Knowledge

Fracture mechanics

Source 📝

3806:
changes slightly to accommodate the sudden increase in stress from that which the material previously experienced. At a sufficiently high load (overload), the crack grows out of the plastic zone that contained it and leaves behind the pocket of the original plastic deformation. Now, assuming that the overload stress is not sufficiently high as to completely fracture the specimen, the crack will undergo further plastic deformation around the new crack tip, enlarging the zone of residual plastic stresses. This process further toughens and prolongs the life of the material because the new plastic zone is larger than what it would be under the usual stress conditions. This allows the material to undergo more cycles of loading. This idea can be illustrated further by the
3858: 3533:
applicable direction (in most cases, this is the y-direction of a regular Cartesian coordinate system), the crack length, and the geometry of the specimen. To estimate how this plastic deformation zone extended from the crack tip, Irwin equated the yield strength of the material to the far-field stresses of the y-direction along the crack (x direction) and solved for the effective radius. From this relationship, and assuming that the crack is loaded to the critical stress intensity factor, Irwin developed the following expression for the idealized radius of the zone of plastic deformation at the crack tip:
3940:. This curve acknowledges the fact that the resistance to fracture increases with growing crack size in elastic-plastic materials. The R-curve is a plot of the total energy dissipation rate as a function of the crack size and can be used to examine the processes of slow stable crack growth and unstable fracture. However, the R-curve was not widely used in applications until the early 1970s. The main reasons appear to be that the R-curve depends on the geometry of the specimen and the crack driving force may be difficult to calculate. 4579: 863: 31: 3819: 1572: 3907:
high toughness could not be characterized with the linear elastic fracture mechanics model. He noted that, before the fracture happened, the walls of the crack were leaving and that the crack tip, after fracture, ranged from acute to rounded off due to plastic deformation. In addition, the rounding of the crack tip was more pronounced in steels with superior toughness.
3973:. This analysis is limited to situations where plastic deformation at the crack tip does not extend to the furthest edge of the loaded part. It also demands that the assumed non-linear elastic behavior of the material is a reasonable approximation in shape and magnitude to the real material's load response. The elastic-plastic failure parameter is designated J 4149: 2561: 3456: 3805:
The same process as described above for a single event loading also applies and to cyclic loading. If a crack is present in a specimen that undergoes cyclic loading, the specimen will plastically deform at the crack tip and delay the crack growth. In the event of an overload or excursion, this model
3118:
Irwin was the first to observe that if the size of the plastic zone around a crack is small compared to the size of the crack, the energy required to grow the crack will not be critically dependent on the state of stress (the plastic zone) at the crack tip. In other words, a purely elastic solution
3910:
There are a number of alternative definitions of CTOD. In the two most common definitions, CTOD is the displacement at the original crack tip and the 90 degree intercept. The latter definition was suggested by Rice and is commonly used to infer CTOD in finite element models of such. Note that these
3906:
Historically, the first parameter for the determination of fracture toughness in the elasto-plastic region was the crack tip opening displacement (CTOD) or "opening at the apex of the crack" indicated. This parameter was determined by Wells during the studies of structural steels, which due to the
3841:
at the tip of a crack. One basic assumption in Irwin's linear elastic fracture mechanics is small scale yielding, the condition that the size of the plastic zone is small compared to the crack length. However, this assumption is quite restrictive for certain types of failure in structural steels
3801:
is large, which results in a larger plastic radius. This implies that the material can plastically deform, and, therefore, is tough. This estimate of the size of the plastic zone beyond the crack tip can then be used to more accurately analyze how a material will behave in the presence of a crack.
3495:
Next, Irwin adopted the additional assumption that the size and shape of the energy dissipation zone remains approximately constant during brittle fracture. This assumption suggests that the energy needed to create a unit fracture surface is a constant that depends only on the material. This new
820:
The processes of material manufacture, processing, machining, and forming may introduce flaws in a finished mechanical component. Arising from the manufacturing process, interior and surface flaws are found in all metal structures. Not all such flaws are unstable under service conditions. Fracture
3611:
Models of ideal materials have shown that this zone of plasticity is centered at the crack tip. This equation gives the approximate ideal radius of the plastic zone deformation beyond the crack tip, which is useful to many structural scientists because it gives a good estimate of how the material
2042:
Another significant achievement of Irwin and his colleagues was to find a method of calculating the amount of energy available for fracture in terms of the asymptotic stress and displacement fields around a crack front in a linear elastic solid. This asymptotic expression for the stress field in
1581:
Griffith's work was largely ignored by the engineering community until the early 1950s. The reasons for this appear to be (a) in the actual structural materials the level of energy needed to cause fracture is orders of magnitude higher than the corresponding surface energy, and (b) in structural
913:
A theory was needed to reconcile these conflicting observations. Also, experiments on glass fibers that Griffith himself conducted suggested that the fracture stress increases as the fiber diameter decreases. Hence the uniaxial tensile strength, which had been used extensively to predict material
4553:
When a significant region around a crack tip has undergone plastic deformation, other approaches can be used to determine the possibility of further crack extension and the direction of crack growth and branching. A simple technique that is easily incorporated into numerical calculations is the
3914:
Most laboratory measurements of CTOD have been made on edge-cracked specimens loaded in three-point bending. Early experiments used a flat paddle-shaped gage that was inserted into the crack; as the crack opened, the paddle gage rotated, and an electronic signal was sent to an x-y plotter. This
3532:
Nevertheless, there must be some sort of mechanism or property of the material that prevents such a crack from propagating spontaneously. The assumption is, the plastic deformation at the crack tip effectively blunts the crack tip. This deformation depends primarily on the applied stress in the
679:
Theoretically, the stress ahead of a sharp crack tip becomes infinite and cannot be used to describe the state around a crack. Fracture mechanics is used to characterise the loads on a crack, typically using a single parameter to describe the complete loading state at the crack tip. A number of
917:
To verify the flaw hypothesis, Griffith introduced an artificial flaw in his experimental glass specimens. The artificial flaw was in the form of a surface crack which was much larger than other flaws in a specimen. The experiments showed that the product of the square root of the flaw length
3524:
In theory the stress at the crack tip where the radius is nearly zero, would tend to infinity. This would be considered a stress singularity, which is not possible in real-world applications. For this reason, in numerical studies in the field of fracture mechanics, it is often appropriate to
1068:(surface energy − elastic energy) as a function of the crack length. Failure occurs when the free energy attains a peak value at a critical crack length, beyond which the free energy decreases as the crack length increases, i.e. by causing fracture. Using this procedure, Griffith found that 3529:, with a geometry dependent region of stress concentration replacing the crack-tip singularity. In actuality, the stress concentration at the tip of a crack within real materials has been found to have a finite value but larger than the nominal stress applied to the specimen. 3915:
method was inaccurate, however, because it was difficult to reach the crack tip with the paddle gage. Today, the displacement V at the crack mouth is measured, and the CTOD is inferred by assuming the specimen halves are rigid and rotate about a hinge point (the crack tip).
3962:) and G. P. Cherepanov independently developed a new toughness measure to describe the case where there is sufficient crack-tip deformation that the part no longer obeys the linear-elastic approximation. Rice's analysis, which assumes non-linear elastic (or monotonic 914:
failure before Griffith, could not be a specimen-independent material property. Griffith suggested that the low fracture strength observed in experiments, as well as the size-dependence of strength, was due to the presence of microscopic flaws in the bulk material.
4976:. As it is widely used in construction, fracture analysis and modes of reinforcement are an important part of the study of concrete, and different concretes are characterized in part by their fracture properties. Common fractures include the 3990: 1558:
For materials highly deformed before crack propagation, the linear elastic fracture mechanics formulation is no longer applicable and an adapted model is necessary to describe the stress and displacement field close to crack tip, such as on
1675:. Hence, a dissipative term has to be added to the energy balance relation devised by Griffith for brittle materials. In physical terms, additional energy is needed for crack growth in ductile materials as compared to brittle materials. 3102: 2430: 2180: 3290: 3872:
Most engineering materials show some nonlinear elastic and inelastic behavior under operating conditions that involve large loads. In such materials the assumptions of linear elastic fracture mechanics may not hold, that is,
4983:
Bažant (1983) proposed a crack band model for materials like concrete whose homogeneous nature changes randomly over a certain range. He also observed that in plain concrete, the size effect has a strong influence on the
1864: 1685:
the dissipated energy which includes plastic dissipation and the surface energy (and any other dissipative forces that may be at work). The dissipated energy provides the thermodynamic resistance to fracture.
1662:
increases, the plastic zone increases in size until the crack grows and the elastically strained material behind the crack tip unloads. The plastic loading and unloading cycle near the crack tip leads to the
5214:(MD) simulations, AFM can provide insights into the fundamental mechanisms of crack formation and growth, the role of atomic bonds, and the influence of material defects and impurities on fracture behavior. 3606: 4699: 1503: 1969: 1916: 1129: 1582:
materials there are always some inelastic deformations around the crack front that would make the assumption of linear elastic medium with infinite stresses at the crack tip highly unrealistic.
1011:
An explanation of this relation in terms of linear elasticity theory is problematic. Linear elasticity theory predicts that stress (and hence the strain) at the tip of a sharp flaw in a linear
1322: 4812: 2958: 1006: 4444: 2420: 2366: 4536: 1247: 99: 4748: 2882:
will be different for geometries other than the center-cracked infinite plate, as discussed in the article on the stress intensity factor. Consequently, it is necessary to introduce a
1637: 3256: 3484:
is the stress intensity factor in mode I. Irwin also showed that the strain energy release rate of a planar crack in a linear elastic body can be expressed in terms of the mode I,
1206: 4362: 2026: 1732: 4144:{\displaystyle J=\int _{\Gamma }(w\,dy-T_{i}{\frac {\partial u_{i}}{\partial x}}\,ds)\quad {\text{with}}\quad w=\int _{0}^{\varepsilon _{ij}}\sigma _{ij}\,d\varepsilon _{ij}} 2700: 4332: 2213: 1432: 5206:
when subjected to fracture. It integrates concepts from fracture mechanics with atomistic simulations to understand how cracks initiate, propagate, and interact with the
4611: 3799: 3745: 3718: 3664: 963: 4928: 4895: 5192: 5069: 802: 5172: 5112: 5088: 5009: 4477: 4300: 4175: 2257: 1755: 1345: 1172: 4641: 2757: 2556:{\displaystyle K_{c}={\begin{cases}{\sqrt {EG_{c}}}&{\text{for plane stress}}\\\\{\sqrt {\cfrac {EG_{c}}{1-\nu ^{2}}}}&{\text{for plane strain}}\end{cases}}} 2337: 2287: 5132: 5029: 4955: 4862: 4255: 4226: 3772: 3691: 3637: 2880: 2727: 2637: 2590: 2068: 1782: 1553: 3032: 2657: 3451:{\displaystyle G=G_{I}={\begin{cases}{\cfrac {K_{I}^{2}}{E}}&{\text{plane stress}}\\{\cfrac {(1-\nu ^{2})K_{I}^{2}}{E}}&{\text{plane strain}}\end{cases}}} 2850: 6135: 4280: 3024: 2824: 829:
analysis the safe operation of a structure. Fracture mechanics as a subject for critical study has barely been around for a century and thus is relatively new.
5152: 5049: 4832: 4197: 3001: 2981: 2904: 2801: 2777: 2610: 2307: 2237: 2076: 1997: 1526: 1385: 1365: 1270: 1152: 1044: 936: 884: 717: 842:
How long does it take for a crack to grow from a certain initial size, for example the minimum detectable crack size, to the maximum permissible crack size?
4957:
for engineering alloys is 100 mm and for ceramics is 0.001 mm. If we assume that manufacturing processes can give rise to flaws in the order of
3720:
is low, one knows that the material is more ductile. The ratio of these two parameters is important to the radius of the plastic zone. For instance, if
1057:
Fix the boundary so that the applied load does no work and then introduce a crack into the specimen. The crack relaxes the stress and hence reduces the
821:
mechanics is the analysis of flaws to discover those that are safe (that is, do not grow) and those that are liable to propagate as cracks and so cause
6369: 3666:, are of importance because they illustrate many things about the material and its properties, as well as about the plastic zone size. For example, if 5662: 5632: 4563: 5941:
Bažant, Z. P., and Pang, S.-D. (2006) “Mechanics based statistics of failure risk of quasibrittle structures and size effect on safety factors.”
1046:
in terms of the surface energy of the crack by solving the elasticity problem of a finite crack in an elastic plate. Briefly, the approach was:
3837:
But a problem arose for the NRL researchers because naval materials, e.g., ship-plate steel, are not perfectly elastic but undergo significant
648: 5389: 3612:
behaves when subjected to stress. In the above equation, the parameters of the stress intensity factor and indicator of material toughness,
2780: 5732: 5582: 1793: 6128: 3888:
the local conditions for initial crack growth which include the nucleation, growth, and coalescence of voids (decohesion) at a crack tip.
4961:, then, it can be seen that ceramics are more likely to fail by fracture, whereas engineering alloys would fail by plastic deformation. 773:. Crack growth occurs when the parameters typically exceed certain critical values. Corrosion may cause a crack to slowly grow when the 5439: 5790: 777:
stress intensity threshold is exceeded. Similarly, small flaws may result in crack growth when subjected to cyclic loading. Known as
4562:
and Dugdale in the early 1960s. The relationship between the Dugdale-Barenblatt models and Griffith's theory was first discussed by
3539: 4646: 769:
The characterising parameter describes the state of the crack tip which can then be related to experimental conditions to ensure
672:
to calculate the driving force on a crack and those of experimental solid mechanics to characterize the material's resistance to
845:
What is the service life of a structure when a certain pre-existing flaw size (e.g. a manufacturing defect) is assumed to exist?
6121: 1447: 6045: 5352: 3981:
using the equation below. Also note that the J integral approach reduces to the Griffith theory for linear-elastic behavior.
1921: 1872: 1682:
the stored elastic strain energy which is released as a crack grows. This is the thermodynamic driving force for fracture.
5893: 5202:
Atomistic Fracture Mechanics (AFM) is a relatively new field that studies the behavior and properties of materials at the
3880:
the size and shape of the plastic zone may change as the applied load is increased and also as the crack length increases.
1075: 3516:, found in the plane strain condition, which is accepted as the defining property in linear elastic fracture mechanics. 2910:, is given by empirically determined series and accounts for the type and geometry of the crack or notch. We thus have: 6425: 5324: 1278: 909:
The theoretical stress needed for breaking atomic bonds of glass is approximately 10,000 MPa (1,500,000 psi).
5274:, a formulation of continuum mechanics that is oriented toward deformations with discontinuities, especially fractures 4753: 1651:(NRL) during World War II realized that plasticity must play a significant role in the fracture of ductile materials. 6073: 5784: 2916: 971: 641: 4388: 2381: 2342: 804:
experienced by the crack due to the applied loading. Fast fracture will occur when the stress intensity exceeds the
4486: 6396: 2375:
replaced surface weakness energy. Both of these terms are simply related to the energy terms that Griffith used:
1252:
For the simple case of a thin rectangular plate with a crack perpendicular to the load, the energy release rate,
1211: 781:, it was found that for long cracks, the rate of growth is largely governed by the range of the stress intensity 684:
at the tip of the crack is small relative to the crack length the stress state at the crack tip is the result of
55: 4704: 6809: 6497: 3901: 3884:
Therefore, a more general theory of crack growth is needed for elastic-plastic materials that can account for:
1648: 763: 614: 1602: 1022:
The growth of a crack, the extension of the surfaces on either side of the crack, requires an increase in the
6242: 5295: 3924: 3134: 315: 152: 6863: 6444: 6352: 5654: 3865: 3807: 634: 355: 241: 750:– Tearing mode (a shear stress acting parallel to the plane of the crack and parallel to the crack front). 6853: 6565: 6276: 6210: 5624: 3842:
though such steels can be prone to brittle fracture, which has led to a number of catastrophic failures.
898:– to explain the failure of brittle materials. Griffith's work was motivated by two contradictory facts: 310: 219: 102: 6014: 5757: 5692:"A path independent integral and the approximate analysis of strain concentration by notches and cracks" 1177: 839:
What crack size can be tolerated under service loading, i.e. what is the maximum permissible crack size?
4337: 3124: 3113: 1560: 1249:
gives excellent agreement of Griffith's predicted fracture stress with experimental results for glass.
848:
During the period available for crack detection how often should the structure be inspected for cracks?
34:
The loads at a crack tip can be reduced to a combination of three independent stress intensity factors.
6081: 2002: 1695: 1061:
near the crack faces. On the other hand, the crack increases the total surface energy of the specimen.
6293: 5719: 5289: 2665: 1065: 774: 226: 24: 3318: 2452: 6724: 6719: 6602: 6570: 6485: 6225: 6215: 3857: 3128:
may then be calculated as the change in elastic strain energy per unit area of crack growth, i.e.,
2289:
are functions that depend on the crack geometry and loading conditions. Irwin called the quantity
521: 516: 305: 298: 131: 4307: 2188: 1398: 668:
concerned with the study of the propagation of cracks in materials. It uses methods of analytical
6784: 6465: 6381: 6271: 5369: 5259: 4985: 4589: 3777: 3723: 3696: 3642: 2037: 941: 723:
found any state could be reduced to a combination of three independent stress intensity factors:
697: 584: 579: 248: 4900: 4867: 4566:
in 1967. The equivalence of the two approaches in the context of brittle fracture was shown by
3877:
the plastic zone at a crack tip may have a size of the same order of magnitude as the crack size
6858: 6364: 6237: 6031: 5714: 5691: 5551: 2906:, in order to characterize the geometry. This correction factor, also often referred to as the 1784:
is the plastic dissipation (and dissipation from other sources) per unit area of crack growth.
136: 5177: 5054: 3284:(opening mode) the strain energy release rate and the stress intensity factor are related by: 832:
Fracture mechanics should attempt to provide quantitative answers to the following questions:
784: 6769: 6347: 5283: 5229: 5157: 5097: 5073: 4994: 4977: 4449: 4285: 4160: 3097:{\displaystyle Y\left({\frac {a}{W}}\right)={\sqrt {\sec \left({\frac {\pi a}{W}}\right)}}\,} 2242: 1740: 1330: 1157: 559: 177: 6053: 4616: 2732: 2312: 2262: 6832: 6506: 6410: 6405: 6376: 6342: 6322: 6307: 6288: 6259: 6200: 5982: 5955: 5864: 5822: 5706: 5472: 5460: 5235: 5117: 5014: 4933: 4840: 4233: 4204: 3750: 3669: 3615: 2883: 2858: 2705: 2615: 2568: 2216: 2046: 1760: 1531: 891: 720: 685: 397: 214: 194: 182: 126: 5855:
Willis, J. R. (1967), "A comparison of the fracture criteria of Griffith and Barenblatt",
4972:
is part of fracture mechanics that studies crack propagation and related failure modes in
3489: 3485: 3281: 2642: 2175:{\displaystyle \sigma _{ij}=\left({\cfrac {K_{I}}{\sqrt {2\pi r}}}\right)~f_{ij}(\theta )} 8: 6804: 6656: 6595: 6575: 6391: 6337: 6220: 6179: 6145: 5265: 4548: 3861: 3838: 3526: 2829: 1643:) predicted by Griffith's theory is usually unrealistically high. A group working under 1012: 825:
of the flawed structure. Despite these inherent flaws, it is possible to achieve through
599: 447: 340: 46: 6061: 6054:
Fracture Mechanics of Electromagnetic Materials: Nonlinear Field Theory and Applications
6006:, Cambridge Solid State Science Series, Eds. Clarke, D.R., Suresh, S., Ward, I.M. (1998) 5868: 5826: 5710: 5476: 5262: – Science of predicting if, when, and how a given material will fail under loading 4262: 3845:
Linear-elastic fracture mechanics is of limited practical use for structural steels and
3006: 2983:
is a function of the crack length and width of sheet given, for a sheet of finite width
2806: 6470: 6254: 5838: 5574: 5431: 5247: 5211: 5137: 5034: 4817: 4182: 3963: 3846: 3498: 3474: 3466: 2986: 2966: 2889: 2786: 2762: 2595: 2372: 2292: 2222: 1982: 1511: 1388: 1370: 1350: 1255: 1137: 1029: 921: 869: 822: 805: 778: 770: 702: 619: 209: 204: 5776: 5570: 5385: 6523: 6460: 6439: 6434: 6359: 6327: 6069: 6041: 5876: 5842: 5834: 5780: 5435: 5348: 5320: 5277: 890:
Fracture mechanics was developed during World War I by English aeronautical engineer
236: 187: 5578: 744:
acting parallel to the plane of the crack and perpendicular to the crack front), and
6759: 6668: 6661: 6651: 6627: 6492: 6010: 5961: 5872: 5830: 5772: 5724: 5566: 5480: 5423: 5411: 5381: 4559: 3959: 3830: 3823: 1976: 1918:. For ductile materials such as steel, the plastic dissipation term dominates and 1051: 826: 809: 574: 549: 462: 437: 432: 387: 6774: 6709: 6686: 6622: 6607: 6590: 6540: 6528: 6415: 6386: 6303: 6281: 6264: 6230: 6164: 6159: 6060:
A.N. Gent, W.V. Mars, In: James E. Mark, Burak Erman and Mike Roland, Editor(s),
6035: 5253: 3891:
a global energy balance criterion for further crack growth and unstable fracture.
3492:(tearing mode) stress intensity factors for the most general loading conditions. 1659: 669: 564: 488: 452: 402: 333: 322: 267: 169: 6113: 5250: – Initiation and propagation of cracks in a material due to cyclic loading 6779: 6646: 6560: 6518: 6332: 5238: – Damage to concrete affecting its mechanical strength and its durability 5207: 5203: 1058: 1023: 731: 569: 427: 392: 293: 199: 5965: 5427: 6847: 6827: 6794: 6691: 6555: 6420: 5687: 4567: 3955: 1016: 609: 442: 19:
This article is about predicting fracture. For the science of fractures, see
3929:
An early attempt in the direction of elastic-plastic fracture mechanics was
6799: 6789: 6764: 5522:
Analysis of stresses and strains near the end of a crack traversing a plate
5485: 5271: 4480: 2339:
is dimensionless, the stress intensity factor can be expressed in units of
1869:
For brittle materials such as glass, the surface energy term dominates and
1787:
The modified version of Griffith's energy criterion can then be written as
1392: 741: 594: 589: 554: 286: 6107: 5370:"The energy release rate for a Griffith crack in a piezoelectric material" 1654:
In ductile materials (and even in materials that appear to be brittle), a
1587:
Griffith's theory provides excellent agreement with experimental data for
6714: 4958: 3930: 1664: 1644: 604: 507: 3911:
two definitions are equivalent if the crack tip blunts in a semicircle.
6729: 6641: 6480: 6174: 5241: 4578: 4375:
to characterise fracture toughness, a relation has been used to reduce
3970: 3949: 2371:
Stress intensity replaced strain energy release rate and a term called
808:
of the material. The prediction of crack growth is at the heart of the
759: 526: 422: 5728: 5552:"An improved semi-analytical solution for stress at round-tip notches" 5232: – Failure mode of anchors in concrete submitted to tensile force 3119:
may be used to calculate the amount of energy available for fracture.
6751: 6741: 6736: 6678: 6585: 6169: 5930:
Fracture and Size Effect in Concrete and Other Quasibrittle Materials
4864:., and depends on the material properties of the structure. When the 1555:, this is the criterion for which the crack will begin to propagate. 665: 498: 493: 327: 5813:
Dugdale, D. S. (1960), "Yielding of steel sheets containing slits",
3818: 1859:{\displaystyle \sigma _{f}{\sqrt {a}}={\sqrt {\cfrac {E~G}{\pi }}}.} 862: 30: 6701: 6612: 6580: 6205: 5758:"The mathematical theory of equilibrium cracks in brittle fracture" 4973: 3693:
is high, then it can be deduced that the material is tough, and if
2781:
different ways of loading a material to enable a crack to propagate
1972: 673: 477: 382: 362: 348: 20: 6068:, Fourth edition, Academic Press, Boston, 2013, pp. 473–516, 5508:, International Journal of Solids and Structures, 37, pp. 171–183. 1434:. The strain energy release rate can physically be understood as: 1015:
material is infinite. To avoid that problem, Griffith developed a
836:
What is the strength of the component as a function of crack size?
6513: 6453: 6101: 6095: 5286: – Behavior of solid objects subject to stresses and strains 3966: 1655: 1592: 1588: 754:
When the size of the plastic zone at the crack tip is too large,
231: 4643:. Based on fracture mechanics, the material will fail at stress 1571: 6617: 5226:– Fracture mechanics and fatigue crack growth analysis software 5223: 3810:
of Aluminum with a center crack undergoing overloading events.
3601:{\displaystyle r_{p}={\frac {K_{C}^{2}}{2\pi \sigma _{Y}^{2}}}} 1668: 372: 6819: 6548: 6315: 5611:
Aerospace Structures- an Introduction to Fundamental Problems
1678:
Irwin's strategy was to partition the energy into two parts:
1596: 903: 276: 5268: – Externally-produced indentation in a planar material 4930:
the failure is governed by fracture mechanics. The value of
4694:{\displaystyle \sigma _{\text{fail}}=K_{Ic}/{\sqrt {\pi a}}} 4558:
method which is based on concepts proposed independently by
4177:
is an arbitrary path clockwise around the apex of the crack,
3444: 2549: 1672: 1436:
the rate at which energy is absorbed by growth of the crack
1054:
stored in a perfect specimen under a uniaxial tensile load.
965:) was nearly constant, which is expressed by the equation: 6634: 5465:
Philosophical Transactions of the Royal Society of London
5342: 3984:
The mathematical definition of J-integral is as follows:
2259:
is the angle with respect to the plane of the crack, and
2043:
mode I loading is related to the stress intensity factor
1575:
The plastic zone around a crack tip in a ductile material
1498:{\displaystyle G_{c}={\frac {\pi \sigma _{f}^{2}a}{E}}\,} 719:. Although the load on a crack can be arbitrary, in 1957 412: 6004:
An Introduction to the Mechanical Properties of Ceramics
5981:
Buckley, C.P. "Material Failure", Lecture Notes (2005),
4897:, the failure is governed by plastic yielding, and when 3969:) deformation ahead of the crack tip, is designated the 1174:
is the surface energy density of the material. Assuming
6027:, Cambridge Solid State Science Series, 2nd Edn. (1993) 5916:
Lecture Notes in Fracture Mechanics by Victor E. Saouma
5463:(1921), "The phenomena of rupture and flow in solids", 3421: 3375: 3348: 3324: 3222: 3207: 3167: 3152: 2512: 2490: 2122: 2103: 1964:{\displaystyle G\approx G_{p}=1000\,\,{\text{J/m}}^{2}} 1911:{\displaystyle G\approx 2\gamma =2\,\,{\text{J/m}}^{2}} 1839: 1821: 1658:
zone develops at the tip of the crack. As the applied
1107: 1089: 3424: 3378: 3351: 3327: 3225: 3210: 3170: 3155: 2515: 2493: 2125: 2106: 1842: 1824: 1110: 1092: 5180: 5160: 5140: 5120: 5100: 5076: 5057: 5037: 5017: 4997: 4936: 4903: 4870: 4843: 4820: 4756: 4707: 4649: 4619: 4592: 4489: 4452: 4391: 4340: 4310: 4288: 4265: 4236: 4207: 4185: 4163: 3993: 3852: 3780: 3753: 3726: 3699: 3672: 3645: 3618: 3542: 3293: 3277:
are constant while evaluating the above expressions.
3137: 3035: 3009: 2989: 2969: 2919: 2892: 2861: 2832: 2809: 2789: 2765: 2759:
and is considered a material property. The subscript
2735: 2708: 2668: 2645: 2618: 2598: 2571: 2433: 2384: 2345: 2315: 2295: 2265: 2245: 2225: 2191: 2079: 2049: 2005: 1985: 1924: 1875: 1796: 1763: 1743: 1698: 1605: 1534: 1514: 1450: 1401: 1373: 1353: 1333: 1281: 1258: 1214: 1180: 1160: 1140: 1078: 1032: 974: 944: 924: 872: 787: 705: 58: 5604: 5602: 5347:. Edward Arnold and Delftse Uitgevers Maatschappij. 4701:. Based on plasticity, the material will yield when 3509:. Today, it is the critical stress intensity factor 2702:. For the special case of plane strain deformation, 1124:{\displaystyle C={\sqrt {\cfrac {2E\gamma }{\pi }}}} 852: 5292: – Growth of cracks in a corrosive environment 5256: – Fracture or discontinuity in displaced rock 1019:approach to explain the relation that he observed. 680:different parameters have been developed. When the 5186: 5166: 5146: 5126: 5106: 5082: 5063: 5043: 5023: 5003: 4949: 4922: 4889: 4856: 4826: 4806: 4742: 4693: 4635: 4605: 4530: 4471: 4438: 4356: 4326: 4294: 4274: 4249: 4220: 4191: 4169: 4143: 3793: 3766: 3739: 3712: 3685: 3658: 3631: 3600: 3450: 3250: 3096: 3018: 2995: 2975: 2952: 2898: 2874: 2844: 2818: 2795: 2771: 2751: 2721: 2694: 2651: 2631: 2604: 2584: 2555: 2414: 2360: 2331: 2301: 2281: 2251: 2231: 2207: 2174: 2062: 2020: 1991: 1963: 1910: 1858: 1776: 1749: 1726: 1631: 1547: 1520: 1497: 1426: 1379: 1359: 1339: 1316: 1264: 1241: 1200: 1166: 1146: 1123: 1038: 1000: 957: 930: 878: 796: 711: 93: 6143: 6037:Fatigue and Fracture Mechanics of High-Risk Parts 5755: 5599: 5317:Fracture Mechanics: Fundamentals and Applications 4980:that form around anchors under tensile strength. 2309:the stress intensity factor. Since the quantity 1317:{\displaystyle G={\frac {\pi \sigma ^{2}a}{E}}\,} 6845: 4807:{\displaystyle a=K_{Ic}^{2}/\pi \sigma _{Y}^{2}} 1395:should be divided by the plate stiffness factor 1026:. Griffith found an expression for the constant 6110:by Piet Schreurs, TU Eindhoven, The Netherlands 6102:Notes on Fracture of Thin Films and Multilayers 5197: 4257:are the components of the displacement vectors, 3003:containing a through-thickness crack of length 2953:{\displaystyle K_{I}=Y\sigma {\sqrt {\pi a}}\,} 1001:{\displaystyle \sigma _{f}{\sqrt {a}}\approx C} 5992:, Cambridge Solid State Science Series, (1979) 5857:Journal of the Mechanics and Physics of Solids 5815:Journal of the Mechanics and Physics of Solids 5812: 5537:. Reports on Progress in Physics XII, 185–232. 4439:{\displaystyle K_{Ic}={\sqrt {E^{*}J_{Ic}}}\,} 4228:are the components of the vectors of traction, 2415:{\displaystyle K_{I}=\sigma {\sqrt {\pi a}}\,} 2361:{\displaystyle {\text{MPa}}{\sqrt {\text{m}}}} 6129: 5854: 5314: 4964: 4531:{\displaystyle E^{*}={\frac {E}{1-\nu ^{2}}}} 642: 6104:by Prof. John Hutchinson, Harvard University 6098:by Prof. John Hutchinson, Harvard University 5894:"Fracture Mechanics for Structural Concrete" 5244: – Sudden movement of the Earth's crust 3122:The energy release rate for crack growth or 1979:temperature, we have intermediate values of 5524:, Journal of Applied Mechanics 24, 361–364. 5500: 5498: 5496: 4368:Since engineers became accustomed to using 1242:{\displaystyle \gamma =1\ {\text{J/m}}^{2}} 1154:is the Young's modulus of the material and 886:is in the middle an infinity large material 94:{\displaystyle J=-D{\frac {d\varphi }{dx}}} 16:Study of propagation of cracks in materials 6136: 6122: 5924: 5922: 4743:{\displaystyle \sigma _{fail}=\sigma _{Y}} 4582:Failure stress as a function of crack size 2031: 649: 635: 5718: 5608: 5516: 5514: 5484: 5453: 5412:"Analysis of a crack at a weak interface" 5367: 4435: 4124: 4063: 4016: 3519: 3093: 2949: 2411: 1948: 1947: 1895: 1894: 1494: 1313: 906:is around 100 MPa (15,000 psi). 688:forces within the material and is termed 5613:. West Lafayette, IN: Purdue University. 5493: 5459: 5338: 5336: 4577: 4282:is an incremental length along the path 3856: 3817: 3265:is the elastic energy of the system and 3107: 1632:{\displaystyle \sigma _{f}{\sqrt {a}}=C} 1570: 861: 758:can be used with parameters such as the 29: 5957:Atomistic Modeling of Materials Failure 5919: 5888: 5886: 5682: 5680: 5545: 5543: 5308: 5298: – Field of structural engineering 5210:of materials. By using techniques like 4573: 3251:{\displaystyle G:=\left_{P}=-\left_{u}} 1566: 857: 6846: 6009: 5910: 5848: 5511: 4542: 6117: 5928:Bažant, Z.P., and Planas, J. (1998). 5749: 5665:from the original on 21 November 2016 5635:from the original on 21 November 2016 5409: 5333: 5280: – Sudden transient acceleration 4586:Let a material have a yield strength 3496:material property was given the name 3269:is the crack length. Either the load 696:) and can be characterised using the 6076:, 10.1016/B978-0-12-394584-6.00010-8 6066:The Science and Technology of Rubber 5883: 5686: 5677: 5540: 5343:H.L. Ewalds; R.J.H. Wanhill (1984). 4613:and a fracture toughness in mode I 3977:and is conventionally converted to K 3747:is small, then the squared ratio of 2239:is the distance from the crack tip, 6062:Chapter 10 – Strength of Elastomers 5806: 5659:Handbook for Damage Tolerant Design 5629:Handbook for Damage Tolerant Design 5549: 3936:, Crack growth resistance curve or 902:The stress needed to fracture bulk 13: 6096:Nonlinear Fracture Mechanics Notes 5975: 5609:Weisshaar, Terry (July 28, 2011). 4364:are the stress and strain tensors. 4289: 4164: 4054: 4039: 4005: 3853:Elastic–plastic fracture mechanics 3227: 3212: 3172: 3157: 1201:{\displaystyle E=62\ {\text{GPa}}} 866:A Griffith crack (flaw) of length 788: 756:elastic-plastic fracture mechanics 734:normal to the plane of the crack), 14: 6875: 6089: 5571:10.1016/j.engfracmech.2015.10.004 5416:International Journal of Fracture 5368:McMeeking, Robert M. (May 2004). 4357:{\displaystyle \varepsilon _{ij}} 3525:represent cracks as round tipped 1639:still holds, the surface energy ( 853:Linear elastic fracture mechanics 690:linear elastic fracture mechanics 6057:, Imperial College Press, (2012) 5932:. CRC Press, Boca Raton, Florida 4986:critical stress intensity factor 4199:is the density of strain energy, 3934:crack extension resistance curve 2021:{\displaystyle {\text{J/m}}^{2}} 1727:{\displaystyle G=2\gamma +G_{p}} 5990:Mechanical Behavior of Ceramics 5948: 5935: 5796:from the original on 2023-04-17 5738:from the original on 2008-08-28 5647: 5617: 5588:from the original on 2018-07-13 5535:Fracture and strength of solids 5442:from the original on 2023-04-17 5392:from the original on 2022-02-13 4079: 4073: 2884:dimensionless correction factor 2783:. It refers to so-called "mode 2695:{\displaystyle K_{I}\geq K_{c}} 5559:Engineering Fracture Mechanics 5527: 5403: 5374:Engineering Fracture Mechanics 5361: 5174:= maximum aggregate size, and 4750:. These curves intersect when 4070: 4010: 3902:Crack tip opening displacement 3813: 3399: 3380: 2169: 2163: 1649:U.S. Naval Research Laboratory 1591:materials such as glass. For 1421: 1402: 1367:is half the crack length, and 938:) and the stress at fracture ( 812:mechanical design discipline. 764:crack tip opening displacement 1: 5777:10.1016/s0065-2156(08)70121-2 5765:Advances in Applied Mechanics 5625:"Crack Tip Plastic Zone Size" 5550:Liu, M.; et al. (2015). 5386:10.1016/S0013-7944(03)00135-8 5302: 5296:Structural fracture mechanics 3943: 3925:Crack growth resistance curve 2803:" loading as opposed to mode 815: 5945:103 (25), pp. 9434–9439 5877:10.1016/0022-5096(67)90029-4 5835:10.1016/0022-5096(60)90013-2 5699:Journal of Applied Mechanics 5198:Atomistic Fracture Mechanics 4988:, and proposed the relation 4327:{\displaystyle \sigma _{ij}} 3866:American Airlines Flight 587 2639:the fracture toughness, and 2208:{\displaystyle \sigma _{ij}} 1441:However, we also have that: 1427:{\displaystyle (1-\nu ^{2})} 7: 5943:Proc. Nat'l Acad. Sci., USA 5217: 5114:= stress intensity factor, 4606:{\displaystyle \sigma _{Y}} 3794:{\displaystyle \sigma _{Y}} 3740:{\displaystyle \sigma _{Y}} 3713:{\displaystyle \sigma _{Y}} 3659:{\displaystyle \sigma _{Y}} 958:{\displaystyle \sigma _{f}} 10: 6880: 6025:Fracture of Brittle Solids 6016:The brittle fracture story 5756:Barenblatt, G. I. (1962), 4970:Concrete fracture analysis 4965:Concrete fracture analysis 4923:{\displaystyle a>a_{t}} 4890:{\displaystyle a<a_{t}} 4546: 3947: 3922: 3918: 3899: 3868:, leading to a fatal crash 3849:testing can be expensive. 3125:strain energy release rate 3114:Strain energy release rate 3111: 2035: 1757:is the surface energy and 1689:Then the total energy is: 1561:fracture of soft materials 1064:Compute the change in the 18: 6818: 6750: 6700: 6677: 6539: 6302: 6188: 6152: 6034:, and Glassco, J. (1997) 5966:10.1007/978-0-387-76426-9 5290:Stress corrosion cracking 5194:= an empirical constant. 25:Fracture (disambiguation) 6486:Compact tension specimen 6206:Conservation of momentum 5999:, Open University (2004) 5187:{\displaystyle \lambda } 5064:{\displaystyle \lambda } 3639:, and the yield stress, 3280:Irwin showed that for a 1599:, although the relation 1391:, which for the case of 797:{\displaystyle \Delta K} 153:Clausius–Duhem (entropy) 103:Fick's laws of diffusion 6566:Navier–Stokes equations 6466:Material failure theory 6454:Material failure theory 6085:, SpringerLink, (2012). 6011:Tipper, Constance Fligg 5428:10.1023/A:1011041409243 5410:Lenci, Stefano (2001). 5260:Material failure theory 5167:{\displaystyle \delta } 5107:{\displaystyle \sigma } 5083:{\displaystyle \delta } 5004:{\displaystyle \sigma } 4472:{\displaystyle E^{*}=E} 4295:{\displaystyle \Gamma } 4170:{\displaystyle \Gamma } 3895: 3864:, which separated from 2252:{\displaystyle \theta } 2038:Stress intensity factor 2032:Stress intensity factor 1750:{\displaystyle \gamma } 1347:is the applied stress, 1340:{\displaystyle \sigma } 1167:{\displaystyle \gamma } 698:stress intensity factor 311:Navier–Stokes equations 249:Material failure theory 6238:Conservation of energy 6051:Chen, X., Mai, Y.-W., 6040:, Chapman & Hall. 5486:10.1098/rsta.1921.0006 5315:T.L. Anderson (1995). 5188: 5168: 5148: 5128: 5108: 5092: 5084: 5065: 5045: 5025: 5005: 4951: 4924: 4891: 4858: 4828: 4808: 4744: 4695: 4637: 4636:{\displaystyle K_{Ic}} 4607: 4583: 4532: 4473: 4440: 4358: 4328: 4296: 4276: 4251: 4222: 4193: 4171: 4145: 3869: 3834: 3833:while in harbor, 1943. 3795: 3768: 3741: 3714: 3687: 3660: 3633: 3602: 3520:Crack tip plastic zone 3452: 3252: 3098: 3020: 2997: 2977: 2954: 2908:geometric shape factor 2900: 2876: 2846: 2820: 2797: 2779:arises because of the 2773: 2753: 2752:{\displaystyle K_{Ic}} 2723: 2696: 2653: 2633: 2606: 2586: 2557: 2416: 2362: 2333: 2332:{\displaystyle f_{ij}} 2303: 2283: 2282:{\displaystyle f_{ij}} 2253: 2233: 2209: 2176: 2064: 2022: 1993: 1965: 1912: 1860: 1778: 1751: 1728: 1633: 1585: 1576: 1549: 1522: 1499: 1428: 1381: 1361: 1341: 1318: 1266: 1243: 1202: 1168: 1148: 1125: 1040: 1002: 959: 932: 887: 880: 798: 713: 95: 35: 23:. For other uses, see 6603:Archimedes' principle 6571:Bernoulli's principle 5284:Strength of materials 5230:Concrete cone failure 5189: 5169: 5149: 5129: 5127:{\displaystyle \tau } 5109: 5085: 5066: 5046: 5026: 5024:{\displaystyle \tau } 5006: 4990: 4978:cone-shaped fractures 4952: 4950:{\displaystyle a_{t}} 4925: 4892: 4859: 4857:{\displaystyle a_{t}} 4829: 4809: 4745: 4696: 4638: 4608: 4581: 4533: 4474: 4441: 4359: 4329: 4297: 4277: 4252: 4250:{\displaystyle u_{i}} 4223: 4221:{\displaystyle T_{i}} 4194: 4172: 4146: 3860: 3821: 3796: 3769: 3767:{\displaystyle K_{C}} 3742: 3715: 3688: 3686:{\displaystyle K_{c}} 3661: 3634: 3632:{\displaystyle K_{C}} 3603: 3453: 3253: 3108:Strain energy release 3099: 3021: 2998: 2978: 2955: 2901: 2877: 2875:{\displaystyle K_{I}} 2847: 2821: 2798: 2774: 2754: 2724: 2722:{\displaystyle K_{c}} 2697: 2662:Fracture occurs when 2654: 2634: 2632:{\displaystyle K_{c}} 2607: 2587: 2585:{\displaystyle K_{I}} 2558: 2417: 2363: 2334: 2304: 2284: 2254: 2234: 2210: 2177: 2065: 2063:{\displaystyle K_{I}} 2023: 1994: 1966: 1913: 1861: 1779: 1777:{\displaystyle G_{p}} 1752: 1729: 1634: 1578: 1574: 1550: 1548:{\displaystyle G_{c}} 1523: 1500: 1429: 1382: 1362: 1342: 1319: 1267: 1244: 1203: 1169: 1149: 1126: 1041: 1003: 960: 933: 881: 865: 799: 714: 306:Bernoulli's principle 299:Archimedes' principle 96: 33: 6833:William Prager Medal 6411:Rock mass plasticity 6308:Structural mechanics 6201:Conservation of mass 6189:Laws and Definitions 5983:University of Oxford 5471:(582–593): 163–198, 5236:Concrete degradation 5178: 5158: 5154:= size of specimen, 5138: 5134:= tensile strength, 5118: 5098: 5074: 5055: 5035: 5015: 4995: 4934: 4901: 4868: 4841: 4836:transition flaw size 4818: 4754: 4705: 4647: 4617: 4590: 4574:Transition flaw size 4487: 4450: 4389: 4338: 4308: 4286: 4263: 4234: 4205: 4183: 4161: 3991: 3778: 3751: 3724: 3697: 3670: 3643: 3616: 3540: 3488:(sliding mode), and 3291: 3273:or the displacement 3135: 3033: 3007: 2987: 2967: 2917: 2890: 2859: 2830: 2807: 2787: 2763: 2733: 2706: 2666: 2659:is Poisson's ratio. 2652:{\displaystyle \nu } 2643: 2616: 2596: 2569: 2431: 2382: 2343: 2313: 2293: 2263: 2243: 2223: 2189: 2077: 2047: 2003: 1983: 1922: 1873: 1794: 1761: 1741: 1696: 1603: 1567:Irwin's modification 1532: 1512: 1448: 1399: 1371: 1351: 1331: 1279: 1256: 1212: 1178: 1158: 1138: 1076: 1030: 972: 942: 922: 870: 858:Griffith's criterion 785: 703: 398:Cohesion (chemistry) 220:Infinitesimal strain 56: 6864:Structural analysis 6576:Poiseuille equation 6353:Membrane elasticity 6338:Transverse isotropy 6180:Rigid body dynamics 6146:continuum mechanics 5869:1967JMPSo..15..151W 5827:1960JMPSo...8..100D 5711:1968JAM....35..379R 5477:1921RSPTA.221..163G 5266:Notch (engineering) 4803: 4780: 4556:cohesive zone model 4549:Cohesive zone model 4543:Cohesive zone model 4110: 3862:Vertical stabilizer 3839:plastic deformation 3594: 3572: 3423: 3416: 3377: 3350: 3343: 3326: 3224: 3209: 3169: 3154: 2855:The expression for 2845:{\displaystyle III} 2514: 2492: 2124: 2105: 1999:between 2 and 1000 1841: 1823: 1484: 1109: 1091: 316:Poiseuille equation 47:Continuum mechanics 41:Part of a series on 6854:Fracture mechanics 6725:Electrorheological 6720:Magnetorheological 6476:Fracture mechanics 6243:Entropy inequality 6108:Fracture Mechanics 6082:Fracture Mechanics 5533:Orowan, E., 1949. 5506:Fracture Mechanics 5504:E. Erdogan (2000) 5380:(7–8): 1149–1163. 5345:Fracture Mechanics 5212:Molecular Dynamics 5184: 5164: 5144: 5124: 5104: 5080: 5061: 5041: 5021: 5001: 4947: 4920: 4887: 4854: 4824: 4804: 4789: 4763: 4740: 4691: 4633: 4603: 4584: 4528: 4469: 4436: 4354: 4324: 4292: 4275:{\displaystyle ds} 4272: 4247: 4218: 4189: 4167: 4141: 4086: 3964:deformation theory 3870: 3847:Fracture toughness 3835: 3791: 3764: 3737: 3710: 3683: 3656: 3629: 3598: 3580: 3558: 3499:fracture toughness 3448: 3443: 3430: 3418: 3402: 3357: 3345: 3329: 3248: 3234: 3219: 3179: 3164: 3094: 3019:{\displaystyle 2a} 3016: 2993: 2973: 2950: 2896: 2872: 2842: 2819:{\displaystyle II} 2816: 2793: 2769: 2749: 2719: 2692: 2649: 2629: 2612:stress intensity, 2602: 2582: 2553: 2548: 2534: 2509: 2412: 2373:fracture toughness 2358: 2329: 2299: 2279: 2249: 2229: 2205: 2172: 2139: 2119: 2060: 2018: 1989: 1961: 1908: 1856: 1848: 1836: 1774: 1747: 1724: 1629: 1595:materials such as 1577: 1545: 1518: 1495: 1470: 1424: 1377: 1357: 1337: 1314: 1262: 1239: 1198: 1164: 1144: 1121: 1116: 1104: 1036: 998: 955: 928: 888: 876: 806:fracture toughness 794: 740:– Sliding mode (a 730:– Opening mode (a 709: 662:Fracture mechanics 522:Magnetorheological 517:Electrorheological 254:Fracture mechanics 91: 36: 6841: 6840: 6524:Bending of plates 6498:Johnson-Holmquist 6461:Drucker stability 6435:Contact mechanics 6382:Cauchy elasticity 6360:Equation of state 6046:978-0-412-12991-9 5729:10.1115/1.3601206 5354:978-0-7131-3515-2 5278:Shock (mechanics) 5147:{\displaystyle d} 5044:{\displaystyle d} 4827:{\displaystyle a} 4689: 4657: 4538:for plane strain. 4526: 4433: 4192:{\displaystyle w} 4077: 4061: 3954:In the mid-1960s 3596: 3439: 3432: 3422: 3376: 3366: 3359: 3349: 3325: 3236: 3223: 3208: 3181: 3168: 3153: 3091: 3085: 3051: 2996:{\displaystyle W} 2976:{\displaystyle Y} 2947: 2899:{\displaystyle Y} 2796:{\displaystyle I} 2772:{\displaystyle I} 2605:{\displaystyle I} 2544: 2537: 2536: 2513: 2491: 2477: 2470: 2409: 2356: 2355: 2349: 2302:{\displaystyle K} 2232:{\displaystyle r} 2149: 2141: 2137: 2123: 2104: 2010: 1992:{\displaystyle G} 1953: 1900: 1851: 1850: 1840: 1831: 1822: 1812: 1621: 1521:{\displaystyle G} 1492: 1380:{\displaystyle E} 1360:{\displaystyle a} 1311: 1265:{\displaystyle G} 1231: 1226: 1196: 1192: 1147:{\displaystyle E} 1119: 1118: 1108: 1090: 1039:{\displaystyle C} 990: 931:{\displaystyle a} 879:{\displaystyle a} 712:{\displaystyle K} 659: 658: 534: 533: 468: 467: 237:Contact mechanics 160: 159: 89: 6871: 6662:Combined gas law 6657:Gay-Lussac's law 6628:Capillary action 6493:Damage mechanics 6138: 6131: 6124: 6115: 6114: 6020: 6019:. Cambridge U.P. 5995:Demaid, Adrian, 5970: 5969: 5952: 5946: 5939: 5933: 5926: 5917: 5914: 5908: 5907: 5905: 5903: 5898: 5890: 5881: 5879: 5852: 5846: 5845: 5810: 5804: 5803: 5802: 5801: 5795: 5762: 5753: 5747: 5745: 5744: 5743: 5737: 5722: 5720:10.1.1.1023.7604 5696: 5684: 5675: 5674: 5672: 5670: 5661:. LexTech, Inc. 5651: 5645: 5644: 5642: 5640: 5631:. LexTech, Inc. 5621: 5615: 5614: 5606: 5597: 5596: 5594: 5593: 5587: 5556: 5547: 5538: 5531: 5525: 5520:Irwin G (1957), 5518: 5509: 5502: 5491: 5489: 5488: 5457: 5451: 5450: 5448: 5447: 5407: 5401: 5400: 5398: 5397: 5365: 5359: 5358: 5340: 5331: 5330: 5312: 5193: 5191: 5190: 5185: 5173: 5171: 5170: 5165: 5153: 5151: 5150: 5145: 5133: 5131: 5130: 5125: 5113: 5111: 5110: 5105: 5089: 5087: 5086: 5081: 5070: 5068: 5067: 5062: 5050: 5048: 5047: 5042: 5030: 5028: 5027: 5022: 5010: 5008: 5007: 5002: 4956: 4954: 4953: 4948: 4946: 4945: 4929: 4927: 4926: 4921: 4919: 4918: 4896: 4894: 4893: 4888: 4886: 4885: 4863: 4861: 4860: 4855: 4853: 4852: 4833: 4831: 4830: 4825: 4814:. This value of 4813: 4811: 4810: 4805: 4802: 4797: 4785: 4779: 4774: 4749: 4747: 4746: 4741: 4739: 4738: 4726: 4725: 4700: 4698: 4697: 4692: 4690: 4682: 4680: 4675: 4674: 4659: 4658: 4655: 4642: 4640: 4639: 4634: 4632: 4631: 4612: 4610: 4609: 4604: 4602: 4601: 4537: 4535: 4534: 4529: 4527: 4525: 4524: 4523: 4504: 4499: 4498: 4478: 4476: 4475: 4470: 4462: 4461: 4445: 4443: 4442: 4437: 4434: 4432: 4431: 4419: 4418: 4409: 4404: 4403: 4363: 4361: 4360: 4355: 4353: 4352: 4333: 4331: 4330: 4325: 4323: 4322: 4301: 4299: 4298: 4293: 4281: 4279: 4278: 4273: 4256: 4254: 4253: 4248: 4246: 4245: 4227: 4225: 4224: 4219: 4217: 4216: 4198: 4196: 4195: 4190: 4176: 4174: 4173: 4168: 4150: 4148: 4147: 4142: 4140: 4139: 4123: 4122: 4109: 4108: 4107: 4094: 4078: 4075: 4062: 4060: 4052: 4051: 4050: 4037: 4035: 4034: 4009: 4008: 3960:Brown University 3831:brittle fracture 3800: 3798: 3797: 3792: 3790: 3789: 3773: 3771: 3770: 3765: 3763: 3762: 3746: 3744: 3743: 3738: 3736: 3735: 3719: 3717: 3716: 3711: 3709: 3708: 3692: 3690: 3689: 3684: 3682: 3681: 3665: 3663: 3662: 3657: 3655: 3654: 3638: 3636: 3635: 3630: 3628: 3627: 3607: 3605: 3604: 3599: 3597: 3595: 3593: 3588: 3571: 3566: 3557: 3552: 3551: 3457: 3455: 3454: 3449: 3447: 3446: 3440: 3437: 3433: 3431: 3429: 3419: 3417: 3415: 3410: 3398: 3397: 3373: 3367: 3364: 3360: 3358: 3356: 3346: 3344: 3342: 3337: 3322: 3309: 3308: 3257: 3255: 3254: 3249: 3247: 3246: 3241: 3237: 3235: 3233: 3220: 3218: 3205: 3192: 3191: 3186: 3182: 3180: 3178: 3165: 3163: 3150: 3103: 3101: 3100: 3095: 3092: 3090: 3086: 3081: 3073: 3061: 3056: 3052: 3044: 3025: 3023: 3022: 3017: 3002: 3000: 2999: 2994: 2982: 2980: 2979: 2974: 2959: 2957: 2956: 2951: 2948: 2940: 2929: 2928: 2905: 2903: 2902: 2897: 2881: 2879: 2878: 2873: 2871: 2870: 2851: 2849: 2848: 2843: 2825: 2823: 2822: 2817: 2802: 2800: 2799: 2794: 2778: 2776: 2775: 2770: 2758: 2756: 2755: 2750: 2748: 2747: 2728: 2726: 2725: 2720: 2718: 2717: 2701: 2699: 2698: 2693: 2691: 2690: 2678: 2677: 2658: 2656: 2655: 2650: 2638: 2636: 2635: 2630: 2628: 2627: 2611: 2609: 2608: 2603: 2591: 2589: 2588: 2583: 2581: 2580: 2562: 2560: 2559: 2554: 2552: 2551: 2545: 2543:for plane strain 2542: 2538: 2535: 2533: 2532: 2531: 2510: 2508: 2507: 2506: 2488: 2487: 2482: 2478: 2476:for plane stress 2475: 2471: 2469: 2468: 2456: 2443: 2442: 2421: 2419: 2418: 2413: 2410: 2402: 2394: 2393: 2367: 2365: 2364: 2359: 2357: 2353: 2352: 2350: 2347: 2338: 2336: 2335: 2330: 2328: 2327: 2308: 2306: 2305: 2300: 2288: 2286: 2285: 2280: 2278: 2277: 2258: 2256: 2255: 2250: 2238: 2236: 2235: 2230: 2214: 2212: 2211: 2206: 2204: 2203: 2181: 2179: 2178: 2173: 2162: 2161: 2147: 2146: 2142: 2140: 2138: 2127: 2120: 2118: 2117: 2116: 2101: 2092: 2091: 2069: 2067: 2066: 2061: 2059: 2058: 2027: 2025: 2024: 2019: 2017: 2016: 2011: 2008: 1998: 1996: 1995: 1990: 1977:glass transition 1970: 1968: 1967: 1962: 1960: 1959: 1954: 1951: 1940: 1939: 1917: 1915: 1914: 1909: 1907: 1906: 1901: 1898: 1865: 1863: 1862: 1857: 1852: 1849: 1847: 1837: 1835: 1829: 1819: 1818: 1813: 1808: 1806: 1805: 1783: 1781: 1780: 1775: 1773: 1772: 1756: 1754: 1753: 1748: 1733: 1731: 1730: 1725: 1723: 1722: 1638: 1636: 1635: 1630: 1622: 1617: 1615: 1614: 1554: 1552: 1551: 1546: 1544: 1543: 1527: 1525: 1524: 1519: 1504: 1502: 1501: 1496: 1493: 1488: 1483: 1478: 1465: 1460: 1459: 1433: 1431: 1430: 1425: 1420: 1419: 1386: 1384: 1383: 1378: 1366: 1364: 1363: 1358: 1346: 1344: 1343: 1338: 1323: 1321: 1320: 1315: 1312: 1307: 1303: 1302: 1289: 1271: 1269: 1268: 1263: 1248: 1246: 1245: 1240: 1238: 1237: 1232: 1229: 1224: 1207: 1205: 1204: 1199: 1197: 1194: 1190: 1173: 1171: 1170: 1165: 1153: 1151: 1150: 1145: 1130: 1128: 1127: 1122: 1120: 1117: 1115: 1105: 1103: 1087: 1086: 1052:potential energy 1045: 1043: 1042: 1037: 1007: 1005: 1004: 999: 991: 986: 984: 983: 964: 962: 961: 956: 954: 953: 937: 935: 934: 929: 894:– thus the term 885: 883: 882: 877: 827:damage tolerance 810:damage tolerance 803: 801: 800: 795: 775:stress corrosion 718: 716: 715: 710: 664:is the field of 651: 644: 637: 483: 482: 448:Gay-Lussac's law 438:Combined gas law 388:Capillary action 273: 272: 116: 115: 100: 98: 97: 92: 90: 88: 80: 72: 38: 37: 6879: 6878: 6874: 6873: 6872: 6870: 6869: 6868: 6844: 6843: 6842: 6837: 6814: 6746: 6710:Viscoelasticity 6696: 6687:Acoustic theory 6673: 6623:Surface tension 6541:Fluid mechanics 6535: 6529:Sandwich theory 6421:Yield criterion 6416:Viscoplasticity 6387:Viscoelasticity 6348:hyperelasticity 6298: 6282:Antiplane shear 6265:Stress measures 6184: 6165:Fluid mechanics 6160:Solid mechanics 6148: 6142: 6092: 6079:Zehnder, Alan. 6030:Farahmand, B., 5988:Davidge, R.W., 5978: 5976:Further reading 5973: 5954: 5953: 5949: 5940: 5936: 5927: 5920: 5915: 5911: 5901: 5899: 5896: 5892: 5891: 5884: 5853: 5849: 5811: 5807: 5799: 5797: 5793: 5787: 5760: 5754: 5750: 5741: 5739: 5735: 5694: 5685: 5678: 5668: 5666: 5653: 5652: 5648: 5638: 5636: 5623: 5622: 5618: 5607: 5600: 5591: 5589: 5585: 5554: 5548: 5541: 5532: 5528: 5519: 5512: 5503: 5494: 5461:Griffith, A. A. 5458: 5454: 5445: 5443: 5408: 5404: 5395: 5393: 5366: 5362: 5355: 5341: 5334: 5327: 5313: 5309: 5305: 5254:Fault (geology) 5220: 5200: 5179: 5176: 5175: 5159: 5156: 5155: 5139: 5136: 5135: 5119: 5116: 5115: 5099: 5096: 5095: 5075: 5072: 5071: 5056: 5053: 5052: 5036: 5033: 5032: 5016: 5013: 5012: 4996: 4993: 4992: 4967: 4941: 4937: 4935: 4932: 4931: 4914: 4910: 4902: 4899: 4898: 4881: 4877: 4869: 4866: 4865: 4848: 4844: 4842: 4839: 4838: 4819: 4816: 4815: 4798: 4793: 4781: 4775: 4767: 4755: 4752: 4751: 4734: 4730: 4712: 4708: 4706: 4703: 4702: 4681: 4676: 4667: 4663: 4654: 4650: 4648: 4645: 4644: 4624: 4620: 4618: 4615: 4614: 4597: 4593: 4591: 4588: 4587: 4576: 4551: 4545: 4519: 4515: 4508: 4503: 4494: 4490: 4488: 4485: 4484: 4457: 4453: 4451: 4448: 4447: 4424: 4420: 4414: 4410: 4408: 4396: 4392: 4390: 4387: 4386: 4381: 4374: 4345: 4341: 4339: 4336: 4335: 4315: 4311: 4309: 4306: 4305: 4287: 4284: 4283: 4264: 4261: 4260: 4241: 4237: 4235: 4232: 4231: 4212: 4208: 4206: 4203: 4202: 4184: 4181: 4180: 4162: 4159: 4158: 4132: 4128: 4115: 4111: 4100: 4096: 4095: 4090: 4074: 4053: 4046: 4042: 4038: 4036: 4030: 4026: 4004: 4000: 3992: 3989: 3988: 3980: 3976: 3952: 3946: 3927: 3921: 3904: 3898: 3855: 3829:split apart by 3816: 3785: 3781: 3779: 3776: 3775: 3758: 3754: 3752: 3749: 3748: 3731: 3727: 3725: 3722: 3721: 3704: 3700: 3698: 3695: 3694: 3677: 3673: 3671: 3668: 3667: 3650: 3646: 3644: 3641: 3640: 3623: 3619: 3617: 3614: 3613: 3589: 3584: 3573: 3567: 3562: 3556: 3547: 3543: 3541: 3538: 3537: 3522: 3515: 3508: 3502:and designated 3483: 3475:Poisson's ratio 3467:Young's modulus 3442: 3441: 3436: 3434: 3425: 3420: 3411: 3406: 3393: 3389: 3379: 3374: 3372: 3369: 3368: 3363: 3361: 3352: 3347: 3338: 3333: 3328: 3323: 3321: 3314: 3313: 3304: 3300: 3292: 3289: 3288: 3242: 3226: 3221: 3211: 3206: 3204: 3200: 3199: 3187: 3171: 3166: 3156: 3151: 3149: 3145: 3144: 3136: 3133: 3132: 3116: 3110: 3074: 3072: 3068: 3060: 3043: 3039: 3034: 3031: 3030: 3008: 3005: 3004: 2988: 2985: 2984: 2968: 2965: 2964: 2939: 2924: 2920: 2918: 2915: 2914: 2891: 2888: 2887: 2866: 2862: 2860: 2857: 2856: 2831: 2828: 2827: 2808: 2805: 2804: 2788: 2785: 2784: 2764: 2761: 2760: 2740: 2736: 2734: 2731: 2730: 2713: 2709: 2707: 2704: 2703: 2686: 2682: 2673: 2669: 2667: 2664: 2663: 2644: 2641: 2640: 2623: 2619: 2617: 2614: 2613: 2597: 2594: 2593: 2576: 2572: 2570: 2567: 2566: 2547: 2546: 2541: 2539: 2527: 2523: 2516: 2511: 2502: 2498: 2494: 2489: 2486: 2483: 2480: 2479: 2474: 2472: 2464: 2460: 2455: 2448: 2447: 2438: 2434: 2432: 2429: 2428: 2401: 2389: 2385: 2383: 2380: 2379: 2351: 2346: 2344: 2341: 2340: 2320: 2316: 2314: 2311: 2310: 2294: 2291: 2290: 2270: 2266: 2264: 2261: 2260: 2244: 2241: 2240: 2224: 2221: 2220: 2217:Cauchy stresses 2196: 2192: 2190: 2187: 2186: 2154: 2150: 2126: 2121: 2112: 2108: 2107: 2102: 2100: 2096: 2084: 2080: 2078: 2075: 2074: 2054: 2050: 2048: 2045: 2044: 2040: 2034: 2012: 2007: 2006: 2004: 2001: 2000: 1984: 1981: 1980: 1955: 1950: 1949: 1935: 1931: 1923: 1920: 1919: 1902: 1897: 1896: 1874: 1871: 1870: 1843: 1838: 1825: 1820: 1817: 1807: 1801: 1797: 1795: 1792: 1791: 1768: 1764: 1762: 1759: 1758: 1742: 1739: 1738: 1718: 1714: 1697: 1694: 1693: 1616: 1610: 1606: 1604: 1601: 1600: 1569: 1539: 1535: 1533: 1530: 1529: 1513: 1510: 1509: 1479: 1474: 1466: 1464: 1455: 1451: 1449: 1446: 1445: 1415: 1411: 1400: 1397: 1396: 1389:Young's modulus 1372: 1369: 1368: 1352: 1349: 1348: 1332: 1329: 1328: 1298: 1294: 1290: 1288: 1280: 1277: 1276: 1257: 1254: 1253: 1233: 1228: 1227: 1213: 1210: 1209: 1193: 1179: 1176: 1175: 1159: 1156: 1155: 1139: 1136: 1135: 1111: 1106: 1093: 1088: 1085: 1077: 1074: 1073: 1031: 1028: 1027: 985: 979: 975: 973: 970: 969: 949: 945: 943: 940: 939: 923: 920: 919: 871: 868: 867: 860: 855: 818: 786: 783: 782: 704: 701: 700: 670:solid mechanics 655: 626: 625: 624: 544: 536: 535: 489:Viscoelasticity 480: 470: 469: 457: 407: 403:Surface tension 367: 270: 268:Fluid mechanics 260: 259: 258: 172: 170:Solid mechanics 162: 161: 113: 105: 81: 73: 71: 57: 54: 53: 28: 17: 12: 11: 5: 6877: 6867: 6866: 6861: 6856: 6839: 6838: 6836: 6835: 6830: 6824: 6822: 6816: 6815: 6813: 6812: 6807: 6802: 6797: 6792: 6787: 6782: 6777: 6772: 6767: 6762: 6756: 6754: 6748: 6747: 6745: 6744: 6739: 6734: 6733: 6732: 6727: 6722: 6712: 6706: 6704: 6698: 6697: 6695: 6694: 6689: 6683: 6681: 6675: 6674: 6672: 6671: 6665: 6664: 6659: 6654: 6649: 6644: 6638: 6637: 6631: 6630: 6625: 6620: 6615: 6610: 6605: 6600: 6599: 6598: 6593: 6583: 6578: 6573: 6568: 6563: 6561:Fluid dynamics 6558: 6552: 6551: 6545: 6543: 6537: 6536: 6534: 6533: 6532: 6531: 6526: 6521: 6519:Bending moment 6510: 6509: 6503: 6502: 6501: 6500: 6490: 6489: 6488: 6483: 6473: 6468: 6463: 6457: 6456: 6450: 6449: 6448: 6447: 6442: 6432: 6431: 6430: 6429: 6428: 6426:Bresler-Pister 6418: 6413: 6403: 6402: 6401: 6400: 6399: 6397:Concrete creep 6394: 6384: 6379: 6377:hypoelasticity 6374: 6373: 6372: 6367: 6357: 6356: 6355: 6345: 6340: 6335: 6330: 6319: 6318: 6312: 6310: 6300: 6299: 6297: 6296: 6291: 6286: 6285: 6284: 6274: 6269: 6268: 6267: 6262: 6251: 6250: 6246: 6245: 6240: 6235: 6234: 6233: 6228: 6223: 6218: 6213: 6203: 6197: 6196: 6192: 6190: 6186: 6185: 6183: 6182: 6177: 6172: 6167: 6162: 6156: 6154: 6150: 6149: 6141: 6140: 6133: 6126: 6118: 6112: 6111: 6105: 6099: 6091: 6090:External links 6088: 6087: 6086: 6077: 6058: 6049: 6028: 6021: 6007: 6000: 5993: 5986: 5977: 5974: 5972: 5971: 5947: 5934: 5918: 5909: 5882: 5863:(3): 151–162, 5847: 5821:(2): 100–104, 5805: 5785: 5748: 5705:(2): 379–386, 5676: 5646: 5616: 5598: 5539: 5526: 5510: 5492: 5452: 5422:(3): 275–290. 5402: 5360: 5353: 5332: 5326:978-0849316562 5325: 5306: 5304: 5301: 5300: 5299: 5293: 5287: 5281: 5275: 5269: 5263: 5257: 5251: 5245: 5239: 5233: 5227: 5219: 5216: 5208:microstructure 5199: 5196: 5183: 5163: 5143: 5123: 5103: 5079: 5060: 5040: 5020: 5000: 4966: 4963: 4944: 4940: 4917: 4913: 4909: 4906: 4884: 4880: 4876: 4873: 4851: 4847: 4823: 4801: 4796: 4792: 4788: 4784: 4778: 4773: 4770: 4766: 4762: 4759: 4737: 4733: 4729: 4724: 4721: 4718: 4715: 4711: 4688: 4685: 4679: 4673: 4670: 4666: 4662: 4653: 4630: 4627: 4623: 4600: 4596: 4575: 4572: 4547:Main article: 4544: 4541: 4540: 4539: 4522: 4518: 4514: 4511: 4507: 4502: 4497: 4493: 4468: 4465: 4460: 4456: 4430: 4427: 4423: 4417: 4413: 4407: 4402: 4399: 4395: 4379: 4372: 4366: 4365: 4351: 4348: 4344: 4321: 4318: 4314: 4303: 4291: 4271: 4268: 4258: 4244: 4240: 4229: 4215: 4211: 4200: 4188: 4178: 4166: 4152: 4151: 4138: 4135: 4131: 4127: 4121: 4118: 4114: 4106: 4103: 4099: 4093: 4089: 4085: 4082: 4072: 4069: 4066: 4059: 4056: 4049: 4045: 4041: 4033: 4029: 4025: 4022: 4019: 4015: 4012: 4007: 4003: 3999: 3996: 3978: 3974: 3948:Main article: 3945: 3942: 3923:Main article: 3920: 3917: 3900:Main article: 3897: 3894: 3893: 3892: 3889: 3882: 3881: 3878: 3854: 3851: 3815: 3812: 3788: 3784: 3761: 3757: 3734: 3730: 3707: 3703: 3680: 3676: 3653: 3649: 3626: 3622: 3609: 3608: 3592: 3587: 3583: 3579: 3576: 3570: 3565: 3561: 3555: 3550: 3546: 3521: 3518: 3513: 3506: 3481: 3459: 3458: 3445: 3435: 3428: 3414: 3409: 3405: 3401: 3396: 3392: 3388: 3385: 3382: 3371: 3370: 3362: 3355: 3341: 3336: 3332: 3320: 3319: 3317: 3312: 3307: 3303: 3299: 3296: 3259: 3258: 3245: 3240: 3232: 3229: 3217: 3214: 3203: 3198: 3195: 3190: 3185: 3177: 3174: 3162: 3159: 3148: 3143: 3140: 3112:Main article: 3109: 3106: 3105: 3104: 3089: 3084: 3080: 3077: 3071: 3067: 3064: 3059: 3055: 3050: 3047: 3042: 3038: 3015: 3012: 2992: 2972: 2961: 2960: 2946: 2943: 2938: 2935: 2932: 2927: 2923: 2895: 2869: 2865: 2841: 2838: 2835: 2815: 2812: 2792: 2768: 2746: 2743: 2739: 2716: 2712: 2689: 2685: 2681: 2676: 2672: 2648: 2626: 2622: 2601: 2579: 2575: 2550: 2540: 2530: 2526: 2522: 2519: 2505: 2501: 2497: 2485: 2484: 2481: 2473: 2467: 2463: 2459: 2454: 2453: 2451: 2446: 2441: 2437: 2423: 2422: 2408: 2405: 2400: 2397: 2392: 2388: 2326: 2323: 2319: 2298: 2276: 2273: 2269: 2248: 2228: 2202: 2199: 2195: 2183: 2182: 2171: 2168: 2165: 2160: 2157: 2153: 2145: 2136: 2133: 2130: 2115: 2111: 2099: 2095: 2090: 2087: 2083: 2057: 2053: 2036:Main article: 2033: 2030: 2015: 1988: 1958: 1946: 1943: 1938: 1934: 1930: 1927: 1905: 1893: 1890: 1887: 1884: 1881: 1878: 1867: 1866: 1855: 1846: 1834: 1828: 1816: 1811: 1804: 1800: 1771: 1767: 1746: 1735: 1734: 1721: 1717: 1713: 1710: 1707: 1704: 1701: 1687: 1686: 1683: 1628: 1625: 1620: 1613: 1609: 1568: 1565: 1542: 1538: 1517: 1506: 1505: 1491: 1487: 1482: 1477: 1473: 1469: 1463: 1458: 1454: 1423: 1418: 1414: 1410: 1407: 1404: 1376: 1356: 1336: 1325: 1324: 1310: 1306: 1301: 1297: 1293: 1287: 1284: 1261: 1236: 1223: 1220: 1217: 1189: 1186: 1183: 1163: 1143: 1132: 1131: 1114: 1102: 1099: 1096: 1084: 1081: 1070: 1069: 1062: 1059:elastic energy 1055: 1035: 1024:surface energy 1009: 1008: 997: 994: 989: 982: 978: 952: 948: 927: 911: 910: 907: 896:Griffith crack 892:A. A. Griffith 875: 859: 856: 854: 851: 850: 849: 846: 843: 840: 837: 817: 814: 793: 790: 752: 751: 745: 735: 732:tensile stress 708: 657: 656: 654: 653: 646: 639: 631: 628: 627: 623: 622: 617: 612: 607: 602: 597: 592: 587: 582: 577: 572: 567: 562: 557: 552: 546: 545: 542: 541: 538: 537: 532: 531: 530: 529: 524: 519: 511: 510: 504: 503: 502: 501: 496: 491: 481: 476: 475: 472: 471: 466: 465: 459: 458: 456: 455: 450: 445: 440: 435: 430: 425: 419: 416: 415: 409: 408: 406: 405: 400: 395: 393:Chromatography 390: 385: 379: 376: 375: 369: 368: 366: 365: 346: 345: 344: 325: 313: 308: 296: 283: 280: 279: 271: 266: 265: 262: 261: 257: 256: 251: 246: 245: 244: 234: 229: 224: 223: 222: 217: 207: 202: 197: 192: 191: 190: 180: 174: 173: 168: 167: 164: 163: 158: 157: 156: 155: 147: 146: 142: 141: 140: 139: 134: 129: 121: 120: 114: 111: 110: 107: 106: 101: 87: 84: 79: 76: 70: 67: 64: 61: 50: 49: 43: 42: 15: 9: 6: 4: 3: 2: 6876: 6865: 6862: 6860: 6859:Glass physics 6857: 6855: 6852: 6851: 6849: 6834: 6831: 6829: 6828:Eringen Medal 6826: 6825: 6823: 6821: 6817: 6811: 6808: 6806: 6803: 6801: 6798: 6796: 6793: 6791: 6788: 6786: 6783: 6781: 6778: 6776: 6773: 6771: 6768: 6766: 6763: 6761: 6758: 6757: 6755: 6753: 6749: 6743: 6740: 6738: 6735: 6731: 6728: 6726: 6723: 6721: 6718: 6717: 6716: 6713: 6711: 6708: 6707: 6705: 6703: 6699: 6693: 6692:Aeroacoustics 6690: 6688: 6685: 6684: 6682: 6680: 6676: 6670: 6667: 6666: 6663: 6660: 6658: 6655: 6653: 6652:Charles's law 6650: 6648: 6645: 6643: 6640: 6639: 6636: 6633: 6632: 6629: 6626: 6624: 6621: 6619: 6616: 6614: 6611: 6609: 6606: 6604: 6601: 6597: 6596:Non-Newtonian 6594: 6592: 6589: 6588: 6587: 6584: 6582: 6579: 6577: 6574: 6572: 6569: 6567: 6564: 6562: 6559: 6557: 6556:Fluid statics 6554: 6553: 6550: 6547: 6546: 6544: 6542: 6538: 6530: 6527: 6525: 6522: 6520: 6517: 6516: 6515: 6512: 6511: 6508: 6505: 6504: 6499: 6496: 6495: 6494: 6491: 6487: 6484: 6482: 6479: 6478: 6477: 6474: 6472: 6469: 6467: 6464: 6462: 6459: 6458: 6455: 6452: 6451: 6446: 6443: 6441: 6438: 6437: 6436: 6433: 6427: 6424: 6423: 6422: 6419: 6417: 6414: 6412: 6409: 6408: 6407: 6404: 6398: 6395: 6393: 6390: 6389: 6388: 6385: 6383: 6380: 6378: 6375: 6371: 6368: 6366: 6363: 6362: 6361: 6358: 6354: 6351: 6350: 6349: 6346: 6344: 6341: 6339: 6336: 6334: 6331: 6329: 6326: 6325: 6324: 6321: 6320: 6317: 6314: 6313: 6311: 6309: 6305: 6301: 6295: 6294:Compatibility 6292: 6290: 6287: 6283: 6280: 6279: 6278: 6275: 6273: 6270: 6266: 6263: 6261: 6260:Cauchy stress 6258: 6257: 6256: 6253: 6252: 6248: 6247: 6244: 6241: 6239: 6236: 6232: 6229: 6227: 6224: 6222: 6219: 6217: 6214: 6212: 6211:Navier-Stokes 6209: 6208: 6207: 6204: 6202: 6199: 6198: 6194: 6193: 6191: 6187: 6181: 6178: 6176: 6173: 6171: 6168: 6166: 6163: 6161: 6158: 6157: 6155: 6151: 6147: 6139: 6134: 6132: 6127: 6125: 6120: 6119: 6116: 6109: 6106: 6103: 6100: 6097: 6094: 6093: 6084: 6083: 6078: 6075: 6074:9780123945846 6071: 6067: 6063: 6059: 6056: 6055: 6050: 6047: 6043: 6039: 6038: 6033: 6029: 6026: 6022: 6018: 6017: 6012: 6008: 6005: 6001: 5998: 5994: 5991: 5987: 5984: 5980: 5979: 5967: 5963: 5959: 5958: 5951: 5944: 5938: 5931: 5925: 5923: 5913: 5895: 5889: 5887: 5878: 5874: 5870: 5866: 5862: 5858: 5851: 5844: 5840: 5836: 5832: 5828: 5824: 5820: 5816: 5809: 5792: 5788: 5786:9780120020072 5782: 5778: 5774: 5770: 5766: 5759: 5752: 5734: 5730: 5726: 5721: 5716: 5712: 5708: 5704: 5700: 5693: 5689: 5683: 5681: 5664: 5660: 5656: 5655:"Retardation" 5650: 5634: 5630: 5626: 5620: 5612: 5605: 5603: 5584: 5580: 5576: 5572: 5568: 5564: 5560: 5553: 5546: 5544: 5536: 5530: 5523: 5517: 5515: 5507: 5501: 5499: 5497: 5487: 5482: 5478: 5474: 5470: 5466: 5462: 5456: 5441: 5437: 5433: 5429: 5425: 5421: 5417: 5413: 5406: 5391: 5387: 5383: 5379: 5375: 5371: 5364: 5356: 5350: 5346: 5339: 5337: 5328: 5322: 5319:. CRC Press. 5318: 5311: 5307: 5297: 5294: 5291: 5288: 5285: 5282: 5279: 5276: 5273: 5270: 5267: 5264: 5261: 5258: 5255: 5252: 5249: 5246: 5243: 5240: 5237: 5234: 5231: 5228: 5225: 5222: 5221: 5215: 5213: 5209: 5205: 5195: 5181: 5161: 5141: 5121: 5101: 5091: 5077: 5058: 5038: 5018: 4998: 4989: 4987: 4981: 4979: 4975: 4971: 4962: 4960: 4942: 4938: 4915: 4911: 4907: 4904: 4882: 4878: 4874: 4871: 4849: 4845: 4837: 4834:is called as 4821: 4799: 4794: 4790: 4786: 4782: 4776: 4771: 4768: 4764: 4760: 4757: 4735: 4731: 4727: 4722: 4719: 4716: 4713: 4709: 4686: 4683: 4677: 4671: 4668: 4664: 4660: 4651: 4628: 4625: 4621: 4598: 4594: 4580: 4571: 4569: 4565: 4561: 4557: 4550: 4520: 4516: 4512: 4509: 4505: 4500: 4495: 4491: 4482: 4466: 4463: 4458: 4454: 4428: 4425: 4421: 4415: 4411: 4405: 4400: 4397: 4393: 4385: 4384: 4383: 4378: 4371: 4349: 4346: 4342: 4319: 4316: 4312: 4304: 4269: 4266: 4259: 4242: 4238: 4230: 4213: 4209: 4201: 4186: 4179: 4157: 4156: 4155: 4136: 4133: 4129: 4125: 4119: 4116: 4112: 4104: 4101: 4097: 4091: 4087: 4083: 4080: 4067: 4064: 4057: 4047: 4043: 4031: 4027: 4023: 4020: 4017: 4013: 4001: 3997: 3994: 3987: 3986: 3985: 3982: 3972: 3968: 3965: 3961: 3957: 3956:James R. Rice 3951: 3941: 3939: 3935: 3932: 3926: 3916: 3912: 3908: 3903: 3890: 3887: 3886: 3885: 3879: 3876: 3875: 3874: 3867: 3863: 3859: 3850: 3848: 3843: 3840: 3832: 3828: 3827: 3820: 3811: 3809: 3803: 3786: 3782: 3759: 3755: 3732: 3728: 3705: 3701: 3678: 3674: 3651: 3647: 3624: 3620: 3590: 3585: 3581: 3577: 3574: 3568: 3563: 3559: 3553: 3548: 3544: 3536: 3535: 3534: 3530: 3528: 3517: 3512: 3505: 3501: 3500: 3493: 3491: 3487: 3480: 3476: 3472: 3468: 3464: 3426: 3412: 3407: 3403: 3394: 3390: 3386: 3383: 3353: 3339: 3334: 3330: 3315: 3310: 3305: 3301: 3297: 3294: 3287: 3286: 3285: 3283: 3278: 3276: 3272: 3268: 3264: 3243: 3238: 3230: 3215: 3201: 3196: 3193: 3188: 3183: 3175: 3160: 3146: 3141: 3138: 3131: 3130: 3129: 3127: 3126: 3120: 3115: 3087: 3082: 3078: 3075: 3069: 3065: 3062: 3057: 3053: 3048: 3045: 3040: 3036: 3029: 3028: 3027: 3013: 3010: 2990: 2970: 2944: 2941: 2936: 2933: 2930: 2925: 2921: 2913: 2912: 2911: 2909: 2893: 2885: 2867: 2863: 2853: 2839: 2836: 2833: 2813: 2810: 2790: 2782: 2766: 2744: 2741: 2737: 2714: 2710: 2687: 2683: 2679: 2674: 2670: 2660: 2646: 2624: 2620: 2599: 2577: 2573: 2563: 2528: 2524: 2520: 2517: 2503: 2499: 2495: 2465: 2461: 2457: 2449: 2444: 2439: 2435: 2426: 2406: 2403: 2398: 2395: 2390: 2386: 2378: 2377: 2376: 2374: 2369: 2324: 2321: 2317: 2296: 2274: 2271: 2267: 2246: 2226: 2218: 2200: 2197: 2193: 2166: 2158: 2155: 2151: 2143: 2134: 2131: 2128: 2113: 2109: 2097: 2093: 2088: 2085: 2081: 2073: 2072: 2071: 2055: 2051: 2039: 2029: 2013: 1986: 1978: 1975:close to the 1974: 1956: 1944: 1941: 1936: 1932: 1928: 1925: 1903: 1891: 1888: 1885: 1882: 1879: 1876: 1853: 1844: 1832: 1826: 1814: 1809: 1802: 1798: 1790: 1789: 1788: 1785: 1769: 1765: 1744: 1719: 1715: 1711: 1708: 1705: 1702: 1699: 1692: 1691: 1690: 1684: 1681: 1680: 1679: 1676: 1674: 1670: 1666: 1661: 1657: 1652: 1650: 1646: 1642: 1626: 1623: 1618: 1611: 1607: 1598: 1594: 1590: 1584: 1583: 1573: 1564: 1562: 1556: 1540: 1536: 1515: 1489: 1485: 1480: 1475: 1471: 1467: 1461: 1456: 1452: 1444: 1443: 1442: 1439: 1437: 1416: 1412: 1408: 1405: 1394: 1390: 1374: 1354: 1334: 1308: 1304: 1299: 1295: 1291: 1285: 1282: 1275: 1274: 1273: 1259: 1250: 1234: 1221: 1218: 1215: 1187: 1184: 1181: 1161: 1141: 1112: 1100: 1097: 1094: 1082: 1079: 1072: 1071: 1067: 1063: 1060: 1056: 1053: 1049: 1048: 1047: 1033: 1025: 1020: 1018: 1017:thermodynamic 1014: 995: 992: 987: 980: 976: 968: 967: 966: 950: 946: 925: 915: 908: 905: 901: 900: 899: 897: 893: 873: 864: 847: 844: 841: 838: 835: 834: 833: 830: 828: 824: 813: 811: 807: 791: 780: 776: 772: 767: 765: 761: 757: 749: 746: 743: 739: 736: 733: 729: 726: 725: 724: 722: 706: 699: 695: 691: 687: 683: 677: 675: 671: 667: 663: 652: 647: 645: 640: 638: 633: 632: 630: 629: 621: 618: 616: 613: 611: 608: 606: 603: 601: 598: 596: 593: 591: 588: 586: 583: 581: 578: 576: 573: 571: 568: 566: 563: 561: 558: 556: 553: 551: 548: 547: 540: 539: 528: 525: 523: 520: 518: 515: 514: 513: 512: 509: 506: 505: 500: 497: 495: 492: 490: 487: 486: 485: 484: 479: 474: 473: 464: 461: 460: 454: 451: 449: 446: 444: 441: 439: 436: 434: 433:Charles's law 431: 429: 426: 424: 421: 420: 418: 417: 414: 411: 410: 404: 401: 399: 396: 394: 391: 389: 386: 384: 381: 380: 378: 377: 374: 371: 370: 364: 361: 357: 354: 350: 347: 342: 341:non-Newtonian 339: 335: 331: 330: 329: 326: 324: 321: 317: 314: 312: 309: 307: 304: 300: 297: 295: 292: 288: 285: 284: 282: 281: 278: 275: 274: 269: 264: 263: 255: 252: 250: 247: 243: 240: 239: 238: 235: 233: 230: 228: 227:Compatibility 225: 221: 218: 216: 215:Finite strain 213: 212: 211: 208: 206: 203: 201: 198: 196: 193: 189: 186: 185: 184: 181: 179: 176: 175: 171: 166: 165: 154: 151: 150: 149: 148: 144: 143: 138: 135: 133: 130: 128: 125: 124: 123: 122: 119:Conservations 118: 117: 109: 108: 104: 85: 82: 77: 74: 68: 65: 62: 59: 52: 51: 48: 45: 44: 40: 39: 32: 26: 22: 6715:Smart fluids 6608:Pascal's law 6475: 6440:Frictionless 6289:Large strain 6277:Small strain 6080: 6065: 6052: 6036: 6032:Bockrath, G. 6024: 6023:Lawn, B.R., 6015: 6003: 5996: 5989: 5956: 5950: 5942: 5937: 5929: 5912: 5900:. Retrieved 5860: 5856: 5850: 5818: 5814: 5808: 5798:, retrieved 5768: 5764: 5751: 5740:, retrieved 5702: 5698: 5667:. Retrieved 5658: 5649: 5637:. Retrieved 5628: 5619: 5610: 5590:. Retrieved 5562: 5558: 5534: 5529: 5521: 5505: 5468: 5464: 5455: 5444:. Retrieved 5419: 5415: 5405: 5394:. Retrieved 5377: 5373: 5363: 5344: 5316: 5310: 5272:Peridynamics 5204:atomic scale 5201: 5093: 4991: 4982: 4969: 4968: 4835: 4585: 4555: 4552: 4481:plane stress 4376: 4369: 4367: 4153: 3983: 3953: 3937: 3933: 3928: 3913: 3909: 3905: 3883: 3871: 3844: 3836: 3825: 3804: 3610: 3531: 3523: 3510: 3503: 3497: 3494: 3478: 3470: 3462: 3460: 3438:plane strain 3365:plane stress 3282:mode I crack 3279: 3274: 3270: 3266: 3262: 3260: 3123: 3121: 3117: 2962: 2907: 2854: 2661: 2592:is the mode 2564: 2427: 2424: 2370: 2184: 2041: 1868: 1786: 1736: 1688: 1677: 1653: 1640: 1586: 1580: 1579: 1557: 1507: 1440: 1435: 1393:plane strain 1326: 1251: 1133: 1050:Compute the 1021: 1010: 916: 912: 895: 889: 831: 819: 768: 755: 753: 747: 742:shear stress 737: 727: 693: 689: 682:plastic zone 681: 678: 661: 660: 508:Smart fluids 453:Graham's law 359: 352: 337: 323:Pascal's law 319: 302: 290: 253: 145:Inequalities 6730:Ferrofluids 6647:Boyle's law 6333:Hooke's law 6272:Deformation 6249:Definitions 6002:Green, D., 5688:Rice, J. R. 5669:20 November 5639:20 November 5565:: 134–143. 4959:micrometers 3826:Schenectady 3814:Limitations 2070:following: 1665:dissipation 1645:G. R. Irwin 1272:, becomes: 1066:free energy 527:Ferrofluids 428:Boyle's law 200:Hooke's law 178:Deformation 6848:Categories 6785:Gay-Lussac 6752:Scientists 6642:Atmosphere 6507:Structures 6481:J-integral 6445:Frictional 6406:Plasticity 6343:Orthotropy 6323:Elasticity 6226:Archimedes 6221:Poiseuille 6175:Vibrations 6144:Topics in 5800:2022-06-08 5771:: 55–129, 5742:2008-05-31 5592:2017-11-01 5446:2021-12-18 5396:2021-12-18 5303:References 5242:Earthquake 4560:Barenblatt 3971:J-integral 3950:J-integral 3944:J-integral 816:Motivation 771:similitude 760:J-integral 580:Gay-Lussac 543:Scientists 443:Fick's law 423:Atmosphere 242:frictional 195:Plasticity 183:Elasticity 6760:Bernoulli 6742:Rheometer 6737:Rheometry 6679:Acoustics 6591:Newtonian 6586:Viscosity 6216:Bernoulli 6170:Acoustics 6153:Divisions 5997:Fail Safe 5843:136484892 5715:CiteSeerX 5436:115306909 5182:λ 5162:δ 5122:τ 5102:σ 5078:δ 5059:λ 5019:τ 4999:σ 4791:σ 4787:π 4732:σ 4710:σ 4684:π 4652:σ 4595:σ 4570:in 1968. 4517:ν 4513:− 4496:∗ 4459:∗ 4416:∗ 4343:ε 4313:σ 4290:Γ 4165:Γ 4130:ε 4113:σ 4098:ε 4088:∫ 4055:∂ 4040:∂ 4024:− 4006:Γ 4002:∫ 3958:(then at 3783:σ 3729:σ 3702:σ 3648:σ 3582:σ 3578:π 3391:ν 3387:− 3228:∂ 3213:∂ 3197:− 3173:∂ 3158:∂ 3076:π 3066:⁡ 2942:π 2937:σ 2680:≥ 2647:ν 2525:ν 2521:− 2404:π 2399:σ 2247:θ 2194:σ 2167:θ 2132:π 2082:σ 1929:≈ 1886:γ 1880:≈ 1845:π 1799:σ 1745:γ 1709:γ 1608:σ 1472:σ 1468:π 1413:ν 1409:− 1335:σ 1296:σ 1292:π 1216:γ 1162:γ 1113:π 1101:γ 993:≈ 977:σ 947:σ 789:Δ 666:mechanics 620:Truesdell 550:Bernoulli 499:Rheometer 494:Rheometry 334:Newtonian 328:Viscosity 78:φ 66:− 6702:Rheology 6613:Pressure 6581:Buoyancy 6365:Hugoniot 6013:(1962). 5902:13 April 5791:archived 5733:archived 5690:(1968), 5663:Archived 5633:Archived 5583:Archived 5579:51902898 5440:Archived 5390:Archived 5218:See also 4974:concrete 3490:mode III 2729:becomes 2215:are the 1973:polymers 748:Mode III 721:G. Irwin 674:fracture 478:Rheology 383:Adhesion 363:Pressure 349:Buoyancy 294:Dynamics 132:Momentum 21:Fracture 6775:Charles 6618:Liquids 6514:Bending 6471:Fatigue 5865:Bibcode 5823:Bibcode 5707:Bibcode 5473:Bibcode 5248:Fatigue 5031:/ √(1+{ 4382:to it: 3967:plastic 3938:R-curve 3931:Irwin's 3919:R-curve 3527:notches 3486:mode II 3465:is the 3026:, by: 1971:. For 1656:plastic 1647:at the 1593:ductile 1589:brittle 1387:is the 1327:where 1013:elastic 823:failure 779:fatigue 762:or the 738:Mode II 686:elastic 565:Charles 373:Liquids 287:Statics 232:Bending 6820:Awards 6810:Stokes 6805:Navier 6800:Newton 6795:Pascal 6770:Cauchy 6669:Plasma 6549:Fluids 6328:linear 6316:Solids 6255:Stress 6231:Pascal 6072:  6044:  5841:  5783:  5717:  5577:  5434:  5351:  5323:  5224:AFGROW 5094:where 4564:Willis 4446:where 4154:where 3477:, and 3461:where 3261:where 2963:where 2565:where 2185:where 2148:  1830:  1737:where 1669:energy 1225:  1191:  1134:where 728:Mode I 615:Stokes 610:Pascal 600:Navier 595:Newton 585:Graham 560:Cauchy 463:Plasma 358:  356:Mixing 351:  336:  318:  301:  289:  277:Fluids 210:Strain 205:Stress 188:linear 137:Energy 6790:Hooke 6780:Euler 6765:Boyle 6635:Gases 6392:Creep 6304:Solid 5897:(PDF) 5839:S2CID 5794:(PDF) 5761:(PDF) 5736:(PDF) 5695:(PDF) 5586:(PDF) 5575:S2CID 5555:(PDF) 5432:S2CID 4302:, and 3824:S.S. 3808:graph 1597:steel 904:glass 590:Hooke 570:Euler 555:Boyle 413:Gases 6306:and 6195:Laws 6070:ISBN 6042:ISBN 5904:2013 5781:ISBN 5671:2016 5641:2016 5349:ISBN 5321:ISBN 5090:}), 4908:> 4875:< 4656:fail 4568:Rice 4483:and 4479:for 4334:and 4076:with 3896:CTOD 3822:The 2425:and 1945:1000 1673:heat 1660:load 1208:and 694:LEFM 605:Noll 575:Fick 127:Mass 112:Laws 6370:JWL 5962:doi 5873:doi 5831:doi 5773:doi 5725:doi 5567:doi 5563:149 5481:doi 5469:221 5424:doi 5420:108 5382:doi 3774:to 3473:is 3063:sec 2826:or 2348:MPa 2009:J/m 1952:J/m 1899:J/m 1671:as 1667:of 1508:If 1230:J/m 1195:GPa 6850:: 6064:, 5960:. 5921:^ 5885:^ 5871:, 5861:15 5859:, 5837:, 5829:, 5817:, 5789:, 5779:, 5767:, 5763:, 5731:, 5723:, 5713:, 5703:35 5701:, 5697:, 5679:^ 5657:. 5627:. 5601:^ 5581:. 5573:. 5561:. 5557:. 5542:^ 5513:^ 5495:^ 5479:, 5467:, 5438:. 5430:. 5418:. 5414:. 5388:. 5378:71 5376:. 5372:. 5335:^ 5011:= 4380:Ic 4373:Ic 3979:Ic 3975:Ic 3514:Ic 3507:Ic 3469:, 3142::= 2886:, 2852:: 2368:. 2219:, 2028:. 1563:. 1528:≥ 1438:. 1188:62 766:. 676:. 6137:e 6130:t 6123:v 6048:. 5985:. 5968:. 5964:: 5906:. 5880:. 5875:: 5867:: 5833:: 5825:: 5819:8 5775:: 5769:7 5746:. 5727:: 5709:: 5673:. 5643:. 5595:. 5569:: 5490:. 5483:: 5475:: 5449:. 5426:: 5399:. 5384:: 5357:. 5329:. 5142:d 5051:/ 5039:d 4943:t 4939:a 4916:t 4912:a 4905:a 4883:t 4879:a 4872:a 4850:t 4846:a 4822:a 4800:2 4795:Y 4783:/ 4777:2 4772:c 4769:I 4765:K 4761:= 4758:a 4736:Y 4728:= 4723:l 4720:i 4717:a 4714:f 4687:a 4678:/ 4672:c 4669:I 4665:K 4661:= 4629:c 4626:I 4622:K 4599:Y 4521:2 4510:1 4506:E 4501:= 4492:E 4467:E 4464:= 4455:E 4429:c 4426:I 4422:J 4412:E 4406:= 4401:c 4398:I 4394:K 4377:J 4370:K 4350:j 4347:i 4320:j 4317:i 4270:s 4267:d 4243:i 4239:u 4214:i 4210:T 4187:w 4137:j 4134:i 4126:d 4120:j 4117:i 4105:j 4102:i 4092:0 4084:= 4081:w 4071:) 4068:s 4065:d 4058:x 4048:i 4044:u 4032:i 4028:T 4021:y 4018:d 4014:w 4011:( 3998:= 3995:J 3787:Y 3760:C 3756:K 3733:Y 3706:Y 3679:c 3675:K 3652:Y 3625:C 3621:K 3591:2 3586:Y 3575:2 3569:2 3564:C 3560:K 3554:= 3549:p 3545:r 3511:K 3504:G 3482:I 3479:K 3471:ν 3463:E 3427:E 3413:2 3408:I 3404:K 3400:) 3395:2 3384:1 3381:( 3354:E 3340:2 3335:I 3331:K 3316:{ 3311:= 3306:I 3302:G 3298:= 3295:G 3275:u 3271:P 3267:a 3263:U 3244:u 3239:] 3231:a 3216:U 3202:[ 3194:= 3189:P 3184:] 3176:a 3161:U 3147:[ 3139:G 3088:) 3083:W 3079:a 3070:( 3058:= 3054:) 3049:W 3046:a 3041:( 3037:Y 3014:a 3011:2 2991:W 2971:Y 2945:a 2934:Y 2931:= 2926:I 2922:K 2894:Y 2868:I 2864:K 2840:I 2837:I 2834:I 2814:I 2811:I 2791:I 2767:I 2745:c 2742:I 2738:K 2715:c 2711:K 2688:c 2684:K 2675:I 2671:K 2625:c 2621:K 2600:I 2578:I 2574:K 2529:2 2518:1 2504:c 2500:G 2496:E 2466:c 2462:G 2458:E 2450:{ 2445:= 2440:c 2436:K 2407:a 2396:= 2391:I 2387:K 2354:m 2325:j 2322:i 2318:f 2297:K 2275:j 2272:i 2268:f 2227:r 2201:j 2198:i 2170:) 2164:( 2159:j 2156:i 2152:f 2144:) 2135:r 2129:2 2114:I 2110:K 2098:( 2094:= 2089:j 2086:i 2056:I 2052:K 2014:2 1987:G 1957:2 1942:= 1937:p 1933:G 1926:G 1904:2 1892:2 1889:= 1883:2 1877:G 1854:. 1833:G 1827:E 1815:= 1810:a 1803:f 1770:p 1766:G 1720:p 1716:G 1712:+ 1706:2 1703:= 1700:G 1641:γ 1627:C 1624:= 1619:a 1612:f 1541:c 1537:G 1516:G 1490:E 1486:a 1481:2 1476:f 1462:= 1457:c 1453:G 1422:) 1417:2 1406:1 1403:( 1375:E 1355:a 1309:E 1305:a 1300:2 1286:= 1283:G 1260:G 1235:2 1222:1 1219:= 1185:= 1182:E 1142:E 1098:E 1095:2 1083:= 1080:C 1034:C 996:C 988:a 981:f 951:f 926:a 918:( 874:a 792:K 707:K 692:( 650:e 643:t 636:v 360:· 353:· 343:) 338:· 332:( 320:· 303:· 291:· 86:x 83:d 75:d 69:D 63:= 60:J 27:.

Index

Fracture
Fracture (disambiguation)

Continuum mechanics
Fick's laws of diffusion
Mass
Momentum
Energy
Clausius–Duhem (entropy)
Solid mechanics
Deformation
Elasticity
linear
Plasticity
Hooke's law
Stress
Strain
Finite strain
Infinitesimal strain
Compatibility
Bending
Contact mechanics
frictional
Material failure theory
Fracture mechanics
Fluid mechanics
Fluids
Statics
Dynamics
Archimedes' principle

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.