Knowledge

Fair item allocation

Source 📝

810:(fPO). They prove that, if the agents' valuations are non-degenerate, the number of fPO allocations is polynomial in the number of objects (for a fixed number of agents). Therefore, it is possible to enumerate all of them in polynomial time, and find an allocation that is fair and fPO with the smallest number of sharings. In contrast, of the valuations are degenerate, the problem becomes NP-hard. They present empirical evidence that, in realistic cases, there often exists an allocation with substantially fewer sharings than the worst-case bound. 1119:, except that in multiwinner voting the number of elected candidates is usually much smaller than the number of voters, while in public goods allocation the number of chosen goods is usually much larger than the number of agents. An example is a public library that has to decide which books to purchase, respecting the preferences of the readers; the number of books is usually much larger than the number of readers. 280:: each partner reports a value for each bundle of size at most 2. The value of a bundle is calculated by summing the values for the individual items in the bundle and adding the values of pairs in the bundle. Typically, when there are substitute items, the values of pairs will be negative, and when there are complementary items, the values of pairs will be positive. This idea can be generalized to 2581: 935:(envy-freeness for mixed items), which generalizes both envy-freeness for divisible items and EF1 for indivisible items. They prove that an EFM allocation always exists for any number of agents with additive valuations. They present efficient algorithms to compute EFM allocations for two agents with general additive valuations, and for 1233:
corresponds to the special case in which each issue corresponds to an item, each decision option corresponds to giving that item to a particular agent, and the agents' utilities are zero for all options in which the item is given to someone else. In this case, proportionality means that the utility of each agent is at least 1/
725:: a simple protocol where the agents take turns in selecting items, based on some pre-specified sequence of turns. The goal is to design the picking-sequence in a way that maximizes the expected value of a social welfare function (e.g. egalitarian or utilitarian) under some probabilistic assumptions on the agents' valuations. 1508: 2283: 2786: 577:
competitive equilibrium is reached when the supply matches the demand. The fairness argument is straightforward: prices and budgets are the same for everyone. CEEI implies EF regardless of additivity. When the agents' preferences are additive and strict (each bundle has a different value), CEEI implies
965:
for EFM. They show that, in general, no truthful EFM algorithm exists, even if there is only one indivisible good and one divisible good and only two agents. But, when agents have binary valuations on indivisible goods and identical valuations on a single divisible good, an EFM and truthful mechanism
543:
Every agent weakly prefers his own bundle to any other bundle. Every envy-free allocation of all items is mFS-fair; this follows directly from the ordinal definitions and does not depend on additivity. If the valuations are additive, then an EF allocation is also proportional and MMS-fair. Otherwise,
412:
if all agents receive a bundle that they weakly prefer over their mFS. mFS-fairness can be described as the result of the following negotiation process. A certain allocation is suggested. Each agent can object to it by demanding that a different allocation be made by another agent, letting him choose
1255:
Often, the same items are allocated repeatedly. For example, recurring house chores. If the number of repetitions is a multiple of the number of agents, then it is possible to find in polynomial time a sequence of allocations that is envy-free and complete, and to find in exponential time a sequence
985:
and max Nash welfare). They assume that all agents have binary valuations. It is known that, if only divisible goods or only indivisible goods exist, the problem is polytime solvable. They show that, with mixed goods, the problem is NP-hard even when all indivisible goods are identical. In contrast,
750:
Several works assume that all objects can be divided if needed (e.g. by shared ownership or time-sharing), but sharing is costly or undesirable. Therefore, it is desired to find a fair allocation with the smallest possible number of shared objects, or of sharings. There are tight upper bounds on the
407:
The min-max-fair-share of an agent is the minimal utility that she can hope to get from an allocation if all the other agents have the same preferences as her, when she always receives the best share. It is also the minimal utility that an agent can get for sure in the allocation game “Someone cuts,
2116: 969:
Nishimura and Sumita study the properties of the maximum Nash welfare allocation (MNW) for mixed goods. They prove that, when all agents' valuations are binary and linear for each good, an MNW allocation satisfies a property stronger than EFM, which they call "envy-freeness up to any good for mixed
1080:
In this variant, bundles are given not to individual agents but to groups of agents. Common use-cases are: dividing inheritance among families, or dividing facilities among departments in a university. All agents in the same group consume the same bundle, though they may value it differently. The
958:(objects with negative utilities) and a divisible cake (with positive utility). They present an algorithm for finding an EFM allocation in two special cases: when each agent has the same preference ranking over the set of chores, and when the number of items is at most the number of agents plus 1. 993:
Li, Li, Liu and Wu study a setting in which each agent may have a different "indivisibility ratio" (= proportion of items that are indivisible). Each agent is guaranteed an allocation that is EF/PROP up to a fraction of an item, where the fraction depends on the agent's indivisibility ratio. The
989:
Bei, Liu and Lu study a more general setting, in which the same object can be divisible for some agents and indivisible for others. They show that the best possible approximation for MMS is 2/3, even for two agents; and present algorithms attaining this bound for 2 or 3 agents. For any number of
255:
In the ordinal approach, additivity allows us to infer some rankings between bundles. For example, if a person prefers w to x to y to z, then he necessarily prefers {w,x} to {w,y} or to {x,y}, and {w,y} to {x}. This inference is only partial, e.g., we cannot know whether the agent prefers {w} to
1054:
In this variant, different agents are entitled to different fractions of the resource. A common use-case is dividing cabinet ministries among parties in the coalition. It is common to assume that each party should receive ministries according to the number of seats it has in the parliament. The
576:
This criterion is based on the following argument: the allocation process should be considered as a search for an equilibrium between the supply (the set of objects, each one having a public price) and the demand (the agents’ desires, each agent having the same budget for buying the objects). A
1232:
In this variant, several agents have to accept decisions on several issues. A common use-case is a family that has to decide what activity to do each day (here each issue is a day). Each agent assigns different utilities to the various options in each issue. The classic item allocation setting
272:
have been developed as a compromise between the full expressiveness of combinatorial preferences to the simplicity of additive preferences. They provide a succinct representation to some natural classes of utility functions that are more general than additive utilities (but not as general as
260:
The additivity implies that each partner can always choose a "preferable item" from the set of items on the table, and this choice is independent of the other items that the partner may have. This property is used by some fair assignment algorithms that will be described next.
970:
goods". Their results hold not only for max Nash welfare, but also for a general fairness notion based on minimizing a symmetric strictly convex function. For general additive valuations, they prove that an MNW allocation satisfies an EF approximation that is weaker than EFM.
103:
A naive way to determine the preferences is asking each partner to supply a numeric value for each possible bundle. For example, if the items to divide are a car and a bicycle, a partner may value the car as 800, the bicycle as 200, and the bundle {car, bicycle} as 900 (see
2251: 817:
is not fixed, even for non-degenerate valuations, it is NP-hard to decide whether there exists an fPO envy-free allocation with 0 sharings. They also demonstrate an alterate approach to enumerating distinct consumption graph for allocations with a small number of
48:
The indivisibility of the items implies that a fair division may not be possible. As an extreme example, if there is only a single item (e.g. a house), it must be given to a single partner, but this is not fair to the other partners. This is in contrast to the
554:: for each two agents A and B, if we remove from the bundle of B the item most valuable for A, then A does not envy B (in other words, the "envy level" of A in B is at most the value of a single item). Under monotonicity, an EF1 allocation always exists. 1663: 1292: 361:
is a criterion that should hold for each individual partner, as long as the partner truthfully reports his preferences. Five such criteria are presented below. They are ordered from the weakest to the strongest (assuming the valuations are additive):
950:
fairness. They propose an algorithm that computes an alpha-approximate MMS allocation for any number of agents, where alpha is a constant between 1/2 and 1, which is monotonically increasing with the value of the divisible goods relative to the MMS
1106:
In this variant, each item provides utility not only to a single agent but to all agents. Different agents may attribute different utilities to the same item. The group has to choose a subset of items satisfying some constraints, for example:
861:
necessary for consensus halving when agents' utilities are drawn from probabilistic distributions. For agents with non-additive monotone utilities, consensus halving is PPAD-hard, but there are polynomial-time algorithms for a fixed number of
417:
partitions, there is a bundle that he strongly prefers over his current bundle. An allocation is mFS-fair iff no agent objects to it, i.e., for every agent there exists a partition in which all bundles are weakly worse than his current share.
2576:{\displaystyle \sum _{i=1}^{n}\sum _{A\in {\mathcal {A}}}\left(p_{d^{*}}(A)\cdot u_{i}(A)\right)=\sum _{A\in {\mathcal {A}}}p_{d^{*}}(A)\sum _{i=1}^{n}u_{i}(A)\leq \max _{A\in {\mathcal {A}}\colon p_{d^{*}}(A)>0}\sum _{i=1}^{n}u_{i}(A)} 1256:
that is proportional and Pareto-optimal. But, an envy-free and Pareto-optimal sequence may not exist. With two agents, if the number of repetitions is even, it is always possible to find a sequence that is envy-free and Pareto-optimal.
609:
if it attains the maximum possible egalitarian welfare, i.e., it maximizes the utility of the poorest agent. Since there can be several different allocations maximizing the smallest utility, egalitarian optimality is often refined to
2640: 30:
rather than continuous. The items have to be divided among several partners who potentially value them differently, and each item has to be given as a whole to a single person. This situation arises in various real-life scenarios:
1977: 741:
Traditional papers on fair allocation either assume that all items are divisible, or that all items are indivisible. Some recent papers study settings in which the distinction between divisible and indivisible is more fuzzy.
1904: 1213:. This idea can be formalized to show a general reduction from private-goods allocation to public-goods allocation that retains the maximum Nash welfare allocation, as well as a similar reduction that retains the 1774: 1720: 332:
formula, and may assign a value for each formula. For example, a partner may say: "For (x or (y and z)), my value is 5". This means that the agent has a value of 5 for any of the bundles: x, xy, xz, yz,
201:
different bundles, i.e., say which bundle is the best, which is the second-best, and so on. This may be easier than calculating exact numbers, but it is still difficult if the number of items is large.
2788:
In contrast to the utilitarian rule, here, the stochastic setting allows society to achieve higher value — as an example, consider the case where are two identical agents and only one item that worth
220:
the preferences on items to preferences on bundles. Then, the agents report their valuations/rankings on individual items, and the algorithm calculates for them their valuations/rankings on bundles.
2129: 966:
exists. When agents have binary valuations over both divisible and indivisible goods, an EFM and truthful mechanism exists when there are only two agents, or when there is a single divisible good.
3384:
Nguyen, Nhan-Tam; Nguyen, Trung Thanh; Roos, Magnus; Rothe, Jörg (2013). "Computational complexity and approximability of social welfare optimization in multiagent resource allocation".
1001:
in both indivisible and mixed item allocation. They provide bounds for the price of EF1, EFx, EFM and EFxM. They provide tight bounds for two agents and asymptotically tight bounds for
3339:
Nguyen, Trung Thanh; Roos, Magnus; Rothe, Jörg (2013). "A survey of approximability and inapproximability results for social welfare optimization in multiagent resource allocation".
2631: 1968: 1503:{\displaystyle {\mathcal {A}}=\{(A^{1},\dots ,A^{n})\mid \forall i\in \colon A^{i}\subseteq ,\quad \forall i\neq j\in \colon A^{i}\cap A^{j}=\emptyset ,\quad \cup _{i=1}^{n}A^{i}=\}} 614:: from the subset of allocations maximizing the smallest utility, it selects those allocations that maximize the second-smallest utility, then the third-smallest utility, and so on. 1543: 2850: 1129:
The number of items should be as small as possible, subject to that all agents must agree that the chosen set is better than the non-chosen set. This variant is known as the
719:
Nash-optimal allocation: and prove hardness of calculating utilitarian-optimal and Nash-optimal allocations. present an approximation procedure for Nash-optimal allocations.
1535: 1237:
of his "dictatorship utility", i.e., the utility he could get by picking the best option in each issue. Proportionality might be unattainable, but PROP1 is attainable by
696: 2278: 1801: 199: 160: 2781:{\displaystyle d^{*}={\underset {d\in {\mathcal {D}}}{\operatorname {argmax} }}\min _{i=1,\ldots ,n}\sum _{A\in {\mathcal {A}}}\left(p_{d}(A)\cdot u_{i}(A)\right)} 252:
utility function). Once the agent reports a value for each individual item, it is easy to calculate the value of each bundle by summing up the values of its items.
1037:
More generally: does there always exist an EFM allocation when both divisible items and indivisible items may be positive for some agents and negative for others?
489: 454: 133: 2111:{\displaystyle d^{*}={\underset {d\in {\mathcal {D}}}{\operatorname {argmax} }}\sum _{i=1}^{n}\sum _{A\in {\mathcal {A}}}\left(p_{d}(A)\cdot u_{i}(A)\right)} 1282:
agents. Formally, in the deterministic setting, a solution describes a feasible allocation of the items to the agents — a partition of the set of items into
1070: 4370:
Conitzer, Vincent; Freeman, Rupert; Shah, Nisarg (2017). "Fair public decision making". In Daskalakis, Constantinos; Babaioff, Moshe; Moulin, Hervé (eds.).
3538:. In Bureš, Tomáš; Dondi, Riccardo; Gamper, Johann; Guerrini, Giovanna; Jurdziński, Tomasz; Pahl, Claus; Sikora, Florian; Wong, Prudence W.H. (eds.). 53:
problem, where the dividend is divisible and a fair division always exists. In some cases, the indivisibility problem can be mitigated by introducing
1809: 372:
The maximin-share (also called: max-min-fair-share guarantee) of an agent is the most preferred bundle he could guarantee himself as divider in
3751: 3489:
Goldberg, Paul W.; Hollender, Alexandros; Igarashi, Ayumi; Manurangsi, Pasin; Suksompong, Warut (2022). "Consensus Halving for Sets of Items".
294:: for each partner, there is a graph that represents the dependencies between different items. In the cardinal approach, a common tool is the 212:
In the ordinal approach, each partner should report a ranking over the items, i.e., say which item is the best, which is the second-best, etc.
707: 1224:(which implies both Pareto-efficiency and proportionality), maximum Nash welfare, leximin optimality and proportionality up to one item. 3182:
Bouveret, Sylvain; Lemaître, Michel (2015). "Characterizing conflicts in fair division of indivisible goods using a scale of criteria".
3979:
Babaioff, Moshe; Nisan, Noam; Talgam-Cohen, Inbal (2017-03-23). "Competitive Equilibrium with Indivisible Goods and Generic Budgets".
1727: 1673: 802:
This raises the question of whether it is possible to attain fair allocations with fewer sharings than the worst-case upper bound:
4413:
Igarashi, Ayumi; Lackner, Martin; Nardi, Oliviero; Novaro, Arianna (2023-04-04). "Repeated Fair Allocation of Indivisible Items".
162:
possible bundles. For example, if there are 16 items then each partner will have to present their preferences using 65536 numbers.
564:
valuable for A, then A does not envy B. EFx is strictly stronger than EF1. It is not known whether EFx allocations always exist.
2925:- a fair division problem in which each agent should get exactly one object, with neither monetary transfers nor randomization. 2246:{\displaystyle A^{*}={\underset {A\in {\mathcal {A}}\colon p_{d^{*}}(A)>0}{\operatorname {argmax} }}\sum _{i=1}^{n}u_{i}(A)} 105: 4397: 4346: 4298: 3735: 3555: 3282: 2862:
Kawase and Sumita present an algorithm that, given an algorithm for finding a deterministic allocation that approximates the
873:. They study the run-time complexity of deciding the existence of a fair allocation with s sharings or shared objects, where 2118:
Kawase and Sumita show that maximization of the utilitarian welfare in the stochastic setting can always be achieved with a
1537:. That is, the set of all stochastic allocations (i.e., all feasible solutions to the problem) can be described as follows: 4192:
Babaioff, Moshe; Ezra, Tomer; Feige, Uriel (2021-11-15). "Fair-Share Allocations for Agents with Arbitrary Entitlements".
3265:
Heinen, Tobias; Nguyen, Nhan-Tam; Rothe, Jörg (2015). "Fairness and Rank-Weighted Utilitarianism in Resource Allocation".
3047: 2941:- a general measure of the trade-off between fairness and efficiency, with some results about the item assignment setting. 1152:
Allocation of private goods can be seen as a special case of allocating public goods: given a private-goods problem with
939:
agents with piecewise linear valuations over the divisible goods. They also present an efficient algorithm that finds an
38:
Several lecturers want to divide the courses given in their faculty. Each lecturer can teach one or more whole courses.
35:
Several heirs want to divide the inherited property, which contains e.g. a house, a car, a piano and several paintings.
3323: 3025: 521:
Every allocation which gives the first and second items to Bob and Carl and the third item to Alice is proportional.
3217:
Budish, E. (2011). "The Combinatorial Assignment Problem: Approximate Competitive Equilibrium from Equal Incomes".
865:
Bismuth, Makarov, Shapira and Segal-Halevi study fair allocation with identical valuations, which is equivalent to
729: 4372:
Proceedings of the 2017 ACM Conference on Economics and Computation, EC '17, Cambridge, MA, USA, June 26-30, 2017
4277:
41st IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2021)
3542:. Lecture Notes in Computer Science. Vol. 12607. Cham: Springer International Publishing. pp. 421–430. 633:
An advantage of global optimization criteria over individual criteria is that welfare-maximizing allocations are
3012:
Sylvain Bouveret and Yann Chevaleyre and Nicolas Maudet, "Fair Allocation of Indivisible Goods". Chapter 12 in:
3301:
Caragiannis, Ioannis; Kurokawa, David; Moulin, Hervé; Procaccia, Ariel D.; Shah, Nisarg; Wang, Junxing (2016).
1028: 1055:
various fairness notions have to be adapted accordingly. Several classes of fairness notions were considered:
4490: 2599: 1936: 1658:{\displaystyle {\mathcal {D}}=\{d\mid p_{d}\colon {\mathcal {A}}\to ,\sum _{A\in {\mathcal {A}}}p_{d}(A)=1\}} 866: 2901:, respectively. Many techniques used for these problems are useful in the case of fair item allocation, too. 2592:
says that society should choose the solution that maximize the utility of the poorest. That is, to choose a
990:
agents, they present a 1/2-MMS approximation. They also show that EFM is incompatible with non-wastefulness.
2949: 2913:- a fair division problem where indivisible items and a fixed total cost have to be divided simultaneously. 1123: 807: 760: 655: 41: 3596: 1009:
Liu, Lu, Suzuki and Walsh survey some recent results on mixed items, and identify several open questions:
491:. Hence, every proportional allocation is MMS-fair. Both inclusions are strict, even when every agent has 1238: 982: 870: 772: 713: 728:
Competitive equilibrium: various algorithms for finding a CE allocation are described in the article on
4213:
Segal-Halevi, Erel; Suksompong, Warut (2019-12-01). "Democratic fair allocation of indivisible goods".
4008:. Aamas '18. International Foundation for Autonomous Agents and Multiagent Systems. pp. 1267–1275. 2820: 1096: 4077: 3074:. Proceedings of the 2010 conference on ECAI 2010: 19th European Conference on Artificial Intelligence 1929:
says that society should choose the solution that maximize the sum of utilities. That is, to choose a
629:
if it maximizes the product of utilities. Nash-optimal allocations have some nice fairness properties.
3093:
Brams, Steven J.; Edelman, Paul H.; Fishburn, Peter C. (2003). "Fair Division of Indivisible Items".
2904: 2812: 764: 701: 4271:
Garg, Jugal; Kulkarni, Pooja; Murhekar, Aniket (2021). Bojańczy, Miko\laj; Chekuri, Chandra (eds.).
3353: 3231: 3142: 1516: 1286:
subsets (one for each agent). The set of all deterministic allocations can be described as follows:
1081:
classic item allocation setting corresponds to the special case in which all groups are singletons.
2922: 1268: 3535: 2944: 1214: 645:
Various algorithms for fair item allocation are surveyed in pages on specific fairness criteria:
594: 569: 339:: many languages for representing combinatorial preferences have been studied in the context of 3348: 3226: 3137: 2916: 1918:
that are suggested for deterministic setting can also be considered in the stochastic setting:
806:
Sandomirskiy and Segal-Halevi study sharing minimization in allocations that are both fair and
3310:. Proceedings of the 2016 ACM Conference on Economics and Computation - EC '16. p. 305. 3071:
Fair Division Under Ordinal Preferences: Computing Envy-Free Allocations of Indivisible Goods
2919:- a fair division problem without money, in which fairness is attained through randomization. 2870:, finds a stochastic allocation that approximates the egalitarian welfare to the same factor 668: 457: 384: 340: 3438: 2817:
and also, that it is NP-hard to approximate the eqalitarian welfare to a factor better than
1122:
The total cost of all items must not exceed a fixed budget. This variant is often known as
3014:
Brandt, Felix; Conitzer, Vincent; Endriss, Ulle; Lang, Jérôme; Procaccia, Ariel D. (2016).
2886: 2863: 2256: 2119: 1779: 1145: 1141: 177: 138: 3720:
Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence
3699: 3686: 532:
The above implications do not hold when the agents' valuations are not sub/superadditive.
205:
The second problem is often handled by working with individual items rather than bundles:
8: 4134: 3886: 3421:
Envy-ratio and average-nash social welfare optimization in multiagent resource allocation
3106: 2890: 1137: 977:
allocation of mixed goods, where the utility vector should minimize a symmetric strictly-
822: 783: 751:
number of shared objects / sharings required for various kinds of fair allocations among
466: 431: 422: 237: 4466: 4414: 4375: 4352: 4304: 4248: 4222: 4193: 4174: 4146: 4115: 4089: 4058: 4032: 3980: 3961: 3898: 3866: 3842: 3818: 3794: 3770: 3745: 3649: 3608: 3576: 3516: 3498: 3450: 3401: 3366: 3244: 3199: 3155: 3110: 2932: 2853: 1245: 1221: 1116: 1034:
Does there always exist an EFM allocation when there are indivisible chores and a cake?
962: 821:
Goldberg, Hollender, Igarashi, Manurangsi and Suksompong study sharing minimization in
768: 228:
To make the item-assignment problem simpler, it is common to assume that all items are
209:
In the cardinal approach, each partner should report a numeric valuation for each item;
118: 4272: 2970: 829:, there is a polynomial-time algorithm for computing a consensus halving with at most 16:
Fair division problem in which the items to divide are discrete rather than continuous
4470: 4393: 4342: 4308: 4294: 4252: 4240: 4178: 4166: 4119: 4107: 4062: 4050: 3965: 3916: 3731: 3667: 3571:
Bismuth, Samuel; Makarov, Vladislav; Segal-Halevi, Erel; Shapira, Dana (2023-11-08),
3551: 3520: 3468: 3319: 3278: 3248: 3159: 3114: 3021: 2990: 2986: 2938: 2928: 1014: 998: 578: 373: 329: 229: 50: 4333:. EC '18. New York, NY, USA: Association for Computing Machinery. pp. 575–592. 4283:. Dagstuhl, Germany: Schloss Dagstuhl – Leibniz-Zentrum für Informatik: 22:1–22:19. 4001: 3203: 1668:
There are two functions related to each agent, a utility function associated with a
4456: 4385: 4356: 4334: 4284: 4232: 4156: 4099: 4042: 3951: 3943: 3908: 3723: 3694: 3659: 3618: 3543: 3508: 3460: 3393: 3370: 3358: 3311: 3270: 3236: 3191: 3147: 3128:
Brams, S. J. (2005). "Efficient Fair Division: Help the Worst off or Avoid Envy?".
3102: 2982: 2807: 2589: 1926: 1130: 1021: 826: 722: 634: 621:
social welfare is the product of the utilities of the agents. An assignment called
492: 298:(Generalized Additive Independence). In the ordinal approach, a common tool is the 245: 233: 171: 61:, or by discarding some of the items. But such solutions are not always available. 4289: 4019:
Chakraborty, Mithun; Igarashi, Ayumi; Suksompong, Warut; Zick, Yair (2021-08-16).
3405: 2907:- including some case-studies and lab experiments related to fair item assignment. 605:
social welfare is minimum utility of a single agent. An item assignment is called
112:
It may be difficult for a person to calculate exact numeric values to the bundles.
4236: 4103: 3861:
Li, Zihao; Liu, Shengxin; Lu, Xinhang; Tao, Biaoshuai; Tao, Yichen (2024-01-02),
3622: 3547: 3274: 3015: 1513:
In the stochastic setting, a solution is a probability distribution over the set
1027:
Are there bounded or even finite algorithms for computing EFM allocations in the
978: 661:
Minimax-share item allocation: The problem of calculating the mFS of an agent is
167: 4076:
Chakraborty, Mithun; Schmidt-Kraepelin, Ulrike; Suksompong, Warut (2021-12-01).
3791:
Fair Allocation with Binary Valuations for Mixed Divisible and Indivisible Goods
3767:
Envy-freeness and maximum Nash welfare for mixed divisible and indivisible goods
3033: 2806:
Kawase and Sumita prove that finding a stochastic allocation that maximizes the
3716:"Truthful Fair Mechanisms for Allocating Mixed Divisible and Indivisible Goods" 3663: 3302: 2910: 2792:. It is easy to see that in the deterministic setting the egalitarian value is 3912: 3727: 3397: 3362: 3195: 2893:- two well-studied optimization problems that can be seen as special cases of 1088:(fairness in the eyes of all agents in each group), so it is often relaxed to 798:−1) sharings/shared objects are always sufficient, and may be necessary. 4484: 4461: 4444: 4244: 4170: 4161: 4111: 4054: 3947: 3920: 3671: 3637: 3472: 3151: 2994: 1040:
Is there a truthful EFM algorithm for agents with binary additive valuations?
947: 928: 858: 779:−1 sharings/shared objects are always sufficient, and may be necessary; 662: 649: 536: 399:
if every agent receives a bundle worth at least his proportional-fair-share.
366: 23: 4389: 4338: 3315: 3069: 994:
results are tight up to a constant for EF and asymptotically tight for PROP.
174:. In the ordinal model, each partner should only express a ranking over the 3512: 3464: 4326: 3715: 1899:{\displaystyle E_{i}(d)=\sum _{A\in {\mathcal {A}}}p_{d}(A)\cdot u_{i}(A)} 560:: For each two agents A and B, if we remove from the bundle of B the item 4133:
Chakraborty, Mithun; Segal-Halevi, Erel; Suksompong, Warut (2022-06-28).
3687:"On Approximate Envy-Freeness for Indivisible Chores and Mixed Resources" 1724:
and an expected utility function associated with a stochastic allocation
456:. Hence, every mFS-fair allocation is proportional. For every agent with 3839:
Allocating Mixed Goods with Customized Fairness and Indivisibility Ratio
881:−1. They prove that, for sharings, the problem is NP-hard for any 343:. Some of these languages can be adapted to the item assignment setting. 3956: 3885:
Liu, Shengxin; Lu, Xinhang; Suzuki, Mashbat; Walsh, Toby (2024-03-24).
3067: 1092:(fairness in the eyes of e.g. at least half the agents in each group). 4075: 3934:
Brams, Steven J.; Kaplan, Todd R. (2004). "Dividing the Indivisible".
3595:
Bei, Xiaohui; Li, Zihao; Liu, Shengxin; Lu, Xinhang (5 January 2021).
923:
Bei, Li, Liu, Liu and Lu study a mixture of indivisible and divisible
853:
sharings and an instance that requires 0 sharings. Probabilistically,
380:
if every agent receives a bundle that he weakly prefers over his MMS.
3636:
Bei, Xiaohui; Liu, Shengxin; Lu, Xinhang; Wang, Hongao (2021-06-30).
395:
of his utility from the entire set of items. An allocation is called
4046: 3714:
Li, Zihao; Liu, Shengxin; Lu, Xinhang; Tao, Biaoshuai (2023-08-19).
568: 4419: 4380: 4331:
Proceedings of the 2018 ACM Conference on Economics and Computation
4227: 4198: 4151: 4094: 4037: 3985: 3903: 3871: 3847: 3823: 3799: 3775: 3654: 3613: 3581: 3503: 3488: 3455: 3240: 4020: 3300: 3269:. Lecture Notes in Computer Science. Vol. 9346. p. 521. 1267:
is a type of fair item allocation in which a solution describes a
986:
if all divisible goods are identical, a polytime algorithm exists.
927:(objects with positive utiliies). They define an approximation to 4132: 4018: 3570: 849:, it is NP-hard to distinguish between an instance that requires 665:. The problem of deciding whether an mFS allocation exists is in 4445:"On the Max-Min Fair Stochastic Allocation of Indivisible Goods" 3789:
Kawase, Yasushi; Nishimura, Koichi; Sumita, Hanna (2023-11-08),
510:
Carl values the items as 3,2,1. For him, MMS=1, PFS=2 and mFS=3.
413:
first. Hence, an agent would object to an allocation only if in
4273:"On Fair and Efficient Allocations of Indivisible Public Goods" 813:
Misra and Sethia complement their result by proving that, when
518:
Every allocation which gives an item to each agent is MMS-fair.
507:
Bob values the items as 3,2,1. For him, MMS=1, PFS=2 and mFS=3.
108:
for more examples). There are two problems with this approach:
4078:"Picking sequences and monotonicity in weighted fair division" 1769:{\displaystyle E_{i}\colon {\mathcal {D}}\to \mathbb {R} _{+}} 1715:{\displaystyle u_{i}\colon {\mathcal {A}}\to \mathbb {R} _{+}} 1259: 264: 4449:
Proceedings of the AAAI Conference on Artificial Intelligence
4279:. Leibniz International Proceedings in Informatics (LIPIcs). 4139:
Proceedings of the AAAI Conference on Artificial Intelligence
3891:
Proceedings of the AAAI Conference on Artificial Intelligence
3638:"Maximin fairness with mixed divisible and indivisible goods" 917: 4325:
Fain, Brandon; Munagala, Kamesh; Shah, Nisarg (2018-06-11).
3418: 954:
Bhaskar, Sricharan and Vaish study a mixture of indivisible
4135:"Weighted Fairness Notions for Indivisible Items Revisited" 544:
an EF allocation may be not proportional and even not MMS.
4412: 3837:
Li, Bo; Li, Zihao; Liu, Shengxin; Wu, Zekai (2024-04-28),
1115:
items can be selected. This variant is closely related to
946:
Bei, Liu, Lu and Wang study the same setting, focusing on
698:, but its exact computational complexity is still unknown. 3978: 3691:
DROPS-IDN/V2/Document/10.4230/LIPIcs.APPROX/RANDOM.2021.1
3013: 1220:
Common solution concepts for public goods allocation are
845:
cuts. But sharing minimization is NP-hard: for any fixed
115:
The number of possible bundles can be huge: if there are
3597:"Fair division of mixed divisible and indivisible goods" 3436: 504:
Alice values the items as 2,2,2. For her, MMS=PFS=mFS=2.
4021:"Weighted Envy-freeness in Indivisible Item Allocation" 3813:
Bei, Xiaohui; Liu, Shengxin; Lu, Xinhang (2023-10-02),
3685:
Bhaskar, Umang; Sricharan, A. R.; Vaish, Rohit (2021).
3045: 376:
against adversarial opponents. An allocation is called
82:
Based on the preferences and the fairness criterion, a
4212: 2831: 3788: 3693:. Schloss Dagstuhl – Leibniz-Zentrum für Informatik. 3684: 3383: 2823: 2643: 2602: 2286: 2259: 2132: 1980: 1939: 1812: 1782: 1730: 1676: 1546: 1519: 1295: 1071:
Proportional cake-cutting with different entitlements
671: 469: 434: 180: 141: 121: 4270: 3540:
SOFSEM 2021: Theory and Practice of Computer Science
3437:
Sandomirskiy, Fedor; Segal-Halevi, Erel (May 2022).
3092: 3068:
Sylvain Bouveret; Ulle Endriss; Jérôme Lang (2010).
736: 64:
An item assignment problem has several ingredients:
4369: 3863:
A Complete Landscape for the Price of Envy-Freeness
3722:. IJCAI '23. Macao, P.R.China. pp. 2808–2816. 3046:Barberà, S.; Bossert, W.; Pattanaik, P. K. (2004). 2122:. The reason is that the utilitarian value of the 2844: 2780: 2625: 2575: 2272: 2245: 2110: 1962: 1898: 1795: 1768: 1714: 1657: 1529: 1502: 1059:Notions based on weighted competitive equilibrium; 690: 483: 448: 193: 154: 127: 4191: 3341:Annals of Mathematics and Artificial Intelligence 3304:The Unreasonable Fairness of Maximum Nash Welfare 3264: 1205:essentially represents the decision to give item 745: 90:These ingredients are explained in detail below. 4482: 4324: 4002:"Competitive Equilibrium For almost All Incomes" 3884: 3536:"Fair Division is Hard Even for Amicable Agents" 3181: 2969:Demko, Stephen; Hill, Theodore P. (1988-10-01). 2680: 2479: 495:. This is illustrated in the following example: 383: 352: 86:should be executed to calculate a fair division. 3765:Nishimura, Koichi; Sumita, Hanna (2023-08-13), 3764: 3338: 2971:"Equitable distribution of indivisible objects" 2810:is NP-hard even when agents' utilities are all 1084:With groups, it may be impossible to guarantee 1005:agents, for both scaled and unscaled utilities. 584: 3439:"Efficient Fair Division with Minimal Sharing" 1020:Are there efficient algorithms for maximizing 913:is not fixed, the problem is strongly NP-hard. 877:is smaller than the worst-case upper bound of 328:: each partner describes some bundles using a 302:(Conditional Preferences) and its extensions: 216:Under suitable assumptions, it is possible to 4327:"Fair Allocation of Indivisible Public Goods" 4025:ACM Transactions on Economics and Computation 1101: 391:The proportional-fair-share of an agent is 1/ 273:combinatorial utilities). Some examples are: 4442: 3999: 3635: 2931:- a fair division problem in which seats in 1652: 1557: 1497: 1306: 708:Efficient approximately fair item allocation 244:In the cardinal approach, each agent has an 98: 3933: 3533: 3296: 3294: 1271:over the set of deterministic allocations. 1265:Stochastic allocations of indivisible goods 1260:Stochastic allocations of indivisible goods 402: 270:Compact preference representation languages 265:Compact preference representation languages 3860: 3815:Fair Division with Subjective Divisibility 3750:: CS1 maint: location missing publisher ( 3713: 3594: 3008: 3006: 3004: 1044: 918:Mixture of divisible and indivisible goods 4460: 4418: 4379: 4288: 4226: 4197: 4160: 4150: 4093: 4036: 3984: 3955: 3902: 3870: 3846: 3836: 3822: 3798: 3774: 3698: 3653: 3642:Autonomous Agents and Multi-Agent Systems 3612: 3580: 3502: 3454: 3386:Autonomous Agents and Multi-Agent Systems 3352: 3230: 3184:Autonomous Agents and Multi-Agent Systems 3141: 2968: 1756: 1702: 1227: 1049: 515:The possible allocations are as follows: 26:problem in which the items to divide are 3812: 3534:Misra, Neeldhara; Sethia, Aditi (2021). 3291: 2796:, while in the stochastic setting it is 1175:, construct a public-goods problem with 1062:Notions based on weighted envy-freeness; 833:sharings, and for computing a consensus 640: 501:There are three agents and three items: 4443:Kawase, Yasushi; Sumita, Hanna (2020). 3419:Trung Thanh Nguyen; Jörg Rothe (2013). 3377: 3260: 3258: 3210: 3017:Handbook of Computational Social Choice 3001: 2626:{\displaystyle d^{*}\in {\mathcal {D}}} 1963:{\displaystyle d^{*}\in {\mathcal {D}}} 1075: 869:, and also the more general setting of 223: 166:The first problem motivates the use of 4483: 4438: 4436: 4434: 4432: 4430: 3332: 3216: 3177: 3175: 3173: 3171: 3169: 1915: 1909: 1250: 593:evaluates a division based on a given 106:Utility functions on indivisible goods 4320: 4318: 4266: 4264: 4262: 3484: 3482: 3432: 3430: 3412: 3127: 2253:is at least the utilitarian value of 1065:Notions based on weighted fair share; 889:−2; but for shared objects and 535: 3927: 3255: 3086: 3061: 1278:items should be distributed between 347: 4427: 3700:10.4230/LIPIcs.APPROX/RANDOM.2021.1 3166: 3121: 2852:even when all agents have the same 997:Li, Liu, Lu, Tao and Tao study the 973:Kawase, Nishimura and Sumita study 893:≥ 3, the problem is polynomial for 825:. They prove that, for agents with 558:Envy-freeness-except-cheapest (EFx) 68:The partners have to express their 13: 4363: 4315: 4259: 4206: 3573:Number Partitioning with Splitting 3491:Mathematics of Operations Research 3479: 3427: 3107:10.1023/B:THEO.0000024421.85722.0a 2720: 2671: 2618: 2491: 2402: 2321: 2160: 2050: 2008: 1955: 1848: 1746: 1692: 1620: 1581: 1549: 1522: 1447: 1394: 1347: 1298: 408:I choose first”. An allocation is 14: 4502: 4000:Segal-Halevi, Erel (2018-07-09). 2935:should be divided among students. 2845:{\displaystyle 1-{\tfrac {1}{e}}} 737:Between divisible and indivisible 365: 4406: 4185: 4126: 4069: 4012: 3993: 3972: 3936:Journal of Theoretical Politics 3887:"Mixed Fair Division: A Survey" 3878: 3854: 3830: 3806: 3782: 3758: 3707: 3678: 3629: 3588: 3564: 3527: 1453: 1393: 1201:and the other items at 0. Item 901:−2 and NP-hard for any 547:Weaker versions of EF include: 72:for the different item-bundles. 3039: 3020:. Cambridge University Press. 2962: 2770: 2764: 2748: 2742: 2570: 2564: 2522: 2516: 2472: 2466: 2432: 2426: 2378: 2372: 2356: 2350: 2240: 2234: 2191: 2185: 2100: 2094: 2078: 2072: 1893: 1887: 1871: 1865: 1829: 1823: 1751: 1697: 1643: 1637: 1601: 1589: 1586: 1530:{\displaystyle {\mathcal {A}}} 1494: 1488: 1415: 1409: 1387: 1381: 1362: 1356: 1341: 1309: 981:(this is a generalization off 746:Bounding the amount of sharing 359:individual guarantee criterion 93: 1: 4290:10.4230/LIPIcs.FSTTCS.2021.22 2955: 2899:indivisible chores allocation 867:Identical-machines scheduling 808:Fractionally Pareto efficient 650:Maximin-share item allocation 591:global optimization criterion 353:Individual guarantee criteria 322:(a simplification of CI net). 318:(Conditional Importance) and 256:{x,y} or even {w,z} to {x,y}. 75:The group should decide on a 4237:10.1016/j.artint.2019.103167 4104:10.1016/j.artint.2021.103578 3623:10.1016/j.artint.2020.103436 3548:10.1007/978-3-030-67731-2_31 3275:10.1007/978-3-319-23114-3_31 3219:Journal of Political Economy 2987:10.1016/0165-4896(88)90047-9 2975:Mathematical Social Sciences 2950:17-animal inheritance puzzle 2895:indivisible goods allocation 943:-approximate EFM allocation. 656:Proportional item allocation 585:Global optimization criteria 552:Envy-freeness-except-1 (EF1) 42:White elephant gift exchange 7: 4374:. {ACM}. pp. 629–646. 3267:Algorithmic Decision Theory 2880: 1776:which defined according to 1239:Round-robin item allocation 983:Egalitarian item allocation 871:Uniform-machines scheduling 714:Egalitarian item allocation 284:for every positive integer 10: 4507: 3664:10.1007/s10458-021-09517-7 3055:Handbook of utility theory 3048:"Ranking sets of objects." 1243: 1102:Allocation of public goods 1097:Fair division among groups 1094: 1068: 1029:Robertson–Webb query model 1022:Utilitarian social welfare 961:Li, Liu, Lu and Tao study 524:No allocation is mFS-fair. 4006:Proceedings of AAMAS 2018 3913:10.1609/aaai.v38i20.30274 3398:10.1007/s10458-013-9224-2 3363:10.1007/s10472-012-9328-4 3196:10.1007/s10458-015-9287-3 2905:Fair division experiments 1670:deterministic allocation 702:Envy-free item allocation 572:from Equal Incomes (CEEI) 99:Combinatorial preferences 84:fair assignment algorithm 4462:10.1609/AAAI.V34I02.5580 4162:10.1609/aaai.v36i5.20425 3948:10.1177/0951629804041118 3152:10.1177/1043463105058317 2923:House allocation problem 2120:deterministic allocation 1269:probability distribution 837:-division with at most ( 403:Min-max fair-share (mFS) 4390:10.1145/3033274.3085125 4339:10.1145/3219166.3219174 4215:Artificial Intelligence 4082:Artificial Intelligence 3728:10.24963/ijcai.2023/313 3601:Artificial Intelligence 3316:10.1145/2940716.2940726 3130:Rationality and Society 2945:Fair subset sum problem 1124:participatory budgeting 1045:Variants and extensions 1013:Is EFM compatible with 691:{\displaystyle NP^{NP}} 595:social welfare function 570:Competitive equilibrium 248:function (also called: 3513:10.1287/moor.2021.1249 3465:10.1287/opre.2022.2279 2917:Fair random assignment 2846: 2782: 2627: 2577: 2553: 2455: 2307: 2274: 2247: 2223: 2112: 2036: 1964: 1900: 1797: 1770: 1716: 1659: 1531: 1504: 1228:Public decision making 1050:Different entitlements 1024:among EFM allocations? 692: 485: 450: 341:combinatorial auctions 282:k-additive preferences 278:2-additive preferences 195: 156: 129: 2847: 2783: 2628: 2578: 2533: 2435: 2287: 2275: 2273:{\displaystyle d^{*}} 2248: 2203: 2113: 2016: 1965: 1901: 1798: 1796:{\displaystyle u_{i}} 1771: 1717: 1660: 1532: 1505: 1136:There may be general 693: 641:Allocation algorithms 486: 458:superadditive utility 451: 421:For every agent with 326:Logic based languages 196: 194:{\displaystyle 2^{m}} 157: 155:{\displaystyle 2^{m}} 135:items then there are 130: 4491:Fair item allocation 2887:Bin covering problem 2821: 2641: 2600: 2284: 2257: 2130: 1978: 1937: 1810: 1780: 1728: 1674: 1544: 1517: 1293: 1217:optimal allocation. 1146:knapsack constraints 1142:matching constraints 1076:Allocation to groups 669: 627:Maximum-Nash-Welfare 467: 432: 224:Additive preferences 178: 139: 119: 20:Fair item allocation 3897:(20): 22641–22649. 3443:Operations Research 3095:Theory and Decision 3034:free online version 2891:Bin packing problem 2864:utilitarian welfare 2808:eqalitarian welfare 2635:egalitarian walfare 2633:that maximizes the 1972:utilitarian walfare 1970:that maximizes the 1474: 1251:Repeated allocation 1185:items, where agent 1160:items, where agent 1138:matroid constraints 1090:democratic fairness 963:truthful mechanisms 823:consensus splitting 784:Consensus splitting 607:egalitarian-optimal 484:{\displaystyle 1/n} 449:{\displaystyle 1/n} 425:, the mFS is worth 423:subadditive utility 238:complementary goods 59:time-based rotation 3607:103436. Elsevier. 2933:university courses 2854:submodular utility 2842: 2840: 2778: 2726: 2706: 2677: 2623: 2573: 2532: 2408: 2327: 2270: 2243: 2201: 2108: 2056: 2014: 1960: 1896: 1854: 1793: 1766: 1712: 1655: 1626: 1527: 1500: 1454: 1246:multi-issue voting 1148:on the chosen set. 1117:multiwinner voting 1086:unanimous fairness 827:additive utilities 688: 612:leximin-optimality 481: 460:, the MMSis worth 446: 191: 152: 125: 77:fairness criterion 4399:978-1-4503-4527-9 4348:978-1-4503-5829-3 4300:978-3-95977-215-0 4031:(3): 18:1–18:39. 3737:978-1-956792-03-4 3557:978-3-030-67731-2 3284:978-3-319-23113-6 2939:Price of fairness 2929:Course allocation 2839: 2707: 2679: 2658: 2586:Egalitarian rule: 2478: 2389: 2308: 2147: 2037: 1995: 1910:Fairness criteria 1835: 1607: 1189:values each item 1015:Pareto-efficiency 999:price of fairness 579:Pareto efficiency 374:divide and choose 348:Fairness criteria 337:Bidding languages 330:first order logic 232:(so they are not 230:independent goods 128:{\displaystyle m} 55:monetary payments 51:fair cake-cutting 22:is a kind of the 4498: 4475: 4474: 4464: 4455:(2): 2070–2078. 4440: 4425: 4424: 4422: 4410: 4404: 4403: 4383: 4367: 4361: 4360: 4322: 4313: 4312: 4292: 4268: 4257: 4256: 4230: 4210: 4204: 4203: 4201: 4189: 4183: 4182: 4164: 4154: 4145:(5): 4949–4956. 4130: 4124: 4123: 4097: 4073: 4067: 4066: 4040: 4016: 4010: 4009: 3997: 3991: 3990: 3988: 3976: 3970: 3969: 3959: 3931: 3925: 3924: 3906: 3882: 3876: 3875: 3874: 3858: 3852: 3851: 3850: 3834: 3828: 3827: 3826: 3810: 3804: 3803: 3802: 3786: 3780: 3779: 3778: 3762: 3756: 3755: 3749: 3741: 3711: 3705: 3704: 3702: 3682: 3676: 3675: 3657: 3633: 3627: 3626: 3616: 3592: 3586: 3585: 3584: 3568: 3562: 3561: 3531: 3525: 3524: 3506: 3497:(4): 3357–3379. 3486: 3477: 3476: 3458: 3449:(3): 1762–1782. 3434: 3425: 3424: 3416: 3410: 3409: 3381: 3375: 3374: 3356: 3336: 3330: 3329: 3309: 3298: 3289: 3288: 3262: 3253: 3252: 3234: 3225:(6): 1061–1103. 3214: 3208: 3207: 3179: 3164: 3163: 3145: 3125: 3119: 3118: 3090: 3084: 3083: 3081: 3079: 3065: 3059: 3058: 3052: 3043: 3037: 3031: 3010: 2999: 2998: 2966: 2873: 2869: 2851: 2849: 2848: 2843: 2841: 2832: 2799: 2795: 2791: 2787: 2785: 2784: 2779: 2777: 2773: 2763: 2762: 2741: 2740: 2725: 2724: 2723: 2705: 2678: 2676: 2675: 2674: 2653: 2652: 2632: 2630: 2629: 2624: 2622: 2621: 2612: 2611: 2582: 2580: 2579: 2574: 2563: 2562: 2552: 2547: 2531: 2515: 2514: 2513: 2512: 2495: 2494: 2465: 2464: 2454: 2449: 2425: 2424: 2423: 2422: 2407: 2406: 2405: 2385: 2381: 2371: 2370: 2349: 2348: 2347: 2346: 2326: 2325: 2324: 2306: 2301: 2279: 2277: 2276: 2271: 2269: 2268: 2252: 2250: 2249: 2244: 2233: 2232: 2222: 2217: 2202: 2200: 2184: 2183: 2182: 2181: 2164: 2163: 2142: 2141: 2117: 2115: 2114: 2109: 2107: 2103: 2093: 2092: 2071: 2070: 2055: 2054: 2053: 2035: 2030: 2015: 2013: 2012: 2011: 1990: 1989: 1969: 1967: 1966: 1961: 1959: 1958: 1949: 1948: 1923:Utilitarian rule 1905: 1903: 1902: 1897: 1886: 1885: 1864: 1863: 1853: 1852: 1851: 1822: 1821: 1802: 1800: 1799: 1794: 1792: 1791: 1775: 1773: 1772: 1767: 1765: 1764: 1759: 1750: 1749: 1740: 1739: 1723: 1721: 1719: 1718: 1713: 1711: 1710: 1705: 1696: 1695: 1686: 1685: 1664: 1662: 1661: 1656: 1636: 1635: 1625: 1624: 1623: 1585: 1584: 1575: 1574: 1553: 1552: 1536: 1534: 1533: 1528: 1526: 1525: 1509: 1507: 1506: 1501: 1484: 1483: 1473: 1468: 1443: 1442: 1430: 1429: 1377: 1376: 1340: 1339: 1321: 1320: 1302: 1301: 1285: 1281: 1277: 1184: 1131:agreeable subset 723:Picking sequence 697: 695: 694: 689: 687: 686: 635:Pareto efficient 493:additive utility 490: 488: 487: 482: 477: 455: 453: 452: 447: 442: 387:fair-share (PFS) 292:Graphical models 246:additive utility 234:substitute goods 200: 198: 197: 192: 190: 189: 172:cardinal utility 161: 159: 158: 153: 151: 150: 134: 132: 131: 126: 4506: 4505: 4501: 4500: 4499: 4497: 4496: 4495: 4481: 4480: 4479: 4478: 4441: 4428: 4411: 4407: 4400: 4368: 4364: 4349: 4323: 4316: 4301: 4269: 4260: 4211: 4207: 4190: 4186: 4131: 4127: 4074: 4070: 4047:10.1145/3457166 4017: 4013: 3998: 3994: 3977: 3973: 3932: 3928: 3883: 3879: 3859: 3855: 3835: 3831: 3811: 3807: 3787: 3783: 3763: 3759: 3743: 3742: 3738: 3712: 3708: 3683: 3679: 3634: 3630: 3593: 3589: 3569: 3565: 3558: 3532: 3528: 3487: 3480: 3435: 3428: 3417: 3413: 3382: 3378: 3354:10.1.1.671.3497 3337: 3333: 3326: 3307: 3299: 3292: 3285: 3263: 3256: 3232:10.1.1.357.9766 3215: 3211: 3180: 3167: 3143:10.1.1.118.9114 3126: 3122: 3091: 3087: 3077: 3075: 3066: 3062: 3050: 3044: 3040: 3028: 3011: 3002: 2967: 2963: 2958: 2883: 2871: 2867: 2830: 2822: 2819: 2818: 2813:budget-additive 2797: 2793: 2789: 2758: 2754: 2736: 2732: 2731: 2727: 2719: 2718: 2711: 2683: 2670: 2669: 2662: 2657: 2648: 2644: 2642: 2639: 2638: 2617: 2616: 2607: 2603: 2601: 2598: 2597: 2558: 2554: 2548: 2537: 2508: 2504: 2503: 2499: 2490: 2489: 2482: 2460: 2456: 2450: 2439: 2418: 2414: 2413: 2409: 2401: 2400: 2393: 2366: 2362: 2342: 2338: 2337: 2333: 2332: 2328: 2320: 2319: 2312: 2302: 2291: 2285: 2282: 2281: 2264: 2260: 2258: 2255: 2254: 2228: 2224: 2218: 2207: 2177: 2173: 2172: 2168: 2159: 2158: 2151: 2146: 2137: 2133: 2131: 2128: 2127: 2088: 2084: 2066: 2062: 2061: 2057: 2049: 2048: 2041: 2031: 2020: 2007: 2006: 1999: 1994: 1985: 1981: 1979: 1976: 1975: 1954: 1953: 1944: 1940: 1938: 1935: 1934: 1912: 1881: 1877: 1859: 1855: 1847: 1846: 1839: 1817: 1813: 1811: 1808: 1807: 1787: 1783: 1781: 1778: 1777: 1760: 1755: 1754: 1745: 1744: 1735: 1731: 1729: 1726: 1725: 1706: 1701: 1700: 1691: 1690: 1681: 1677: 1675: 1672: 1671: 1669: 1631: 1627: 1619: 1618: 1611: 1580: 1579: 1570: 1566: 1548: 1547: 1545: 1542: 1541: 1521: 1520: 1518: 1515: 1514: 1479: 1475: 1469: 1458: 1438: 1434: 1425: 1421: 1372: 1368: 1335: 1331: 1316: 1312: 1297: 1296: 1294: 1291: 1290: 1283: 1279: 1275: 1262: 1253: 1248: 1230: 1198: 1176: 1173: 1104: 1099: 1078: 1073: 1052: 1047: 979:convex function 920: 909:−3. When 748: 739: 679: 675: 670: 667: 666: 643: 587: 574: 541: 473: 468: 465: 464: 438: 433: 430: 429: 405: 389: 370: 355: 350: 267: 226: 185: 181: 179: 176: 175: 168:ordinal utility 146: 142: 140: 137: 136: 120: 117: 116: 101: 96: 17: 12: 11: 5: 4504: 4494: 4493: 4477: 4476: 4426: 4405: 4398: 4362: 4347: 4314: 4299: 4258: 4205: 4184: 4125: 4068: 4011: 3992: 3971: 3926: 3877: 3853: 3829: 3805: 3781: 3757: 3736: 3706: 3677: 3628: 3587: 3563: 3556: 3526: 3478: 3426: 3411: 3376: 3347:(1–3): 65–90. 3331: 3324: 3290: 3283: 3254: 3241:10.1086/664613 3209: 3165: 3136:(4): 387–421. 3120: 3085: 3060: 3057:. Springer US. 3038: 3026: 3000: 2981:(2): 145–158. 2960: 2959: 2957: 2954: 2953: 2952: 2947: 2942: 2936: 2926: 2920: 2914: 2911:Rental harmony 2908: 2902: 2882: 2879: 2878: 2877: 2876: 2875: 2857: 2838: 2835: 2829: 2826: 2776: 2772: 2769: 2766: 2761: 2757: 2753: 2750: 2747: 2744: 2739: 2735: 2730: 2722: 2717: 2714: 2710: 2704: 2701: 2698: 2695: 2692: 2689: 2686: 2682: 2673: 2668: 2665: 2661: 2656: 2651: 2647: 2620: 2615: 2610: 2606: 2583: 2572: 2569: 2566: 2561: 2557: 2551: 2546: 2543: 2540: 2536: 2530: 2527: 2524: 2521: 2518: 2511: 2507: 2502: 2498: 2493: 2488: 2485: 2481: 2477: 2474: 2471: 2468: 2463: 2459: 2453: 2448: 2445: 2442: 2438: 2434: 2431: 2428: 2421: 2417: 2412: 2404: 2399: 2396: 2392: 2388: 2384: 2380: 2377: 2374: 2369: 2365: 2361: 2358: 2355: 2352: 2345: 2341: 2336: 2331: 2323: 2318: 2315: 2311: 2305: 2300: 2297: 2294: 2290: 2267: 2263: 2242: 2239: 2236: 2231: 2227: 2221: 2216: 2213: 2210: 2206: 2199: 2196: 2193: 2190: 2187: 2180: 2176: 2171: 2167: 2162: 2157: 2154: 2150: 2145: 2140: 2136: 2106: 2102: 2099: 2096: 2091: 2087: 2083: 2080: 2077: 2074: 2069: 2065: 2060: 2052: 2047: 2044: 2040: 2034: 2029: 2026: 2023: 2019: 2010: 2005: 2002: 1998: 1993: 1988: 1984: 1957: 1952: 1947: 1943: 1911: 1908: 1907: 1906: 1895: 1892: 1889: 1884: 1880: 1876: 1873: 1870: 1867: 1862: 1858: 1850: 1845: 1842: 1838: 1834: 1831: 1828: 1825: 1820: 1816: 1790: 1786: 1763: 1758: 1753: 1748: 1743: 1738: 1734: 1709: 1704: 1699: 1694: 1689: 1684: 1680: 1666: 1665: 1654: 1651: 1648: 1645: 1642: 1639: 1634: 1630: 1622: 1617: 1614: 1610: 1606: 1603: 1600: 1597: 1594: 1591: 1588: 1583: 1578: 1573: 1569: 1565: 1562: 1559: 1556: 1551: 1524: 1511: 1510: 1499: 1496: 1493: 1490: 1487: 1482: 1478: 1472: 1467: 1464: 1461: 1457: 1452: 1449: 1446: 1441: 1437: 1433: 1428: 1424: 1420: 1417: 1414: 1411: 1408: 1405: 1402: 1399: 1396: 1392: 1389: 1386: 1383: 1380: 1375: 1371: 1367: 1364: 1361: 1358: 1355: 1352: 1349: 1346: 1343: 1338: 1334: 1330: 1327: 1324: 1319: 1315: 1311: 1308: 1305: 1300: 1261: 1258: 1252: 1249: 1229: 1226: 1222:core stability 1196: 1171: 1150: 1149: 1134: 1127: 1120: 1103: 1100: 1077: 1074: 1067: 1066: 1063: 1060: 1051: 1048: 1046: 1043: 1042: 1041: 1038: 1035: 1032: 1025: 1018: 1007: 1006: 995: 991: 987: 971: 967: 959: 952: 944: 919: 916: 915: 914: 863: 819: 811: 800: 799: 780: 747: 744: 738: 735: 734: 733: 726: 720: 717: 711: 705: 699: 685: 682: 678: 674: 659: 653: 642: 639: 631: 630: 615: 586: 583: 573: 567: 566: 565: 555: 540: 534: 530: 529: 528: 527: 526: 525: 522: 519: 513: 512: 511: 508: 505: 480: 476: 472: 445: 441: 437: 404: 401: 388: 382: 369: 364: 354: 351: 349: 346: 345: 344: 334: 323: 289: 266: 263: 258: 257: 253: 225: 222: 214: 213: 210: 188: 184: 164: 163: 149: 145: 124: 113: 100: 97: 95: 92: 88: 87: 80: 73: 46: 45: 39: 36: 15: 9: 6: 4: 3: 2: 4503: 4492: 4489: 4488: 4486: 4472: 4468: 4463: 4458: 4454: 4450: 4446: 4439: 4437: 4435: 4433: 4431: 4421: 4416: 4409: 4401: 4395: 4391: 4387: 4382: 4377: 4373: 4366: 4358: 4354: 4350: 4344: 4340: 4336: 4332: 4328: 4321: 4319: 4310: 4306: 4302: 4296: 4291: 4286: 4282: 4278: 4274: 4267: 4265: 4263: 4254: 4250: 4246: 4242: 4238: 4234: 4229: 4224: 4220: 4216: 4209: 4200: 4195: 4188: 4180: 4176: 4172: 4168: 4163: 4158: 4153: 4148: 4144: 4140: 4136: 4129: 4121: 4117: 4113: 4109: 4105: 4101: 4096: 4091: 4087: 4083: 4079: 4072: 4064: 4060: 4056: 4052: 4048: 4044: 4039: 4034: 4030: 4026: 4022: 4015: 4007: 4003: 3996: 3987: 3982: 3975: 3967: 3963: 3958: 3953: 3949: 3945: 3941: 3937: 3930: 3922: 3918: 3914: 3910: 3905: 3900: 3896: 3892: 3888: 3881: 3873: 3868: 3864: 3857: 3849: 3844: 3840: 3833: 3825: 3820: 3816: 3809: 3801: 3796: 3792: 3785: 3777: 3772: 3768: 3761: 3753: 3747: 3739: 3733: 3729: 3725: 3721: 3717: 3710: 3701: 3696: 3692: 3688: 3681: 3673: 3669: 3665: 3661: 3656: 3651: 3647: 3643: 3639: 3632: 3624: 3620: 3615: 3610: 3606: 3602: 3598: 3591: 3583: 3578: 3574: 3567: 3559: 3553: 3549: 3545: 3541: 3537: 3530: 3522: 3518: 3514: 3510: 3505: 3500: 3496: 3492: 3485: 3483: 3474: 3470: 3466: 3462: 3457: 3452: 3448: 3444: 3440: 3433: 3431: 3422: 3415: 3407: 3403: 3399: 3395: 3391: 3387: 3380: 3372: 3368: 3364: 3360: 3355: 3350: 3346: 3342: 3335: 3327: 3325:9781450339360 3321: 3317: 3313: 3306: 3305: 3297: 3295: 3286: 3280: 3276: 3272: 3268: 3261: 3259: 3250: 3246: 3242: 3238: 3233: 3228: 3224: 3220: 3213: 3205: 3201: 3197: 3193: 3189: 3185: 3178: 3176: 3174: 3172: 3170: 3161: 3157: 3153: 3149: 3144: 3139: 3135: 3131: 3124: 3116: 3112: 3108: 3104: 3100: 3096: 3089: 3073: 3072: 3064: 3056: 3049: 3042: 3035: 3029: 3027:9781107060432 3023: 3019: 3018: 3009: 3007: 3005: 2996: 2992: 2988: 2984: 2980: 2976: 2972: 2965: 2961: 2951: 2948: 2946: 2943: 2940: 2937: 2934: 2930: 2927: 2924: 2921: 2918: 2915: 2912: 2909: 2906: 2903: 2900: 2896: 2892: 2888: 2885: 2884: 2865: 2861: 2858: 2855: 2836: 2833: 2827: 2824: 2816: 2814: 2809: 2805: 2802: 2801: 2774: 2767: 2759: 2755: 2751: 2745: 2737: 2733: 2728: 2715: 2712: 2708: 2702: 2699: 2696: 2693: 2690: 2687: 2684: 2666: 2663: 2659: 2654: 2649: 2645: 2636: 2613: 2608: 2604: 2595: 2591: 2587: 2584: 2567: 2559: 2555: 2549: 2544: 2541: 2538: 2534: 2528: 2525: 2519: 2509: 2505: 2500: 2496: 2486: 2483: 2475: 2469: 2461: 2457: 2451: 2446: 2443: 2440: 2436: 2429: 2419: 2415: 2410: 2397: 2394: 2390: 2386: 2382: 2375: 2367: 2363: 2359: 2353: 2343: 2339: 2334: 2329: 2316: 2313: 2309: 2303: 2298: 2295: 2292: 2288: 2265: 2261: 2237: 2229: 2225: 2219: 2214: 2211: 2208: 2204: 2197: 2194: 2188: 2178: 2174: 2169: 2165: 2155: 2152: 2148: 2143: 2138: 2134: 2125: 2124:deterministic 2121: 2104: 2097: 2089: 2085: 2081: 2075: 2067: 2063: 2058: 2045: 2042: 2038: 2032: 2027: 2024: 2021: 2017: 2003: 2000: 1996: 1991: 1986: 1982: 1973: 1950: 1945: 1941: 1932: 1928: 1924: 1921: 1920: 1919: 1917: 1916:same criteria 1890: 1882: 1878: 1874: 1868: 1860: 1856: 1843: 1840: 1836: 1832: 1826: 1818: 1814: 1806: 1805: 1804: 1788: 1784: 1761: 1741: 1736: 1732: 1707: 1687: 1682: 1678: 1649: 1646: 1640: 1632: 1628: 1615: 1612: 1608: 1604: 1598: 1595: 1592: 1576: 1571: 1567: 1563: 1560: 1554: 1540: 1539: 1538: 1491: 1485: 1480: 1476: 1470: 1465: 1462: 1459: 1455: 1450: 1444: 1439: 1435: 1431: 1426: 1422: 1418: 1412: 1406: 1403: 1400: 1397: 1390: 1384: 1378: 1373: 1369: 1365: 1359: 1353: 1350: 1344: 1336: 1332: 1328: 1325: 1322: 1317: 1313: 1303: 1289: 1288: 1287: 1272: 1270: 1266: 1257: 1247: 1242: 1240: 1236: 1225: 1223: 1218: 1216: 1212: 1208: 1204: 1200: 1192: 1188: 1183: 1179: 1174: 1167: 1163: 1159: 1155: 1147: 1143: 1139: 1135: 1132: 1128: 1125: 1121: 1118: 1114: 1110: 1109: 1108: 1098: 1093: 1091: 1087: 1082: 1072: 1064: 1061: 1058: 1057: 1056: 1039: 1036: 1033: 1030: 1026: 1023: 1019: 1016: 1012: 1011: 1010: 1004: 1000: 996: 992: 988: 984: 980: 976: 972: 968: 964: 960: 957: 953: 949: 948:maximin-share 945: 942: 938: 934: 930: 929:envy-freeness 926: 922: 921: 912: 908: 904: 900: 896: 892: 888: 884: 880: 876: 872: 868: 864: 860: 859:almost surely 857:sharings are 856: 852: 848: 844: 840: 836: 832: 828: 824: 820: 816: 812: 809: 805: 804: 803: 797: 793: 789: 785: 781: 778: 774: 770: 766: 762: 758: 757: 756: 754: 743: 731: 730:Fisher market 727: 724: 721: 718: 715: 712: 709: 706: 703: 700: 683: 680: 676: 672: 664: 663:coNP-complete 660: 657: 654: 651: 648: 647: 646: 638: 636: 628: 624: 620: 616: 613: 608: 604: 600: 599: 598: 596: 592: 582: 580: 571: 563: 559: 556: 553: 550: 549: 548: 545: 538: 537:Envy-freeness 533: 523: 520: 517: 516: 514: 509: 506: 503: 502: 500: 499: 498: 497: 496: 494: 478: 474: 470: 463: 459: 443: 439: 435: 428: 424: 419: 416: 411: 400: 398: 394: 386: 381: 379: 375: 368: 367:Maximin share 363: 360: 342: 338: 335: 331: 327: 324: 321: 317: 313: 309: 305: 301: 297: 293: 290: 287: 283: 279: 276: 275: 274: 271: 262: 254: 251: 247: 243: 242: 241: 239: 235: 231: 221: 219: 211: 208: 207: 206: 203: 186: 182: 173: 169: 147: 143: 122: 114: 111: 110: 109: 107: 91: 85: 81: 78: 74: 71: 67: 66: 65: 62: 60: 56: 52: 43: 40: 37: 34: 33: 32: 29: 25: 24:fair division 21: 4452: 4448: 4408: 4371: 4365: 4330: 4280: 4276: 4218: 4214: 4208: 4187: 4142: 4138: 4128: 4085: 4081: 4071: 4028: 4024: 4014: 4005: 3995: 3974: 3939: 3935: 3929: 3894: 3890: 3880: 3862: 3856: 3838: 3832: 3814: 3808: 3790: 3784: 3766: 3760: 3719: 3709: 3690: 3680: 3645: 3641: 3631: 3604: 3600: 3590: 3572: 3566: 3539: 3529: 3494: 3490: 3446: 3442: 3420: 3414: 3389: 3385: 3379: 3344: 3340: 3334: 3303: 3266: 3222: 3218: 3212: 3187: 3183: 3133: 3129: 3123: 3098: 3094: 3088: 3076:. Retrieved 3070: 3063: 3054: 3041: 3016: 2978: 2974: 2964: 2898: 2894: 2866:to a factor 2859: 2811: 2803: 2634: 2593: 2585: 2126:allocation 2123: 1971: 1930: 1922: 1913: 1803:as follows: 1667: 1512: 1274:Assume that 1273: 1264: 1263: 1254: 1234: 1231: 1219: 1210: 1206: 1202: 1194: 1190: 1186: 1181: 1177: 1169: 1165: 1164:values item 1161: 1157: 1153: 1151: 1112: 1105: 1089: 1085: 1083: 1079: 1053: 1008: 1002: 974: 955: 940: 936: 932: 924: 910: 906: 902: 898: 894: 890: 886: 882: 878: 874: 854: 850: 846: 842: 838: 834: 830: 814: 801: 795: 791: 787: 776: 775:allocation, 761:proportional 752: 749: 740: 644: 632: 626: 623:Nash-optimal 622: 618: 611: 606: 602: 590: 588: 575: 561: 557: 551: 546: 542: 531: 461: 426: 420: 414: 409: 406: 397:proportional 396: 392: 390: 385:Proportional 377: 371: 358: 356: 336: 325: 319: 315: 311: 307: 303: 299: 295: 291: 285: 281: 277: 269: 268: 259: 249: 227: 217: 215: 204: 170:rather than 165: 102: 89: 83: 76: 69: 63: 58: 54: 47: 27: 19: 18: 3957:10036/26974 3423:. AAMAS 13. 2596:allocation 1933:allocation 1156:agents and 773:egalitarian 603:egalitarian 94:Preferences 70:preferences 4420:2304.01644 4381:1611.04034 4228:1709.02564 4221:: 103167. 4199:2103.04304 4152:2112.04166 4095:2104.14347 4088:: 103578. 4038:1909.10502 3986:1703.08150 3942:(2): 143. 3904:2306.09564 3872:2401.01516 3848:2404.18132 3824:2310.00976 3800:2306.05986 3776:2302.13342 3655:2002.05245 3614:1911.07048 3582:2204.11753 3504:2007.06754 3456:1908.01669 3392:(2): 256. 3190:(2): 259. 3101:(2): 147. 2956:References 2860:Algorithm: 2594:stochastic 1931:stochastic 1244:See also: 1095:See also: 1069:See also: 240:). Then: 4471:214407880 4309:236154847 4253:203034477 4245:0004-3702 4179:244954009 4171:2374-3468 4120:233443832 4112:0004-3702 4063:202719373 4055:2167-8375 3966:154854134 3921:2374-3468 3746:cite book 3672:1573-7454 3648:(2): 34. 3521:246764981 3473:0030-364X 3349:CiteSeerX 3249:154703357 3227:CiteSeerX 3160:154808734 3138:CiteSeerX 3115:153943630 3078:26 August 2995:0165-4896 2856:function. 2828:− 2804:Hardness: 2752:⋅ 2716:∈ 2709:∑ 2697:… 2667:∈ 2650:∗ 2614:∈ 2609:∗ 2535:∑ 2510:∗ 2497:: 2487:∈ 2476:≤ 2437:∑ 2420:∗ 2398:∈ 2391:∑ 2360:⋅ 2344:∗ 2317:∈ 2310:∑ 2289:∑ 2266:∗ 2205:∑ 2179:∗ 2166:: 2156:∈ 2139:∗ 2082:⋅ 2046:∈ 2039:∑ 2018:∑ 2004:∈ 1987:∗ 1951:∈ 1946:∗ 1875:⋅ 1844:∈ 1837:∑ 1752:→ 1742:: 1698:→ 1688:: 1616:∈ 1609:∑ 1587:→ 1577:: 1564:∣ 1456:∪ 1448:∅ 1432:∩ 1419:: 1407:∈ 1401:≠ 1395:∀ 1379:⊆ 1366:: 1354:∈ 1348:∀ 1345:∣ 1326:… 1209:to agent 841:−1) 818:sharings. 769:equitable 765:envy-free 312:CP theory 4485:Category 3204:16041218 2881:See also 1133:problem. 1111:At most 755:agents: 427:at least 410:mFS-fair 378:MMS-fair 28:discrete 4357:3331859 3371:6864410 1925:: this 1215:leximin 1180:· 975:optimal 951:values. 941:epsilon 931:called 862:agents. 790:parts, 462:at most 320:SCI net 308:UCP net 304:TCP net 296:GAI net 250:modular 44:parties 4469:  4396:  4355:  4345:  4307:  4297:  4251:  4243:  4177:  4169:  4118:  4110:  4061:  4053:  3964:  3919:  3734:  3670:  3554:  3519:  3471:  3406:442666 3404:  3369:  3351:  3322:  3281:  3247:  3229:  3202:  3158:  3140:  3113:  3024:  2993:  2872:α 2868:α 2660:argmax 2149:argmax 1997:argmax 956:chores 316:CI net 300:CP net 4467:S2CID 4415:arXiv 4376:arXiv 4353:S2CID 4305:S2CID 4249:S2CID 4223:arXiv 4194:arXiv 4175:S2CID 4147:arXiv 4116:S2CID 4090:arXiv 4059:S2CID 4033:arXiv 3981:arXiv 3962:S2CID 3899:arXiv 3867:arXiv 3843:arXiv 3819:arXiv 3795:arXiv 3771:arXiv 3650:arXiv 3609:arXiv 3577:arXiv 3517:S2CID 3499:arXiv 3451:arXiv 3402:S2CID 3367:S2CID 3308:(PDF) 3245:S2CID 3200:S2CID 3156:S2CID 3111:S2CID 3051:(PDF) 2588:this 925:goods 786:into 562:least 4394:ISBN 4343:ISBN 4295:ISBN 4241:ISSN 4167:ISSN 4108:ISSN 4051:ISSN 3917:ISSN 3752:link 3732:ISBN 3668:ISSN 3552:ISBN 3469:ISSN 3320:ISBN 3279:ISBN 3080:2016 3022:ISBN 2991:ISSN 2897:and 2889:and 2590:rule 2526:> 2195:> 1927:rule 1914:The 782:For 771:and 759:For 619:Nash 617:The 601:The 539:(EF) 333:xyz. 236:nor 218:lift 4457:doi 4386:doi 4335:doi 4285:doi 4281:213 4233:doi 4219:277 4157:doi 4100:doi 4086:301 4043:doi 3952:hdl 3944:doi 3909:doi 3724:doi 3695:doi 3660:doi 3619:doi 3605:293 3544:doi 3509:doi 3461:doi 3394:doi 3359:doi 3312:doi 3271:doi 3237:doi 3223:119 3192:doi 3148:doi 3103:doi 2983:doi 2790:100 2681:min 2480:max 1203:i,j 1193:at 1191:i,j 1168:at 1144:or 933:EFM 625:or 415:all 357:An 57:or 4487:: 4465:. 4453:34 4451:. 4447:. 4429:^ 4392:. 4384:. 4351:. 4341:. 4329:. 4317:^ 4303:. 4293:. 4275:. 4261:^ 4247:. 4239:. 4231:. 4217:. 4173:. 4165:. 4155:. 4143:36 4141:. 4137:. 4114:. 4106:. 4098:. 4084:. 4080:. 4057:. 4049:. 4041:. 4027:. 4023:. 4004:. 3960:. 3950:. 3940:16 3938:. 3915:. 3907:. 3895:38 3893:. 3889:. 3865:, 3841:, 3817:, 3793:, 3769:, 3748:}} 3744:{{ 3730:. 3718:. 3689:. 3666:. 3658:. 3646:35 3644:. 3640:. 3617:. 3603:. 3599:. 3575:, 3550:. 3515:. 3507:. 3495:47 3493:. 3481:^ 3467:. 3459:. 3447:70 3445:. 3441:. 3429:^ 3400:. 3390:28 3388:. 3365:. 3357:. 3345:68 3343:. 3318:. 3293:^ 3277:. 3257:^ 3243:. 3235:. 3221:. 3198:. 3188:30 3186:. 3168:^ 3154:. 3146:. 3134:17 3132:. 3109:. 3099:55 3097:. 3053:. 3003:^ 2989:. 2979:16 2977:. 2973:. 2800:. 2798:50 2637:: 2280:: 1974:: 1241:. 1197:ij 1172:ij 1140:, 905:≤ 897:= 885:≤ 767:, 763:, 637:. 597:: 589:A 581:. 314:, 310:, 306:, 4473:. 4459:: 4423:. 4417:: 4402:. 4388:: 4378:: 4359:. 4337:: 4311:. 4287:: 4255:. 4235:: 4225:: 4202:. 4196:: 4181:. 4159:: 4149:: 4122:. 4102:: 4092:: 4065:. 4045:: 4035:: 4029:9 3989:. 3983:: 3968:. 3954:: 3946:: 3923:. 3911:: 3901:: 3869:: 3845:: 3821:: 3797:: 3773:: 3754:) 3740:. 3726:: 3703:. 3697:: 3674:. 3662:: 3652:: 3625:. 3621:: 3611:: 3579:: 3560:. 3546:: 3523:. 3511:: 3501:: 3475:. 3463:: 3453:: 3408:. 3396:: 3373:. 3361:: 3328:. 3314:: 3287:. 3273:: 3251:. 3239:: 3206:. 3194:: 3162:. 3150:: 3117:. 3105:: 3082:. 3036:) 3032:( 3030:. 2997:. 2985:: 2874:. 2837:e 2834:1 2825:1 2815:; 2794:0 2775:) 2771:) 2768:A 2765:( 2760:i 2756:u 2749:) 2746:A 2743:( 2738:d 2734:p 2729:( 2721:A 2713:A 2703:n 2700:, 2694:, 2691:1 2688:= 2685:i 2672:D 2664:d 2655:= 2646:d 2619:D 2605:d 2571:) 2568:A 2565:( 2560:i 2556:u 2550:n 2545:1 2542:= 2539:i 2529:0 2523:) 2520:A 2517:( 2506:d 2501:p 2492:A 2484:A 2473:) 2470:A 2467:( 2462:i 2458:u 2452:n 2447:1 2444:= 2441:i 2433:) 2430:A 2427:( 2416:d 2411:p 2403:A 2395:A 2387:= 2383:) 2379:) 2376:A 2373:( 2368:i 2364:u 2357:) 2354:A 2351:( 2340:d 2335:p 2330:( 2322:A 2314:A 2304:n 2299:1 2296:= 2293:i 2262:d 2241:) 2238:A 2235:( 2230:i 2226:u 2220:n 2215:1 2212:= 2209:i 2198:0 2192:) 2189:A 2186:( 2175:d 2170:p 2161:A 2153:A 2144:= 2135:A 2105:) 2101:) 2098:A 2095:( 2090:i 2086:u 2079:) 2076:A 2073:( 2068:d 2064:p 2059:( 2051:A 2043:A 2033:n 2028:1 2025:= 2022:i 2009:D 2001:d 1992:= 1983:d 1956:D 1942:d 1894:) 1891:A 1888:( 1883:i 1879:u 1872:) 1869:A 1866:( 1861:d 1857:p 1849:A 1841:A 1833:= 1830:) 1827:d 1824:( 1819:i 1815:E 1789:i 1785:u 1762:+ 1757:R 1747:D 1737:i 1733:E 1722:; 1708:+ 1703:R 1693:A 1683:i 1679:u 1653:} 1650:1 1647:= 1644:) 1641:A 1638:( 1633:d 1629:p 1621:A 1613:A 1605:, 1602:] 1599:1 1596:, 1593:0 1590:[ 1582:A 1572:d 1568:p 1561:d 1558:{ 1555:= 1550:D 1523:A 1498:} 1495:] 1492:m 1489:[ 1486:= 1481:i 1477:A 1471:n 1466:1 1463:= 1460:i 1451:, 1445:= 1440:j 1436:A 1427:i 1423:A 1416:] 1413:n 1410:[ 1404:j 1398:i 1391:, 1388:] 1385:m 1382:[ 1374:i 1370:A 1363:] 1360:n 1357:[ 1351:i 1342:) 1337:n 1333:A 1329:, 1323:, 1318:1 1314:A 1310:( 1307:{ 1304:= 1299:A 1284:n 1280:n 1276:m 1235:n 1211:i 1207:j 1199:, 1195:v 1187:i 1182:m 1178:n 1170:v 1166:j 1162:i 1158:m 1154:n 1126:. 1113:k 1031:? 1017:? 1003:n 937:n 911:n 907:n 903:s 899:n 895:s 891:n 887:n 883:s 879:n 875:s 855:n 851:n 847:n 843:n 839:k 835:k 831:n 815:n 796:n 794:( 792:n 788:k 777:n 753:n 732:. 716:; 710:; 704:; 684:P 681:N 677:P 673:N 658:; 652:; 479:n 475:/ 471:1 444:n 440:/ 436:1 393:n 288:. 286:k 187:m 183:2 148:m 144:2 123:m 79:.

Index

fair division
White elephant gift exchange
fair cake-cutting
Utility functions on indivisible goods
ordinal utility
cardinal utility
independent goods
substitute goods
complementary goods
additive utility
first order logic
combinatorial auctions
Maximin share
divide and choose
Proportional
subadditive utility
superadditive utility
additive utility
Envy-freeness
Competitive equilibrium
Pareto efficiency
social welfare function
Pareto efficient
Maximin-share item allocation
Proportional item allocation
coNP-complete
Envy-free item allocation
Efficient approximately fair item allocation
Egalitarian item allocation
Picking sequence

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.