Knowledge

Direct borohydride fuel cell

Source 📝

219:
or heat. However, these techniques are still in active development. As of June 30, 2010, many patents claiming to effectively achieve the conversion of sodium metaborate to sodium borohydride have been investigated but none have been confirmed—the current efficiency of "boron hydride recycling"
31:
as a fuel and either air/oxygen or hydrogen peroxide as the oxidant. DBFCs are relatively new types of fuel cells which are currently in the developmental stage and are attractive due to their high operating potential in relation to other type of fuel cells. Recently, DBFCs that rival
191:
with water heated by the fuel cell. This hydrogen can either be piped out to the exhaust or piped to a conventional hydrogen fuel cell. Either fuel cell will produce water, and the water can be recycled to allow for higher concentrations of
362:
Suzanne w. Linehan; Arthur a. Chin; Nathan t. Allen; Robert Butterick; Nathan t. Kendall; i. Leo Klawiter; Francis j. Lipiecki; Dean m. Millar; David c. Molzahn; Samuel j. November; Puja Jain; Sara Nadeau; Scott Mancroni (2010).
278:
Wang, Zhongyang; Parrondo, Javier; He, Cheng; Sankarasubramanian, Shrihari; Ramani, Vijay (April 2019). "Efficient pH-gradient-enabled microscale bipolar interfaces in direct borohydride fuel cells".
256:
Amendola S.C., Onnerud P., Kelly M., Petillo P., Sharp-Goldman S. L and Binder M. (1999) ‘A novel high power density borohydride-air cell’, J. Power Sources, 84, pp. 130–133.
265:
Choudhury, N.A.; Raman, R.K.; Sampath, S.; Shukla, A.K. An alkaline direct borohydride fuel cell with hydrogen peroxide as oxidant. J. Power Sources 2005, 143, 1-8.
339: 215:
back into sodium borohydride fuel by several different techniques, some of which might theoretically require nothing more than water and
199:
More importantly, the process of creating electricity via a DBFC is not easily reversible. For example, after sodium borohydride (NaBH
329:
Advanced Chemical Hydride-Based Fuel Cell Systems For Portable Military Applications, Protonex Technology Corporation (2006)
328: 421: 459: 33: 602: 557: 228:
Mass production projected prices for the fuel are as low as US$ 5/kg, rivalling the cost of hydrocarbon fuels.
597: 176: 650: 567: 510: 237: 587: 449: 179:) needed in a stack to achieve a desired rated voltage and thus reduces the stack costs considerably. 577: 495: 454: 350: 167:
DBFCs could be produced more cheaply than a traditional fuel cell because they do not need expensive
582: 490: 414: 572: 505: 485: 592: 531: 361: 52: 159:
The working temperature of a direct sodium borohydride fuel cell is 70 °C (158 °F).
500: 464: 28: 515: 287: 48:
systems as a means of storing hydrogen. The hydrogen can be regenerated for a fuel cell by
8: 671: 536: 407: 83: 291: 444: 311: 24: 20: 380: 315: 303: 208: 55:
of the borohydride with water, including successful hydration with synthetic urine:
637: 632: 627: 622: 372: 295: 340:
Ma, Choudhury, Sahai - A comprehensive review of direct borohydride fuel cells
299: 665: 552: 307: 212: 172: 562: 187:
Unfortunately, DBFCs do produce some hydrogen from a side reaction of NaBH
216: 175:. The high operating voltage of a DBFC reduces the number of cells (in a 220:
seems to be well below 1% which is unsuitable for recharging a vehicle.
384: 369:
Department of Energy Center of Excellence on Chemical Hydrogen Storage
364: 351:
Final Report: Electrochemical Hydrogen Storage Systems, MacDonald 2010
203:) has released its hydrogen and has been oxidized, the product is NaBO 36:
in peak power but operating at double the voltage have been reported.
430: 45: 376: 614: 168: 49: 44:
Sodium borohydride has been used with more conventional hydrogen
277: 399: 102: 79: 365:"Low-Cost Precursors to Novel Hydrogen Storage Materials" 86:and even producing slightly higher energy yields: 663: 415: 78:Direct borohydride fuel cells decompose and 34:proton-exchange membrane fuel cells (PEMFCs) 171:catalysts. In addition, they have a higher 422: 408: 82:the borohydride directly, side-stepping 664: 403: 273: 271: 13: 460:Proton-exchange membrane fuel cell 14: 683: 395: 268: 182: 603:Unitized regenerative fuel cell 429: 355: 344: 333: 322: 259: 250: 211:). Sodium metaborate might be 1: 598:Solid oxide electrolyzer cell 243: 162: 19:(DBFCs) are a subcategory of 17:Direct borohydride fuel cells 481:Direct borohydride fuel cell 135:The simplified reaction is: 39: 7: 568:Membrane electrode assembly 511:Reformed methanol fuel cell 238:Glossary of fuel cell terms 231: 10: 688: 588:Protonic ceramic fuel cell 558:Electro-galvanic fuel cell 450:Molten carbonate fuel cell 23:which are directly fed by 646: 613: 578:Photoelectrochemical cell 545: 524: 496:Direct methanol fuel cell 473: 455:Phosphoric acid fuel cell 437: 300:10.1038/s41560-019-0330-5 583:Proton-exchange membrane 491:Direct-ethanol fuel cell 573:Membraneless Fuel Cells 506:Metal hydride fuel cell 486:Direct carbon fuel cell 223: 593:Regenerative fuel cell 532:Enzymatic biofuel cell 101:O + 8e → 8OH (E = +0.4 501:Formic acid fuel cell 465:Solid oxide fuel cell 123:O + 8e (E = -1.24 V) 29:potassium borohydride 537:Microbial fuel cell 292:2019NatEn...4..281W 84:hydrogen production 21:alkaline fuel cells 445:Alkaline fuel cell 25:sodium borohydride 659: 658: 209:sodium metaborate 679: 516:Zinc–air battery 424: 417: 410: 401: 400: 389: 388: 359: 353: 348: 342: 337: 331: 326: 320: 319: 275: 266: 263: 257: 254: 687: 686: 682: 681: 680: 678: 677: 676: 662: 661: 660: 655: 642: 609: 541: 520: 469: 433: 428: 398: 393: 392: 377:10.2172/1022594 360: 356: 349: 345: 338: 334: 327: 323: 276: 269: 264: 260: 255: 251: 246: 234: 226: 206: 202: 195: 190: 185: 165: 155:O + Electricity 154: 150: 146: 142: 122: 118: 114: 100: 96: 74: 70: 66: 62: 42: 12: 11: 5: 685: 675: 674: 657: 656: 654: 653: 647: 644: 643: 641: 640: 635: 630: 625: 619: 617: 611: 610: 608: 607: 606: 605: 600: 590: 585: 580: 575: 570: 565: 560: 555: 549: 547: 543: 542: 540: 539: 534: 528: 526: 522: 521: 519: 518: 513: 508: 503: 498: 493: 488: 483: 477: 475: 471: 470: 468: 467: 462: 457: 452: 447: 441: 439: 438:By electrolyte 435: 434: 427: 426: 419: 412: 404: 397: 396:External links 394: 391: 390: 354: 343: 332: 321: 286:(4): 281–289. 267: 258: 248: 247: 245: 242: 241: 240: 233: 230: 225: 222: 204: 200: 193: 188: 184: 181: 177:series circuit 164: 161: 157: 156: 152: 148: 144: 140: 133: 132: 131: 130: 120: 116: 112: 106: 98: 94: 76: 75: 72: 68: 64: 60: 41: 38: 9: 6: 4: 3: 2: 684: 673: 670: 669: 667: 652: 649: 648: 645: 639: 636: 634: 631: 629: 626: 624: 621: 620: 618: 616: 612: 604: 601: 599: 596: 595: 594: 591: 589: 586: 584: 581: 579: 576: 574: 571: 569: 566: 564: 561: 559: 556: 554: 551: 550: 548: 544: 538: 535: 533: 530: 529: 527: 525:Biofuel cells 523: 517: 514: 512: 509: 507: 504: 502: 499: 497: 494: 492: 489: 487: 484: 482: 479: 478: 476: 472: 466: 463: 461: 458: 456: 453: 451: 448: 446: 443: 442: 440: 436: 432: 425: 420: 418: 413: 411: 406: 405: 402: 386: 382: 378: 374: 370: 366: 358: 352: 347: 341: 336: 330: 325: 317: 313: 309: 305: 301: 297: 293: 289: 285: 281: 280:Nature Energy 274: 272: 262: 253: 249: 239: 236: 235: 229: 221: 218: 214: 210: 197: 183:Disadvantages 180: 178: 174: 173:power density 170: 160: 138: 137: 136: 128: 125: 124: 110: 107: 104: 92: 89: 88: 87: 85: 81: 58: 57: 56: 54: 53:decomposition 51: 47: 37: 35: 30: 26: 22: 18: 563:Flow battery 480: 368: 357: 346: 335: 324: 283: 279: 261: 252: 227: 213:hydrogenated 198: 186: 166: 158: 134: 126: 115:+ 8OH → NaBO 108: 90: 77: 43: 16: 15: 553:Blue energy 217:electricity 672:Fuel cells 431:Fuel cells 244:References 163:Advantages 316:139154235 308:2058-7546 50:catalytic 46:fuel cell 40:Chemistry 666:Category 651:Glossary 615:Hydrogen 232:See also 169:platinum 129:= +1.64V 67:O → NaBO 638:Vehicle 633:Storage 628:Station 623:Economy 474:By fuel 385:1022594 288:Bibcode 127:Total E 91:Cathode 80:oxidize 546:Others 383:  314:  306:  147:→ NaBO 111:: NaBH 312:S2CID 109:Anode 381:OSTI 304:ISSN 224:Cost 192:NaBH 151:+ 2H 143:+ 2O 139:NaBH 119:+ 6H 97:+ 4H 93:: 2O 71:+ 4H 63:+ 2H 59:NaBH 373:doi 296:doi 27:or 668:: 379:. 371:. 367:. 310:. 302:. 294:. 282:. 270:^ 196:. 423:e 416:t 409:v 387:. 375:: 318:. 298:: 290:: 284:4 207:( 205:2 201:4 194:4 189:4 153:2 149:2 145:2 141:4 121:2 117:2 113:4 105:) 103:V 99:2 95:2 73:2 69:2 65:2 61:4

Index

alkaline fuel cells
sodium borohydride
potassium borohydride
proton-exchange membrane fuel cells (PEMFCs)
fuel cell
catalytic
decomposition
oxidize
hydrogen production
V
platinum
power density
series circuit
sodium metaborate
hydrogenated
electricity
Glossary of fuel cell terms


Bibcode
2019NatEn...4..281W
doi
10.1038/s41560-019-0330-5
ISSN
2058-7546
S2CID
139154235
Advanced Chemical Hydride-Based Fuel Cell Systems For Portable Military Applications, Protonex Technology Corporation (2006)
Ma, Choudhury, Sahai - A comprehensive review of direct borohydride fuel cells
Final Report: Electrochemical Hydrogen Storage Systems, MacDonald 2010

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.