Knowledge

Material failure theory

Source đź“ť

2317: 25: 2773:– This theory assumes that the stored energy associated with elastic deformation at the point of yield is independent of the specific stress tensor. Thus yield occurs when the strain energy per unit volume is greater than the strain energy at the elastic limit in simple tension. For a 3-dimensional stress state this is given by: 2949: 2377:
A yield criterion often expressed as yield surface, or yield locus, is a hypothesis concerning the limit of elasticity under any combination of stresses. There are two interpretations of yield criterion: one is purely mathematical in taking a statistical approach while other models attempt to provide
3003:
When a metal is subjected to large plastic deformations the grain sizes and orientations change in the direction of deformation. As a result, the plastic yield behavior of the material shows directional dependency. Under such circumstances, the isotropic yield criteria such as the von Mises yield
972:
Microscopic material failure is defined in terms of crack initiation and propagation. Such methodologies are useful for gaining insight in the cracking of specimens and simple structures under well defined global load distributions. Microscopic failure considers the initiation and propagation of a
1915:. Linear elastic fracture mechanics predicts that a crack will extend when the stress intensity factor at the crack tip is greater than the fracture toughness of the material. Therefore, the critical applied stress can also be determined once the stress intensity factor at a crack tip is known. 1030:
Five general levels are considered, at which the meaning of deformation and failure is interpreted differently: the structural element scale, the macroscopic scale where macroscopic stress and strain are defined, the mesoscale which is represented by a typical void, the microscale and the atomic
927:
which separate "failed" states from "unfailed" states. A precise physical definition of a "failed" state is not easily quantified and several working definitions are in use in the engineering community. Quite often, phenomenological failure criteria of the same form are used to predict brittle
2488:(1850). Yield occurs when the largest principal stress exceeds the uniaxial tensile yield strength. Although this criterion allows for a quick and easy comparison with experimental data it is rarely suitable for design purposes. This theory gives good predictions for brittle materials. 3094:
of a ductile material. Several models for predicting the ultimate strength have been used by the engineering community with varying levels of success. For metals, such failure criteria are usually expressed in terms of a combination of porosity and strain to failure or in terms of a
952:. In structural problems, where the structural response may be beyond the initiation of nonlinear material behaviour, material failure is of profound importance for the determination of the integrity of the structure. On the other hand, due to the lack of globally accepted 2778: 1348:
Numerous other phenomenological failure criteria can be found in the engineering literature. The degree of success of these criteria in predicting failure has been limited. Some popular failure criteria for various type of materials are:
1340: 2625: 2766: 1260: 985:, microvoids nucleate and grow until a local plastic neck or fracture of the intervoid matrix occurs, which causes the coalescence of neighbouring voids. Such a model, proposed by Gurson and extended by Tvergaard and 3004:
criterion are unable to predict the yield behavior accurately. Several anisotropic yield criteria have been developed to deal with such situations. Some of the more popular anisotropic yield criteria are:
2472:
The following represent the most common yield criterion as applied to an isotropic material (uniform properties in all directions). Other equations have been proposed or are used in specialist situations.
2278: 1550: 2036: 1739: 973:
crack. Failure criteria in this case are related to microscopic fracture. Some of the most popular failure models in this area are the micromechanical failure models, which combine the advantages of
1009:
Macroscopic material failure is defined in terms of load carrying capacity or energy storage capacity, equivalently. Li presents a classification of macroscopic failure criteria in four categories:
2530: 182: 1031:
scale. The material behavior at one level is considered as a collective of its behavior at a sub-level. An efficient deformation and failure model should be consistent at every level.
1666: 3048: 3044: 920:, loading rate) most materials can fail in a brittle or ductile manner or both. However, for most practical situations, a material may be classified as either brittle or ductile. 997:. Both models form a modification of the von Mises yield potential by introducing a scalar damage quantity, which represents the void volume fraction of cavities, the porosity 2944:{\displaystyle \sigma _{1}^{2}+\sigma _{2}^{2}+\sigma _{3}^{2}-2\nu \left(\sigma _{1}\sigma _{2}+\sigma _{2}\sigma _{3}+\sigma _{1}\sigma _{3}\right)\leq \sigma _{y}^{2}.\,\!} 2467: 2438: 2409: 1898: 2980:) strain energy. It is proposed that yield occurs when the distortion component exceeds that at the yield point for a simple tensile test. This theory is also known as the 1860: 2174: 1821: 2691: 1769: 1190: 1163: 1136: 1109: 2663: 1593: 1485: 923:
In mathematical terms, failure theory is expressed in the form of various failure criteria which are valid for specific materials. Failure criteria are functions in
1278: 1937:
approach has proved quite useful for such situations. The strain energy release rate for a mode I crack which runs through the thickness of a plate is defined as
3043:. Models for the evolution of the yield surface with increasing strain, temperature, and strain rate are used in conjunction with the above failure criteria for 3266: 2142: 1636: 944:
is the loss of load carrying capacity of a material unit. This definition introduces to the fact that material failure can be examined in different scales, from
2301: 2119: 2099: 2079: 2059: 1789: 1613: 1573: 2546: 3096: 2541:
reaches the strain corresponding to the yield point during a simple tensile test. In terms of the principal stresses this is determined by the equation:
3500: 860: 2303:
is the Young's modulus. If an initial crack size is known, then a critical stress can be determined using the strain energy release rate criterion.
1111:
in a material element exceeds the uniaxial tensile strength of the material. Alternatively, the material will fail if the minimum principal stress
2698: 1198: 731: 3078: 3259: 2144:
is the crack length for plane cracks. The crack is expected to propagate when the strain energy release rate exceeds a critical value
89: 1272:
has a similar form except that the principal strains are compared with experimentally determined uniaxial strains at failure, i.e.,
61: 2338: 2197: 42: 1493: 3252: 3084: 853: 68: 1943: 1686: 964:
Material failure can be distinguished in two broader categories depending on the scale in which the material is examined:
75: 3556: 3158: 3072: 2382:
qualities they can be described on the basis of three principal directions, in the case of stress these are denoted by
1423: 3066: 2493: 2364: 1138:
is less than the uniaxial compressive strength of the material. If the uniaxial tensile strength of the material is
846: 724: 108: 2346: 57: 956:
criteria, the determination of the structure's damage, due to material failure, is still under intensive research.
1791:
is a dimensionless factor that depends on the geometry, material properties, and loading condition. The quantity
3527: 138: 4009: 3940: 3628: 2342: 1388: 697: 46: 3989: 3373: 3060: 2991:
corresponding to these criteria have a range of forms. However, most isotropic yield criteria correspond to
1437: 1395: 1345:
The maximum principal stress and strain criteria continue to be widely used in spite of severe shortcomings.
398: 235: 1641: 1459:
is to estimate the amount of energy needed to grow a preexisting crack in a brittle material. The earliest
3575: 3483: 1430: 717: 438: 324: 4014: 3984: 3696: 3407: 3341: 809: 393: 302: 185: 4004: 3163: 2538: 1934: 924: 799: 3212:
Griffiths, A.A. 1920. The phenomena of rupture and flow in solids. Phil.Trans.Roy.Soc.Lond. A221, 163.
1929:
The linear elastic fracture mechanics method is difficult to apply for anisotropic materials (such as
3424: 2981: 2957: 2443: 2414: 2385: 1416: 1367: 814: 309: 82: 1865: 3994: 3855: 3850: 3733: 3701: 3616: 3356: 3346: 2327: 1830: 604: 599: 388: 381: 214: 2147: 1794: 3915: 3512: 3402: 3118: 3040: 3018: 2668: 2331: 1912: 1824: 1747: 1402: 1168: 1141: 1114: 1087: 819: 667: 662: 35: 2964:. – This theory proposes that the total strain energy can be separated into two components: the 3495: 3368: 2637: 1360: 789: 219: 1335:{\displaystyle \varepsilon _{c}<\varepsilon _{3}<\varepsilon _{1}<\varepsilon _{t}\,} 3900: 3478: 3224: 3143: 2647: 1578: 1470: 642: 260: 3963: 3637: 3541: 3536: 3507: 3473: 3453: 3438: 3419: 3390: 3331: 3133: 1354: 1074: 480: 297: 277: 265: 209: 3211: 8: 3935: 3787: 3726: 3706: 3522: 3468: 3351: 3310: 3276: 3123: 3013: 3008: 2620:{\displaystyle \sigma _{1}-\nu \left(\sigma _{2}+\sigma _{3}\right)\leq \sigma _{y}.\,\!} 1924: 1409: 1374: 1265:
Note that the convention that tension is positive has been used in the above expression.
1058: 982: 974: 909: 834: 804: 769: 682: 530: 423: 129: 2124: 1618: 3999: 3606: 3601: 3385: 3138: 3108: 2977: 2286: 2184: 2104: 2084: 2064: 2044: 1930: 1911:
The state of stress around cracks of various shapes can be expressed in terms of their
1905: 1901: 1774: 1673: 1598: 1558: 1464: 1460: 1456: 1450: 1070: 1047: 978: 917: 794: 774: 702: 336: 292: 287: 2378:
a justification based on established physical principles. Since stress and strain are
3654: 3591: 3570: 3565: 3490: 3458: 3182:
Besson J., Steglich D., Brocks W. (2003), Modelling of plain strain ductile rupture,
2101:
is the displacement at the point of application of the load due to crack growth, and
937: 877: 764: 319: 270: 1405:, an empirical failure criterion that is used for orthotropic materials such as wood 3890: 3799: 3792: 3782: 3758: 3623: 3153: 3148: 3091: 1082: 990: 989:, is known as GTN. Another approach, proposed by Rousselier, is based on continuum 885: 657: 632: 545: 520: 515: 470: 3905: 3840: 3817: 3753: 3738: 3721: 3671: 3659: 3546: 3517: 3434: 3412: 3395: 3361: 3295: 3290: 3052: 2992: 2485: 893: 881: 647: 571: 535: 485: 416: 405: 350: 252: 3244: 16:
Science of predicting if, when, and how a given material will fail under loading
3910: 3777: 3691: 3649: 3463: 3090:
There is another important aspect to ductile materials - the prediction of the
1381: 994: 986: 652: 510: 475: 376: 282: 1463:
approach for unstable crack growth is Griffiths' theory. When applied to the
3978: 3958: 3925: 3822: 3686: 3551: 3128: 3036: 3030: 2988: 2761:{\displaystyle \tau ={\frac {\sigma _{1}-\sigma _{3}}{2}}\leq \tau _{y}.\,\!} 1069:
The failure criteria that were developed for brittle solids were the maximum
824: 692: 525: 3039:
of a ductile material usually changes as the material experiences increased
3930: 3920: 3895: 2641: 2631: 2188: 1677: 677: 672: 637: 369: 1255:{\displaystyle \sigma _{c}<\sigma _{3}<\sigma _{1}<\sigma _{t}\,} 3845: 2969: 1467:
opening of a crack, Griffiths' theory predicts that the critical stress (
1039:
Failure of brittle materials can be determined using several approaches:
1017: 949: 945: 913: 687: 590: 1933:) or for situations where the loading or the geometry are complex. The 3860: 3772: 3611: 3305: 609: 505: 3882: 3872: 3867: 3809: 3716: 3300: 759: 581: 576: 410: 2316: 24: 3832: 3743: 3711: 3336: 3113: 953: 901: 889: 784: 754: 560: 465: 445: 431: 3644: 3584: 905: 897: 779: 314: 3748: 2379: 455: 3950: 3679: 3446: 2273:{\displaystyle G_{\rm {Ic}}={\cfrac {1}{E}}~K_{\rm {Ic}}^{2}} 359: 2306: 1545:{\displaystyle \sigma ={\sqrt {\cfrac {2E\gamma }{\pi a}}}} 829: 3195:
Li, Q.M. (2001), Strain energy density failure criterion,
3765: 1192:, then the safe region for the material is assumed to be 495: 2537:– by St.Venant. Yield occurs when the maximum principal 2031:{\displaystyle G_{I}={\cfrac {P}{2t}}~{\cfrac {du}{da}}} 1734:{\displaystyle K_{\rm {Ic}}=Y\sigma _{c}{\sqrt {\pi a}}} 2644:. This assumes that yield occurs when the shear stress 2234: 2222: 2012: 1997: 1975: 1963: 1525: 1507: 896:. The failure of a material is usually classified into 2237: 2225: 2015: 2000: 1978: 1966: 1827:
and is determined experimentally. Similar quantities
1595:
is the surface energy per unit area of the crack, and
1528: 1510: 2781: 2701: 2671: 2650: 2549: 2496: 2446: 2417: 2388: 2289: 2200: 2150: 2127: 2107: 2087: 2067: 2047: 1946: 1868: 1833: 1797: 1777: 1750: 1689: 1644: 1621: 1601: 1581: 1561: 1496: 1473: 1281: 1201: 1171: 1144: 1117: 1090: 141: 1638:
is the crack length for plane cracks. The quantity
1444: 1064: 1034: 981:. Such models are based on the concept that during 49:. Unsourced material may be challenged and removed. 2943: 2760: 2685: 2657: 2619: 2524: 2461: 2432: 2403: 2295: 2272: 2168: 2136: 2113: 2093: 2073: 2053: 2030: 1892: 1854: 1815: 1783: 1763: 1733: 1660: 1630: 1607: 1587: 1567: 1544: 1479: 1334: 1254: 1184: 1157: 1130: 1103: 176: 3274: 2940: 2757: 2682: 2654: 2616: 2521: 2458: 2429: 2400: 1668:is postulated as a material parameter called the 3976: 2187:and the critical strain energy release rate for 1771:is a critical value of the far field stress and 1370:or maximum elastic distortional energy criterion 2525:{\displaystyle \sigma _{1}\leq \sigma _{y}\,\!} 1081:assumes that a material fails when the maximum 3197:International Journal of Solids and Structures 1426:for high-rate deformations of isotropic solids 3260: 2998: 854: 725: 1487:) needed to propagate the crack is given by 959: 2476: 2345:. Unsourced material may be challenged and 177:{\displaystyle J=-D{\frac {d\varphi }{dx}}} 3267: 3253: 861: 847: 732: 718: 2939: 2756: 2615: 2520: 2457: 2428: 2399: 2365:Learn how and when to remove this message 2307:Ductile material failure (yield) criteria 1331: 1251: 1165:and the uniaxial compressive strength is 109:Learn how and when to remove this message 3222: 1575:is the Young's modulus of the material, 912:). Depending on the conditions (such as 2121:is the crack length for edge cracks or 1918: 1615:is the crack length for edge cracks or 3977: 1661:{\displaystyle \sigma {\sqrt {\pi a}}} 1004: 967: 3248: 2343:adding citations to reliable sources 2310: 1353:criteria based on invariants of the 47:adding citations to reliable sources 18: 3184:International Journal of Plasticity 2178:critical strain energy release rate 931: 13: 3159:Size effect on structural strength 2259: 2256: 2210: 2207: 2160: 2157: 1884: 1881: 1878: 1875: 1846: 1843: 1840: 1807: 1804: 1699: 1696: 1052:Elastic-plastic fracture mechanics 1016:Energy type failure (S-criterion, 14: 4026: 3079:Mechanical threshold stress model 2665:exceeds the shear yield strength 1457:linear elastic fracture mechanics 1445:Linear elastic fracture mechanics 1065:Phenomenological failure criteria 1043:Phenomenological failure criteria 1035:Brittle material failure criteria 876:is an interdisciplinary field of 3024: 3014:Generalized Hill yield criterion 3009:Hill's quadratic yield criterion 2954:Maximum distortion energy theory 2315: 1389:Bresler-Pister failure criterion 1382:Drucker-Prager failure criterion 23: 2535:Maximum principal strain theory 2482:Maximum principal stress theory 2462:{\displaystyle \sigma _{3}\,\!} 2433:{\displaystyle \sigma _{2}\,\!} 2404:{\displaystyle \sigma _{1}\,\!} 2081:is the thickness of the plate, 1396:Willam-Warnke failure criterion 34:needs additional citations for 3216: 3205: 3189: 3176: 2962:octahedral shear stress theory 1893:{\displaystyle K_{\rm {IIIc}}} 1424:Johnson–Holmquist damage model 1377:for cohesive-frictional solids 1375:Mohr-Coulomb failure criterion 1361:Tresca or maximum shear stress 1: 3169: 2640:, after the French scientist 1855:{\displaystyle K_{\rm {IIc}}} 1384:for pressure-dependent solids 2169:{\displaystyle G_{\rm {Ic}}} 1816:{\displaystyle K_{\rm {Ic}}} 1431:Hoek-Brown failure criterion 928:failure and ductile yields. 7: 3225:"What is von Mises Stress?" 3102: 3085:Preston-Tonks-Wallace model 2686:{\displaystyle \tau _{y}\!} 1764:{\displaystyle \sigma _{c}} 1185:{\displaystyle \sigma _{c}} 1158:{\displaystyle \sigma _{t}} 1131:{\displaystyle \sigma _{3}} 1104:{\displaystyle \sigma _{1}} 810:Metal-induced embrittlement 10: 4031: 3164:Concrete fracture analysis 3028: 2999:Anisotropic yield criteria 2771:Total strain energy theory 1935:strain energy release rate 1922: 1448: 1419:for anisotropic composites 800:Liquid metal embrittlement 3949: 3881: 3831: 3808: 3670: 3433: 3319: 3283: 3092:ultimate failure strength 3055:. Some such models are: 2982:von Mises yield criterion 2958:von Mises yield criterion 1417:Tsai-Wu failure criterion 960:Types of material failure 892:fail under the action of 815:Stress corrosion cracking 58:"Material failure theory" 3617:Compact tension specimen 3337:Conservation of momentum 2972:) strain energy and the 2477:Isotropic yield criteria 1913:stress intensity factors 1270:maximum strain criterion 1079:maximum stress criterion 1013:Stress or strain failure 747:Mechanical failure modes 236:Clausius–Duhem (entropy) 186:Fick's laws of diffusion 3697:Navier–Stokes equations 3597:Material failure theory 3585:Material failure theory 3223:sdcadmin (2022-05-05). 3119:Stress intensity factor 3073:Zerilli-Armstrong model 3019:Hosford yield criterion 2658:{\displaystyle \tau \!} 1825:stress intensity factor 1588:{\displaystyle \gamma } 1480:{\displaystyle \sigma } 1438:Cam-Clay failure theory 874:Material failure theory 820:Sulfide stress cracking 394:Navier–Stokes equations 332:Material failure theory 3369:Conservation of energy 3067:Steinberg-Guinan model 2960:) also referred to as 2945: 2762: 2687: 2659: 2638:Tresca yield criterion 2621: 2526: 2463: 2434: 2405: 2297: 2274: 2170: 2138: 2115: 2095: 2075: 2055: 2032: 1900:can be determined for 1894: 1856: 1817: 1785: 1765: 1735: 1662: 1632: 1609: 1589: 1569: 1546: 1481: 1455:The approach taken in 1412:for anisotropic solids 1336: 1256: 1186: 1159: 1132: 1105: 925:stress or strain space 886:predict the conditions 790:Hydrogen embrittlement 178: 4010:Materials degradation 3734:Archimedes' principle 3702:Bernoulli's principle 3144:Strength of materials 2946: 2763: 2688: 2660: 2622: 2527: 2464: 2435: 2406: 2298: 2275: 2171: 2139: 2116: 2096: 2076: 2061:is the applied load, 2056: 2033: 1895: 1857: 1818: 1786: 1766: 1736: 1663: 1633: 1610: 1590: 1570: 1547: 1482: 1337: 1257: 1187: 1160: 1133: 1106: 1059:Cohesive zone methods 389:Bernoulli's principle 382:Archimedes' principle 179: 3990:Plasticity (physics) 3964:William Prager Medal 3542:Rock mass plasticity 3439:Structural mechanics 3332:Conservation of mass 3320:Laws and Definitions 3134:Plasticity (physics) 2779: 2699: 2669: 2648: 2636:– Also known as the 2547: 2494: 2444: 2415: 2386: 2339:improve this section 2287: 2198: 2148: 2125: 2105: 2085: 2065: 2045: 1944: 1919:Energy-based methods 1908:loading conditions. 1866: 1831: 1795: 1775: 1748: 1687: 1642: 1619: 1599: 1579: 1559: 1494: 1471: 1355:Cauchy stress tensor 1279: 1199: 1169: 1142: 1115: 1088: 1055:Energy-based methods 481:Cohesion (chemistry) 303:Infinitesimal strain 139: 43:improve this article 3707:Poiseuille equation 3484:Membrane elasticity 3469:Transverse isotropy 3311:Rigid body dynamics 3277:continuum mechanics 3124:Yield (engineering) 3049:kinematic hardening 3045:isotropic hardening 2935: 2832: 2814: 2796: 2269: 2236: 2224: 2014: 1999: 1977: 1965: 1925:Energy release rate 1527: 1509: 1410:Hill yield criteria 1403:Hankinson criterion 1005:Macroscopic failure 983:plastic deformation 975:continuum mechanics 968:Microscopic failure 805:Mechanical overload 399:Poiseuille equation 130:Continuum mechanics 124:Part of a series on 4015:Fracture mechanics 3985:Mechanical failure 3856:Electrorheological 3851:Magnetorheological 3607:Fracture mechanics 3374:Entropy inequality 3139:Structural failure 3109:Fracture mechanics 3061:Johnson-Cook model 2941: 2921: 2818: 2800: 2782: 2758: 2683: 2655: 2617: 2522: 2459: 2430: 2401: 2293: 2270: 2250: 2243: 2231: 2185:fracture toughness 2166: 2137:{\displaystyle 2a} 2134: 2111: 2091: 2071: 2051: 2028: 2024: 2009: 1987: 1972: 1890: 1852: 1823:is related to the 1813: 1781: 1761: 1731: 1674:fracture toughness 1670:fracture toughness 1658: 1631:{\displaystyle 2a} 1628: 1605: 1585: 1565: 1542: 1537: 1522: 1477: 1461:fracture mechanics 1451:Fracture mechanics 1332: 1252: 1182: 1155: 1128: 1101: 1048:fracture mechanics 979:fracture mechanics 888:under which solid 884:which attempts to 605:Magnetorheological 600:Electrorheological 337:Fracture mechanics 174: 4005:Materials science 3972: 3971: 3655:Bending of plates 3629:Johnson-Holmquist 3592:Drucker stability 3566:Contact mechanics 3513:Cauchy elasticity 3491:Equation of state 2738: 2375: 2374: 2367: 2296:{\displaystyle E} 2249: 2245: 2235: 2223: 2114:{\displaystyle a} 2094:{\displaystyle u} 2074:{\displaystyle t} 2054:{\displaystyle P} 2026: 2013: 1998: 1993: 1989: 1976: 1964: 1784:{\displaystyle Y} 1729: 1656: 1608:{\displaystyle a} 1568:{\displaystyle E} 1540: 1539: 1526: 1508: 1363:failure criterion 1026:Empirical failure 938:materials science 878:materials science 871: 870: 765:Corrosion fatigue 742: 741: 617: 616: 551: 550: 320:Contact mechanics 243: 242: 172: 119: 118: 111: 93: 4022: 3793:Combined gas law 3788:Gay-Lussac's law 3759:Capillary action 3624:Damage mechanics 3269: 3262: 3255: 3246: 3245: 3239: 3238: 3236: 3235: 3220: 3214: 3209: 3203: 3202:, pp. 6997–7013. 3193: 3187: 3180: 3154:Damage mechanics 3149:Ultimate failure 2995:yield surfaces. 2950: 2948: 2947: 2942: 2934: 2929: 2917: 2913: 2912: 2911: 2902: 2901: 2889: 2888: 2879: 2878: 2866: 2865: 2856: 2855: 2831: 2826: 2813: 2808: 2795: 2790: 2767: 2765: 2764: 2759: 2752: 2751: 2739: 2734: 2733: 2732: 2720: 2719: 2709: 2692: 2690: 2689: 2684: 2681: 2680: 2664: 2662: 2661: 2656: 2626: 2624: 2623: 2618: 2611: 2610: 2598: 2594: 2593: 2592: 2580: 2579: 2559: 2558: 2531: 2529: 2528: 2523: 2519: 2518: 2506: 2505: 2468: 2466: 2465: 2460: 2456: 2455: 2439: 2437: 2436: 2431: 2427: 2426: 2410: 2408: 2407: 2402: 2398: 2397: 2370: 2363: 2359: 2356: 2350: 2319: 2311: 2302: 2300: 2299: 2294: 2279: 2277: 2276: 2271: 2268: 2263: 2262: 2247: 2246: 2244: 2242: 2232: 2230: 2220: 2215: 2214: 2213: 2175: 2173: 2172: 2167: 2165: 2164: 2163: 2143: 2141: 2140: 2135: 2120: 2118: 2117: 2112: 2100: 2098: 2097: 2092: 2080: 2078: 2077: 2072: 2060: 2058: 2057: 2052: 2037: 2035: 2034: 2029: 2027: 2025: 2023: 2010: 2008: 1995: 1991: 1990: 1988: 1986: 1973: 1971: 1961: 1956: 1955: 1899: 1897: 1896: 1891: 1889: 1888: 1887: 1861: 1859: 1858: 1853: 1851: 1850: 1849: 1822: 1820: 1819: 1814: 1812: 1811: 1810: 1790: 1788: 1787: 1782: 1770: 1768: 1767: 1762: 1760: 1759: 1740: 1738: 1737: 1732: 1730: 1722: 1720: 1719: 1704: 1703: 1702: 1667: 1665: 1664: 1659: 1657: 1649: 1637: 1635: 1634: 1629: 1614: 1612: 1611: 1606: 1594: 1592: 1591: 1586: 1574: 1572: 1571: 1566: 1551: 1549: 1548: 1543: 1541: 1538: 1536: 1523: 1521: 1505: 1504: 1486: 1484: 1483: 1478: 1341: 1339: 1338: 1333: 1330: 1329: 1317: 1316: 1304: 1303: 1291: 1290: 1261: 1259: 1258: 1253: 1250: 1249: 1237: 1236: 1224: 1223: 1211: 1210: 1191: 1189: 1188: 1183: 1181: 1180: 1164: 1162: 1161: 1156: 1154: 1153: 1137: 1135: 1134: 1129: 1127: 1126: 1110: 1108: 1107: 1102: 1100: 1099: 1083:principal stress 991:damage mechanics 942:material failure 932:Material failure 863: 856: 849: 744: 743: 734: 727: 720: 566: 565: 531:Gay-Lussac's law 521:Combined gas law 471:Capillary action 356: 355: 199: 198: 183: 181: 180: 175: 173: 171: 163: 155: 121: 120: 114: 107: 103: 100: 94: 92: 51: 27: 19: 4030: 4029: 4025: 4024: 4023: 4021: 4020: 4019: 3995:Solid mechanics 3975: 3974: 3973: 3968: 3945: 3877: 3841:Viscoelasticity 3827: 3818:Acoustic theory 3804: 3754:Surface tension 3672:Fluid mechanics 3666: 3660:Sandwich theory 3552:Yield criterion 3547:Viscoplasticity 3518:Viscoelasticity 3479:hyperelasticity 3429: 3413:Antiplane shear 3396:Stress measures 3315: 3296:Fluid mechanics 3291:Solid mechanics 3279: 3273: 3243: 3242: 3233: 3231: 3221: 3217: 3210: 3206: 3194: 3190: 3181: 3177: 3172: 3105: 3053:viscoplasticity 3033: 3027: 3001: 2976:(distortion or 2951: 2930: 2925: 2907: 2903: 2897: 2893: 2884: 2880: 2874: 2870: 2861: 2857: 2851: 2847: 2846: 2842: 2827: 2822: 2809: 2804: 2791: 2786: 2780: 2777: 2776: 2768: 2747: 2743: 2728: 2724: 2715: 2711: 2710: 2708: 2700: 2697: 2696: 2676: 2672: 2670: 2667: 2666: 2649: 2646: 2645: 2627: 2606: 2602: 2588: 2584: 2575: 2571: 2570: 2566: 2554: 2550: 2548: 2545: 2544: 2532: 2514: 2510: 2501: 2497: 2495: 2492: 2491: 2486:William Rankine 2479: 2451: 2447: 2445: 2442: 2441: 2422: 2418: 2416: 2413: 2412: 2393: 2389: 2387: 2384: 2383: 2371: 2360: 2354: 2351: 2336: 2320: 2309: 2288: 2285: 2284: 2264: 2255: 2254: 2238: 2233: 2226: 2221: 2219: 2206: 2205: 2201: 2199: 2196: 2195: 2191:are related by 2156: 2155: 2151: 2149: 2146: 2145: 2126: 2123: 2122: 2106: 2103: 2102: 2086: 2083: 2082: 2066: 2063: 2062: 2046: 2043: 2042: 2016: 2011: 2001: 1996: 1994: 1979: 1974: 1967: 1962: 1960: 1951: 1947: 1945: 1942: 1941: 1927: 1921: 1874: 1873: 1869: 1867: 1864: 1863: 1839: 1838: 1834: 1832: 1829: 1828: 1803: 1802: 1798: 1796: 1793: 1792: 1776: 1773: 1772: 1755: 1751: 1749: 1746: 1745: 1721: 1715: 1711: 1695: 1694: 1690: 1688: 1685: 1684: 1648: 1643: 1640: 1639: 1620: 1617: 1616: 1600: 1597: 1596: 1580: 1577: 1576: 1560: 1557: 1556: 1529: 1524: 1511: 1506: 1503: 1495: 1492: 1491: 1472: 1469: 1468: 1453: 1447: 1433:for rock masses 1325: 1321: 1312: 1308: 1299: 1295: 1286: 1282: 1280: 1277: 1276: 1245: 1241: 1232: 1228: 1219: 1215: 1206: 1202: 1200: 1197: 1196: 1176: 1172: 1170: 1167: 1166: 1149: 1145: 1143: 1140: 1139: 1122: 1118: 1116: 1113: 1112: 1095: 1091: 1089: 1086: 1085: 1077:criteria. The 1067: 1046:Linear elastic 1037: 1007: 970: 962: 934: 882:solid mechanics 867: 738: 709: 708: 707: 627: 619: 618: 572:Viscoelasticity 563: 553: 552: 540: 490: 486:Surface tension 450: 353: 351:Fluid mechanics 343: 342: 341: 255: 253:Solid mechanics 245: 244: 196: 188: 164: 156: 154: 140: 137: 136: 115: 104: 98: 95: 52: 50: 40: 28: 17: 12: 11: 5: 4028: 4018: 4017: 4012: 4007: 4002: 3997: 3992: 3987: 3970: 3969: 3967: 3966: 3961: 3955: 3953: 3947: 3946: 3944: 3943: 3938: 3933: 3928: 3923: 3918: 3913: 3908: 3903: 3898: 3893: 3887: 3885: 3879: 3878: 3876: 3875: 3870: 3865: 3864: 3863: 3858: 3853: 3843: 3837: 3835: 3829: 3828: 3826: 3825: 3820: 3814: 3812: 3806: 3805: 3803: 3802: 3796: 3795: 3790: 3785: 3780: 3775: 3769: 3768: 3762: 3761: 3756: 3751: 3746: 3741: 3736: 3731: 3730: 3729: 3724: 3714: 3709: 3704: 3699: 3694: 3692:Fluid dynamics 3689: 3683: 3682: 3676: 3674: 3668: 3667: 3665: 3664: 3663: 3662: 3657: 3652: 3650:Bending moment 3641: 3640: 3634: 3633: 3632: 3631: 3621: 3620: 3619: 3614: 3604: 3599: 3594: 3588: 3587: 3581: 3580: 3579: 3578: 3573: 3563: 3562: 3561: 3560: 3559: 3557:Bresler-Pister 3549: 3544: 3534: 3533: 3532: 3531: 3530: 3528:Concrete creep 3525: 3515: 3510: 3508:hypoelasticity 3505: 3504: 3503: 3498: 3488: 3487: 3486: 3476: 3471: 3466: 3461: 3450: 3449: 3443: 3441: 3431: 3430: 3428: 3427: 3422: 3417: 3416: 3415: 3405: 3400: 3399: 3398: 3393: 3382: 3381: 3377: 3376: 3371: 3366: 3365: 3364: 3359: 3354: 3349: 3344: 3334: 3328: 3327: 3323: 3321: 3317: 3316: 3314: 3313: 3308: 3303: 3298: 3293: 3287: 3285: 3281: 3280: 3272: 3271: 3264: 3257: 3249: 3241: 3240: 3215: 3204: 3188: 3174: 3173: 3171: 3168: 3167: 3166: 3161: 3156: 3151: 3146: 3141: 3136: 3131: 3126: 3121: 3116: 3111: 3104: 3101: 3088: 3087: 3081: 3075: 3069: 3063: 3029:Main article: 3026: 3023: 3022: 3021: 3016: 3011: 3000: 2997: 2989:yield surfaces 2938: 2933: 2928: 2924: 2920: 2916: 2910: 2906: 2900: 2896: 2892: 2887: 2883: 2877: 2873: 2869: 2864: 2860: 2854: 2850: 2845: 2841: 2838: 2835: 2830: 2825: 2821: 2817: 2812: 2807: 2803: 2799: 2794: 2789: 2785: 2775: 2755: 2750: 2746: 2742: 2737: 2731: 2727: 2723: 2718: 2714: 2707: 2704: 2695: 2679: 2675: 2653: 2614: 2609: 2605: 2601: 2597: 2591: 2587: 2583: 2578: 2574: 2569: 2565: 2562: 2557: 2553: 2543: 2517: 2513: 2509: 2504: 2500: 2490: 2478: 2475: 2454: 2450: 2425: 2421: 2396: 2392: 2373: 2372: 2323: 2321: 2314: 2308: 2305: 2292: 2281: 2280: 2267: 2261: 2258: 2253: 2241: 2229: 2218: 2212: 2209: 2204: 2162: 2159: 2154: 2133: 2130: 2110: 2090: 2070: 2050: 2039: 2038: 2022: 2019: 2007: 2004: 1985: 1982: 1970: 1959: 1954: 1950: 1923:Main article: 1920: 1917: 1886: 1883: 1880: 1877: 1872: 1848: 1845: 1842: 1837: 1809: 1806: 1801: 1780: 1758: 1754: 1742: 1741: 1728: 1725: 1718: 1714: 1710: 1707: 1701: 1698: 1693: 1680:is defined as 1672:. The mode I 1655: 1652: 1647: 1627: 1624: 1604: 1584: 1564: 1553: 1552: 1535: 1532: 1520: 1517: 1514: 1502: 1499: 1476: 1449:Main article: 1446: 1443: 1442: 1441: 1434: 1427: 1420: 1413: 1406: 1399: 1392: 1385: 1378: 1371: 1364: 1357: 1343: 1342: 1328: 1324: 1320: 1315: 1311: 1307: 1302: 1298: 1294: 1289: 1285: 1263: 1262: 1248: 1244: 1240: 1235: 1231: 1227: 1222: 1218: 1214: 1209: 1205: 1179: 1175: 1152: 1148: 1125: 1121: 1098: 1094: 1066: 1063: 1062: 1061: 1056: 1053: 1050: 1044: 1036: 1033: 1028: 1027: 1024: 1023:Damage failure 1021: 1014: 1006: 1003: 995:thermodynamics 977:and classical 969: 966: 961: 958: 933: 930: 894:external loads 869: 868: 866: 865: 858: 851: 843: 840: 839: 838: 837: 832: 827: 822: 817: 812: 807: 802: 797: 792: 787: 782: 777: 772: 767: 762: 757: 749: 748: 740: 739: 737: 736: 729: 722: 714: 711: 710: 706: 705: 700: 695: 690: 685: 680: 675: 670: 665: 660: 655: 650: 645: 640: 635: 629: 628: 625: 624: 621: 620: 615: 614: 613: 612: 607: 602: 594: 593: 587: 586: 585: 584: 579: 574: 564: 559: 558: 555: 554: 549: 548: 542: 541: 539: 538: 533: 528: 523: 518: 513: 508: 502: 499: 498: 492: 491: 489: 488: 483: 478: 476:Chromatography 473: 468: 462: 459: 458: 452: 451: 449: 448: 429: 428: 427: 408: 396: 391: 379: 366: 363: 362: 354: 349: 348: 345: 344: 340: 339: 334: 329: 328: 327: 317: 312: 307: 306: 305: 300: 290: 285: 280: 275: 274: 273: 263: 257: 256: 251: 250: 247: 246: 241: 240: 239: 238: 230: 229: 225: 224: 223: 222: 217: 212: 204: 203: 197: 194: 193: 190: 189: 184: 170: 167: 162: 159: 153: 150: 147: 144: 133: 132: 126: 125: 117: 116: 31: 29: 22: 15: 9: 6: 4: 3: 2: 4027: 4016: 4013: 4011: 4008: 4006: 4003: 4001: 3998: 3996: 3993: 3991: 3988: 3986: 3983: 3982: 3980: 3965: 3962: 3960: 3959:Eringen Medal 3957: 3956: 3954: 3952: 3948: 3942: 3939: 3937: 3934: 3932: 3929: 3927: 3924: 3922: 3919: 3917: 3914: 3912: 3909: 3907: 3904: 3902: 3899: 3897: 3894: 3892: 3889: 3888: 3886: 3884: 3880: 3874: 3871: 3869: 3866: 3862: 3859: 3857: 3854: 3852: 3849: 3848: 3847: 3844: 3842: 3839: 3838: 3836: 3834: 3830: 3824: 3823:Aeroacoustics 3821: 3819: 3816: 3815: 3813: 3811: 3807: 3801: 3798: 3797: 3794: 3791: 3789: 3786: 3784: 3783:Charles's law 3781: 3779: 3776: 3774: 3771: 3770: 3767: 3764: 3763: 3760: 3757: 3755: 3752: 3750: 3747: 3745: 3742: 3740: 3737: 3735: 3732: 3728: 3727:Non-Newtonian 3725: 3723: 3720: 3719: 3718: 3715: 3713: 3710: 3708: 3705: 3703: 3700: 3698: 3695: 3693: 3690: 3688: 3687:Fluid statics 3685: 3684: 3681: 3678: 3677: 3675: 3673: 3669: 3661: 3658: 3656: 3653: 3651: 3648: 3647: 3646: 3643: 3642: 3639: 3636: 3635: 3630: 3627: 3626: 3625: 3622: 3618: 3615: 3613: 3610: 3609: 3608: 3605: 3603: 3600: 3598: 3595: 3593: 3590: 3589: 3586: 3583: 3582: 3577: 3574: 3572: 3569: 3568: 3567: 3564: 3558: 3555: 3554: 3553: 3550: 3548: 3545: 3543: 3540: 3539: 3538: 3535: 3529: 3526: 3524: 3521: 3520: 3519: 3516: 3514: 3511: 3509: 3506: 3502: 3499: 3497: 3494: 3493: 3492: 3489: 3485: 3482: 3481: 3480: 3477: 3475: 3472: 3470: 3467: 3465: 3462: 3460: 3457: 3456: 3455: 3452: 3451: 3448: 3445: 3444: 3442: 3440: 3436: 3432: 3426: 3425:Compatibility 3423: 3421: 3418: 3414: 3411: 3410: 3409: 3406: 3404: 3401: 3397: 3394: 3392: 3391:Cauchy stress 3389: 3388: 3387: 3384: 3383: 3379: 3378: 3375: 3372: 3370: 3367: 3363: 3360: 3358: 3355: 3353: 3350: 3348: 3345: 3343: 3342:Navier-Stokes 3340: 3339: 3338: 3335: 3333: 3330: 3329: 3325: 3324: 3322: 3318: 3312: 3309: 3307: 3304: 3302: 3299: 3297: 3294: 3292: 3289: 3288: 3286: 3282: 3278: 3270: 3265: 3263: 3258: 3256: 3251: 3250: 3247: 3230: 3226: 3219: 3213: 3208: 3201: 3198: 3192: 3185: 3179: 3175: 3165: 3162: 3160: 3157: 3155: 3152: 3150: 3147: 3145: 3142: 3140: 3137: 3135: 3132: 3130: 3129:Yield surface 3127: 3125: 3122: 3120: 3117: 3115: 3112: 3110: 3107: 3106: 3100: 3098: 3093: 3086: 3082: 3080: 3076: 3074: 3070: 3068: 3064: 3062: 3058: 3057: 3056: 3054: 3050: 3046: 3042: 3038: 3037:yield surface 3032: 3031:Yield surface 3025:Yield surface 3020: 3017: 3015: 3012: 3010: 3007: 3006: 3005: 2996: 2994: 2990: 2985: 2983: 2979: 2975: 2971: 2967: 2963: 2959: 2955: 2936: 2931: 2926: 2922: 2918: 2914: 2908: 2904: 2898: 2894: 2890: 2885: 2881: 2875: 2871: 2867: 2862: 2858: 2852: 2848: 2843: 2839: 2836: 2833: 2828: 2823: 2819: 2815: 2810: 2805: 2801: 2797: 2792: 2787: 2783: 2774: 2772: 2753: 2748: 2744: 2740: 2735: 2729: 2725: 2721: 2716: 2712: 2705: 2702: 2694: 2677: 2673: 2651: 2643: 2639: 2635: 2633: 2612: 2607: 2603: 2599: 2595: 2589: 2585: 2581: 2576: 2572: 2567: 2563: 2560: 2555: 2551: 2542: 2540: 2536: 2515: 2511: 2507: 2502: 2498: 2489: 2487: 2483: 2474: 2470: 2452: 2448: 2423: 2419: 2394: 2390: 2381: 2369: 2366: 2358: 2348: 2344: 2340: 2334: 2333: 2329: 2324:This section 2322: 2318: 2313: 2312: 2304: 2290: 2265: 2251: 2239: 2227: 2216: 2202: 2194: 2193: 2192: 2190: 2186: 2181: 2179: 2176:- called the 2152: 2131: 2128: 2108: 2088: 2068: 2048: 2020: 2017: 2005: 2002: 1983: 1980: 1968: 1957: 1952: 1948: 1940: 1939: 1938: 1936: 1932: 1926: 1916: 1914: 1909: 1907: 1903: 1870: 1835: 1826: 1799: 1778: 1756: 1752: 1726: 1723: 1716: 1712: 1708: 1705: 1691: 1683: 1682: 1681: 1679: 1675: 1671: 1653: 1650: 1645: 1625: 1622: 1602: 1582: 1562: 1533: 1530: 1518: 1515: 1512: 1500: 1497: 1490: 1489: 1488: 1474: 1466: 1462: 1458: 1452: 1439: 1435: 1432: 1428: 1425: 1421: 1418: 1414: 1411: 1407: 1404: 1400: 1397: 1393: 1390: 1386: 1383: 1379: 1376: 1372: 1369: 1365: 1362: 1358: 1356: 1352: 1351: 1350: 1346: 1326: 1322: 1318: 1313: 1309: 1305: 1300: 1296: 1292: 1287: 1283: 1275: 1274: 1273: 1271: 1266: 1246: 1242: 1238: 1233: 1229: 1225: 1220: 1216: 1212: 1207: 1203: 1195: 1194: 1193: 1177: 1173: 1150: 1146: 1123: 1119: 1096: 1092: 1084: 1080: 1076: 1072: 1060: 1057: 1054: 1051: 1049: 1045: 1042: 1041: 1040: 1032: 1025: 1022: 1019: 1015: 1012: 1011: 1010: 1002: 1000: 996: 992: 988: 984: 980: 976: 965: 957: 955: 951: 947: 943: 939: 929: 926: 921: 919: 915: 911: 907: 903: 899: 895: 891: 887: 883: 879: 875: 864: 859: 857: 852: 850: 845: 844: 842: 841: 836: 833: 831: 828: 826: 825:Thermal shock 823: 821: 818: 816: 813: 811: 808: 806: 803: 801: 798: 796: 793: 791: 788: 786: 783: 781: 778: 776: 773: 771: 768: 766: 763: 761: 758: 756: 753: 752: 751: 750: 746: 745: 735: 730: 728: 723: 721: 716: 715: 713: 712: 704: 701: 699: 696: 694: 691: 689: 686: 684: 681: 679: 676: 674: 671: 669: 666: 664: 661: 659: 656: 654: 651: 649: 646: 644: 641: 639: 636: 634: 631: 630: 623: 622: 611: 608: 606: 603: 601: 598: 597: 596: 595: 592: 589: 588: 583: 580: 578: 575: 573: 570: 569: 568: 567: 562: 557: 556: 547: 544: 543: 537: 534: 532: 529: 527: 524: 522: 519: 517: 516:Charles's law 514: 512: 509: 507: 504: 503: 501: 500: 497: 494: 493: 487: 484: 482: 479: 477: 474: 472: 469: 467: 464: 463: 461: 460: 457: 454: 453: 447: 444: 440: 437: 433: 430: 425: 424:non-Newtonian 422: 418: 414: 413: 412: 409: 407: 404: 400: 397: 395: 392: 390: 387: 383: 380: 378: 375: 371: 368: 367: 365: 364: 361: 358: 357: 352: 347: 346: 338: 335: 333: 330: 326: 323: 322: 321: 318: 316: 313: 311: 310:Compatibility 308: 304: 301: 299: 298:Finite strain 296: 295: 294: 291: 289: 286: 284: 281: 279: 276: 272: 269: 268: 267: 264: 262: 259: 258: 254: 249: 248: 237: 234: 233: 232: 231: 227: 226: 221: 218: 216: 213: 211: 208: 207: 206: 205: 202:Conservations 201: 200: 192: 191: 187: 168: 165: 160: 157: 151: 148: 145: 142: 135: 134: 131: 128: 127: 123: 122: 113: 110: 102: 99:November 2014 91: 88: 84: 81: 77: 74: 70: 67: 63: 60: â€“  59: 55: 54:Find sources: 48: 44: 38: 37: 32:This article 30: 26: 21: 20: 3846:Smart fluids 3739:Pascal's law 3596: 3571:Frictionless 3420:Large strain 3408:Small strain 3232:. Retrieved 3229:SDC Verifier 3228: 3218: 3207: 3199: 3196: 3191: 3183: 3178: 3089: 3034: 3002: 2986: 2973: 2965: 2961: 2953: 2952: 2770: 2769: 2642:Henri Tresca 2632:shear stress 2629: 2628: 2534: 2533: 2481: 2480: 2471: 2376: 2361: 2352: 2337:Please help 2325: 2282: 2189:plane stress 2182: 2177: 2040: 1928: 1910: 1743: 1678:plane strain 1669: 1554: 1454: 1398:for concrete 1391:for concrete 1347: 1344: 1269: 1267: 1264: 1078: 1068: 1038: 1029: 1008: 998: 971: 963: 941: 935: 922: 873: 872: 591:Smart fluids 536:Graham's law 442: 435: 420: 406:Pascal's law 402: 385: 373: 331: 228:Inequalities 105: 96: 86: 79: 72: 65: 53: 41:Please help 36:verification 33: 3861:Ferrofluids 3778:Boyle's law 3464:Hooke's law 3403:Deformation 3380:Definitions 3099:parameter. 3041:deformation 2970:hydrostatic 1018:T-criterion 950:macroscopic 946:microscopic 916:, state of 914:temperature 610:Ferrofluids 511:Boyle's law 283:Hooke's law 261:Deformation 3979:Categories 3916:Gay-Lussac 3883:Scientists 3773:Atmosphere 3638:Structures 3612:J-integral 3576:Frictional 3537:Plasticity 3474:Orthotropy 3454:Elasticity 3357:Archimedes 3352:Poiseuille 3306:Vibrations 3275:Topics in 3234:2022-11-03 3170:References 2966:volumetric 1931:composites 993:(CDM) and 663:Gay-Lussac 626:Scientists 526:Fick's law 506:Atmosphere 325:frictional 278:Plasticity 266:Elasticity 69:newspapers 4000:Mechanics 3891:Bernoulli 3873:Rheometer 3868:Rheometry 3810:Acoustics 3722:Newtonian 3717:Viscosity 3347:Bernoulli 3301:Acoustics 3284:Divisions 2923:σ 2919:≤ 2905:σ 2895:σ 2882:σ 2872:σ 2859:σ 2849:σ 2840:ν 2834:− 2820:σ 2802:σ 2784:σ 2745:τ 2741:≤ 2726:σ 2722:− 2713:σ 2703:τ 2674:τ 2652:τ 2604:σ 2600:≤ 2586:σ 2573:σ 2564:ν 2561:− 2552:σ 2512:σ 2508:≤ 2499:σ 2449:σ 2420:σ 2391:σ 2355:June 2013 2326:does not 1906:model III 1753:σ 1724:π 1713:σ 1651:π 1646:σ 1583:γ 1531:π 1519:γ 1498:σ 1475:σ 1368:von Mises 1323:ε 1310:ε 1297:ε 1284:ε 1243:σ 1230:σ 1217:σ 1204:σ 1174:σ 1147:σ 1120:σ 1093:σ 987:Needleman 908:failure ( 900:failure ( 890:materials 760:Corrosion 703:Truesdell 633:Bernoulli 582:Rheometer 577:Rheometry 417:Newtonian 411:Viscosity 161:φ 149:− 3833:Rheology 3744:Pressure 3712:Buoyancy 3496:Hugoniot 3114:Fracture 3103:See also 2630:Maximum 1440:for soil 954:fracture 902:fracture 835:Yielding 785:Fracture 755:Buckling 561:Rheology 466:Adhesion 446:Pressure 432:Buoyancy 377:Dynamics 215:Momentum 3906:Charles 3749:Liquids 3645:Bending 3602:Fatigue 2347:removed 2332:sources 1902:mode II 906:ductile 898:brittle 780:Fouling 775:Fatigue 648:Charles 456:Liquids 370:Statics 315:Bending 83:scholar 3951:Awards 3941:Stokes 3936:Navier 3931:Newton 3926:Pascal 3901:Cauchy 3800:Plasma 3680:Fluids 3459:linear 3447:Solids 3386:Stress 3362:Pascal 3097:damage 3051:, and 2993:convex 2634:theory 2539:strain 2440:, and 2380:tensor 2283:where 2248:  2041:where 1992:  1744:where 1555:where 1465:mode I 1075:strain 1071:stress 918:stress 795:Impact 698:Stokes 693:Pascal 683:Navier 678:Newton 668:Graham 643:Cauchy 546:Plasma 441:  439:Mixing 434:  419:  401:  384:  372:  360:Fluids 293:Strain 288:Stress 271:linear 220:Energy 85:  78:  71:  64:  56:  3921:Hooke 3911:Euler 3896:Boyle 3766:Gases 3523:Creep 3435:Solid 3186:, 19. 2978:shear 2974:shape 2484:– by 948:, to 910:yield 904:) or 770:Creep 673:Hooke 653:Euler 638:Boyle 496:Gases 90:JSTOR 76:books 3437:and 3326:Laws 3083:the 3077:the 3071:the 3065:the 3059:the 3035:The 2987:The 2330:any 2328:cite 2183:The 1904:and 1862:and 1676:for 1436:the 1429:the 1422:the 1415:the 1408:the 1401:the 1394:the 1387:the 1380:the 1373:the 1366:the 1359:the 1319:< 1306:< 1293:< 1268:The 1239:< 1226:< 1213:< 880:and 830:Wear 688:Noll 658:Fick 210:Mass 195:Laws 62:news 3501:JWL 2341:by 936:In 45:by 3981:: 3227:. 3200:38 3047:, 2984:. 2693:: 2469:. 2411:, 2180:. 1001:. 940:, 3268:e 3261:t 3254:v 3237:. 2968:( 2956:( 2937:. 2932:2 2927:y 2915:) 2909:3 2899:1 2891:+ 2886:3 2876:2 2868:+ 2863:2 2853:1 2844:( 2837:2 2829:2 2824:3 2816:+ 2811:2 2806:2 2798:+ 2793:2 2788:1 2754:. 2749:y 2736:2 2730:3 2717:1 2706:= 2678:y 2613:. 2608:y 2596:) 2590:3 2582:+ 2577:2 2568:( 2556:1 2516:y 2503:1 2453:3 2424:2 2395:1 2368:) 2362:( 2357:) 2353:( 2349:. 2335:. 2291:E 2266:2 2260:c 2257:I 2252:K 2240:E 2228:1 2217:= 2211:c 2208:I 2203:G 2161:c 2158:I 2153:G 2132:a 2129:2 2109:a 2089:u 2069:t 2049:P 2021:a 2018:d 2006:u 2003:d 1984:t 1981:2 1969:P 1958:= 1953:I 1949:G 1885:c 1882:I 1879:I 1876:I 1871:K 1847:c 1844:I 1841:I 1836:K 1808:c 1805:I 1800:K 1779:Y 1757:c 1727:a 1717:c 1709:Y 1706:= 1700:c 1697:I 1692:K 1654:a 1626:a 1623:2 1603:a 1563:E 1534:a 1516:E 1513:2 1501:= 1327:t 1314:1 1301:3 1288:c 1247:t 1234:1 1221:3 1208:c 1178:c 1151:t 1124:3 1097:1 1073:/ 1020:) 999:f 862:e 855:t 848:v 733:e 726:t 719:v 443:· 436:· 426:) 421:· 415:( 403:· 386:· 374:· 169:x 166:d 158:d 152:D 146:= 143:J 112:) 106:( 101:) 97:( 87:· 80:· 73:· 66:· 39:.

Index


verification
improve this article
adding citations to reliable sources
"Material failure theory"
news
newspapers
books
scholar
JSTOR
Learn how and when to remove this message
Continuum mechanics
Fick's laws of diffusion
Mass
Momentum
Energy
Clausius–Duhem (entropy)
Solid mechanics
Deformation
Elasticity
linear
Plasticity
Hooke's law
Stress
Strain
Finite strain
Infinitesimal strain
Compatibility
Bending
Contact mechanics

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑