Knowledge

Danheiser benzannulation

Source 📝

108: 148: 588: 531: 510: 554: 539: 199: 227: 431: 484: 207: 322: 339: 608: 359: 267: 235: 310: 465: 569: 329:
Diazoketones can be synthesized in one-step from readily available ketones or carboxylic acid precursors by the addition of diazomethane to acyl chlorides. A diazo group transfer method can be used to produce α,ÎČ-unsaturated ketones. The traditional method of the deformylative diazo transfer approach
155:
The modified Danheiser benzannulation allows the synthesis of polycyclic aromatic and heteroaromatic systems. This also includes naphthalenes, benzofurans and indoles. This second generation aromatic annulation is achieved by irradiation of a solution of acetylene and a vinyl or aryl α-diazo ketone
218:
cleavage generating a vinyl ketene which reacts with an acetylene in a regiospecific cycloaddition (Scheme 4). Reversible electrocyclic cleavage of the 2-vinylcyclobutenone yields a dienylketene. The dienylketene then undergoes a six-electron electrocyclization to give a hexadienone intermediate
222:
In the case of the modified benzannulation reaction (Scheme 5); irradiation of the diazoketones induces the Wolff rearrangement yielding the vinyl ketene intermediate which reacts with the acetylene in a cycloaddition then a four-electron cleavage of the resulting 4-substituted cyclobutenone
317:
Activated alkyoxyacetylenes can be synthesized in a single-pot preparation of triisopropylsilyloxyacetylenes from esters. The silyloxyacetylenes are useful substitutes for alkoxyacetylenes in cycloaddition reactions with ketenes and vinylketenes affording cyclobutenones (Scheme 8).
505:
metabolite that was originally prepared via a key benzannulation step. An alkyne and a cyclobutenone were reacted to form a substituted phenol in a single step in a 73% yield (Scheme 14). Mycophenolic acid was prepared in nine steps in an overall yield of 17-19%.
164:
of a diazoketone to generate an aryl or vinylketene. These ketene intermediates cannot be isolated due to their high reactivity to form diketenes. These rearrangements are performed in the presence of unsaturated compounds which undergo cycloadditions with the
119:
annulation. This annulation provides an efficient route to form an aromatic ring in one step. It is a thermal combination of a substituted cyclobutenones with heterosubstituted acetylenes to produce highly substituted aromatic compounds, specifically phenols or
854:
Mak, X. Y., Crombie, L. A., Danheiser, R. L. “Synthesis of Polycyclic Benzofused Nitrogen Heterocycles via a Tandem Ynamide Benzannulation/Ring-Closing Metathesis Strategy. Application in a Formal Total Synthesis of (+)-FR900482.” J. Org. Chem. 2011, 76,
595:
An outstanding application of Danheiser benzannulation in 6-step synthesis of dictyodendrins was demonstrated by Zhang and Ready. They obtained the cyclobutenone substrate using a hetero- cycloaddition between aryl ynol ethers (aryl
334:
enolates for the Claisen formylation step. The key step in this procedure is activation of the ketone starting material to the corresponding α-trifluoroacetyl derivative using trifluoroethyltrifluoroacetate (TFEA) (Scheme 9).
98:
requires precursors that are often unstable to metallating reagents. Both these synthetic routes pose issues in total synthesis. In 1984 a new synthetic strategy was developed by Rick Danheiser to address these shortcomings.
426:
for a solvent dependent benzannulation reaction (Scheme 11). In dichloromethane the ratio of A:B is 78:22 with an overall combined yield of 90% and in THF the ratio has switched to 7:93 (A:B) with a combined yield of 85%.
441:-catalyzed benzannulations have been developed using allylic compounds and alkynes. This palladium catalyzed reaction has been performed in both inter- and intramolecular forms. The cationic palladium complex (BF 864:
Smith, A.B., III, Adams, C. M., Kozmin, S. A., Paone, D. V. “Total Synthesis of (−)-Cylindrocyclophanes A and F Exploiting the Reversible Nature of Olefin Cross Metathesis Reaction. J. Am. Chem. Soc. 2001, 123,
346:
Alkynes or ketenophiles can be synthesized by various methods. Trialkylsilyloxyalkynes have proven to be excellent ketenophiles. These alkynes react in the annulation reaction to form resorcinol monosilyl
678:, Brisbois, R G. James, J. Kowalczyk, Miller, R. F. “An Annulation Method for the Synthesis of Highly Substituted Polycyclic Aromatic and Heteroaromatic Compounds.” J. Am. Chem. Soc. 1990, 112, 3093-3100. 390:
Alkynyl ethers and siloxyacetylenes have proven to be the ideal pair for aromatic annulations. The reactions can be run with both activated heterosubstituted alkynes and un-activated acetlyenes. Alkynyl
741:
Kowaiski, C. J., Lak, S. G. “Cycloadditions Reactions of Silyloxyacetylenes with Ketenes: Synthesis of Cyclobutenones, Resorcinols, and Δ-6-Tetrahydrocannabinol.” J. Am. Chem. Soc. 1988, 110, 3693-3695.
845:
Lam, T. Y., Wang, Y., Danheiser, R. L. “Benzannulation via the Reaction of Ynamides and Vinylketenes. Application to the Synthesis of Highly Substituted Indoles.” J. Org. Chem. 2013, 78, 9396−9414.
124:(Scheme 1). This benzannulation reaction creates previously unaccessed aromatic substitution patterns. A variety of substituted aromatic rings can be prepared using this method including: phenols, 274:
For the second generation reaction starting with the diazoketone, the reaction is performed by irradiation of a 0.7 M solution of the ketone with 1.0-1.2 equivalents of acetylene. A low-pressure
527:
position can be functionalized with various substituents. Following the benzannulation reaction with various heterocyclization reactions can provide access to substituted indoles (Scheme 15).
175:
to generate a substituted aromatic ring (Scheme 2). Avoiding the use of the high energy cyclobutenone starting materials provides access to a wider variety of substituted aromatic compounds.
107: 604:
cole of dictyodendrins F, H and I. The successful usage of Danheiser benzannulation allows Zhang and Ready to achieve the so-far shortest synthesis of dictyodendrin natural products.
561:
Kowalski used the benzannulation reaction with siloxyacetylenes for the first time, reacting them with cyclobutenones to synthesize a substituted phenol for the total synthesis of Δ-6-
1988: 517:
In the synthesis of highly substituted indoles performed by Danheiser, the key step was a benzannulation reaction using cyclobutenone and ynamides to produce highly substituted
147: 4203: 587: 704: 806:
Danheiser, R.L., Nishida, A., Savariar, S., Trova, M. P. “Trialkylsiloxyalkynes: Synthesis and Aromatic Annulation Reactions. Tetrahedron Lett. 1988, 29, 4917-4920.
530: 223:
produces a dienylketene which then undergoes a six-electron electrocyclization to give the 2,4-cyclohexanedione which tautomerizes to the final aromatic product.
226: 580:
specifically (−)-Cylindrocyclophane F. He utilized the reaction of a siloxyalkyne and a cyclobutenone to construct the dihydroxyl aromatic intermediate for an
827:
Tsukada, N., Sugawara, S., Nakaoka, K., Inoue, Y. “Palladium-Catalyzed Benzannulation from Alkynes and Allylic Compounds.” J. Org. Chem. 2003, 68, 5961-5966.
509: 214:
The reaction proceeds via a cascade of four subsequent pericyclic reactions (Scheme 3). Heating a cyclobutenone above 80 Â°C initiates a four-electron
453:
forming the aromatic compound 1-methyl-2,3,4,5-tetrapropylbenzene (Scheme 12). It was determined that the presence of exactly one equivalent of palladium
794:
Danheiser, R.L., Miller, R. F., Brisbois, R. G., Park, S. Z. “An Improved Method for the Synthesis of α-Diazoketones.” J. Org. Chem. 1990, 55, 1959-1964.
321: 190:
to an alkyne or alkene (more specifically in the DÓ§tz reaction a carbene coordinated to a metal carbonyl group) to produce substituted aromatic phenols.
751: 3319: 3264: 627: 553: 338: 198: 4032: 3374: 3524: 2158: 727:
Danheiser, R. L., Gee, S. K. “Regiocontrolled Annulation Approach to Highly Substituted Aromatic Compounds.” J. Org. Chem. 1984, 49, 1672-1674.
4253: 4027: 1853: 989:
Zhang, Wenhan; Ready, Joseph M. (2017). "Total synthesis of the dictyodendrins as an arena to highlight emerging synthetic technologies".
3129: 1050: 59:
systems from acyclic precursors in a single step, with many substituents already in place. A common synthetic annulation reaction is the
568: 430: 302:
Cyclobutenone was originally synthesized from the 3-bromocyclobutanone and 3-chlorocyclobutanone precursors which were prepared from an
206: 3699: 2899: 1643: 776:
Dӧtz, K. H. “Synthesis of Naphthol Skeleton from Pentacarbonyk chromium(0) and Tolan.” Angew. Chem. Internat. Edit. 1975, 14, 644-645.
3864: 3794: 3774: 3269: 2436: 1898: 2317: 1873: 546:
Danheiser also used the benzannulation with ynamides for the synthesis of polycyclic benzofused nitrogen heterocycles followed by
464: 1086: 457:(from which the allyl group adds into the final aromatic structure) is crucial for the catalyzed benzannulation to occur in good 3619: 4097: 4047: 2451: 815:
PĂŒnner, F., Hilt, G. “Regioselective Solvent-dependent Benzannulation of Conjugated Enynes.” Chem. Commun. 2012, 48, 3617–3619.
355:
of (Z)-2-halovinyl ethers to form alkoxyacetylenes is one of the most well established routes of alkyne synthesis (Scheme 10).
3554: 358: 4193: 4002: 3659: 3639: 3599: 2406: 1349: 278:
at 254 nm in a photochemical reactor is used for 5–8 hours until all the diazoketone has been consumed as determined by
266: 63:. It is a useful reactions for forming six-membered rings and generating polycyclic compounds. It is the combination of the 4188: 4118: 4017: 3674: 3529: 3159: 3004: 2614: 2241: 2018: 538: 701: 4268: 4052: 3364: 2854: 2529: 3074: 4263: 3977: 3839: 3629: 3594: 55:
precursors resulting in the fusion of a new ring via two newly generated bonds. These strategies can be used to create
483: 4153: 4092: 3624: 3539: 3509: 3489: 3354: 3349: 2724: 2649: 2292: 2246: 2113: 1374: 415: 836:
Danheiser, R. L., Gee, S. K., Perez, J. J. “Total Synthesis of Mycophenolic Acid.” J. Am. Chem. Soc. 1986, 108, 807.
309: 4258: 4218: 4168: 3844: 3644: 3394: 3324: 1813: 1384: 3459: 2352: 2073: 4012: 3854: 3724: 3719: 3534: 3009: 2919: 2509: 2441: 2332: 1908: 1663: 1588: 1043: 414:(THF), unsymmetrical benzannulation products were obtained with good regioselectivity. These reactions utilize 3769: 4298: 4183: 4082: 4022: 3669: 3464: 3424: 3399: 3309: 2769: 1803: 1733: 1369: 1299: 2889: 4288: 3874: 3764: 3384: 3109: 2894: 2839: 2684: 2644: 2476: 2231: 1948: 1798: 4248: 3809: 3254: 764: 688: 263:
the ester side product formed from the reaction of the phenolic product with excess vinylketene (Scheme 6).
4283: 4198: 4173: 4148: 4133: 4057: 3972: 3869: 3829: 3694: 3649: 3414: 2959: 2944: 2809: 2599: 2267: 2023: 1703: 1678: 1648: 1239: 877:"The Ketene-Surrogate Coupling: Catalytic Conversion of Aryl Iodides into Aryl Ketenes through Ynol Ethers" 306:
and a ketene via two independent routes. Scheme 7 shows the preparation from cyclobutenone from an allene.
234: 4233: 4178: 4123: 3834: 3754: 3654: 3369: 3334: 3179: 3069: 2784: 2779: 2604: 2564: 2461: 2272: 2236: 2088: 2078: 1933: 1793: 1653: 1603: 1598: 1573: 1533: 1479: 1244: 1234: 1209: 4347: 4208: 3909: 3714: 3149: 3034: 2714: 2689: 2629: 2486: 2221: 1928: 1708: 1673: 1578: 1269: 1204: 1036: 934:"A Concise Total Synthesis of Dictyodendrins F, H, and I Using Aryl Ynol Ethers as Key Building Blocks" 523: 3499: 1763: 179: 4308: 4213: 4067: 3947: 3919: 3889: 3804: 3734: 3689: 3664: 3584: 3484: 3444: 3139: 2759: 2749: 2674: 2198: 2058: 2053: 2033: 1718: 1515: 1494: 1454: 1379: 247:
A typical Danheiser benzannulation reaction is run with a 0.4-2.0 M solution of the cyclobutenone in
1199: 4273: 4163: 4143: 4007: 3849: 3759: 3729: 3709: 3604: 3559: 3389: 3299: 3229: 3114: 3104: 2934: 2491: 2431: 2396: 2203: 2183: 2143: 1918: 1788: 1753: 1713: 1464: 1304: 1294: 1224: 251:
heated at 80-160 Â°C with a slight excess of the cyclobutenone. Upon addition of the alkyne a
3739: 4352: 4243: 4102: 3952: 3894: 3819: 3799: 3519: 3469: 3329: 3294: 3234: 3164: 2719: 2466: 2446: 2178: 2098: 1993: 1953: 1923: 1858: 1743: 1728: 1638: 1628: 1289: 1214: 1169: 547: 1504: 3982: 3704: 3454: 3434: 3409: 3359: 3274: 3249: 3204: 3174: 3154: 3124: 3089: 3044: 3019: 2994: 2879: 2804: 2584: 2277: 2213: 2013: 1738: 1658: 1344: 1319: 1096: 1091: 374:
in presence of excess cyclobutenone initiating the benzannulation reaction. Treatment with n-Bu
4318: 3904: 3859: 3574: 3544: 3514: 3449: 3429: 3344: 3339: 3304: 3259: 3244: 3239: 3219: 3209: 3144: 3134: 3064: 3014: 2534: 2337: 1913: 1868: 1698: 1688: 1434: 1359: 1154: 1116: 406:. This type of benzannulation involves a cycloaddition followed by a 1,3-hydrogen shift. In 84: 1364: 111:
Scheme 1: Danheiser Benzannulation Reaction of an Alkyne and a Cyclobutenone(X= OR, SR, NR2)
4087: 4037: 3987: 3967: 3957: 3814: 3789: 3504: 3494: 3379: 3194: 3189: 3119: 2904: 2704: 2664: 2594: 2559: 2514: 2481: 2347: 2322: 2302: 2123: 2083: 2043: 2008: 1938: 1693: 1563: 1538: 1076: 562: 477: 279: 171:
generated ketenes. When ketenes are formed in the presence of alkynes they proceed through
8: 4293: 4278: 3924: 3899: 3884: 3879: 3609: 3564: 3549: 3439: 3419: 3314: 3199: 3184: 3029: 2974: 2964: 2929: 2694: 2569: 2544: 2456: 2312: 2297: 2282: 2103: 2048: 1818: 1668: 1613: 1484: 1399: 1259: 1184: 577: 352: 256: 172: 161: 60: 52: 16:
Technique used to create highly substituted phenols in a single step in organic chemistry
4303: 2954: 2138: 1329: 219:
which rapidly tautomerizes to yield a highly substituted phenol or naphthol structures.
4042: 3992: 3962: 3824: 3614: 3404: 3289: 3224: 3214: 2979: 2909: 2874: 2869: 2849: 2844: 2789: 2699: 2549: 2411: 2401: 2307: 2093: 2038: 1968: 1888: 1783: 1683: 1618: 1543: 1389: 1254: 1189: 1174: 966: 933: 909: 876: 450: 291: 275: 3779: 3099: 2984: 2949: 2914: 2859: 2814: 2729: 2709: 2659: 2654: 2624: 2609: 2519: 2426: 2362: 2327: 2153: 2028: 1903: 1828: 1808: 1723: 1558: 1553: 1499: 1409: 1314: 1274: 1229: 1111: 1106: 1071: 1014: 1006: 971: 953: 914: 896: 675: 581: 496: 458: 28: 24: 2774: 637: 600:
precursors), and the following benzannulation enabled the rapid construction of the
4313: 4158: 4128: 4072: 3997: 3929: 3684: 3634: 3479: 3284: 3059: 3054: 2999: 2989: 2764: 2574: 2554: 2524: 2421: 2357: 2342: 2173: 2128: 2118: 2108: 2003: 1983: 1978: 1963: 1958: 1838: 1833: 1773: 1758: 1748: 1593: 1583: 1449: 1439: 1339: 1334: 1309: 1249: 1101: 1060: 998: 961: 945: 904: 888: 641: 632: 472:
This catalyzed reaction was also optimized for allyl substrates with catalytic CHCl
88: 64: 1429: 702:
Regioselective [4+2] Benzannulation: Synthesis of Polysubstituted Benzenes
4223: 3914: 3749: 3744: 3039: 3024: 2969: 2924: 2884: 2834: 2799: 2794: 2739: 2734: 2669: 2619: 2539: 2367: 2251: 2226: 2188: 2163: 2148: 2133: 2068: 1943: 1893: 1883: 1863: 1823: 1633: 1623: 1608: 1404: 1324: 1194: 1164: 1149: 1144: 711:." Chemistry Department. University of Illinois, 20 Nov. 2003. Web. 23 Nov. 2014. 708: 411: 407: 379: 283: 151:
Scheme 2:Danheiser Benzannulation Reaction with an α-Diazo Ketone(X= OR, SR, NR2)
785:
Sieja, J. B. “Synthesis of Cyclobutenone.” J. Am. Chem. Soc.1971, 93, 2481-2483.
4228: 4138: 4077: 3169: 3079: 3049: 2824: 2679: 2416: 2193: 2063: 1878: 1848: 1548: 1444: 1219: 1081: 230:
Scheme 5a:Mechanism for the Formation of the Vinyl Ketene (Wolff Rearrangement)
157: 133: 36: 1028: 4341: 4238: 3939: 3784: 3679: 3474: 2864: 2829: 2819: 2754: 2744: 2634: 2471: 2287: 1998: 1973: 1843: 1489: 1474: 1459: 1354: 1284: 1264: 1179: 1010: 957: 900: 636:, 2nd ed. (the "Gold Book") (1997). Online corrected version: (2006–) " 330:
has been improved upon by substituting the trifluoroacetylation of generated
252: 215: 183: 645: 3279: 2639: 2391: 2168: 1768: 1568: 1419: 1414: 1279: 1134: 1018: 975: 918: 892: 591:
Scheme 18: Benzannulation towards the Synthesis of (−)-Cylindrocyclophane F
607: 550:(Scheme 16) for the total synthesis of (+)-FR900482, an anticancer agent. 1778: 1424: 1394: 1159: 949: 501: 423: 125: 56: 576:
The benzannulation reaction was used by Smith in the total synthesis of
351:
which can be de-protected under mild reaction conditions. Base-promoted
325:
Scheme 8:Synthesis of Alkyoxyacetylenes and Conversion to Cyclobutenones
4062: 3589: 2939: 1002: 392: 287: 129: 121: 95: 48: 534:
Scheme15a: Benzannulation Towards the Synthesis of Substituted Indoles
601: 438: 395:
and ynamines have been used as reactants in the annulation reaction.
141: 572:
Scheme 17: Synthesis of Δ-6-tetrahydrocannabinol via a Benzannulatio
342:
Scheme 9:Formation of Diazo Ketones by a Diazo Group Transfer Method
1469: 1139: 454: 260: 767:." Organic-Chemistry. Organic Chemistry Portal, Web. 09 Nov. 2014. 691:." Organic-Chemistry. Organic Chemistry Portal, Web. 06 Nov. 2014. 513:
Scheme 14:Benzannulation Toward the Synthesis of Mycophenolic Acid
1129: 518: 371: 367: 331: 248: 187: 167: 80: 32: 597: 446: 418:(dppp) substituted cobalt catalyst in the presence of powdered 403: 303: 137: 116: 752:
Strategic Applications of Named Reactions in Organic Synthesis
402:
have also been used for benzannulation reactions catalyzed by
87:
on aromatic precursors. However, these reactions can have low
410:, the symmetrical benzannulation products are yielded but in 399: 348: 202:
Scheme 3a: Reaction Mechanism of the Danheiser Benzannulation
68: 294:, are all appropriate solvents for the annulation reaction. 419: 557:
Scheme 16: Benzannulation Toward the Synthesis of FR900482
255:
occurs. The crude annulation product is treated with 10%
737: 735: 733: 468:
Scheme 12: Palladium catalyzed reaction with 4-octyne
382:
removes the siloxy groups to form the desired diols.
4204:
Erlenmeyer–Plöchl azlactone and amino-acid synthesis
730: 210:
Scheme 3b: Mechanism of the Benzannulation Reaction
491: 434:Scheme 11:Cobalt catalyzed Benzannulation Reaction 115:The Danheiser benzannulation is a regiocontrolled 3265:Divinylcyclopropane-cycloheptadiene rearrangement 4339: 1058: 3525:Thermal rearrangement of aromatic hydrocarbons 2159:Thermal rearrangement of aromatic hydrocarbons 932:Zhang, Wenhan; Ready, Joseph M. (2016-08-24). 802: 800: 723: 721: 719: 717: 671: 669: 667: 665: 663: 661: 659: 657: 655: 653: 449:when heated to 80 Â°C in the presence of 51:is defined as a transformation of one or more 4254:Lectka enantioselective beta-lactam synthesis 1514: 1044: 823: 821: 362:Scheme10:Synthesis of Trialkylsilyloxyalkynes 91:and are prone to over substitution. Directed 4033:Inverse electron-demand Diels–Alder reaction 1854:Heterogeneous metal catalyzed cross-coupling 606: 270:Scheme 6:Formation of the Ester Side Product 178:This reaction is quite complementary to the 3375:Lobry de Bruyn–Van Ekenstein transformation 797: 754:. Elsevier Inc.: Burlington, Massachusetts. 714: 650: 584:reaction to access the target (Scheme 18). 366:The synthesized alkynes are then heated in 160:. This reaction utilizes the photochemical 1051: 1037: 988: 931: 874: 818: 681: 3865:Petrenko-Kritschenko piperidone synthesis 3320:Fritsch–Buttenberg–Wiechell rearrangement 965: 908: 4028:Intramolecular Diels–Alder cycloaddition 938:Journal of the American Chemical Society 875:Zhang, Wenhan; Ready, Joseph M. (2014). 881:Angewandte Chemie International Edition 297: 74: 4340: 4048:Metal-centered cycloaddition reactions 3700:Debus–Radziszewski imidazole synthesis 1644:Bodroux–Chichibabin aldehyde synthesis 242: 4194:Diazoalkane 1,3-dipolar cycloaddition 4098:Vinylcyclopropane (5+2) cycloaddition 4003:Diazoalkane 1,3-dipolar cycloaddition 3775:Hurd–Mori 1,2,3-thiadiazole synthesis 3270:Dowd–Beckwith ring-expansion reaction 2437:Hurd–Mori 1,2,3-thiadiazole synthesis 1513: 1350:LFER solvent coefficients (data page) 1032: 3005:Sharpless asymmetric dihydroxylation 2242:Methoxymethylenetriphenylphosphorane 35:in a single step. It is named after 3130:Allen–Millar–Trippett rearrangement 313:Scheme 7:Synthesis of Cyclobutenone 13: 4269:Nitrone-olefin (3+2) cycloaddition 4264:Niementowski quinazoline synthesis 4053:Nitrone-olefin (3+2) cycloaddition 3978:Azide-alkyne Huisgen cycloaddition 3840:Niementowski quinazoline synthesis 3595:Azide-alkyne Huisgen cycloaddition 2900:Meerwein–Ponndorf–Verley reduction 2452:Leimgruber–Batcho indole synthesis 633:Compendium of Chemical Terminology 586: 567: 552: 537: 529: 508: 482: 463: 429: 357: 337: 320: 308: 265: 233: 225: 205: 197: 146: 106: 14: 4364: 4093:Trimethylenemethane cycloaddition 3795:Johnson–Corey–Chaykovsky reaction 3660:Cadogan–Sundberg indole synthesis 3640:Bohlmann–Rahtz pyridine synthesis 3600:Baeyer–Emmerling indole synthesis 2407:Cadogan–Sundberg indole synthesis 1899:Johnson–Corey–Chaykovsky reaction 416:1,3-bis(diphenylphosphino)propane 4189:Cook–Heilbron thiazole synthesis 4018:Hexadehydro Diels–Alder reaction 3845:Niementowski quinoline synthesis 3675:Cook–Heilbron thiazole synthesis 3620:Bischler–Möhlau indole synthesis 3530:Tiffeneau–Demjanov rearrangement 3160:Baker–Venkataraman rearrangement 2318:Horner–Wadsworth–Emmons reaction 1989:Mizoroki-Heck vs. Reductive Heck 1874:Horner–Wadsworth–Emmons reaction 1385:Neighbouring group participation 3725:Fiesselmann thiophene synthesis 3555:Westphalen–LettrĂ© rearrangement 3535:Vinylcyclopropane rearrangement 3365:Kornblum–DeLaMare rearrangement 3010:Epoxidation of allylic alcohols 2920:Noyori asymmetric hydrogenation 2855:Kornblum–DeLaMare rearrangement 2530:Gallagher–Hollander degradation 982: 925: 868: 858: 848: 839: 830: 809: 788: 779: 521:derivatives. In this case, the 492:Applications in Total Synthesis 83:were originally synthesized by 31:to generate highly substituted 4184:Chichibabin pyridine synthesis 3670:Chichibabin pyridine synthesis 3630:Blum–Ittah aziridine synthesis 3465:Ring expansion and contraction 1734:Cross dehydrogenative coupling 770: 757: 744: 694: 621: 1: 4154:Bischler–Napieralski reaction 4112:Heterocycle forming reactions 3765:Hemetsberger indole synthesis 3625:Bischler–Napieralski reaction 3540:Wagner–Meerwein rearrangement 3510:Sommelet–Hauser rearrangement 3490:Seyferth–Gilbert homologation 3355:Ireland–Claisen rearrangement 3350:Hofmann–Martius rearrangement 3110:2,3-sigmatropic rearrangement 2725:Corey–Winter olefin synthesis 2650:Barton–McCombie deoxygenation 2293:Corey–Winter olefin synthesis 2247:Seyferth–Gilbert homologation 2114:Seyferth–Gilbert homologation 750:KĂŒrti LĂĄszlĂł, Barbara CzakĂł. 614: 542:Scheme15b: Substituted Indole 487:Scheme 13 Palladium Catalyzed 476:and triphenylphosphine (dba = 445:) reacts with an excess of 4- 42: 4259:Lehmstedt–Tanasescu reaction 4219:Gabriel–Colman rearrangement 4174:Bucherer carbazole synthesis 4169:Borsche–Drechsel cyclization 4149:Bernthsen acridine synthesis 4134:Bamberger triazine synthesis 4119:Algar–Flynn–Oyamada reaction 3830:Nazarov cyclization reaction 3695:De Kimpe aziridine synthesis 3650:Bucherer carbazole synthesis 3645:Borsche–Drechsel cyclization 3415:Nazarov cyclization reaction 3395:Meyer–Schuster rearrangement 3325:Gabriel–Colman rearrangement 3075:Wolffenstein–Böters reaction 2960:Reduction of nitro compounds 2810:Grundmann aldehyde synthesis 2615:Algar–Flynn–Oyamada reaction 2024:Olefin conversion technology 2019:Nozaki–Hiyama–Kishi reaction 1814:Gabriel–Colman rearrangement 1704:Claisen-Schmidt condensation 1649:Bouveault aldehyde synthesis 193: 39:who developed the reaction. 7: 4234:Hantzsch pyridine synthesis 4013:Enone–alkene cycloadditions 3835:Nenitzescu indole synthesis 3755:Hantzsch pyridine synthesis 3720:Ferrario–Ackermann reaction 3370:Kowalski ester homologation 3335:Halogen dance rearrangement 3180:Benzilic acid rearrangement 2605:Akabori amino-acid reaction 2565:Von Braun amide degradation 2510:Barbier–Wieland degradation 2462:Nenitzescu indole synthesis 2442:Kharasch–Sosnovsky reaction 2333:Julia–Kocienski olefination 2237:Kowalski ester homologation 1934:Kowalski ester homologation 1909:Julia–Kocienski olefination 1664:Cadiot–Chodkiewicz coupling 1589:Aza-Baylis–Hillman reaction 1534:Acetoacetic ester synthesis 1245:Dynamic binding (chemistry) 1235:Conrotatory and disrotatory 1210:Charge remote fragmentation 102: 10: 4369: 4299:Robinson–Gabriel synthesis 4249:Kröhnke pyridine synthesis 4083:Retro-Diels–Alder reaction 4023:Imine Diels–Alder reaction 3810:Kröhnke pyridine synthesis 3425:Newman–Kwart rearrangement 3400:Mislow–Evans rearrangement 3310:Fischer–Hepp rearrangement 3255:Di-π-methane rearrangement 3035:Stephen aldehyde synthesis 2770:Eschweiler–Clarke reaction 2487:Williamson ether synthesis 1804:Fujiwara–Moritani reaction 1709:Combes quinoline synthesis 1674:Carbonyl olefin metathesis 1375:More O'Ferrall–Jencks plot 1300:Grunwald–Winstein equation 1270:Electron-withdrawing group 1205:Catalytic resonance theory 4309:Urech hydantoin synthesis 4289:Pomeranz–Fritsch reaction 4214:Fischer oxazole synthesis 4111: 3948:1,3-Dipolar cycloaddition 3938: 3920:Urech hydantoin synthesis 3890:Reissert indole synthesis 3875:Pomeranz–Fritsch reaction 3805:Knorr quinoline synthesis 3735:Fischer oxazole synthesis 3665:Camps quinoline synthesis 3585:1,3-Dipolar cycloaddition 3573: 3485:Semipinacol rearrangement 3460:Ramberg–BĂ€cklund reaction 3445:Piancatelli rearrangement 3385:McFadyen–Stevens reaction 3140:Alpha-ketol rearrangement 3088: 2895:McFadyen–Stevens reaction 2840:Kiliani–Fischer synthesis 2760:Elbs persulfate oxidation 2685:Bouveault–Blanc reduction 2645:Baeyer–Villiger oxidation 2583: 2500: 2477:Schotten–Baumann reaction 2380: 2353:Ramberg–BĂ€cklund reaction 2260: 2232:Kiliani–Fischer synthesis 2212: 2074:Ramberg–BĂ€cklund reaction 2059:Pinacol coupling reaction 2054:Piancatelli rearrangement 1949:Liebeskind–Srogl coupling 1799:Fujimoto–Belleau reaction 1522: 1516:List of organic reactions 1380:Negative hyperconjugation 1125: 1067: 4284:Pictet–Spengler reaction 4199:Einhorn–Brunner reaction 4164:Boger pyridine synthesis 4058:Oxo-Diels–Alder reaction 3973:Aza-Diels–Alder reaction 3870:Pictet–Spengler reaction 3770:Hofmann–Löffler reaction 3760:Hegedus indole synthesis 3730:Fischer indole synthesis 3605:Bartoli indole synthesis 3560:Willgerodt rearrangement 3390:McLafferty rearrangement 3300:Ferrier carbocyclization 3115:2,3-Wittig rearrangement 3105:1,2-Wittig rearrangement 2945:Parikh–Doering oxidation 2935:Oxygen rebound mechanism 2600:Adkins–Peterson reaction 2492:Yamaguchi esterification 2432:Hegedus indole synthesis 2397:Bartoli indole synthesis 2268:Bamford–Stevens reaction 2184:Weinreb ketone synthesis 2144:Stork enamine alkylation 1919:Knoevenagel condensation 1789:Ferrier carbocyclization 1679:Castro–Stephens coupling 1305:Hammett acidity function 1295:Free-energy relationship 1240:Curtin–Hammett principle 1225:Conformational isomerism 385: 21:Danheiser benzannulation 4244:Knorr pyrrole synthesis 4179:Bucherer–Bergs reaction 4124:Allan–Robinson reaction 4103:Wagner-Jauregg reaction 3895:Ring-closing metathesis 3820:Larock indole synthesis 3800:Knorr pyrrole synthesis 3655:Bucherer–Bergs reaction 3520:Stieglitz rearrangement 3500:SkattebĂžl rearrangement 3470:Ring-closing metathesis 3330:Group transfer reaction 3295:Favorskii rearrangement 3235:Cornforth rearrangement 3165:Bamberger rearrangement 3070:Wolff–Kishner reduction 2890:Markó–Lam deoxygenation 2785:Fleming–Tamao oxidation 2780:Fischer–Tropsch process 2467:Oxymercuration reaction 2447:Knorr pyrrole synthesis 2273:Barton–Kellogg reaction 2179:Wagner-Jauregg reaction 2099:Ring-closing metathesis 2089:Reimer–Tiemann reaction 2079:Rauhut–Currier reaction 1994:Nef isocyanide reaction 1954:Malonic ester synthesis 1924:Knorr pyrrole synthesis 1859:High dilution principle 1794:Friedel–Crafts reaction 1729:Cross-coupling reaction 1654:Bucherer–Bergs reaction 1639:Blanc chloromethylation 1629:Blaise ketone synthesis 1604:Baylis–Hillman reaction 1599:Barton–Kellogg reaction 1574:Allan–Robinson reaction 1480:Woodward–Hoffmann rules 1215:Charge-transfer complex 991:Natural Product Reports 646:10.1351/goldbook.A00367 548:ring-closing metathesis 238:Scheme 5b: Vinyl Ketene 71:Condensation reaction. 4209:Feist–Benary synthesis 3983:Bradsher cycloaddition 3953:4+4 Photocycloaddition 3910:Simmons–Smith reaction 3855:PaternĂČ–BĂŒchi reaction 3715:Feist–Benary synthesis 3705:Dieckmann condensation 3455:Pummerer rearrangement 3435:Oxy-Cope rearrangement 3410:Myers allene synthesis 3360:Jacobsen rearrangement 3275:Electrocyclic reaction 3250:Demjanov rearrangement 3205:Buchner ring expansion 3175:Beckmann rearrangement 3155:Aza-Cope rearrangement 3150:Arndt–Eistert reaction 3125:Alkyne zipper reaction 3045:Transfer hydrogenation 3020:Sharpless oxyamination 2995:Selenoxide elimination 2880:Lombardo methylenation 2805:Griesbaum coozonolysis 2715:Corey–Itsuno reduction 2690:Boyland–Sims oxidation 2630:Angeli–Rimini reaction 2278:Boord olefin synthesis 2222:Arndt–Eistert reaction 2214:Homologation reactions 2014:Nitro-Mannich reaction 1929:Kolbe–Schmitt reaction 1739:Cross-coupling partner 1659:Buchner ring expansion 1579:Arndt–Eistert reaction 1345:Kinetic isotope effect 1092:Rearrangement reaction 893:10.1002/anie.201405036 611: 592: 573: 558: 543: 535: 514: 488: 469: 435: 363: 343: 326: 314: 271: 239: 231: 211: 203: 152: 112: 85:substitution reactions 4068:Pauson–Khand reaction 3905:Sharpless epoxidation 3860:Pechmann condensation 3740:FriedlĂ€nder synthesis 3690:Davis–Beirut reaction 3545:Wallach rearrangement 3515:Stevens rearrangement 3450:Pinacol rearrangement 3430:Overman rearrangement 3345:Hofmann rearrangement 3340:Hayashi rearrangement 3305:Ferrier rearrangement 3260:Dimroth rearrangement 3245:Curtius rearrangement 3240:Criegee rearrangement 3220:Claisen rearrangement 3210:Carroll rearrangement 3145:Amadori rearrangement 3135:Allylic rearrangement 3015:Sharpless epoxidation 2750:Dess–Martin oxidation 2675:Bohn–Schmidt reaction 2535:Hofmann rearrangement 2338:Kauffmann olefination 2261:Olefination reactions 2199:Wurtz–Fittig reaction 2034:Palladium–NHC complex 1914:Kauffmann olefination 1869:Homologation reaction 1719:Corey–House synthesis 1699:Claisen rearrangement 1495:Yukawa–Tsuno equation 1455:Swain–Lupton equation 1435:Spherical aromaticity 1370:Möbius–HĂŒckel concept 1155:Aromatic ring current 1117:Substitution reaction 610: 590: 571: 556: 541: 533: 512: 486: 467: 433: 361: 341: 324: 312: 269: 237: 229: 209: 201: 150: 110: 4274:Paal–Knorr synthesis 4144:Barton–Zard reaction 4088:Staudinger synthesis 4038:Ketene cycloaddition 4008:Diels–Alder reaction 3988:Cheletropic reaction 3968:Alkyne trimerisation 3850:Paal–Knorr synthesis 3815:Kulinkovich reaction 3790:Jacobsen epoxidation 3710:Diels–Alder reaction 3505:Smiles rearrangement 3495:Sigmatropic reaction 3380:Lossen rearrangement 3230:Corey–Fuchs reaction 3195:Boekelheide reaction 3190:Bergmann degradation 3120:Achmatowicz reaction 2905:Methionine sulfoxide 2705:Clemmensen reduction 2665:Bergmann degradation 2595:Acyloin condensation 2560:Strecker degradation 2515:Bergmann degradation 2482:Ullmann condensation 2348:Peterson olefination 2323:Hydrazone iodination 2303:Elimination reaction 2204:Zincke–Suhl reaction 2124:Sonogashira coupling 2084:Reformatsky reaction 2044:Peterson olefination 2009:Nierenstein reaction 1939:Kulinkovich reaction 1754:Diels–Alder reaction 1714:Corey–Fuchs reaction 1694:Claisen condensation 1564:Alkyne trimerisation 1539:Acyloin condensation 1505:ÎŁ-bishomoaromaticity 1465:Thorpe–Ingold effect 1077:Elimination reaction 950:10.1021/jacs.6b06460 563:tetrahydrocannabinol 478:dibenzylideneacetone 298:Reagent Preparations 173:pericyclic reactions 75:Reaction development 4294:Prilezhaev reaction 4279:Pellizzari reaction 3958:(4+3) cycloaddition 3925:Van Leusen reaction 3900:Robinson annulation 3885:Pschorr cyclization 3880:Prilezhaev reaction 3610:Bergman cyclization 3565:Wolff rearrangement 3550:Weerman degradation 3440:Pericyclic reaction 3420:Neber rearrangement 3315:Fries rearrangement 3200:Brook rearrangement 3185:Bergman cyclization 3030:Staudinger reaction 2975:Rosenmund reduction 2965:Reductive amination 2930:Oppenauer oxidation 2720:Corey–Kim oxidation 2695:Cannizzaro reaction 2570:Weerman degradation 2545:Isosaccharinic acid 2457:Mukaiyama hydration 2313:Hofmann elimination 2298:Dehydrohalogenation 2283:Chugaev elimination 2104:Robinson annulation 2049:Pfitzinger reaction 1819:Gattermann reaction 1764:Wulff–Dötz reaction 1744:Dakin–West reaction 1669:Carbonyl allylation 1614:Bergman cyclization 1400:Kennedy J. P. Orton 1320:Hammond's postulate 1290:Flippin–Lodge angle 1260:Electromeric effect 1185:Beta-silicon effect 1170:Baker–Nathan effect 944:(33): 10684–10692. 765:Wolff Rearrangement 689:Robinson Annulation 578:cylindrocyclophanes 353:dehydrohalogenation 257:potassium hydroxide 243:Reaction conditions 180:Wulff–Dötz reaction 162:Wolff rearrangement 61:Robinson annulation 4043:McCormack reaction 3993:Conia-ene reaction 3825:Madelung synthesis 3615:Biginelli reaction 3405:Mumm rearrangement 3290:Favorskii reaction 3225:Cope rearrangement 3215:Chan rearrangement 2980:Rubottom oxidation 2910:Miyaura borylation 2875:Lipid peroxidation 2870:Lindgren oxidation 2850:Kornblum oxidation 2845:Kolbe electrolysis 2790:Fukuyama reduction 2700:Carbonyl reduction 2550:Marker degradation 2412:Diazonium compound 2402:Boudouard reaction 2381:Carbon-heteroatom 2308:Grieco elimination 2094:Rieche formylation 2039:Passerini reaction 1969:Meerwein arylation 1889:Hydroxymethylation 1784:Favorskii reaction 1684:Chan rearrangement 1619:Biginelli reaction 1544:Aldol condensation 1390:2-Norbornyl cation 1365:Möbius aromaticity 1360:Markovnikov's rule 1255:Effective molarity 1200:BĂŒrgi–Dunitz angle 1190:Bicycloaromaticity 1003:10.1039/C7NP00018A 707:2014-02-07 at the 612: 593: 574: 559: 544: 536: 515: 489: 470: 451:triphenylphosphine 436: 364: 344: 327: 315: 292:1,2-dichloroethane 276:mercury-vapor lamp 272: 240: 232: 212: 204: 153: 113: 4348:Organic reactions 4335: 4334: 4331: 4330: 4327: 4326: 4319:Wohl–Aue reaction 3963:6+4 Cycloaddition 3780:Iodolactonization 3100:1,2-rearrangement 3065:Wohl–Aue reaction 2985:Sabatier reaction 2950:Pinnick oxidation 2915:Mozingo reduction 2860:Leuckart reaction 2815:Haloform reaction 2730:Criegee oxidation 2710:Collins oxidation 2660:Benkeser reaction 2655:Bechamp reduction 2625:Andrussow process 2610:Alcohol oxidation 2520:Edman degradation 2427:Haloform reaction 2376: 2375: 2363:Takai olefination 2328:Julia olefination 2154:Takai olefination 2029:Olefin metathesis 1904:Julia olefination 1829:Grignard reaction 1809:Fukuyama coupling 1724:Coupling reaction 1689:Chan–Lam coupling 1559:Alkyne metathesis 1554:Alkane metathesis 1410:Phosphaethynolate 1315:George S. Hammond 1275:Electronic effect 1230:Conjugated system 1112:Stereospecificity 1107:Stereoselectivity 1072:Addition reaction 1061:organic reactions 887:(34): 8980–8984. 700:Chung, Won-jin. " 582:olefin metathesis 497:Mycophenolic acid 37:Rick L. Danheiser 29:organic chemistry 25:chemical reaction 4360: 4314:Wenker synthesis 4304:StollĂ© synthesis 4159:Bobbitt reaction 4129:Auwers synthesis 4073:Povarov reaction 3998:Cyclopropanation 3936: 3935: 3930:Wenker synthesis 3685:Darzens reaction 3635:Bobbitt reaction 3480:Schmidt reaction 3285:Enyne metathesis 3060:Whiting reaction 3055:Wharton reaction 3000:Shapiro reaction 2990:Sarett oxidation 2955:PrĂ©vost reaction 2765:Emde degradation 2575:Wohl degradation 2555:Ruff degradation 2525:Emde degradation 2422:Grignard reagent 2358:Shapiro reaction 2343:McMurry reaction 2210: 2209: 2174:Ullmann reaction 2139:StollĂ© synthesis 2129:Stetter reaction 2119:Shapiro reaction 2109:Sakurai reaction 2004:Negishi coupling 1984:Minisci reaction 1979:Michael reaction 1964:McMurry reaction 1959:Mannich reaction 1839:Hammick reaction 1834:Grignard reagent 1774:Enyne metathesis 1759:Doebner reaction 1749:Darzens reaction 1594:Barbier reaction 1584:Auwers synthesis 1511: 1510: 1485:Woodward's rules 1450:Superaromaticity 1440:Spiroaromaticity 1340:Inductive effect 1335:Hyperconjugation 1310:Hammett equation 1250:Edwards equation 1102:Regioselectivity 1053: 1046: 1039: 1030: 1029: 1023: 1022: 997:(8): 1010–1034. 986: 980: 979: 969: 929: 923: 922: 912: 872: 866: 862: 856: 852: 846: 843: 837: 834: 828: 825: 816: 813: 807: 804: 795: 792: 786: 783: 777: 774: 768: 761: 755: 748: 742: 739: 728: 725: 712: 698: 692: 685: 679: 673: 648: 625: 89:regioselectivity 79:Polysubstituted 65:Michael Addition 4368: 4367: 4363: 4362: 4361: 4359: 4358: 4357: 4338: 4337: 4336: 4323: 4224:Gewald reaction 4107: 3934: 3915:Skraup reaction 3750:Graham reaction 3745:Gewald reaction 3576: 3569: 3091: 3084: 3040:Swern oxidation 3025:Stahl oxidation 2970:Riley oxidation 2925:Omega oxidation 2885:Luche reduction 2835:Jones oxidation 2800:Glycol cleavage 2795:Ganem oxidation 2740:Davis oxidation 2735:Dakin oxidation 2670:Birch reduction 2620:Amide reduction 2586: 2579: 2540:Hooker reaction 2502: 2496: 2384: 2382: 2372: 2368:Wittig reaction 2256: 2252:Wittig reaction 2227:Hooker reaction 2208: 2189:Wittig reaction 2164:Thorpe reaction 2149:Suzuki reaction 2134:Stille reaction 2069:Quelet reaction 1944:Kumada coupling 1894:Ivanov reaction 1884:Hydrovinylation 1864:Hiyama coupling 1824:Glaser coupling 1634:Blaise reaction 1624:Bingel reaction 1609:Benary reaction 1526: 1524: 1518: 1509: 1405:Passive binding 1325:Homoaromaticity 1175:Baldwin's rules 1150:Antiaromaticity 1145:Anomeric effect 1121: 1063: 1057: 1027: 1026: 987: 983: 930: 926: 873: 869: 863: 859: 853: 849: 844: 840: 835: 831: 826: 819: 814: 810: 805: 798: 793: 789: 784: 780: 775: 771: 762: 758: 749: 745: 740: 731: 726: 715: 709:Wayback Machine 699: 695: 686: 682: 676:Danheiser, R L. 674: 651: 626: 622: 617: 494: 480:) (Scheme 13). 475: 444: 412:tetrahydrofuran 408:dichloromethane 388: 380:tetrahydrofuran 377: 300: 284:Dichloromethane 259:in methanol to 245: 196: 134:benzothiophenes 105: 77: 45: 17: 12: 11: 5: 4366: 4356: 4355: 4353:Name reactions 4350: 4333: 4332: 4329: 4328: 4325: 4324: 4322: 4321: 4316: 4311: 4306: 4301: 4296: 4291: 4286: 4281: 4276: 4271: 4266: 4261: 4256: 4251: 4246: 4241: 4236: 4231: 4229:Hantzsch ester 4226: 4221: 4216: 4211: 4206: 4201: 4196: 4191: 4186: 4181: 4176: 4171: 4166: 4161: 4156: 4151: 4146: 4141: 4139:Banert cascade 4136: 4131: 4126: 4121: 4115: 4113: 4109: 4108: 4106: 4105: 4100: 4095: 4090: 4085: 4080: 4078:Prato reaction 4075: 4070: 4065: 4060: 4055: 4050: 4045: 4040: 4035: 4030: 4025: 4020: 4015: 4010: 4005: 4000: 3995: 3990: 3985: 3980: 3975: 3970: 3965: 3960: 3955: 3950: 3944: 3942: 3933: 3932: 3927: 3922: 3917: 3912: 3907: 3902: 3897: 3892: 3887: 3882: 3877: 3872: 3867: 3862: 3857: 3852: 3847: 3842: 3837: 3832: 3827: 3822: 3817: 3812: 3807: 3802: 3797: 3792: 3787: 3782: 3777: 3772: 3767: 3762: 3757: 3752: 3747: 3742: 3737: 3732: 3727: 3722: 3717: 3712: 3707: 3702: 3697: 3692: 3687: 3682: 3677: 3672: 3667: 3662: 3657: 3652: 3647: 3642: 3637: 3632: 3627: 3622: 3617: 3612: 3607: 3602: 3597: 3592: 3587: 3581: 3579: 3571: 3570: 3568: 3567: 3562: 3557: 3552: 3547: 3542: 3537: 3532: 3527: 3522: 3517: 3512: 3507: 3502: 3497: 3492: 3487: 3482: 3477: 3472: 3467: 3462: 3457: 3452: 3447: 3442: 3437: 3432: 3427: 3422: 3417: 3412: 3407: 3402: 3397: 3392: 3387: 3382: 3377: 3372: 3367: 3362: 3357: 3352: 3347: 3342: 3337: 3332: 3327: 3322: 3317: 3312: 3307: 3302: 3297: 3292: 3287: 3282: 3277: 3272: 3267: 3262: 3257: 3252: 3247: 3242: 3237: 3232: 3227: 3222: 3217: 3212: 3207: 3202: 3197: 3192: 3187: 3182: 3177: 3172: 3170:Banert cascade 3167: 3162: 3157: 3152: 3147: 3142: 3137: 3132: 3127: 3122: 3117: 3112: 3107: 3102: 3096: 3094: 3090:Rearrangement 3086: 3085: 3083: 3082: 3080:Zinin reaction 3077: 3072: 3067: 3062: 3057: 3052: 3050:Wacker process 3047: 3042: 3037: 3032: 3027: 3022: 3017: 3012: 3007: 3002: 2997: 2992: 2987: 2982: 2977: 2972: 2967: 2962: 2957: 2952: 2947: 2942: 2937: 2932: 2927: 2922: 2917: 2912: 2907: 2902: 2897: 2892: 2887: 2882: 2877: 2872: 2867: 2862: 2857: 2852: 2847: 2842: 2837: 2832: 2827: 2825:Hydrogenolysis 2822: 2817: 2812: 2807: 2802: 2797: 2792: 2787: 2782: 2777: 2775:Étard reaction 2772: 2767: 2762: 2757: 2752: 2747: 2742: 2737: 2732: 2727: 2722: 2717: 2712: 2707: 2702: 2697: 2692: 2687: 2682: 2680:Bosch reaction 2677: 2672: 2667: 2662: 2657: 2652: 2647: 2642: 2637: 2632: 2627: 2622: 2617: 2612: 2607: 2602: 2597: 2591: 2589: 2585:Organic redox 2581: 2580: 2578: 2577: 2572: 2567: 2562: 2557: 2552: 2547: 2542: 2537: 2532: 2527: 2522: 2517: 2512: 2506: 2504: 2498: 2497: 2495: 2494: 2489: 2484: 2479: 2474: 2469: 2464: 2459: 2454: 2449: 2444: 2439: 2434: 2429: 2424: 2419: 2417:Esterification 2414: 2409: 2404: 2399: 2394: 2388: 2386: 2378: 2377: 2374: 2373: 2371: 2370: 2365: 2360: 2355: 2350: 2345: 2340: 2335: 2330: 2325: 2320: 2315: 2310: 2305: 2300: 2295: 2290: 2285: 2280: 2275: 2270: 2264: 2262: 2258: 2257: 2255: 2254: 2249: 2244: 2239: 2234: 2229: 2224: 2218: 2216: 2207: 2206: 2201: 2196: 2194:Wurtz reaction 2191: 2186: 2181: 2176: 2171: 2166: 2161: 2156: 2151: 2146: 2141: 2136: 2131: 2126: 2121: 2116: 2111: 2106: 2101: 2096: 2091: 2086: 2081: 2076: 2071: 2066: 2064:Prins reaction 2061: 2056: 2051: 2046: 2041: 2036: 2031: 2026: 2021: 2016: 2011: 2006: 2001: 1996: 1991: 1986: 1981: 1976: 1971: 1966: 1961: 1956: 1951: 1946: 1941: 1936: 1931: 1926: 1921: 1916: 1911: 1906: 1901: 1896: 1891: 1886: 1881: 1879:Hydrocyanation 1876: 1871: 1866: 1861: 1856: 1851: 1849:Henry reaction 1846: 1841: 1836: 1831: 1826: 1821: 1816: 1811: 1806: 1801: 1796: 1791: 1786: 1781: 1776: 1771: 1766: 1761: 1756: 1751: 1746: 1741: 1736: 1731: 1726: 1721: 1716: 1711: 1706: 1701: 1696: 1691: 1686: 1681: 1676: 1671: 1666: 1661: 1656: 1651: 1646: 1641: 1636: 1631: 1626: 1621: 1616: 1611: 1606: 1601: 1596: 1591: 1586: 1581: 1576: 1571: 1566: 1561: 1556: 1551: 1549:Aldol reaction 1546: 1541: 1536: 1530: 1528: 1523:Carbon-carbon 1520: 1519: 1508: 1507: 1502: 1500:Zaitsev's rule 1497: 1492: 1487: 1482: 1477: 1472: 1467: 1462: 1457: 1452: 1447: 1445:Steric effects 1442: 1437: 1432: 1427: 1422: 1417: 1412: 1407: 1402: 1397: 1392: 1387: 1382: 1377: 1372: 1367: 1362: 1357: 1352: 1347: 1342: 1337: 1332: 1327: 1322: 1317: 1312: 1307: 1302: 1297: 1292: 1287: 1282: 1277: 1272: 1267: 1262: 1257: 1252: 1247: 1242: 1237: 1232: 1227: 1222: 1217: 1212: 1207: 1202: 1197: 1192: 1187: 1182: 1177: 1172: 1167: 1162: 1157: 1152: 1147: 1142: 1137: 1132: 1126: 1123: 1122: 1120: 1119: 1114: 1109: 1104: 1099: 1097:Redox reaction 1094: 1089: 1084: 1082:Polymerization 1079: 1074: 1068: 1065: 1064: 1056: 1055: 1048: 1041: 1033: 1025: 1024: 981: 924: 867: 857: 847: 838: 829: 817: 808: 796: 787: 778: 769: 756: 743: 729: 713: 693: 680: 649: 619: 618: 616: 613: 493: 490: 473: 442: 387: 384: 375: 299: 296: 244: 241: 195: 192: 158:dichloroethane 104: 101: 76: 73: 44: 41: 15: 9: 6: 4: 3: 2: 4365: 4354: 4351: 4349: 4346: 4345: 4343: 4320: 4317: 4315: 4312: 4310: 4307: 4305: 4302: 4300: 4297: 4295: 4292: 4290: 4287: 4285: 4282: 4280: 4277: 4275: 4272: 4270: 4267: 4265: 4262: 4260: 4257: 4255: 4252: 4250: 4247: 4245: 4242: 4240: 4239:Herz reaction 4237: 4235: 4232: 4230: 4227: 4225: 4222: 4220: 4217: 4215: 4212: 4210: 4207: 4205: 4202: 4200: 4197: 4195: 4192: 4190: 4187: 4185: 4182: 4180: 4177: 4175: 4172: 4170: 4167: 4165: 4162: 4160: 4157: 4155: 4152: 4150: 4147: 4145: 4142: 4140: 4137: 4135: 4132: 4130: 4127: 4125: 4122: 4120: 4117: 4116: 4114: 4110: 4104: 4101: 4099: 4096: 4094: 4091: 4089: 4086: 4084: 4081: 4079: 4076: 4074: 4071: 4069: 4066: 4064: 4061: 4059: 4056: 4054: 4051: 4049: 4046: 4044: 4041: 4039: 4036: 4034: 4031: 4029: 4026: 4024: 4021: 4019: 4016: 4014: 4011: 4009: 4006: 4004: 4001: 3999: 3996: 3994: 3991: 3989: 3986: 3984: 3981: 3979: 3976: 3974: 3971: 3969: 3966: 3964: 3961: 3959: 3956: 3954: 3951: 3949: 3946: 3945: 3943: 3941: 3940:Cycloaddition 3937: 3931: 3928: 3926: 3923: 3921: 3918: 3916: 3913: 3911: 3908: 3906: 3903: 3901: 3898: 3896: 3893: 3891: 3888: 3886: 3883: 3881: 3878: 3876: 3873: 3871: 3868: 3866: 3863: 3861: 3858: 3856: 3853: 3851: 3848: 3846: 3843: 3841: 3838: 3836: 3833: 3831: 3828: 3826: 3823: 3821: 3818: 3816: 3813: 3811: 3808: 3806: 3803: 3801: 3798: 3796: 3793: 3791: 3788: 3786: 3785:Isay reaction 3783: 3781: 3778: 3776: 3773: 3771: 3768: 3766: 3763: 3761: 3758: 3756: 3753: 3751: 3748: 3746: 3743: 3741: 3738: 3736: 3733: 3731: 3728: 3726: 3723: 3721: 3718: 3716: 3713: 3711: 3708: 3706: 3703: 3701: 3698: 3696: 3693: 3691: 3688: 3686: 3683: 3681: 3680:Cycloaddition 3678: 3676: 3673: 3671: 3668: 3666: 3663: 3661: 3658: 3656: 3653: 3651: 3648: 3646: 3643: 3641: 3638: 3636: 3633: 3631: 3628: 3626: 3623: 3621: 3618: 3616: 3613: 3611: 3608: 3606: 3603: 3601: 3598: 3596: 3593: 3591: 3588: 3586: 3583: 3582: 3580: 3578: 3575:Ring forming 3572: 3566: 3563: 3561: 3558: 3556: 3553: 3551: 3548: 3546: 3543: 3541: 3538: 3536: 3533: 3531: 3528: 3526: 3523: 3521: 3518: 3516: 3513: 3511: 3508: 3506: 3503: 3501: 3498: 3496: 3493: 3491: 3488: 3486: 3483: 3481: 3478: 3476: 3475:Rupe reaction 3473: 3471: 3468: 3466: 3463: 3461: 3458: 3456: 3453: 3451: 3448: 3446: 3443: 3441: 3438: 3436: 3433: 3431: 3428: 3426: 3423: 3421: 3418: 3416: 3413: 3411: 3408: 3406: 3403: 3401: 3398: 3396: 3393: 3391: 3388: 3386: 3383: 3381: 3378: 3376: 3373: 3371: 3368: 3366: 3363: 3361: 3358: 3356: 3353: 3351: 3348: 3346: 3343: 3341: 3338: 3336: 3333: 3331: 3328: 3326: 3323: 3321: 3318: 3316: 3313: 3311: 3308: 3306: 3303: 3301: 3298: 3296: 3293: 3291: 3288: 3286: 3283: 3281: 3278: 3276: 3273: 3271: 3268: 3266: 3263: 3261: 3258: 3256: 3253: 3251: 3248: 3246: 3243: 3241: 3238: 3236: 3233: 3231: 3228: 3226: 3223: 3221: 3218: 3216: 3213: 3211: 3208: 3206: 3203: 3201: 3198: 3196: 3193: 3191: 3188: 3186: 3183: 3181: 3178: 3176: 3173: 3171: 3168: 3166: 3163: 3161: 3158: 3156: 3153: 3151: 3148: 3146: 3143: 3141: 3138: 3136: 3133: 3131: 3128: 3126: 3123: 3121: 3118: 3116: 3113: 3111: 3108: 3106: 3103: 3101: 3098: 3097: 3095: 3093: 3087: 3081: 3078: 3076: 3073: 3071: 3068: 3066: 3063: 3061: 3058: 3056: 3053: 3051: 3048: 3046: 3043: 3041: 3038: 3036: 3033: 3031: 3028: 3026: 3023: 3021: 3018: 3016: 3013: 3011: 3008: 3006: 3003: 3001: 2998: 2996: 2993: 2991: 2988: 2986: 2983: 2981: 2978: 2976: 2973: 2971: 2968: 2966: 2963: 2961: 2958: 2956: 2953: 2951: 2948: 2946: 2943: 2941: 2938: 2936: 2933: 2931: 2928: 2926: 2923: 2921: 2918: 2916: 2913: 2911: 2908: 2906: 2903: 2901: 2898: 2896: 2893: 2891: 2888: 2886: 2883: 2881: 2878: 2876: 2873: 2871: 2868: 2866: 2865:Ley oxidation 2863: 2861: 2858: 2856: 2853: 2851: 2848: 2846: 2843: 2841: 2838: 2836: 2833: 2831: 2830:Hydroxylation 2828: 2826: 2823: 2821: 2820:Hydrogenation 2818: 2816: 2813: 2811: 2808: 2806: 2803: 2801: 2798: 2796: 2793: 2791: 2788: 2786: 2783: 2781: 2778: 2776: 2773: 2771: 2768: 2766: 2763: 2761: 2758: 2756: 2755:DNA oxidation 2753: 2751: 2748: 2746: 2745:Deoxygenation 2743: 2741: 2738: 2736: 2733: 2731: 2728: 2726: 2723: 2721: 2718: 2716: 2713: 2711: 2708: 2706: 2703: 2701: 2698: 2696: 2693: 2691: 2688: 2686: 2683: 2681: 2678: 2676: 2673: 2671: 2668: 2666: 2663: 2661: 2658: 2656: 2653: 2651: 2648: 2646: 2643: 2641: 2638: 2636: 2635:Aromatization 2633: 2631: 2628: 2626: 2623: 2621: 2618: 2616: 2613: 2611: 2608: 2606: 2603: 2601: 2598: 2596: 2593: 2592: 2590: 2588: 2582: 2576: 2573: 2571: 2568: 2566: 2563: 2561: 2558: 2556: 2553: 2551: 2548: 2546: 2543: 2541: 2538: 2536: 2533: 2531: 2528: 2526: 2523: 2521: 2518: 2516: 2513: 2511: 2508: 2507: 2505: 2499: 2493: 2490: 2488: 2485: 2483: 2480: 2478: 2475: 2473: 2472:Reed reaction 2470: 2468: 2465: 2463: 2460: 2458: 2455: 2453: 2450: 2448: 2445: 2443: 2440: 2438: 2435: 2433: 2430: 2428: 2425: 2423: 2420: 2418: 2415: 2413: 2410: 2408: 2405: 2403: 2400: 2398: 2395: 2393: 2390: 2389: 2387: 2383:bond forming 2379: 2369: 2366: 2364: 2361: 2359: 2356: 2354: 2351: 2349: 2346: 2344: 2341: 2339: 2336: 2334: 2331: 2329: 2326: 2324: 2321: 2319: 2316: 2314: 2311: 2309: 2306: 2304: 2301: 2299: 2296: 2294: 2291: 2289: 2288:Cope reaction 2286: 2284: 2281: 2279: 2276: 2274: 2271: 2269: 2266: 2265: 2263: 2259: 2253: 2250: 2248: 2245: 2243: 2240: 2238: 2235: 2233: 2230: 2228: 2225: 2223: 2220: 2219: 2217: 2215: 2211: 2205: 2202: 2200: 2197: 2195: 2192: 2190: 2187: 2185: 2182: 2180: 2177: 2175: 2172: 2170: 2167: 2165: 2162: 2160: 2157: 2155: 2152: 2150: 2147: 2145: 2142: 2140: 2137: 2135: 2132: 2130: 2127: 2125: 2122: 2120: 2117: 2115: 2112: 2110: 2107: 2105: 2102: 2100: 2097: 2095: 2092: 2090: 2087: 2085: 2082: 2080: 2077: 2075: 2072: 2070: 2067: 2065: 2062: 2060: 2057: 2055: 2052: 2050: 2047: 2045: 2042: 2040: 2037: 2035: 2032: 2030: 2027: 2025: 2022: 2020: 2017: 2015: 2012: 2010: 2007: 2005: 2002: 2000: 1999:Nef synthesis 1997: 1995: 1992: 1990: 1987: 1985: 1982: 1980: 1977: 1975: 1974:Methylenation 1972: 1970: 1967: 1965: 1962: 1960: 1957: 1955: 1952: 1950: 1947: 1945: 1942: 1940: 1937: 1935: 1932: 1930: 1927: 1925: 1922: 1920: 1917: 1915: 1912: 1910: 1907: 1905: 1902: 1900: 1897: 1895: 1892: 1890: 1887: 1885: 1882: 1880: 1877: 1875: 1872: 1870: 1867: 1865: 1862: 1860: 1857: 1855: 1852: 1850: 1847: 1845: 1844:Heck reaction 1842: 1840: 1837: 1835: 1832: 1830: 1827: 1825: 1822: 1820: 1817: 1815: 1812: 1810: 1807: 1805: 1802: 1800: 1797: 1795: 1792: 1790: 1787: 1785: 1782: 1780: 1777: 1775: 1772: 1770: 1767: 1765: 1762: 1760: 1757: 1755: 1752: 1750: 1747: 1745: 1742: 1740: 1737: 1735: 1732: 1730: 1727: 1725: 1722: 1720: 1717: 1715: 1712: 1710: 1707: 1705: 1702: 1700: 1697: 1695: 1692: 1690: 1687: 1685: 1682: 1680: 1677: 1675: 1672: 1670: 1667: 1665: 1662: 1660: 1657: 1655: 1652: 1650: 1647: 1645: 1642: 1640: 1637: 1635: 1632: 1630: 1627: 1625: 1622: 1620: 1617: 1615: 1612: 1610: 1607: 1605: 1602: 1600: 1597: 1595: 1592: 1590: 1587: 1585: 1582: 1580: 1577: 1575: 1572: 1570: 1567: 1565: 1562: 1560: 1557: 1555: 1552: 1550: 1547: 1545: 1542: 1540: 1537: 1535: 1532: 1531: 1529: 1525:bond forming 1521: 1517: 1512: 1506: 1503: 1501: 1498: 1496: 1493: 1491: 1490:Y-aromaticity 1488: 1486: 1483: 1481: 1478: 1476: 1475:Walsh diagram 1473: 1471: 1468: 1466: 1463: 1461: 1460:Taft equation 1458: 1456: 1453: 1451: 1448: 1446: 1443: 1441: 1438: 1436: 1433: 1431: 1430:ÎŁ-aromaticity 1428: 1426: 1423: 1421: 1418: 1416: 1413: 1411: 1408: 1406: 1403: 1401: 1398: 1396: 1393: 1391: 1388: 1386: 1383: 1381: 1378: 1376: 1373: 1371: 1368: 1366: 1363: 1361: 1358: 1356: 1355:Marcus theory 1353: 1351: 1348: 1346: 1343: 1341: 1338: 1336: 1333: 1331: 1330:HĂŒckel's rule 1328: 1326: 1323: 1321: 1318: 1316: 1313: 1311: 1308: 1306: 1303: 1301: 1298: 1296: 1293: 1291: 1288: 1286: 1285:Evelyn effect 1283: 1281: 1278: 1276: 1273: 1271: 1268: 1266: 1265:Electron-rich 1263: 1261: 1258: 1256: 1253: 1251: 1248: 1246: 1243: 1241: 1238: 1236: 1233: 1231: 1228: 1226: 1223: 1221: 1218: 1216: 1213: 1211: 1208: 1206: 1203: 1201: 1198: 1196: 1193: 1191: 1188: 1186: 1183: 1181: 1180:Bema Hapothle 1178: 1176: 1173: 1171: 1168: 1166: 1163: 1161: 1158: 1156: 1153: 1151: 1148: 1146: 1143: 1141: 1138: 1136: 1133: 1131: 1128: 1127: 1124: 1118: 1115: 1113: 1110: 1108: 1105: 1103: 1100: 1098: 1095: 1093: 1090: 1088: 1085: 1083: 1080: 1078: 1075: 1073: 1070: 1069: 1066: 1062: 1054: 1049: 1047: 1042: 1040: 1035: 1034: 1031: 1020: 1016: 1012: 1008: 1004: 1000: 996: 992: 985: 977: 973: 968: 963: 959: 955: 951: 947: 943: 939: 935: 928: 920: 916: 911: 906: 902: 898: 894: 890: 886: 882: 878: 871: 861: 851: 842: 833: 824: 822: 812: 803: 801: 791: 782: 773: 766: 760: 753: 747: 738: 736: 734: 724: 722: 720: 718: 710: 706: 703: 697: 690: 684: 677: 672: 670: 668: 666: 664: 662: 660: 658: 656: 654: 647: 643: 639: 635: 634: 629: 624: 620: 609: 605: 603: 599: 589: 585: 583: 579: 570: 566: 565:(Scheme 17). 564: 555: 551: 549: 540: 532: 528: 526: 525: 520: 511: 507: 504: 503: 498: 485: 481: 479: 466: 462: 460: 456: 452: 448: 440: 432: 428: 425: 421: 417: 413: 409: 405: 401: 396: 394: 383: 381: 373: 369: 360: 356: 354: 350: 340: 336: 333: 323: 319: 311: 307: 305: 295: 293: 289: 285: 281: 277: 268: 264: 262: 258: 254: 253:cycloaddition 250: 236: 228: 224: 220: 217: 216:electrocyclic 208: 200: 191: 189: 185: 184:cycloaddition 182:. This is a 181: 176: 174: 170: 169: 163: 159: 149: 145: 143: 139: 135: 131: 127: 123: 118: 109: 100: 97: 94: 90: 86: 82: 72: 70: 66: 62: 58: 54: 50: 40: 38: 34: 30: 26: 22: 3280:Ene reaction 2640:Autoxidation 2501:Degradation 2392:Azo coupling 2169:Ugi reaction 1769:Ene reaction 1569:Alkynylation 1420:Polyfluorene 1415:Polar effect 1280:Electrophile 1195:Bredt's rule 1165:Baird's rule 1135:Alpha effect 994: 990: 984: 941: 937: 927: 884: 880: 870: 860: 850: 841: 832: 811: 790: 781: 772: 759: 746: 696: 683: 631: 623: 594: 575: 560: 545: 522: 516: 500: 495: 471: 437: 397: 389: 365: 345: 328: 316: 301: 273: 246: 221: 213: 177: 166: 154: 126:naphthalenes 114: 92: 78: 46: 20: 18: 1779:Ethenolysis 1425:Ring strain 1395:Nucleophile 1220:Clar's rule 1160:Aromaticity 502:Penicillium 424:zinc iodide 398:Conjugated 130:benzofurans 122:resorcinols 4342:Categories 4063:Ozonolysis 3590:Annulation 2940:Ozonolysis 1059:Topics in 865:5925-5937. 855:1852–1873. 638:annulation 615:References 393:thioethers 288:chloroform 282:analysis. 142:carbazoles 96:metalation 49:annulation 43:Annulation 3577:reactions 3092:reactions 2587:reactions 2503:reactions 2385:reactions 1527:reactions 1011:0265-0568 958:0002-7863 901:1521-3773 602:carbazole 439:Palladium 194:Mechanism 1470:Vinylogy 1140:Annulene 1087:Reagents 1019:28737179 976:27471872 919:24975840 705:Archived 455:catalyst 261:saponify 103:Reaction 81:benzenes 67:and the 57:aromatic 27:used in 1130:A value 967:5006189 910:4134717 519:aniline 372:toluene 368:benzene 332:lithium 249:toluene 188:carbene 168:in situ 138:indoles 53:acyclic 33:phenols 1017:  1009:  974:  964:  956:  917:  907:  899:  598:ketene 447:octyne 404:cobalt 400:enynes 378:NF in 349:ethers 304:allene 290:, and 140:, and 117:phenol 628:IUPAC 524:ortho 499:is a 459:yield 386:Scope 186:of a 93:ortho 69:Aldol 23:is a 1015:PMID 1007:ISSN 972:PMID 954:ISSN 915:PMID 897:ISSN 422:and 420:zinc 19:The 999:doi 962:PMC 946:doi 942:138 905:PMC 889:doi 642:doi 640:". 370:or 280:TLC 156:in 47:An 4344:: 1013:. 1005:. 995:34 993:. 970:. 960:. 952:. 940:. 936:. 913:. 903:. 895:. 885:53 883:. 879:. 820:^ 799:^ 732:^ 716:^ 652:^ 630:, 461:. 286:, 144:. 136:, 132:, 128:, 1052:e 1045:t 1038:v 1021:. 1001:: 978:. 948:: 921:. 891:: 763:" 687:" 644:: 474:3 443:4 376:4

Index

chemical reaction
organic chemistry
phenols
Rick L. Danheiser
annulation
acyclic
aromatic
Robinson annulation
Michael Addition
Aldol
benzenes
substitution reactions
regioselectivity
metalation
Scheme 1: Danheiser Benzannulation Reaction of an Alkyne and a Cyclobutenone(X= OR, SR, NR2)
phenol
resorcinols
naphthalenes
benzofurans
benzothiophenes
indoles
carbazoles
Scheme 2:Danheiser Benzannulation Reaction with an α-Diazo Ketone(X= OR, SR, NR2)
dichloroethane
Wolff rearrangement
in situ
pericyclic reactions
Wulff–Dötz reaction
cycloaddition
carbene

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑