Knowledge

Four-wave mixing

Source đź“ť

75: 1219: 225:
many configurations the sum of the first two photons will be tuned close to a resonant state. However, close to resonances the index of refraction changes rapidly and makes addition four co-linear k-vectors fail to add exactly to zero—thus long mixing path lengths are not always possible as the four component lose phase lock. Consequently, beams are often focused both for intensity but also to shorten the mixing zone.
1231: 228:
In gaseous media an often overlooked complication is that light beams are rarely plane waves but are often focused for extra intensity, this can add an addition pi-phase shift to each k-vector in the phase matching condition. It is often very hard to satisfy this in the sum-frequency configuration
224:
A condition for efficient generation of FWM is phase matching: the associated k-vectors of the four components must add to zero when they are plane waves. This becomes significant since sum- and difference-frequency generation are often enhanced when resonance in the mixing media is exploited. In
229:
but it is more easily satisfied in the difference-frequency configuration (where the pi phase shifts cancel out). As a result, difference-frequency is usually more broadly tunable and easier to set up than sum-frequency generation, making it preferable as a light source even though it's less
490:
generation. Parametric amplifiers and oscillators based on four-wave mixing use the third order nonlinearity, as opposed to most typical parametric oscillators which use the second-order nonlinearity. Apart from these classical applications, four-wave mixing has shown promise in the
78:
Energy level diagram for a non-degenerate four-wave mixing process. The top energy level could be a real atomic or molecular level (resonant four-wave mixing) or a virtual level, far detuned off-resonance. This diagram describes the four-wave mixing interaction between frequencies
199:
From calculations with the three input signals, it is found that 12 interfering frequencies are produced, three of which lie on one of the original incoming frequencies. Note that these three frequencies which lie at the original incoming frequencies are typically attributed to
220:
and difference-frequency generation. In sum-frequency generation three fields are input and the output is a new high frequency field at the sum of the three input frequencies. In difference-frequency generation, the typical output is the sum of two minus the third.
351:. FWM can be mitigated by using uneven channel spacing or fiber that increases dispersion. For the special case where the three frequencies are close to degenerate, then optical separation of the difference frequency can be technically challenging. 336:(WDM) systems, where multiple optical wavelengths are spaced at equal intervals or channel spacing. The effects of FWM are pronounced with decreased channel spacing of wavelengths (such as in dense WDM systems) and at high signal power levels. High 460: 194: 315: 946:
Takesue, Hiroki; Inoue, Kyo (2004-09-30). "Generation of polarization-entangled photon pairs and violation of Bell's inequality using spontaneous four-wave mixing in a fiber loop".
717:
Fan, Bixuan; Duan, Zhenglu; Zhou, Lu; Yuan, Chunhua; Ou, Z. Y.; Zhang, Weiping (2009-12-03). "Generation of a single-photon source via a four-wave mixing process in a cavity".
1067: 850:
Slusher, R. E.; Yurke, B.; Grangier, P.; LaPorta, A.; Walls, D. F.; Reid, M. (1987-10-01). "Squeezed-light generation by four-wave mixing near an atomic resonance".
643:
Cardoso, GC; Tabosa, JWR (2002). "Saturated lineshapes and high-order susceptibilities of cold cesium atoms observed via a transferred population grating".
893:
Dutt, Avik; Luke, Kevin; Manipatruni, Sasikanth; Gaeta, Alexander L.; Nussenzveig, Paulo; Lipson, Michal (2015-04-13). "On-Chip Optical Squeezing".
703: 17: 752:
Sharping, Jay E.; Fiorentino, Marco; Coker, Ayodeji; Kumar, Prem; Windeler, Robert S. (2001-07-15). "Four-wave mixing in microstructure fiber".
1029: 357: 347:, or in other words, the phase mismatch between the signals increases. The interference FWM caused in WDM systems is known as interchannel 1052: 687: 1235: 1082: 1072: 237: 1133: 236:
The special case of sum-frequency generation where all the input photons have the same frequency (and wavelength) is
1022: 333: 1092: 1087: 143: 562: 1196: 1077: 254: 1062: 521: 475: 483: 1223: 1015: 54:
in standard electrical systems. It is a parametric nonlinear process, in that the energy of the incoming
47: 51: 1279: 1264: 532: 471: 1203: 1174: 217: 63: 62:. FWM is a phase-sensitive process, in that the efficiency of the process is strongly affected by 563:"Broadly tunable difference-frequency generation of VUV using two-photon resonances in H2 and Kr" 1057: 205: 59: 1274: 201: 1149: 965: 912: 859: 816: 761: 726: 652: 617: 574: 504: 496: 337: 115:) which is formed by the scattering of the incident photons, producing the fourth photon. 8: 1169: 1108: 516: 344: 969: 916: 863: 820: 765: 730: 656: 621: 578: 248:
Four-wave mixing is also present if only two components interact. In this case the term
1269: 1038: 981: 955: 928: 902: 697: 230: 664: 629: 875: 832: 785: 777: 683: 590: 1002: 985: 932: 924: 828: 1164: 1159: 1123: 973: 920: 867: 824: 769: 734: 660: 625: 582: 39: 608:
Cardoso, GC; Tabosa, JWR (2000). "Four-wave mixing in dressed cold cesium atoms".
35: 977: 738: 537: 500: 492: 487: 479: 804: 1258: 1113: 879: 836: 781: 1242: 1179: 871: 789: 594: 1118: 960: 805:"Generation of correlated photons via four-wave mixing in optical fibres" 773: 586: 527: 111:) interact in a nonlinear medium, they give rise to a fourth frequency (f 327: 324:, showing identical properties to the case of three interacting waves. 43: 1007: 455:{\displaystyle f_{ijk}=f_{i}+f_{j}-f_{k},\mathrm {where} \,i,j\neq k} 348: 74: 907: 1128: 55: 50:
in electrical systems. Four-wave mixing can be compared to the
1068:
Rotating-polarization coherent anti-Stokes Raman spectroscopy
751: 849: 211: 46:
produce two or one new wavelengths. It is similar to the
892: 809:
Journal of Optics B: Quantum and Semiclassical Optics
360: 257: 146: 677: 328:
Adverse effects of FWM in fiber-optic communications
320:
couples three components, thus generating so-called
680:
Advanced Optical Communication Systems and Networks
636: 454: 309: 188: 803:Wang, L. J.; Hong, C. K.; Friberg, S. R. (2001). 533:Optical phase conjugation, phase conjugate mirror 332:FWM is a fiber-optic characteristic that affects 1256: 216:Two common forms of four-wave mixing are dubbed 802: 716: 678:Cvijetic, Djordjevic, Milorad, Ivan B. (2013). 601: 243: 208:, and are naturally phase-matched unlike FWM. 1023: 642: 607: 556: 554: 1003:Encyclopedia of Laser Physics and Technology 945: 702:: CS1 maint: multiple names: authors list ( 42:, whereby interactions between two or three 560: 189:{\displaystyle \pm f_{1}\pm f_{2}\pm f_{3}} 1030: 1016: 551: 959: 906: 436: 212:Sum- and difference-frequency generation 73: 1053:Coherent anti-Stokes Raman spectroscopy 310:{\displaystyle f_{0}=f_{1}+f_{1}-f_{2}} 14: 1257: 1037: 1011: 682:. Artech House. pp. 314 to 217. 1230: 137:, the nonlinear system will produce 1083:Surface-enhanced Raman spectroscopy 1073:Spatially offset Raman spectroscopy 484:Vacuum Ultraviolet light generation 24: 1134:Stimulated Raman adiabatic passage 432: 429: 426: 423: 420: 25: 1291: 996: 343:FWM effects, as the signals lose 1229: 1218: 1217: 334:wavelength-division multiplexing 1093:Transmission Raman spectroscopy 1088:Tip-enhanced Raman spectroscopy 939: 925:10.1103/PhysRevApplied.3.044005 561:Strauss, CEM; Funk, DJ (1991). 465: 238:Third-Harmonic Generation (THG) 233:than sum-frequency generation. 18:Difference-frequency generation 886: 843: 796: 745: 710: 671: 13: 1: 1197:Journal of Raman Spectroscopy 1078:Stimulated Raman spectroscopy 665:10.1016/S0030-4018(02)01820-5 630:10.1016/S0030-4018(00)01033-6 544: 1063:Resonance Raman spectroscopy 486:and in microresonator based 69: 7: 510: 499:, correlated photon pairs, 322:degenerate four-wave mixing 244:Degenerate four-wave mixing 48:third-order intercept point 10: 1296: 978:10.1103/PhysRevA.70.031802 739:10.1103/PhysRevA.80.063809 470:FWM finds applications in 52:intermodulation distortion 1213: 1188: 1142: 1101: 1045: 829:10.1088/1464-4266/3/5/311 480:supercontinuum generation 472:optical phase conjugation 99:When three frequencies (f 1204:Vibrational Spectroscopy 1175:Rule of mutual exclusion 522:Lugiato–Lefever equation 476:parametric amplification 218:sum-frequency generation 895:Physical Review Applied 1058:Raman optical activity 872:10.1364/JOSAB.4.001453 495:regime for generating 456: 311: 206:cross-phase modulation 190: 96: 645:Optics Communications 610:Optics Communications 457: 312: 202:self-phase modulation 191: 77: 1150:Depolarization ratio 774:10.1364/OL.26.001048 587:10.1364/ol.16.001192 358: 338:chromatic dispersion 255: 144: 1170:Rayleigh scattering 1109:Raman amplification 970:2004PhRvA..70c1802T 917:2015PhRvP...3d4005D 864:1987JOSAB...4.1453S 821:2001JOptB...3..346W 766:2001OptL...26.1048S 731:2009PhRvA..80f3809F 657:2002OptCo.210..271C 622:2000OptCo.185..353C 579:1991OptL...16.1192S 517:Kerr frequency comb 1039:Raman spectroscopy 452: 307: 186: 97: 1252: 1251: 948:Physical Review A 858:(10): 1453–1464. 760:(14): 1048–1050. 719:Physical Review A 689:978-1-60807-555-3 505:entangled photons 231:quantum efficient 16:(Redirected from 1287: 1280:Frequency mixers 1265:Nonlinear optics 1233: 1232: 1221: 1220: 1165:Raman scattering 1160:Nonlinear optics 1155:Four-wave mixing 1124:Raman microscope 1032: 1025: 1018: 1009: 1008: 990: 989: 963: 961:quant-ph/0408032 943: 937: 936: 910: 890: 884: 883: 847: 841: 840: 800: 794: 793: 749: 743: 742: 714: 708: 707: 701: 693: 675: 669: 668: 640: 634: 633: 605: 599: 598: 558: 461: 459: 458: 453: 435: 415: 414: 402: 401: 389: 388: 376: 375: 316: 314: 313: 308: 306: 305: 293: 292: 280: 279: 267: 266: 195: 193: 192: 187: 185: 184: 172: 171: 159: 158: 40:nonlinear optics 28:Four-wave mixing 21: 1295: 1294: 1290: 1289: 1288: 1286: 1285: 1284: 1255: 1254: 1253: 1248: 1209: 1184: 1138: 1097: 1041: 1036: 999: 994: 993: 944: 940: 891: 887: 848: 844: 801: 797: 750: 746: 715: 711: 695: 694: 690: 676: 672: 641: 637: 606: 602: 559: 552: 547: 513: 493:quantum optical 468: 419: 410: 406: 397: 393: 384: 380: 365: 361: 359: 356: 355: 330: 301: 297: 288: 284: 275: 271: 262: 258: 256: 253: 252: 246: 214: 180: 176: 167: 163: 154: 150: 145: 142: 141: 135: 127: 123: 114: 110: 106: 102: 94: 90: 86: 82: 72: 36:intermodulation 23: 22: 15: 12: 11: 5: 1293: 1283: 1282: 1277: 1272: 1267: 1250: 1249: 1247: 1246: 1239: 1227: 1214: 1211: 1210: 1208: 1207: 1200: 1192: 1190: 1186: 1185: 1183: 1182: 1177: 1172: 1167: 1162: 1157: 1152: 1146: 1144: 1140: 1139: 1137: 1136: 1131: 1126: 1121: 1116: 1111: 1105: 1103: 1099: 1098: 1096: 1095: 1090: 1085: 1080: 1075: 1070: 1065: 1060: 1055: 1049: 1047: 1043: 1042: 1035: 1034: 1027: 1020: 1012: 1006: 1005: 998: 997:External links 995: 992: 991: 938: 885: 842: 795: 754:Optics Letters 744: 709: 688: 670: 635: 600: 573:(15): 1192–4. 567:Optics Letters 549: 548: 546: 543: 542: 541: 538:Supercontinuum 535: 530: 524: 519: 512: 509: 501:squeezed light 497:single photons 488:frequency comb 467: 464: 463: 462: 451: 448: 445: 442: 439: 434: 431: 428: 425: 422: 418: 413: 409: 405: 400: 396: 392: 387: 383: 379: 374: 371: 368: 364: 329: 326: 318: 317: 304: 300: 296: 291: 287: 283: 278: 274: 270: 265: 261: 245: 242: 213: 210: 197: 196: 183: 179: 175: 170: 166: 162: 157: 153: 149: 133: 125: 121: 112: 108: 104: 100: 92: 88: 84: 80: 71: 68: 64:phase matching 38:phenomenon in 9: 6: 4: 3: 2: 1292: 1281: 1278: 1276: 1273: 1271: 1268: 1266: 1263: 1262: 1260: 1245: 1244: 1240: 1238: 1237: 1228: 1226: 1225: 1216: 1215: 1212: 1206: 1205: 1201: 1199: 1198: 1194: 1193: 1191: 1187: 1181: 1178: 1176: 1173: 1171: 1168: 1166: 1163: 1161: 1158: 1156: 1153: 1151: 1148: 1147: 1145: 1141: 1135: 1132: 1130: 1127: 1125: 1122: 1120: 1117: 1115: 1114:Raman cooling 1112: 1110: 1107: 1106: 1104: 1100: 1094: 1091: 1089: 1086: 1084: 1081: 1079: 1076: 1074: 1071: 1069: 1066: 1064: 1061: 1059: 1056: 1054: 1051: 1050: 1048: 1044: 1040: 1033: 1028: 1026: 1021: 1019: 1014: 1013: 1010: 1004: 1001: 1000: 987: 983: 979: 975: 971: 967: 962: 957: 954:(3): 031802. 953: 949: 942: 934: 930: 926: 922: 918: 914: 909: 904: 901:(4): 044005. 900: 896: 889: 881: 877: 873: 869: 865: 861: 857: 853: 846: 838: 834: 830: 826: 822: 818: 814: 810: 806: 799: 791: 787: 783: 779: 775: 771: 767: 763: 759: 755: 748: 740: 736: 732: 728: 725:(6): 063809. 724: 720: 713: 705: 699: 691: 685: 681: 674: 666: 662: 658: 654: 650: 646: 639: 631: 627: 623: 619: 615: 611: 604: 596: 592: 588: 584: 580: 576: 572: 568: 564: 557: 555: 550: 539: 536: 534: 531: 529: 525: 523: 520: 518: 515: 514: 508: 506: 502: 498: 494: 489: 485: 481: 477: 473: 449: 446: 443: 440: 437: 416: 411: 407: 403: 398: 394: 390: 385: 381: 377: 372: 369: 366: 362: 354: 353: 352: 350: 346: 342: 339: 335: 325: 323: 302: 298: 294: 289: 285: 281: 276: 272: 268: 263: 259: 251: 250: 249: 241: 239: 234: 232: 226: 222: 219: 209: 207: 203: 181: 177: 173: 168: 164: 160: 155: 151: 147: 140: 139: 138: 136: 129: 118:Given inputs 116: 76: 67: 65: 61: 57: 53: 49: 45: 41: 37: 33: 29: 19: 1275:Fiber optics 1243:Spectroscopy 1241: 1234: 1222: 1202: 1195: 1180:Stokes shift 1154: 1102:Applications 951: 947: 941: 898: 894: 888: 855: 851: 845: 812: 808: 798: 757: 753: 747: 722: 718: 712: 679: 673: 651:(3–6): 271. 648: 644: 638: 616:(4–6): 353. 613: 609: 603: 570: 566: 469: 466:Applications 340: 331: 321: 319: 247: 235: 227: 223: 215: 198: 131: 119: 117: 98: 66:conditions. 31: 27: 26: 1119:Raman laser 528:Kerr effect 44:wavelengths 1259:Categories 1046:Techniques 815:(5): 346. 545:References 540:generation 1270:Photonics 908:1309.6371 880:1520-8540 837:1464-4266 782:1539-4794 698:cite book 447:≠ 404:− 349:crosstalk 345:coherence 341:decreases 295:− 174:± 161:± 148:± 70:Mechanism 60:conserved 1224:Category 1189:Journals 986:18095922 933:16013174 790:18049515 595:19776917 526:Optical 511:See also 34:) is an 1236:Commons 1129:SHERLOC 966:Bibcode 913:Bibcode 860:Bibcode 817:Bibcode 762:Bibcode 727:Bibcode 653:Bibcode 618:Bibcode 575:Bibcode 107:, and f 56:photons 1143:Theory 984:  931:  878:  852:JOSA B 835:  788:  780:  686:  593:  982:S2CID 956:arXiv 929:S2CID 903:arXiv 91:and f 876:ISSN 833:ISSN 786:PMID 778:ISSN 704:link 684:ISBN 591:PMID 503:and 204:and 130:and 974:doi 921:doi 868:doi 825:doi 770:doi 735:doi 661:doi 649:210 626:doi 614:185 583:doi 124:, f 103:, f 87:, f 83:, f 58:is 32:FWM 1261:: 980:. 972:. 964:. 952:70 950:. 927:. 919:. 911:. 897:. 874:. 866:. 854:. 831:. 823:. 811:. 807:. 784:. 776:. 768:. 758:26 756:. 733:. 723:80 721:. 700:}} 696:{{ 659:. 647:. 624:. 612:. 589:. 581:. 571:16 569:. 565:. 553:^ 507:. 482:, 478:, 474:, 240:. 1031:e 1024:t 1017:v 988:. 976:: 968:: 958:: 935:. 923:: 915:: 905:: 899:3 882:. 870:: 862:: 856:4 839:. 827:: 819:: 813:3 792:. 772:: 764:: 741:. 737:: 729:: 706:) 692:. 667:. 663:: 655:: 632:. 628:: 620:: 597:. 585:: 577:: 450:k 444:j 441:, 438:i 433:e 430:r 427:e 424:h 421:w 417:, 412:k 408:f 399:j 395:f 391:+ 386:i 382:f 378:= 373:k 370:j 367:i 363:f 303:2 299:f 290:1 286:f 282:+ 277:1 273:f 269:= 264:0 260:f 182:3 178:f 169:2 165:f 156:1 152:f 134:3 132:f 128:, 126:2 122:1 120:f 113:4 109:3 105:2 101:1 95:. 93:4 89:3 85:2 81:1 79:f 30:( 20:)

Index

Difference-frequency generation
intermodulation
nonlinear optics
wavelengths
third-order intercept point
intermodulation distortion
photons
conserved
phase matching
FWM energy level diagram
self-phase modulation
cross-phase modulation
sum-frequency generation
quantum efficient
Third-Harmonic Generation (THG)
wavelength-division multiplexing
chromatic dispersion
coherence
crosstalk
optical phase conjugation
parametric amplification
supercontinuum generation
Vacuum Ultraviolet light generation
frequency comb
quantum optical
single photons
squeezed light
entangled photons
Kerr frequency comb
Lugiato–Lefever equation

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑