1798: 1795: 1792: 1789: 1785: 1784: 1772: 1769: 1766: 1763: 1760: 1757: 1753: 1752: 1744: 1741: 1738: 1735: 1732: 1729: 1726: 1722: 1721: 1718: 1715: 1712: 1709: 1704: 1701: 1697: 1696: 1693: 1690: 1687: 1684: 1679: 1641: 1638: 1636: 1635: 1629: 1626: 1623: 1620: 1614: 1611: 1608: 1605: 1599: 1596: 1593: 1590: 1587: 1584: 1574: 1568: 1565: 1559: 1553: 1547: 1536: 1534: 1531: 1520: 1507: 1504: 1502: 1499: 1486:speed of light 1447:cloud chambers 1421: 1418: 1381:nuclear tracks 1369: 1366: 1348: 1345: 1328: 1327: 1326: 1325: 1322: 1321: 1311: 1296: 1295: 1285: 1270: 1269: 1266: 1251: 1250: 1241: 1226: 1225: 1222: 1153: 1150: 1130:cloud chambers 1094: 1091: 1080: 1073: 1072: 1071: 1058: 1051: 1050: 1049: 1045: 1044: 1043: 1042: 959: 956: 907:radiation dose 870: 867: 835: 834: 822: 803: 800: 691: 688: 671: 668: 599: 596: 592:Walter Heitler 584:Homi J. Bhabha 505:was coined by 475: 474:Identification 472: 397: 394: 364: 361: 287: 284: 219: 216: 176:intrinsic mass 159: 156: 78:speed of light 62:astroparticles 15: 9: 6: 4: 3: 2: 9412: 9401: 9398: 9396: 9393: 9391: 9388: 9386: 9383: 9381: 9378: 9376: 9373: 9371: 9368: 9367: 9365: 9355: 9350: 9345: 9343: 9333: 9331: 9321: 9319: 9314: 9309: 9307: 9302: 9297: 9295: 9290: 9285: 9284: 9281: 9268: 9258: 9256: 9246: 9244: 9234: 9232: 9231: 9222: 9221: 9218: 9212: 9209: 9207: 9204: 9202: 9199: 9196: 9193: 9191: 9188: 9186: 9183: 9181: 9178: 9176: 9173: 9171: 9168: 9166: 9163: 9161: 9158: 9156: 9153: 9151: 9148: 9146: 9143: 9141: 9138: 9136: 9133: 9131: 9130:Homochirality 9128: 9126: 9123: 9121: 9118: 9116: 9113: 9111: 9108: 9106: 9103: 9101: 9098: 9096: 9093: 9091: 9088: 9086: 9083: 9081: 9078: 9076: 9073: 9071: 9068: 9066: 9063: 9061: 9058: 9056: 9053: 9052: 9050: 9048: 9044: 9038: 9035: 9033: 9030: 9028: 9025: 9023: 9020: 9018: 9012: 9010: 9003: 9001: 8998: 8996: 8993: 8991: 8988: 8986: 8985:Methoxyethane 8983: 8981: 8978: 8976: 8973: 8972: 8970: 8968: 8964: 8958: 8955: 8953: 8946: 8944: 8941: 8939: 8936: 8934: 8931: 8929: 8926: 8924: 8921: 8919: 8916: 8914: 8911: 8908: 8905: 8903: 8900: 8899: 8897: 8893: 8889: 8879: 8876: 8874: 8871: 8869: 8868:Butyronitrile 8866: 8864: 8861: 8859: 8856: 8854: 8851: 8849: 8846: 8844: 8843:Ethyl formate 8841: 8839: 8836: 8834: 8831: 8829: 8822: 8811: 8808: 8806: 8803: 8801: 8798: 8796: 8793: 8792: 8790: 8788: 8780: 8774: 8771: 8769: 8768:Propionitrile 8766: 8764: 8761: 8759: 8756: 8754: 8751: 8749: 8746: 8744: 8741: 8739: 8736: 8734: 8731: 8729: 8726: 8725: 8723: 8721: 8715: 8709: 8706: 8704: 8701: 8699: 8696: 8694: 8691: 8689: 8686: 8684: 8681: 8679: 8676: 8674: 8671: 8669: 8666: 8665: 8663: 8661: 8655: 8649: 8648:Vinyl alcohol 8646: 8644: 8641: 8639: 8636: 8634: 8631: 8629: 8626: 8624: 8621: 8619: 8616: 8614: 8611: 8607: 8606:Vinyl cyanide 8604: 8603: 8602: 8601:Acrylonitrile 8599: 8597: 8594: 8593: 8591: 8589: 8583: 8577: 8574: 8572: 8569: 8567: 8566:Pentynylidyne 8564: 8562: 8559: 8557: 8554: 8552: 8549: 8547: 8544: 8542: 8535: 8533: 8530: 8528: 8525: 8523: 8520: 8518: 8515: 8513: 8510: 8508: 8505: 8503: 8500: 8499: 8497: 8495: 8489: 8483: 8480: 8478: 8475: 8473: 8470: 8468: 8465: 8463: 8462:Methylenimine 8460: 8458: 8455: 8453: 8450: 8448: 8445: 8443: 8440: 8438: 8435: 8433: 8430: 8428: 8425: 8423: 8420: 8418: 8415: 8413: 8410: 8408: 8405: 8403: 8400: 8397: 8394: 8393: 8391: 8389: 8383: 8377: 8374: 8372: 8369: 8367: 8364: 8362: 8359: 8357: 8354: 8352: 8349: 8347: 8344: 8342: 8341:Propynylidyne 8339: 8337: 8334: 8332: 8331:Methyl cation 8329: 8327: 8324: 8322: 8319: 8317: 8314: 8312: 8309: 8307: 8304: 8302: 8299: 8297: 8294: 8292: 8291:Fulminic acid 8289: 8287: 8284: 8282: 8279: 8277: 8274: 8272: 8269: 8267: 8264: 8263: 8261: 8259: 8253: 8247: 8244: 8242: 8239: 8237: 8234: 8232: 8229: 8227: 8224: 8222: 8219: 8217: 8214: 8212: 8209: 8207: 8204: 8202: 8199: 8197: 8194: 8192: 8189: 8187: 8184: 8182: 8179: 8177: 8174: 8172: 8169: 8167: 8166:Nitrous oxide 8164: 8162: 8155: 8153: 8150: 8148: 8145: 8143: 8140: 8138: 8135: 8133: 8130: 8128: 8125: 8123: 8120: 8117: 8114: 8111: 8108: 8106: 8103: 8101: 8098: 8096: 8093: 8091: 8088: 8086: 8083: 8081: 8078: 8076: 8073: 8071: 8068: 8066: 8063: 8061: 8060:Amino radical 8058: 8056: 8053: 8051: 8048: 8047: 8045: 8043: 8039: 8034: 8025: 8016: 8006: 8003: 8001: 7998: 7996: 7993: 7991: 7990:Sodium iodide 7988: 7986: 7983: 7981: 7978: 7976: 7973: 7971: 7968: 7966: 7963: 7961: 7958: 7956: 7953: 7950: 7947: 7945: 7942: 7940: 7937: 7934: 7931: 7929: 7926: 7924: 7921: 7919: 7916: 7914: 7911: 7909: 7906: 7903: 7900: 7898: 7895: 7893: 7890: 7888: 7885: 7883: 7880: 7878: 7875: 7873: 7872:Cyano radical 7870: 7868: 7865: 7863: 7860: 7858: 7855: 7853: 7852:Carbon cation 7850: 7848: 7845: 7843: 7840: 7838: 7835: 7833: 7830: 7829: 7827: 7825: 7821: 7818: 7816: 7812: 7808: 7801: 7796: 7794: 7789: 7787: 7782: 7781: 7778: 7767: 7763: 7759: 7758:Radioactivity 7755: 7748: 7742: 7739: 7737: 7734: 7732: 7729: 7727: 7724: 7722: 7719: 7718: 7716: 7712: 7706: 7703: 7701: 7698: 7696: 7693: 7691: 7688: 7686: 7683: 7682: 7680: 7676: 7670: 7667: 7665: 7662: 7660: 7657: 7655: 7652: 7650: 7647: 7645: 7642: 7640: 7637: 7635: 7632: 7630: 7627: 7625: 7622: 7620: 7617: 7615: 7612: 7610: 7607: 7605: 7602: 7600: 7597: 7595: 7592: 7590: 7587: 7583: 7580: 7578: 7575: 7574: 7572: 7571: 7569: 7563: 7553: 7550: 7548: 7545: 7543: 7540: 7538: 7535: 7533: 7530: 7528: 7525: 7523: 7520: 7518: 7515: 7513: 7510: 7508: 7505: 7503: 7500: 7498: 7495: 7493: 7490: 7488: 7485: 7484: 7481: 7475: 7472: 7470: 7467: 7465: 7462: 7460: 7457: 7455: 7452: 7450: 7447: 7445: 7442: 7440: 7437: 7435: 7432: 7430: 7427: 7425: 7424:Beta particle 7422: 7420: 7417: 7415: 7412: 7410: 7409:Cluster decay 7407: 7405: 7402: 7401: 7399: 7397: 7393: 7387: 7384: 7382: 7379: 7377: 7374: 7372: 7369: 7367: 7364: 7362: 7359: 7357: 7354: 7352: 7349: 7348: 7346: 7344: 7340: 7337: 7335:Main articles 7333: 7328: 7321: 7316: 7314: 7309: 7307: 7302: 7301: 7298: 7291: 7288: 7285: 7282: 7280: 7277: 7276: 7265: 7261: 7257: 7253: 7249: 7245: 7240: 7235: 7231: 7227: 7226: 7220: 7217: 7213: 7209: 7205: 7201: 7197: 7193: 7188: 7184: 7180: 7176: 7172: 7167: 7165: 7164:0-521-43143-3 7161: 7157: 7154: 7151:B. B. Rossi, 7150: 7148: 7147:0-226-72456-5 7144: 7140: 7138: 7137:0-19-850951-0 7134: 7130: 7127: 7124: 7120: 7116: 7112: 7108: 7104: 7100: 7093: 7088: 7084: 7080: 7076: 7072: 7068: 7064: 7059: 7057: 7056:0-08-016724-1 7053: 7049: 7045: 7043: 7042:0-444-50710-8 7039: 7035: 7033: 7032:0-521-32667-2 7029: 7025: 7021: 7019: 7018:1-86448-204-4 7015: 7011: 7007: 7003: 6999: 6995: 6990: 6985: 6982:(3): 032007. 6981: 6977: 6972: 6968: 6964: 6960: 6956: 6952: 6948: 6941: 6936: 6933: 6929: 6923: 6919: 6915: 6911: 6906: 6905: 6891: 6887: 6883: 6879: 6875: 6871: 6867: 6863: 6855: 6847: 6843: 6839: 6835: 6831: 6827: 6823: 6819: 6814: 6809: 6806:(8): 081101. 6805: 6801: 6794: 6786: 6782: 6778: 6774: 6770: 6766: 6761: 6756: 6752: 6748: 6741: 6732: 6727: 6723: 6719: 6716:(4): 045022. 6715: 6711: 6707: 6703: 6696: 6687: 6682: 6678: 6674: 6670: 6666: 6662: 6655: 6648: 6644: 6638: 6623: 6616: 6600: 6596: 6592: 6585: 6574: 6570: 6566: 6561: 6556: 6552: 6548: 6544: 6540: 6539: 6531: 6524: 6509: 6505: 6498: 6490: 6486: 6480: 6472: 6468: 6464: 6460: 6456: 6452: 6447: 6442: 6438: 6434: 6427: 6419: 6415: 6411: 6405: 6396: 6391: 6387: 6383: 6379: 6375: 6371: 6364: 6356: 6352: 6348: 6344: 6340: 6336: 6332: 6328: 6321: 6314: 6313:Physics Today 6310: 6305: 6297: 6293: 6287: 6281: 6277: 6270: 6254: 6250: 6246: 6239: 6224: 6223: 6218: 6211: 6209: 6200: 6196: 6192: 6188: 6184: 6180: 6176: 6172: 6168: 6164: 6156: 6154: 6145: 6141: 6137: 6133: 6129: 6125: 6121: 6117: 6110: 6108: 6092: 6088: 6081: 6065: 6061: 6057: 6050: 6035: 6031: 6027: 6023: 6019: 6015: 6011: 6007: 6003: 5999: 5994: 5989: 5985: 5981: 5977: 5969: 5954: 5950: 5944: 5929: 5928:New Scientist 5925: 5919: 5912: 5908: 5905: 5900: 5893: 5889: 5884: 5876: 5872: 5868: 5862: 5855: 5851: 5847: 5842: 5835: 5831: 5828: 5822: 5815: 5811: 5808: 5802: 5795: 5791: 5788: 5782: 5775: 5772: 5767: 5760: 5754: 5735: 5728: 5722: 5706: 5702: 5696: 5692: 5691: 5686: 5680: 5672: 5668: 5664: 5660: 5656: 5652: 5647: 5642: 5638: 5634: 5627: 5611: 5607: 5603: 5597: 5589: 5585: 5579: 5571: 5570:credo.science 5567: 5561: 5555: 5551: 5548: 5543: 5537: 5533: 5530: 5525: 5517: 5513: 5506: 5498: 5494: 5490: 5486: 5482: 5478: 5471: 5452: 5448: 5445: 5438: 5432: 5413: 5406: 5400: 5392: 5388: 5381: 5373: 5367: 5363: 5359: 5352: 5344: 5340: 5336: 5332: 5328: 5324: 5323: 5314: 5298: 5294: 5290: 5284: 5268: 5264: 5260: 5254: 5238: 5234: 5230: 5224: 5216: 5210: 5206: 5202: 5198: 5191: 5175: 5171: 5165: 5157: 5153: 5149: 5145: 5141: 5137: 5133: 5129: 5125: 5121: 5113: 5105: 5101: 5097: 5093: 5089: 5085: 5080: 5075: 5071: 5067: 5060: 5049: 5045: 5041: 5036: 5031: 5027: 5023: 5019: 5015: 5008: 5001: 4982: 4978: 4971: 4965: 4957: 4953: 4949: 4945: 4941: 4937: 4933: 4929: 4925: 4921: 4916: 4911: 4907: 4903: 4899: 4892: 4881: 4877: 4873: 4868: 4863: 4859: 4855: 4851: 4847: 4840: 4833: 4825: 4821: 4817: 4813: 4805: 4789: 4785: 4781: 4780:"Cosmic Rays" 4774: 4766: 4762: 4758: 4754: 4750: 4746: 4742: 4738: 4733: 4728: 4724: 4720: 4712: 4696: 4695: 4690: 4683: 4675: 4671: 4667: 4663: 4659: 4655: 4651: 4647: 4643: 4639: 4634: 4629: 4625: 4621: 4614: 4598: 4594: 4590: 4584: 4565: 4561: 4554: 4547: 4528: 4524: 4517: 4510: 4494: 4490: 4489:"Cosmic rays" 4483: 4475: 4471: 4467: 4463: 4459: 4455: 4448: 4440: 4436: 4432: 4428: 4424: 4420: 4413: 4405: 4401: 4396: 4391: 4387: 4383: 4378: 4373: 4369: 4365: 4361: 4357: 4353: 4346: 4337: 4332: 4328: 4324: 4320: 4316: 4312: 4305: 4297: 4293: 4287: 4279: 4275: 4271: 4267: 4263: 4259: 4252: 4244: 4240: 4236: 4232: 4228: 4224: 4217: 4206: 4202: 4198: 4193: 4188: 4184: 4180: 4176: 4172: 4165: 4158: 4150: 4146: 4142: 4138: 4134: 4130: 4126: 4122: 4115: 4104: 4100: 4093: 4092: 4084: 4076: 4072: 4068: 4064: 4060: 4056: 4049: 4042:(1): 579–589. 4041: 4037: 4030: 4022: 4018: 4014: 4010: 4006: 4002: 3995: 3987: 3983: 3979: 3975: 3971: 3967: 3960: 3952: 3948: 3944: 3940: 3936: 3932: 3925: 3917: 3913: 3909: 3905: 3901: 3897: 3890: 3882: 3878: 3874: 3870: 3866: 3862: 3855: 3847: 3843: 3839: 3835: 3831: 3827: 3820: 3812: 3808: 3804: 3800: 3796: 3792: 3788: 3784: 3777: 3766: 3762: 3758: 3751: 3744: 3735: 3730: 3726: 3722: 3718: 3714: 3710: 3703: 3695: 3689: 3685: 3678: 3662: 3658: 3652: 3637: 3633: 3629: 3623: 3615: 3612:(in German). 3611: 3607: 3600: 3592: 3589:(in German). 3588: 3584: 3577: 3568: 3563: 3560:: 1084–1091. 3559: 3556:(in German). 3555: 3551: 3545: 3537: 3533: 3529: 3525: 3521: 3517: 3512: 3507: 3504:(1): 93–100. 3503: 3499: 3498: 3489: 3485: 3481: 3477: 3473: 3469: 3464: 3459: 3456:(1): 93–100. 3455: 3451: 3450: 3442: 3434: 3431:(in German). 3430: 3426: 3419: 3411: 3409:9780226594415 3405: 3401: 3400: 3392: 3384: 3382:9780199766413 3378: 3374: 3373: 3365: 3350: 3346: 3342: 3341:"Cosmic rays" 3335: 3327: 3323: 3319: 3315: 3311: 3307: 3302: 3297: 3293: 3289: 3288: 3280: 3272: 3268: 3264: 3257: 3241: 3237: 3233: 3227: 3212: 3208: 3201: 3195: 3189: 3181: 3177: 3172: 3167: 3163: 3159: 3155: 3151: 3147: 3140: 3125: 3121: 3114: 3099: 3095: 3091: 3090:"Cosmic Rays" 3085: 3077: 3073: 3068: 3063: 3058: 3053: 3049: 3048: 3043: 3036: 3028: 3024: 3010: 3006: 3000: 2998: 2981: 2977: 2970: 2962: 2958: 2954: 2950: 2946: 2942: 2938: 2934: 2930: 2926: 2921: 2916: 2912: 2908: 2901: 2893: 2889: 2885: 2881: 2877: 2873: 2869: 2865: 2860: 2855: 2851: 2847: 2846: 2838: 2830: 2826: 2819: 2817: 2808: 2804: 2800: 2796: 2792: 2788: 2784: 2780: 2775: 2770: 2766: 2762: 2761: 2753: 2751: 2742: 2736: 2732: 2728: 2721: 2705: 2699: 2697: 2695: 2693: 2676: 2675:Science Daily 2672: 2666: 2658: 2652: 2648: 2641: 2637: 2621: 2618: 2616: 2613: 2610: 2607: 2604: 2601: 2598: 2595: 2589: 2586: 2580: 2577: 2574: 2571: 2565: 2562: 2559: 2556: 2554: 2551: 2548: 2545: 2544: 2534: 2531: 2529: 2525: 2522: 2519: 2517: 2514: 2512: 2509: 2506: 2503: 2501: 2498: 2496: 2493: 2492: 2488:Balloon-borne 2482: 2481: 2476: 2475: 2471: 2469: 2466: 2464: 2461: 2459: 2456: 2454: 2451: 2449: 2445: 2441: 2438: 2436: 2433: 2431: 2430: 2426: 2424: 2421: 2419: 2416: 2415: 2405: 2402: 2400: 2397: 2395: 2392: 2390: 2387: 2385: 2382: 2380: 2377: 2375: 2372: 2370: 2367: 2365: 2362: 2360: 2357: 2355: 2352: 2350: 2347: 2345: 2342: 2340: 2337: 2335: 2332: 2330: 2327: 2325: 2322: 2320: 2317: 2315: 2312: 2310: 2307: 2305: 2302: 2300: 2297: 2295: 2292: 2290: 2287: 2286: 2279: 2275: 2265: 2263: 2257: 2247: 2245: 2241: 2237: 2232: 2230: 2226: 2222: 2218: 2213: 2209: 2208:Edward P. Ney 2199: 2197: 2193: 2183: 2181: 2177: 2173: 2169: 2168:jet airliners 2161: 2157: 2152: 2148: 2146: 2142: 2138: 2134: 2130: 2126: 2121: 2119: 2115: 2114: 2106: 2096: 2094: 2090: 2086: 2081: 2079: 2075: 2070: 2068: 2064: 2060: 2056: 2052: 2048: 2044: 2040: 2036: 2032: 2028: 2024: 2021: 2015: 2005: 2002: 1992: 1989: 1986: 1983: 1980: 1977: 1975: 1971: 1968: 1965: 1962: 1959: 1956: 1953: 1951: 1948: 1947: 1939: 1936: 1933: 1930: 1927: 1924: 1921: 1920: 1913: 1909: 1904: 1901: 1898: 1895: 1892: 1889: 1886: 1885: 1882: 1879: 1876: 1873: 1870: 1867: 1864: 1860: 1857: 1854: 1851: 1848: 1845: 1842: 1840: 1837: 1836: 1830: 1827: 1824: 1821: 1818: 1815: 1812: 1811: 1805: 1802: 1799: 1796: 1793: 1790: 1787: 1786: 1778: 1773: 1770: 1767: 1764: 1761: 1758: 1755: 1754: 1745: 1742: 1739: 1736: 1733: 1730: 1727: 1723: 1719: 1716: 1713: 1711:Typical range 1710: 1705: 1702: 1699: 1698: 1691: 1688: 1685: 1683: 1676: 1672: 1671:millisieverts 1666: 1633: 1630: 1627: 1624: 1621: 1618: 1615: 1612: 1609: 1606: 1603: 1602:Phosphorus-32 1600: 1597: 1594: 1591: 1588: 1585: 1582: 1578: 1575: 1572: 1569: 1566: 1563: 1560: 1557: 1554: 1551: 1548: 1545: 1541: 1538: 1537: 1530: 1528: 1521:n + N → p + C 1519: 1517: 1513: 1498: 1494: 1490: 1487: 1483: 1479: 1474: 1472: 1468: 1464: 1460: 1455: 1453: 1448: 1443: 1440: 1436: 1435:scintillators 1432: 1426: 1417: 1415: 1409: 1406: 1401: 1397: 1394: 1390: 1386: 1382: 1377: 1375: 1365: 1358: 1353: 1344: 1342: 1338: 1332: 1312: 1309: 1297: 1286: 1283: 1271: 1267: 1264: 1252: 1242: 1239: 1227: 1220: 1215: 1209: 1208: 1207: 1206: 1205: 1201: 1199: 1198:azimuth angle 1195: 1191: 1186: 1183: 1179: 1175: 1171: 1167: 1158: 1149: 1145: 1143: 1142:scintillation 1139: 1135: 1131: 1127: 1123: 1118: 1116: 1112: 1108: 1104: 1100: 1084: 1077: 1066: 1065:Soudan 2 1062: 1055: 1041: 1039: 1031: 1027: 1023: 1022: 1016: 1015:Space Shuttle 1011: 1007: 1003: 998: 994: 992: 983: 979: 975: 970: 965: 955: 952: 950: 946: 943: 939: 935: 931: 927: 923: 919: 915: 910: 908: 904: 900: 896: 892: 888: 884: 880: 876: 866: 864: 860: 856: 852: 842: 838: 832: 828: 827: 823: 820: 816: 812: 809: 808: 807: 799: 796: 792: 789:In 2017, the 787: 779: 775: 773: 766: 762: 758: 753: 750:1 GeV – 1 TeV 747: 743: 740: 736: 727: 723: 721: 717: 713: 709: 705: 701: 697: 687: 685: 681: 677: 667: 659: 657: 653: 649: 645: 641: 637: 633: 629: 628:Auger Project 625: 621: 617: 613: 609: 605: 595: 593: 589: 585: 581: 579: 575: 571: 570:Sergei Vernov 566: 564: 559: 554: 551: 547: 542: 537: 534: 530: 525: 521: 517: 513: 508: 504: 499: 496: 491: 489: 488:Erich Regener 482: 480: 467: 463: 461: 452: 448: 446: 441: 437: 432: 429: 425: 424: 419: 415: 412:developed an 411: 402: 393: 390: 386: 382: 378: 374: 370: 369:radioactivity 360: 358: 350: 346: 342: 338: 334: 326: 322: 318: 314: 306: 302: 294: 283: 279: 277: 273: 269: 265: 261: 256: 254: 250: 246: 242: 238: 234: 230: 226: 225:beta particle 215: 213: 212:photon energy 209: 208: 203: 202: 197: 193: 189: 185: 181: 177: 173: 169: 165: 155: 153: 149: 146: 142: 138: 134: 130: 124: 122: 118: 113: 111: 107: 106:magnetosphere 103: 99: 95: 91: 87: 83: 79: 75: 74:atomic nuclei 71: 67: 63: 59: 50: 43: 38: 34: 30: 26: 22: 9342:Solar System 9223: 9206:Spectroscopy 9094: 9060:Astrobiology 8913:Formaldehyde 8805:Benzonitrile 8596:Acetaldehyde 8551:Methanethiol 8502:Acetonitrile 8407:Carbodiimide 8286:Formaldehyde 8281:Cyanoethynyl 8132:Iron cyanide 8127:Hydroperoxyl 7928:Nitric oxide 7762:Radiobiology 7644:Radiobiology 7604:Laser safety 7433: 7229: 7223: 7195: 7191: 7174: 7170: 7152: 7102: 7098: 7066: 7062: 7047: 7023: 6979: 6976:Phys. Rev. D 6975: 6950: 6946: 6912:. Springer. 6909: 6865: 6861: 6854: 6803: 6799: 6793: 6750: 6747:Astrobiology 6746: 6740: 6713: 6709: 6695: 6668: 6664: 6654: 6646: 6641:Peter Laut, 6637: 6625:. Retrieved 6615: 6603:. Retrieved 6599:the original 6594: 6584: 6542: 6536: 6523: 6511:. Retrieved 6497: 6488: 6479: 6436: 6433:Paleobiology 6432: 6426: 6418:the original 6413: 6404: 6377: 6373: 6363: 6330: 6326: 6320: 6312: 6304: 6295: 6286: 6269: 6257:. Retrieved 6253:the original 6249:Science News 6248: 6238: 6226:. Retrieved 6220: 6166: 6162: 6119: 6115: 6094:. Retrieved 6090: 6080: 6068:. Retrieved 6064:the original 6059: 6049: 6037:. Retrieved 5983: 5979: 5968: 5956:. Retrieved 5952: 5943: 5931:. Retrieved 5927: 5918: 5899: 5891: 5883: 5861: 5853: 5841: 5821: 5801: 5781: 5766: 5753: 5741:. Retrieved 5734:the original 5721: 5709:. Retrieved 5705:the original 5689: 5679: 5636: 5632: 5626: 5614:. Retrieved 5610:the original 5605: 5596: 5587: 5578: 5569: 5560: 5542: 5524: 5516:Ars Technica 5515: 5505: 5480: 5476: 5470: 5458:. Retrieved 5431: 5419:. Retrieved 5412:the original 5399: 5386: 5380: 5361: 5351: 5326: 5320: 5313: 5301:. Retrieved 5297:the original 5292: 5283: 5271:. Retrieved 5267:the original 5262: 5253: 5241:. Retrieved 5237:the original 5223: 5196: 5190: 5178:. Retrieved 5164: 5148:2078.1/72661 5123: 5119: 5112: 5069: 5065: 5059: 5017: 5013: 5000: 4990:21 September 4988:. Retrieved 4976: 4964: 4940:1721.1/90426 4905: 4901: 4891: 4849: 4845: 4832: 4815: 4811: 4804: 4792:. Retrieved 4788:the original 4773: 4722: 4718: 4711: 4699:. Retrieved 4694:The Guardian 4692: 4682: 4623: 4619: 4613: 4601:. Retrieved 4596: 4583: 4571:. Retrieved 4564:the original 4559: 4546: 4534:. Retrieved 4527:the original 4522: 4509: 4497:. Retrieved 4492: 4482: 4457: 4453: 4447: 4422: 4418: 4412: 4359: 4355: 4345: 4318: 4314: 4304: 4286: 4261: 4257: 4251: 4226: 4222: 4216: 4174: 4170: 4157: 4124: 4120: 4114: 4090: 4083: 4058: 4054: 4048: 4039: 4035: 4029: 4004: 4000: 3994: 3969: 3965: 3959: 3934: 3930: 3924: 3899: 3895: 3889: 3864: 3860: 3854: 3829: 3825: 3819: 3786: 3782: 3776: 3760: 3756: 3743: 3719:(819): 331. 3716: 3712: 3702: 3683: 3677: 3665:. Retrieved 3651: 3639:. Retrieved 3622: 3613: 3609: 3599: 3593:: 1153–1156. 3590: 3586: 3576: 3557: 3553: 3544: 3501: 3495: 3453: 3447: 3441: 3432: 3428: 3418: 3398: 3391: 3371: 3364: 3352:. Retrieved 3345:HyperPhysics 3344: 3334: 3291: 3285: 3279: 3271:the original 3266: 3256: 3244:. Retrieved 3226: 3214:. Retrieved 3210: 3200: 3188: 3153: 3149: 3139: 3127:. Retrieved 3113: 3101:. Retrieved 3093: 3084: 3045: 3035: 3027:the original 3013:. Retrieved 3009:the original 2984:. Retrieved 2980:the original 2969: 2910: 2906: 2900: 2849: 2843: 2837: 2764: 2758: 2730: 2720: 2708:. Retrieved 2679:. Retrieved 2674: 2665: 2646: 2640: 2478: 2472: 2427: 2282:Ground-based 2277: 2259: 2233: 2205: 2189: 2176:polar routes 2165: 2162:(2011–2013). 2122: 2111: 2108: 2082: 2071: 2017: 1997: 1973: 1949: 1838: 1643: 1634:(10.7 years) 1571:Beryllium-10 1523: 1509: 1495: 1491: 1475: 1456: 1444: 1427: 1423: 1410: 1378: 1371: 1362: 1333: 1329: 1202: 1187: 1163: 1146: 1119: 1096: 1029: 1020: 1009: 1005: 999: 995: 987:275 ± 32 GeV 977: 971: 967: 953: 911: 875:Solar System 872: 847: 836: 824: 818: 814: 810: 805: 788: 784: 764: 754: 739:radio galaxy 732: 703: 693: 673: 660: 636:James Cronin 607: 603: 601: 582: 567: 563:Pierre Auger 555: 538: 502: 500: 493: 484: 477: 457: 440:free balloon 433: 421: 418:Eiffel Tower 414:electrometer 410:Theodor Wulf 407: 366: 337:OMG particle 289: 280: 257: 221: 205: 199: 180:cathode rays 163: 161: 148:TXS 0506+056 125: 114: 86:Solar System 61: 57: 56: 33: 9370:Cosmic rays 9330:Spaceflight 9306:Mathematics 9180:Outer space 9090:Cosmic dust 9055:Abiogenesis 8967:Unconfirmed 8923:Heavy water 8763:Ethanethiol 8678:Cyanoallene 8668:Acetic acid 8638:Methylamine 8522:Diacetylene 8437:Formic acid 8427:Cyanomethyl 8085:Diazenylium 8075:CCP radical 7951:(molecular) 7935:(molecular) 7904:(molecular) 7386:Ultraviolet 7381:Radio waves 7153:Cosmic Rays 7048:Cosmic Rays 6700:Sloan, T.; 6627:13 November 6315:, May 2005. 6096:24 February 6070:24 February 6039:7 September 5958:7 September 5933:7 September 5743:11 February 5616:22 February 5588:EurekAlert! 5460:23 February 5421:23 February 5259:"How many?" 5180:11 February 4794:26 December 3684:Cosmic Rays 3667:11 February 3641:11 February 3354:17 February 3216:17 February 3129:14 December 2986:11 December 2710:27 February 2681:26 December 2118:flipped bit 2074:Airbus A330 2047:transistors 2045:, but with 2039:electronics 2035:soft errors 1788:Terrestrial 1617:Chlorine-36 1604:(14.3 days) 1008:designated 993:particles. 991:dark matter 742:Centaurus A 708:Crab Nebula 676:solar cycle 644:Alan Watson 608:fast timing 574:radiosondes 541:Bruno Rossi 479:Bruno Rossi 436:Victor Hess 249:antiprotons 218:Composition 168:optical ray 117:Victor Hess 110:heliosphere 58:Cosmic rays 9364:Categories 9095:Cosmic ray 9037:Silylidyne 9000:Hemolithin 8975:Anthracene 8892:Deuterated 8873:Pyrimidine 8683:Ethanimine 8546:Ketenimine 8402:Butadiynyl 8226:Thioformyl 8080:Chloronium 7567:and health 7565:Radiation 7434:Cosmic ray 6760:1712.09367 6605:11 January 5993:2001.09190 5771:Japan NIRS 5711:28 October 4915:1701.07305 4818:(11): L9. 4732:1709.07321 4658:2108/55474 4425:(4): 489. 3832:(3): 606. 3657:Hess, V.F. 3628:Hess, V.F. 3616:: 719–721. 3567:1808.02927 3550:Hess, V.F. 3435:: 811–813. 3057:1711.11432 3015:31 October 2920:1807.08794 2859:1603.07730 2632:References 2272:See also: 2254:See also: 2229:Ordovician 2067:ECC memory 2043:satellites 2020:electronic 2012:See also: 1862:Artificial 1779:, C, etc.) 1686:Princeton 1678:Radiation 1632:Krypton-85 1544:spallation 1542:(stable): 1540:Hydrogen-1 1514:, such as 1463:smartphone 1400:ionization 1306:(100  1182:heliopause 1166:solar wind 1002:antihelium 962:See also: 857:, such as 795:anisotropy 712:supernovae 680:solar wind 670:Modulation 533:Kolhörster 524:Jacob Clay 503:cosmic ray 377:ionization 243:, such as 241:antimatter 201:gamma rays 188:alpha rays 184:canal rays 141:gamma rays 9027:Phosphine 8895:molecules 8828:fullerene 8728:Acetamide 8532:Formamide 8412:Cyanamide 8266:Acetylene 8241:Tricarbon 8152:Methylene 8137:Isoformyl 8042:Triatomic 7815:Molecules 7721:Half-life 7594:Dosimetry 7429:Gamma ray 7376:Microwave 7366:Starlight 7327:Radiation 7239:1012.5068 7099:Phys. Rev 6947:Phys. Rev 6555:CiteSeerX 6489:Space.com 6446:0809.0899 6034:210920566 6018:1476-4687 5671:119237295 5646:1103.0031 5293:Auger.org 5273:17 August 5263:Auger.org 5156:122726107 4633:1103.4055 4597:Space.com 4243:121904361 4201:1364-5021 3811:123901197 3536:118487938 3511:1002.1810 3488:118487938 3463:1002.1810 3326:119407673 3246:9 October 3124:Vox Media 2961:133261745 2945:0036-8075 2774:1302.3307 2480:Voyager 2 2474:Voyager 1 2411:Satellite 2192:lightning 2178:near the 2172:sea level 2113:Voyager 2 2087:times of 2085:coherence 1981:0 to tens 1957:0 to tens 1689:Wa State 1577:Carbon-14 1516:carbon-14 1280:(10  1194:longitude 1107:molecules 1021:Discovery 942:manganese 918:beryllium 891:beryllium 879:Milky Way 859:electrons 686:network. 539:In 1930, 512:electrons 434:In 1912, 408:In 1909, 396:Discovery 385:radiation 343:(56  272:neutrinos 245:positrons 192:beta rays 162:The term 158:Etymology 150:in 2018, 137:neutrinos 133:supernova 102:deflected 9014:Linear C 8995:Graphene 8907:Ammonium 8708:Acrolein 8571:Propynal 8556:Methanol 8527:Ethylene 8396:Ammonium 8171:Nitroxyl 7995:Sulfanyl 7939:Imidogen 7933:Nitrogen 7902:Hydrogen 7847:Argonium 7824:Diatomic 7371:Sunlight 7356:Infrared 6890:27127953 6846:41229823 6838:11863949 6785:33930965 6777:30481053 6595:Discover 6573:Archived 6508:Discover 6471:11942132 6191:23723233 6144:23723213 6026:32848227 5953:phys.org 5907:Archived 5892:BBC News 5830:Archived 5810:Archived 5790:Archived 5757:UNSCEAR 5550:Archived 5532:Archived 5451:Archived 5449:. 2006. 5243:19 April 5048:Archived 5044:25166975 4981:Archived 4948:25279617 4880:Archived 4876:25279616 4757:28935800 4701:21 March 4666:21385721 4603:20 March 4573:17 March 4536:17 March 4499:17 March 4404:16587882 4311:"(none)" 4296:Archived 4205:Archived 4103:Archived 3765:Archived 3659:(1936). 3630:(1936). 3180:32975102 3103:23 March 3076:85540966 2953:30002248 2884:26982725 2807:29815601 2799:23413352 2540:See also 2524:Archived 2379:QuarkNet 2359:MARIACHI 2319:GRAPES-3 2262:Pliocene 1950:Subtotal 1871:0.03–2.0 1846:1.0–13.0 1839:Subtotal 1756:Internal 1734:0.2–10.0 1556:Helium-4 1550:Helium-3 1190:latitude 1115:neutrons 1067:detector 1034:1.1 × 10 938:vanadium 934:titanium 930:scandium 903:HZE ions 656:Big Bang 355:10  331:10  323:. At 50 311:10  237:HZE ions 9354:Science 9294:Physics 9280:Portals 9160:Kerogen 9047:Related 8990:Glycine 8943:Propyne 8902:Ammonia 8800:Benzene 8795:Acetone 8787:or more 8758:Propene 8743:Ethanol 8633:Propyne 8452:Methane 8321:Ketenyl 8271:Ammonia 7582:chronic 7264:7635998 7244:Bibcode 7200:Bibcode 7179:Bibcode 7107:Bibcode 7071:Bibcode 6994:Bibcode 6955:Bibcode 6870:Bibcode 6818:Bibcode 6718:Bibcode 6673:Bibcode 6547:Bibcode 6451:Bibcode 6382:Bibcode 6355:4157226 6335:Bibcode 6280:YouTube 6259:12 July 6171:Bibcode 6163:Science 6124:Bibcode 6116:Science 5998:Bibcode 5651:Bibcode 5566:"CREDO" 5485:Bibcode 5331:Bibcode 5303:15 July 5201:Bibcode 5128:Bibcode 5104:5863020 5084:Bibcode 5022:Bibcode 4956:2585508 4920:Bibcode 4854:Bibcode 4820:Bibcode 4765:3679232 4737:Bibcode 4719:Science 4674:1234739 4638:Bibcode 4620:Science 4462:Bibcode 4427:Bibcode 4395:1076396 4364:Bibcode 4323:Bibcode 4321:: 341. 4266:Bibcode 4179:Bibcode 4149:4132258 4129:Bibcode 4063:Bibcode 4009:Bibcode 3974:Bibcode 3939:Bibcode 3904:Bibcode 3869:Bibcode 3834:Bibcode 3791:Bibcode 3721:Bibcode 3516:Bibcode 3468:Bibcode 3306:Bibcode 3171:7968484 2925:Bibcode 2907:Science 2892:4461199 2864:Bibcode 2779:Bibcode 2760:Science 2516:PERDaix 2507:(CREAM) 2399:VERITAS 2364:Milagro 2349:KASCADE 2344:IceCube 2227:of the 2158:on the 2135:on the 1910:) with 1887:Fallout 1865:Medical 1819:0.3–1.0 1794:0.3–1.0 1762:0.2–1.0 1725:Natural 1708:average 1695:Remark 1682:UNSCEAR 1562:Tritium 1501:Effects 1357:VERITAS 1040:ratio. 914:lithium 887:lithium 855:leptons 851:hadrons 716:quasars 690:Sources 646:of the 379:of the 363:History 276:neutron 229:protons 196:photons 166:(as in 108:or the 98:surface 70:protons 40:Cosmic 9211:Tholin 9032:Pyrene 8477:Silane 8447:Ketene 7949:Oxygen 7764:, and 7262:  7177:: 98. 7162:  7145:  7135:  7054:  7040:  7030:  7016:  6924:  6888:  6844:  6836:  6783:  6775:  6557:  6513:7 July 6469:  6353:  6327:Nature 6228:31 May 6199:604569 6197:  6189:  6142:  6032:  6024:  6016:  5980:Nature 5697:  5669:  5368:  5211:  5154:  5102:  5042:  4954:  4946:  4874:  4763:  4755:  4672:  4664:  4402:  4392:  4384:  4241:  4199:  4147:  4121:Nature 3809:  3690:  3534:  3486:  3406:  3379:  3324:  3267:COSMOS 3178:  3168:  3074:  2959:  2951:  2943:  2890:  2882:  2845:Nature 2805:  2797:  2737:  2653:  2463:PAMELA 2448:HEAO 3 2444:HEAO 2 2440:HEAO 1 2299:CHICOS 2217:cancer 2089:qubits 1925:0.0052 1922:Others 1813:Cosmic 1720:Japan 1703:Source 1663:  1658:  1654:  1650:  1646:  1489:time. 1387:, and 1196:, and 1168:, the 1122:mesons 1111:x-rays 1030:AMS-01 1026:STS-91 1010:AMS-01 1006:AMS-02 978:AMS-02 940:, and 920:, and 899:helium 893:, and 853:, and 817:) and 769:  761:PAMELA 718:, and 704:et al. 696:Zwicky 663:  642:, and 632:Pampas 325:joules 286:Energy 274:. The 207:X-rays 190:, and 145:blazar 9318:Stars 9197:(PAH) 8785:atoms 8720:atoms 8660:atoms 8658:Eight 8588:atoms 8586:Seven 8494:atoms 8388:atoms 8258:atoms 8246:Water 8176:Ozone 8118:(HNC) 8112:(HCN) 7577:acute 7474:X-ray 7361:Light 7260:S2CID 7234:arXiv 7095:(PDF) 6984:arXiv 6943:(PDF) 6842:S2CID 6808:arXiv 6781:S2CID 6755:arXiv 6576:(PDF) 6533:(PDF) 6467:S2CID 6441:arXiv 6351:S2CID 6195:S2CID 6030:S2CID 5988:arXiv 5848:. In 5737:(PDF) 5730:(PDF) 5667:S2CID 5641:arXiv 5454:(PDF) 5440:(PDF) 5415:(PDF) 5408:(PDF) 5152:S2CID 5100:S2CID 5074:arXiv 5051:(PDF) 5010:(PDF) 4984:(PDF) 4973:(PDF) 4952:S2CID 4910:arXiv 4883:(PDF) 4842:(PDF) 4761:S2CID 4727:arXiv 4670:S2CID 4628:arXiv 4567:(PDF) 4556:(PDF) 4530:(PDF) 4519:(PDF) 4386:86841 4382:JSTOR 4239:S2CID 4208:(PDF) 4167:(PDF) 4145:S2CID 4106:(PDF) 4095:(PDF) 3807:S2CID 3768:(PDF) 3753:(PDF) 3562:arXiv 3532:S2CID 3506:arXiv 3484:S2CID 3458:arXiv 3322:S2CID 3296:arXiv 3192:CERN 3072:S2CID 3052:arXiv 2957:S2CID 2915:arXiv 2888:S2CID 2854:arXiv 2803:S2CID 2769:arXiv 2624:UHECR 2521:TIGER 2354:MAGIC 2329:HEGRA 2314:GAMMA 2309:CRIPT 2304:CLOUD 2141:Earth 1974:Total 1966:2.311 1937:0.001 1890:0.007 1706:World 1692:MEXT 1396:Lexan 1140:, or 1126:kaons 1103:atoms 1018: 922:boron 895:boron 863:pions 802:Types 765:Fermi 546:muons 529:Bothe 389:radon 303:, 14 268:pions 264:muons 260:pions 143:from 8718:Nine 8386:Five 8296:HCCN 8256:Four 8216:SiNC 7160:ISBN 7143:ISBN 7133:ISBN 7052:ISBN 7038:ISBN 7028:ISBN 7014:ISBN 6922:ISBN 6886:PMID 6834:PMID 6773:PMID 6629:2013 6607:2018 6515:2013 6261:2017 6230:2013 6187:PMID 6140:PMID 6098:2013 6072:2013 6041:2020 6022:PMID 6014:ISSN 5960:2020 5935:2020 5745:2010 5713:2011 5695:ISBN 5618:2013 5462:2013 5423:2013 5366:ISBN 5305:2015 5275:2012 5245:2012 5209:ISBN 5182:2010 5174:GSFC 5040:PMID 4992:2014 4944:PMID 4872:PMID 4796:2012 4753:PMID 4703:2013 4662:PMID 4605:2013 4575:2013 4538:2013 4501:2013 4400:PMID 4197:ISSN 3688:ISBN 3669:2010 3643:2010 3404:ISBN 3377:ISBN 3356:2013 3248:2022 3218:2013 3176:PMID 3131:2022 3105:2019 3017:2012 2988:2012 2949:PMID 2941:ISSN 2880:PMID 2795:PMID 2735:ISBN 2712:2013 2683:2017 2651:ISBN 2500:BESS 2477:and 2369:NMDB 2324:HAWC 2219:and 2145:Mars 2031:CPUs 1990:3.81 1987:3.61 1984:6.20 1978:3.00 1963:0.66 1960:3.25 1934:0.13 1931:0.25 1928:0–20 1902:0.01 1893:0–1+ 1880:2.30 1877:0.53 1874:3.00 1868:0.60 1855:1.50 1852:2.95 1849:2.95 1843:2.40 1828:0.30 1825:0.26 1822:0.31 1816:0.39 1803:0.40 1800:0.29 1797:0.19 1791:0.48 1771:0.40 1768:0.40 1765:0.16 1759:0.29 1743:0.40 1740:2.00 1737:2.29 1731:1.26 1700:Type 1459:CMOS 1355:The 1105:and 1061:Moon 1059:The 1038:flux 945:ions 674:The 606:and 531:and 520:Java 351:(4.8 327:(3.1 307:(1.4 262:and 139:and 127:the 64:are 42:flux 23:and 9009:NCO 8909:ion 8816:, C 8783:Ten 8492:Six 8398:ion 7252:doi 7208:doi 7196:191 7175:424 7115:doi 7079:doi 7002:doi 6963:doi 6914:doi 6878:doi 6866:116 6826:doi 6765:doi 6726:doi 6681:doi 6565:doi 6459:doi 6390:doi 6343:doi 6331:183 6278:on 6179:doi 6167:340 6132:doi 6120:340 6006:doi 5984:584 5659:doi 5493:doi 5339:doi 5327:234 5144:hdl 5136:doi 5124:366 5092:doi 5070:565 5030:doi 5018:110 4936:hdl 4928:doi 4906:113 4862:doi 4850:113 4816:102 4745:doi 4723:357 4654:hdl 4646:doi 4624:332 4470:doi 4435:doi 4390:PMC 4372:doi 4331:doi 4319:177 4274:doi 4262:122 4231:doi 4187:doi 4175:159 4137:doi 4125:135 4071:doi 4017:doi 3982:doi 3947:doi 3912:doi 3877:doi 3842:doi 3799:doi 3729:doi 3717:132 3524:doi 3476:doi 3314:doi 3166:PMC 3158:doi 3062:doi 2933:doi 2911:361 2872:doi 2850:531 2787:doi 2765:339 2160:MSL 2156:RAD 2143:to 2133:RAD 2055:RAM 2051:IBM 1954:0.6 1728:Air 1661:2.2 1467:app 1374:ISS 1308:EeV 1282:PeV 1263:TeV 1238:GeV 1024:on 815:GCR 746:erg 610:of 381:air 371:by 359:). 345:mph 333:GeV 319:in 247:or 204:or 164:ray 82:Sun 72:or 60:or 9366:: 8826:70 8818:60 8814:60 8812:(C 8537:HC 7760:, 7756:, 7258:. 7250:. 7242:. 7230:35 7228:. 7206:. 7194:. 7173:. 7113:. 7103:51 7101:. 7097:. 7077:. 7067:83 7065:. 7000:. 6992:. 6980:62 6978:. 6961:. 6951:50 6949:. 6945:. 6920:. 6884:. 6876:. 6864:. 6840:. 6832:. 6824:. 6816:. 6804:88 6802:. 6779:. 6771:. 6763:. 6751:19 6749:. 6724:. 6712:. 6708:. 6679:. 6669:33 6667:. 6663:. 6645:, 6593:. 6571:. 6563:. 6553:. 6543:81 6541:. 6535:. 6506:. 6487:. 6465:. 6457:. 6449:. 6437:35 6435:. 6412:. 6388:. 6378:56 6376:. 6372:. 6349:. 6341:. 6329:. 6311:, 6294:. 6247:. 6219:. 6207:^ 6193:. 6185:. 6177:. 6165:. 6152:^ 6138:. 6130:. 6118:. 6106:^ 6089:. 6058:. 6028:. 6020:. 6012:. 6004:. 5996:. 5982:. 5978:. 5951:. 5926:. 5890:. 5873:. 5852:, 5665:. 5657:. 5649:. 5637:83 5635:. 5604:. 5586:. 5568:. 5514:. 5491:. 5481:24 5479:. 5442:. 5389:. 5337:. 5325:. 5291:. 5261:. 5231:. 5207:. 5172:. 5150:. 5142:. 5134:. 5122:. 5098:. 5090:. 5082:. 5068:. 5046:. 5038:. 5028:. 5016:. 5012:. 4979:. 4975:. 4950:. 4942:. 4934:. 4926:. 4918:. 4904:. 4900:. 4878:. 4870:. 4860:. 4848:. 4844:. 4814:. 4782:. 4759:. 4751:. 4743:. 4735:. 4721:. 4691:. 4668:. 4660:. 4652:. 4644:. 4636:. 4622:. 4595:. 4558:. 4521:. 4491:. 4468:. 4458:83 4456:. 4433:. 4423:74 4421:. 4398:. 4388:. 4380:. 4370:. 4360:20 4358:. 4354:. 4329:. 4317:. 4313:. 4272:. 4260:. 4237:. 4227:37 4225:. 4203:. 4195:. 4185:. 4173:. 4169:. 4143:. 4135:. 4123:. 4101:. 4069:, 4059:11 4057:, 4038:. 4015:. 4005:74 4003:. 3980:. 3970:74 3968:. 3945:. 3935:45 3933:. 3910:. 3900:43 3898:. 3875:. 3865:43 3863:. 3840:. 3830:36 3828:. 3805:. 3797:. 3787:56 3785:. 3761:30 3759:. 3755:. 3727:. 3715:. 3711:. 3634:. 3614:16 3591:14 3558:13 3530:. 3522:. 3514:. 3500:. 3482:. 3474:. 3466:. 3452:. 3433:11 3347:. 3320:. 3312:. 3304:. 3292:18 3290:. 3265:. 3234:. 3209:. 3174:. 3164:. 3154:71 3152:. 3148:. 3122:. 3070:. 3060:. 3044:. 2996:^ 2955:. 2947:. 2939:. 2931:. 2923:. 2909:. 2886:. 2878:. 2870:. 2862:. 2848:. 2815:^ 2801:. 2793:. 2785:. 2777:. 2763:. 2749:^ 2729:. 2691:^ 2673:. 2446:, 2442:, 2231:. 1717:US 1714:US 1673:) 1529:. 1416:. 1393:mm 1318:10 1310:) 1304:10 1292:10 1284:) 1278:10 1268:1 1265:) 1259:10 1248:10 1240:) 1234:10 1221:) 1219:eV 1200:. 1192:, 1174:AU 1136:, 1132:, 951:. 936:, 932:, 916:, 889:, 722:. 313:eV 214:. 186:, 182:, 123:. 112:. 9282:: 9016:5 9007:2 9005:H 8952:D 8950:2 8948:N 8824:C 8541:N 8539:4 8161:H 8159:2 8157:N 7799:e 7792:t 7785:v 7319:e 7312:t 7305:v 7286:. 7266:. 7254:: 7246:: 7236:: 7214:. 7210:: 7202:: 7185:. 7181:: 7121:. 7117:: 7109:: 7085:. 7081:: 7073:: 7008:. 7004:: 6996:: 6986:: 6969:. 6965:: 6957:: 6930:. 6916:: 6892:. 6880:: 6872:: 6848:. 6828:: 6820:: 6810:: 6787:. 6767:: 6757:: 6734:. 6728:: 6720:: 6714:8 6689:. 6683:: 6675:: 6631:. 6609:. 6567:: 6549:: 6517:. 6473:. 6461:: 6453:: 6443:: 6398:. 6392:: 6384:: 6357:. 6345:: 6337:: 6298:. 6263:. 6232:. 6201:. 6181:: 6173:: 6146:. 6134:: 6126:: 6100:. 6074:. 6043:. 6008:: 6000:: 5990:: 5962:. 5937:. 5877:. 5747:. 5715:. 5673:. 5661:: 5653:: 5643:: 5620:. 5590:. 5572:. 5518:. 5499:. 5495:: 5487:: 5464:. 5425:. 5393:. 5374:. 5345:. 5341:: 5333:: 5307:. 5277:. 5247:. 5217:. 5203:: 5184:. 5158:. 5146:: 5138:: 5130:: 5106:. 5094:: 5086:: 5076:: 5032:: 5024:: 4994:. 4958:. 4938:: 4930:: 4922:: 4912:: 4864:: 4856:: 4826:. 4822:: 4798:. 4767:. 4747:: 4739:: 4729:: 4705:. 4676:. 4656:: 4648:: 4640:: 4630:: 4607:. 4577:. 4540:. 4503:. 4476:. 4472:: 4464:: 4441:. 4437:: 4429:: 4406:. 4374:: 4366:: 4339:. 4333:: 4325:: 4280:. 4276:: 4268:: 4245:. 4233:: 4189:: 4181:: 4151:. 4139:: 4131:: 4077:. 4073:: 4065:: 4040:5 4023:. 4019:: 4011:: 3988:. 3984:: 3976:: 3953:. 3949:: 3941:: 3918:. 3914:: 3906:: 3883:. 3879:: 3871:: 3848:. 3844:: 3836:: 3813:. 3801:: 3793:: 3737:. 3731:: 3723:: 3696:. 3671:. 3645:. 3570:. 3564:: 3538:. 3526:: 3518:: 3508:: 3502:3 3490:. 3478:: 3470:: 3460:: 3454:3 3412:. 3385:. 3358:. 3328:. 3316:: 3308:: 3298:: 3250:. 3220:. 3182:. 3160:: 3133:. 3107:. 3078:. 3064:: 3054:: 3019:. 2990:. 2963:. 2935:: 2927:: 2917:: 2894:. 2874:: 2866:: 2856:: 2831:. 2809:. 2789:: 2781:: 2771:: 2743:. 2714:. 2685:. 2659:. 2622:( 1899:– 1896:– 1777:K 1583:) 1316:× 1314:1 1302:× 1300:1 1290:× 1288:1 1276:× 1274:1 1261:( 1257:× 1255:1 1246:× 1244:1 1236:( 1232:× 1230:1 976:( 833:. 813:( 772:J 357:J 353:× 329:× 309:× 31:.

Index

Cosmic background radiation
Cosmic background (disambiguation)
Cosmic Ray (film)

flux

high-energy particles
protons
atomic nuclei
speed of light
Sun
Solar System
Earth's atmosphere
showers of secondary particles
surface
deflected
magnetosphere
heliosphere
Victor Hess
Nobel Prize in Physics
Fermi Space Telescope
supernova
neutrinos
gamma rays
blazar
TXS 0506+056
active galactic nuclei
optical ray
electromagnetic radiation
intrinsic mass

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.