Knowledge

Gauss–Bonnet theorem

Source 📝

1016:, then the inside has negative Gaussian curvature, the outside has positive Gaussian curvature, and the total curvature is indeed 0. It is also possible to construct a torus by identifying opposite sides of a square, in which case the Riemannian metric on the torus is flat and has constant curvature 0, again resulting in total curvature 0. It is not possible to specify a Riemannian metric on the torus with everywhere positive or everywhere negative Gaussian curvature. 129: 1772: 32: 979:, its Euler characteristic, being a topological invariant, will not change, while the curvatures at some points will. The theorem states, somewhat surprisingly, that the total integral of all curvatures will remain the same, no matter how the deforming is done. So for instance if you have a sphere with a "dent", then its 1216:
In the case of the plane (where the Gaussian curvature is 0 and geodesics are straight lines), we recover the familiar formula for the sum of angles in an ordinary triangle. On the standard sphere, where the curvature is everywhere 1, we see that the angle sum of geodesic triangles is always bigger
1520: 998:
without boundary, with curvature 0 and with Euler characteristic 1: the Gauss–Bonnet formula does not work. It holds true however for the compact closed unit disc, which also has Euler characteristic 1, because of the added boundary integral with value
785: 1372: 1102: 339: 567:
On the other hand, suppose we flatten the hemisphere to make it into a disk. This transformation is a homeomorphism, so the Euler characteristic is still 1. However, on the left hand side of the theorem we now have
882: 1245:, the area of a triangle is proportional to the amount by which its interior angles fail to add up to 180°, or equivalently by the (inverse) amount by which its exterior angles fail to add up to 360°. 1691: 1211: 688: 940: 562: 633: 484: 818: 517: 1229:
A number of earlier results in spherical geometry and hyperbolic geometry, discovered over the preceding centuries, were subsumed as special cases of Gauss–Bonnet.
592: 696: 1256:– the amount by which its interior angles add up to more than 180°, which is equal to the amount by which its exterior angles add up to less than 360°. 1515:{\displaystyle \sum _{v\,\in \,\operatorname {int} M}{\bigl (}6-\chi (v){\bigr )}+\sum _{v\,\in \,\partial M}{\bigl (}3-\chi (v){\bigr )}=6\chi (M),\ } 1030: 171:
is 180 degrees. The Gauss–Bonnet theorem extends this to more complicated shapes and curved surfaces, connecting the local and global geometries.
3225: 249: 1010:
has Euler characteristic 0, so its total curvature must also be zero. If the torus carries the ordinary Riemannian metric from its embedding in
2416: 2120: 1285: 1280: 3220: 96: 68: 968:
of the surface: Any orientable compact surface without boundary is topologically equivalent to a sphere with some handles attached, and
3268: 2507: 2283: 2133: 2531: 49: 75: 2726: 1547:
Similar formulas can be obtained for 2-dimensional pseudo-manifold when we replace triangles with higher polygons. For polygons of
823: 2313: 2288: 82: 2596: 2175: 2058: 1797: 2822: 1720: 1616: 1156: 2875: 2403: 1711:
adjacent points on the surface. This is the simplest formula of Gauss–Bonnet theorem in three-dimensional digital space.
64: 3159: 1809: 2148: 2113: 1959: 638: 115: 2924: 1324:. This is the special case of Gauss–Bonnet, where the curvature is concentrated at discrete points (the vertices). 2907: 2516: 1814: 1753: 898: 1913: 1877: 53: 3119: 2526: 2078: 1937: 1292:
is the polyhedral analog: it states that the sum of the defect at all the vertices of a polyhedron which is
820:
almost everywhere along the border, which is a geodesic triangle. But we have three right-angle corners, so
3104: 2827: 2601: 2210: 2106: 1335:, and Gauss–Bonnet for measures generalizes both Gauss–Bonnet for smooth manifolds and Descartes' theorem. 2068: 132:
An example of a complex region where Gauss–Bonnet theorem can apply. Shows the sign of geodesic curvature.
89: 3149: 2073: 1760: 1735: 414:
as the sum of the corresponding integrals along the smooth portions of the boundary, plus the sum of the
168: 522: 3154: 3124: 2832: 2788: 2769: 2536: 2480: 2231: 3273: 2691: 2556: 2360: 1343:
There are several combinatorial analogs of the Gauss–Bonnet theorem. We state the following one. Let
892:
The theorem applies in particular to compact surfaces without boundary, in which case the integral
3076: 2941: 2633: 2475: 2153: 1742: 20: 945:
can be omitted. It states that the total Gaussian curvature of such a closed surface is equal to 2
2773: 2743: 2667: 2657: 2613: 2443: 2396: 2339: 1268: 42: 3114: 2733: 2628: 2541: 2448: 2370: 2303: 2298: 2236: 2195: 1602:
we must replace 3 and 6 in the formula above with 2 and 4, respectively. More specifically, if
1238: 1141:
minus the total curvature within the triangle. Since the turning angle at a corner is equal to
597: 448: 2365: 2013: 2763: 2758: 1328: 790: 489: 137: 1792:
The theorem can be used directly as a system to control sculpture - for example, in work by
3094: 3032: 2880: 2584: 2574: 2546: 2521: 2431: 2200: 1301: 426: 372: 179: 175: 8: 3232: 2914: 2792: 2777: 2706: 2465: 2257: 2226: 2214: 2185: 2168: 2129: 1965: 1331:, rather than as a function, Descartes' theorem is Gauss–Bonnet where the curvature is a 1260: 1253: 1242: 965: 950: 571: 199: 3205: 2092: 780:{\displaystyle \int _{M}KdA={\frac {1}{R^{2}}}{\frac {4\pi R^{2}}{8}}={\frac {\pi }{2}}} 519:, because the boundary is the equator and the equator is a geodesic of the sphere. Then 421:
Many standard proofs use the theorem of turning tangents, which states roughly that the
3174: 3129: 3026: 2897: 2701: 2389: 2355: 2252: 2221: 1249: 233: 214: 164: 153: 2711: 2262: 2018:
Proceedings of Bridges 2020: Mathematics, Art, Music, Architecture, Education, Culture
3109: 3089: 3084: 2991: 2902: 2716: 2696: 2551: 2490: 2267: 2054: 1955: 1919: 1909: 1901: 1883: 1873: 1865: 1834: 1724: 1130:
The geodesic curvature the bordering geodesics is 0, and the Euler characteristic of
1112: 1941: 987:(the Euler characteristic of a sphere being 2), no matter how big or deep the dent. 3247: 3041: 2996: 2919: 2890: 2748: 2681: 2676: 2671: 2661: 2453: 2436: 2334: 2329: 2205: 2158: 1992: 1947: 1785: 1752:
A far-reaching generalization that includes all the abovementioned theorems is the
1746: 1607: 1332: 390: 1127:
formed by the inside of that triangle and the piecewise boundary of the triangle.
3190: 3099: 2929: 2885: 2651: 2163: 2098: 1348: 995: 980: 1997: 1980: 3056: 2981: 2951: 2849: 2842: 2782: 2753: 2623: 2618: 2579: 2046: 1838: 1793: 990:
Compactness of the surface is of crucial importance. Consider for instance the
445:. Its Euler characteristic is 1. On the left hand side of the theorem, we have 422: 349: 3262: 3242: 3066: 3061: 3046: 3036: 2986: 2963: 2837: 2797: 2738: 2686: 2485: 2190: 1599: 693:
Finally, take a sphere octant, also homeomorphic to the previous cases. Then
195: 1887: 1097:{\displaystyle \int _{T}K=2\pi -\sum \alpha -\int _{\partial T}\kappa _{g},} 3169: 3164: 3006: 2973: 2946: 2854: 2495: 1923: 1293: 334:{\displaystyle \int _{M}K\,dA+\int _{\partial M}k_{g}\,ds=2\pi \chi (M),\,} 1951: 1137:
Hence the sum of the turning angles of the geodesic triangle is equal to 2
3012: 3001: 2958: 2859: 2460: 1317:
is the genus, meaning "number of holes"), then the sum of the defect is
3237: 3195: 3021: 2934: 2566: 2470: 2381: 2308: 1289: 128: 1981:"Digital topological method for computing genus and the Betti numbers" 1771: 3051: 3016: 2721: 2608: 1780: 991: 149: 31: 3215: 3210: 3200: 2591: 2412: 2180: 2051:
Introduction to Tensor Analysis and the Calculus of Moving Surfaces
1120: 953:
compact surfaces without boundary, the Euler characteristic equals
157: 418:
by which the smooth portions turn at the corners of the boundary.
1775:
Sculpture made from flat materials using the Gauss–Bonnet Theorem
1119:
to be a simply connected region whose boundary consists of three
1525:
where the first sum ranges over the vertices in the interior of
2807: 635:, because a circumference is not a geodesic of the plane. Then 1149:
The sum of interior angles of a geodesic triangle is equal to
1759:
A generalization to 2-manifolds that need not be compact is
1007: 949:
times the Euler characteristic of the surface. Note that for
415: 1551:
vertices, we must replace 3 and 6 in the formula above with
877:{\displaystyle \int _{\partial M}k_{g}ds={\frac {3\pi }{2}}} 1145:
minus the interior angle, we can rephrase this as follows:
441:
is the northern hemisphere cut out from a sphere of radius
1789:, two characters discuss the derivation of this theorem. 1707:
indicates the number of surface-points each of which has
19:"Gauss–Bonnet" redirects here. Not to be confused with 178:, who developed a version but never published it, and 1619: 1375: 1362:
denote the number of triangles containing the vertex
1159: 1033: 901: 826: 793: 699: 641: 600: 574: 525: 492: 451: 252: 1686:{\displaystyle g=1+{\frac {M_{5}+2M_{6}-M_{3}}{8}},} 1529:, the second sum is over the boundary vertices, and 1206:{\displaystyle \sum (\pi -\alpha )=\pi +\int _{T}K.} 163:
In the simplest application, the case of a triangle
1153:plus the total curvature enclosed by the triangle: 56:. Unsourced material may be challenged and removed. 2128: 1685: 1514: 1205: 1096: 934: 887: 876: 812: 779: 682: 627: 586: 556: 511: 478: 333: 3260: 1024:Sometimes the Gauss–Bonnet formula is stated as 683:{\displaystyle \int _{\partial M}k_{g}ds=2\pi } 1745:can also be seen as a generalization of GB to 2397: 2114: 1860: 1858: 1483: 1458: 1427: 1402: 1906:Differential geometry of curves and surfaces 1734:-dimensional generalization of GB (also see 1908:. Upper Saddle River, N.J.: Prentice-Hall. 935:{\displaystyle \int _{\partial M}k_{g}\,ds} 148:) is a fundamental formula which links the 2404: 2390: 2284:Fundamental theorem of Riemannian geometry 2121: 2107: 1894: 1855: 1286:Descartes' theorem on total angular defect 1281:Descartes' theorem on total angular defect 356:is the line element along the boundary of 1996: 1844:(Interview). Interviewed by Allyn Jackson 1447: 1443: 1388: 1384: 925: 330: 299: 266: 116:Learn how and when to remove this message 2411: 2045: 1978: 1900: 1864: 1770: 1300:. More generally, if the polyhedron has 182:, who published a special case in 1848. 127: 2011: 1338: 3261: 1979:Chen, Li; Rong, Yongwu (August 2010). 1123:. We can then apply GB to the surface 2385: 2102: 1936: 1833: 1798:University of Arkansas Honors College 1766: 975:If one bends and deforms the surface 1263:, conversely is proportional to its 54:adding citations to reliable sources 25: 432: 13: 2039: 1839:"Interview with Shiing-Shen Chern" 1714: 1448: 1252:is proportional to its excess, by 1073: 907: 832: 647: 557:{\displaystyle \int _{M}KdA=2\pi } 281: 14: 3285: 3269:Theorems in differential geometry 2086: 1598:, respectively. For example, for 1115:. Here we define a "triangle" on 393:, then we interpret the integral 1224: 1019: 30: 16:Theorem in differential geometry 1540:is the Euler characteristic of 888:Interpretation and significance 41:needs additional citations for 2444:Differentiable/Smooth manifold 2005: 1972: 1930: 1827: 1503: 1497: 1478: 1472: 1422: 1416: 1175: 1163: 972:counts the number of handles. 324: 318: 1: 1985:Topology and Its Applications 1820: 136:In the mathematical field of 2211:Raising and lowering indices 1274: 1232: 185: 7: 3150:Classification of manifolds 2074:Encyclopedia of Mathematics 1998:10.1016/j.topol.2010.04.006 1902:do Carmo, Manfredo Perdigão 1866:do Carmo, Manfredo Perdigão 1815:Atiyah–Singer index theorem 1803: 1754:Atiyah–Singer index theorem 1327:Thinking of curvature as a 174:The theorem is named after 10: 3290: 2232:Pseudo-Riemannian manifold 1810:Chern–Gauss–Bonnet theorem 1606:is a closed 2-dimensional 1347:be a finite 2-dimensional 1278: 18: 3226:over commutative algebras 3183: 3142: 3075: 2972: 2868: 2815: 2806: 2642: 2565: 2504: 2424: 2361:Geometrization conjecture 2348: 2322: 2276: 2245: 2141: 1796:in the collection of the 628:{\displaystyle k_{g}=1/R} 479:{\displaystyle K=1/R^{2}} 2942:Riemann curvature tensor 2014:"Gauss-Bonnet Sculpting" 2012:Harriss, Edmund (2020). 1761:Cohn-Vossen's inequality 1736:Chern–Weil homomorphism 1610:, the genus turns out 1269:Johann Heinrich Lambert 1243:hyperbolic trigonometry 813:{\displaystyle k_{g}=0} 512:{\displaystyle k_{g}=0} 2734:Manifold with boundary 2449:Differential structure 2371:Uniformization theorem 2304:Nash embedding theorem 2237:Riemannian volume form 2196:Levi-Civita connection 2069:"Gauss–Bonnet theorem" 1872:. Boston: Birkhäuser. 1776: 1687: 1516: 1239:spherical trigonometry 1207: 1098: 936: 878: 814: 781: 684: 629: 588: 558: 513: 480: 335: 133: 65:"Gauss–Bonnet theorem" 1952:10.1201/9780203912669 1774: 1688: 1517: 1208: 1099: 1006:As an application, a 937: 879: 815: 782: 685: 630: 589: 559: 514: 481: 336: 138:differential geometry 131: 2881:Covariant derivative 2432:Topological manifold 2294:Gauss–Bonnet theorem 2201:Covariant derivative 2095:at Wolfram Mathworld 2093:Gauss–Bonnet Theorem 1966:Taylor & Francis 1743:Riemann–Roch theorem 1617: 1373: 1339:Combinatorial analog 1302:Euler characteristic 1267:, as established by 1157: 1031: 899: 824: 791: 697: 639: 598: 572: 523: 490: 449: 373:Euler characteristic 352:of the surface, and 250: 180:Pierre Ossian Bonnet 176:Carl Friedrich Gauss 146:Gauss–Bonnet formula 142:Gauss–Bonnet theorem 50:improve this article 21:Gauss–Bonnet gravity 2915:Exterior derivative 2517:Atiyah–Singer index 2466:Riemannian manifold 2366:Poincaré conjecture 2227:Riemannian manifold 2215:Musical isomorphism 2130:Riemannian geometry 1870:Riemannian geometry 1261:hyperbolic triangle 587:{\displaystyle K=0} 200:Riemannian manifold 3221:Secondary calculus 3175:Singularity theory 3130:Parallel transport 2898:De Rham cohomology 2537:Generalized Stokes 2356:General relativity 2299:Hopf–Rinow theorem 2246:Types of manifolds 2222:Parallel transport 1943:The Shape of Space 1835:Chern, Shiing-Shen 1777: 1767:In popular culture 1683: 1512: 1455: 1399: 1296:to the sphere is 4 1250:spherical triangle 1203: 1094: 932: 874: 810: 777: 680: 625: 584: 554: 509: 476: 331: 234:geodesic curvature 215:Gaussian curvature 156:to its underlying 134: 3256: 3255: 3138: 3137: 2903:Differential form 2557:Whitney embedding 2491:Differential form 2379: 2378: 2060:978-1-4614-7866-9 1991:(12): 1931–1936. 1938:Weeks, Jeffrey R. 1837:(March 4, 1998). 1747:complex manifolds 1725:Shiing-Shen Chern 1678: 1511: 1435: 1376: 1113:geodesic triangle 872: 775: 762: 737: 169:sum of its angles 126: 125: 118: 100: 3281: 3274:Riemann surfaces 3248:Stratified space 3206:Fréchet manifold 2920:Interior product 2813: 2812: 2510: 2406: 2399: 2392: 2383: 2382: 2123: 2116: 2109: 2100: 2099: 2082: 2064: 2033: 2032: 2030: 2029: 2009: 2003: 2002: 2000: 1976: 1970: 1969: 1934: 1928: 1927: 1898: 1892: 1891: 1862: 1853: 1852: 1850: 1849: 1843: 1831: 1733: 1710: 1706: 1692: 1690: 1689: 1684: 1679: 1674: 1673: 1672: 1660: 1659: 1644: 1643: 1633: 1608:digital manifold 1605: 1597: 1596: 1594: 1593: 1587: 1584: 1573: 1572: 1570: 1569: 1563: 1560: 1550: 1543: 1539: 1528: 1521: 1519: 1518: 1513: 1509: 1487: 1486: 1462: 1461: 1454: 1431: 1430: 1406: 1405: 1398: 1365: 1361: 1346: 1333:discrete measure 1323: 1316: 1312: 1299: 1254:Girard's theorem 1220: 1212: 1210: 1209: 1204: 1196: 1195: 1152: 1144: 1140: 1133: 1126: 1118: 1110: 1103: 1101: 1100: 1095: 1090: 1089: 1080: 1079: 1043: 1042: 1015: 1002: 994:, a non-compact 986: 978: 971: 963: 959: 948: 941: 939: 938: 933: 924: 923: 914: 913: 883: 881: 880: 875: 873: 868: 860: 849: 848: 839: 838: 819: 817: 816: 811: 803: 802: 786: 784: 783: 778: 776: 768: 763: 758: 757: 756: 740: 738: 736: 735: 723: 709: 708: 689: 687: 686: 681: 664: 663: 654: 653: 634: 632: 631: 626: 621: 610: 609: 593: 591: 590: 585: 563: 561: 560: 555: 535: 534: 518: 516: 515: 510: 502: 501: 485: 483: 482: 477: 475: 474: 465: 444: 440: 433:A simple example 413: 391:piecewise smooth 388: 382:If the boundary 378: 370: 359: 355: 347: 340: 338: 337: 332: 298: 297: 288: 287: 262: 261: 242: 231: 220: 212: 208: 198:two-dimensional 193: 121: 114: 110: 107: 101: 99: 58: 34: 26: 3289: 3288: 3284: 3283: 3282: 3280: 3279: 3278: 3259: 3258: 3257: 3252: 3191:Banach manifold 3184:Generalizations 3179: 3134: 3071: 2968: 2930:Ricci curvature 2886:Cotangent space 2864: 2802: 2644: 2638: 2597:Exponential map 2561: 2506: 2500: 2420: 2410: 2380: 2375: 2344: 2323:Generalizations 2318: 2272: 2241: 2176:Exponential map 2137: 2127: 2089: 2067: 2061: 2047:Grinfeld, Pavel 2042: 2040:Further reading 2037: 2036: 2027: 2025: 2010: 2006: 1977: 1973: 1962: 1935: 1931: 1916: 1899: 1895: 1880: 1863: 1856: 1847: 1845: 1841: 1832: 1828: 1823: 1806: 1769: 1728: 1717: 1715:Generalizations 1708: 1705: 1697: 1668: 1664: 1655: 1651: 1639: 1635: 1634: 1632: 1618: 1615: 1614: 1603: 1588: 1585: 1579: 1578: 1576: 1575: 1564: 1561: 1556: 1555: 1553: 1552: 1548: 1541: 1530: 1526: 1482: 1481: 1457: 1456: 1439: 1426: 1425: 1401: 1400: 1380: 1374: 1371: 1370: 1363: 1352: 1349:pseudo-manifold 1344: 1341: 1318: 1314: 1304: 1297: 1283: 1277: 1235: 1227: 1218: 1191: 1187: 1158: 1155: 1154: 1150: 1142: 1138: 1131: 1124: 1116: 1108: 1085: 1081: 1072: 1068: 1038: 1034: 1032: 1029: 1028: 1022: 1011: 1000: 996:Riemann surface 984: 981:total curvature 976: 969: 961: 954: 946: 919: 915: 906: 902: 900: 897: 896: 890: 861: 859: 844: 840: 831: 827: 825: 822: 821: 798: 794: 792: 789: 788: 767: 752: 748: 741: 739: 731: 727: 722: 704: 700: 698: 695: 694: 659: 655: 646: 642: 640: 637: 636: 617: 605: 601: 599: 596: 595: 573: 570: 569: 530: 526: 524: 521: 520: 497: 493: 491: 488: 487: 470: 466: 461: 450: 447: 446: 442: 438: 435: 429:is exactly ±1. 409: 401: 394: 383: 376: 361: 357: 353: 350:element of area 345: 293: 289: 280: 276: 257: 253: 251: 248: 247: 237: 230: 222: 218: 210: 203: 191: 188: 122: 111: 105: 102: 59: 57: 47: 35: 24: 17: 12: 11: 5: 3287: 3277: 3276: 3271: 3254: 3253: 3251: 3250: 3245: 3240: 3235: 3230: 3229: 3228: 3218: 3213: 3208: 3203: 3198: 3193: 3187: 3185: 3181: 3180: 3178: 3177: 3172: 3167: 3162: 3157: 3152: 3146: 3144: 3140: 3139: 3136: 3135: 3133: 3132: 3127: 3122: 3117: 3112: 3107: 3102: 3097: 3092: 3087: 3081: 3079: 3073: 3072: 3070: 3069: 3064: 3059: 3054: 3049: 3044: 3039: 3029: 3024: 3019: 3009: 3004: 2999: 2994: 2989: 2984: 2978: 2976: 2970: 2969: 2967: 2966: 2961: 2956: 2955: 2954: 2944: 2939: 2938: 2937: 2927: 2922: 2917: 2912: 2911: 2910: 2900: 2895: 2894: 2893: 2883: 2878: 2872: 2870: 2866: 2865: 2863: 2862: 2857: 2852: 2847: 2846: 2845: 2835: 2830: 2825: 2819: 2817: 2810: 2804: 2803: 2801: 2800: 2795: 2785: 2780: 2766: 2761: 2756: 2751: 2746: 2744:Parallelizable 2741: 2736: 2731: 2730: 2729: 2719: 2714: 2709: 2704: 2699: 2694: 2689: 2684: 2679: 2674: 2664: 2654: 2648: 2646: 2640: 2639: 2637: 2636: 2631: 2626: 2624:Lie derivative 2621: 2619:Integral curve 2616: 2611: 2606: 2605: 2604: 2594: 2589: 2588: 2587: 2580:Diffeomorphism 2577: 2571: 2569: 2563: 2562: 2560: 2559: 2554: 2549: 2544: 2539: 2534: 2529: 2524: 2519: 2513: 2511: 2502: 2501: 2499: 2498: 2493: 2488: 2483: 2478: 2473: 2468: 2463: 2458: 2457: 2456: 2451: 2441: 2440: 2439: 2428: 2426: 2425:Basic concepts 2422: 2421: 2409: 2408: 2401: 2394: 2386: 2377: 2376: 2374: 2373: 2368: 2363: 2358: 2352: 2350: 2346: 2345: 2343: 2342: 2340:Sub-Riemannian 2337: 2332: 2326: 2324: 2320: 2319: 2317: 2316: 2311: 2306: 2301: 2296: 2291: 2286: 2280: 2278: 2274: 2273: 2271: 2270: 2265: 2260: 2255: 2249: 2247: 2243: 2242: 2240: 2239: 2234: 2229: 2224: 2219: 2218: 2217: 2208: 2203: 2198: 2188: 2183: 2178: 2173: 2172: 2171: 2166: 2161: 2156: 2145: 2143: 2142:Basic concepts 2139: 2138: 2126: 2125: 2118: 2111: 2103: 2097: 2096: 2088: 2087:External links 2085: 2084: 2083: 2065: 2059: 2041: 2038: 2035: 2034: 2004: 1971: 1960: 1940:(2001-12-12). 1929: 1914: 1893: 1878: 1854: 1825: 1824: 1822: 1819: 1818: 1817: 1812: 1805: 1802: 1794:Edmund Harriss 1768: 1765: 1716: 1713: 1701: 1694: 1693: 1682: 1677: 1671: 1667: 1663: 1658: 1654: 1650: 1647: 1642: 1638: 1631: 1628: 1625: 1622: 1600:quadrilaterals 1523: 1522: 1508: 1505: 1502: 1499: 1496: 1493: 1490: 1485: 1480: 1477: 1474: 1471: 1468: 1465: 1460: 1453: 1450: 1446: 1442: 1438: 1434: 1429: 1424: 1421: 1418: 1415: 1412: 1409: 1404: 1397: 1394: 1391: 1387: 1383: 1379: 1340: 1337: 1279:Main article: 1276: 1273: 1259:The area of a 1248:The area of a 1234: 1231: 1226: 1223: 1214: 1213: 1202: 1199: 1194: 1190: 1186: 1183: 1180: 1177: 1174: 1171: 1168: 1165: 1162: 1105: 1104: 1093: 1088: 1084: 1078: 1075: 1071: 1067: 1064: 1061: 1058: 1055: 1052: 1049: 1046: 1041: 1037: 1021: 1018: 992:open unit disc 943: 942: 931: 928: 922: 918: 912: 909: 905: 889: 886: 871: 867: 864: 858: 855: 852: 847: 843: 837: 834: 830: 809: 806: 801: 797: 774: 771: 766: 761: 755: 751: 747: 744: 734: 730: 726: 721: 718: 715: 712: 707: 703: 679: 676: 673: 670: 667: 662: 658: 652: 649: 645: 624: 620: 616: 613: 608: 604: 583: 580: 577: 553: 550: 547: 544: 541: 538: 533: 529: 508: 505: 500: 496: 473: 469: 464: 460: 457: 454: 434: 431: 423:winding number 405: 396: 342: 341: 329: 326: 323: 320: 317: 314: 311: 308: 305: 302: 296: 292: 286: 283: 279: 275: 272: 269: 265: 260: 256: 226: 202:with boundary 187: 184: 124: 123: 38: 36: 29: 15: 9: 6: 4: 3: 2: 3286: 3275: 3272: 3270: 3267: 3266: 3264: 3249: 3246: 3244: 3243:Supermanifold 3241: 3239: 3236: 3234: 3231: 3227: 3224: 3223: 3222: 3219: 3217: 3214: 3212: 3209: 3207: 3204: 3202: 3199: 3197: 3194: 3192: 3189: 3188: 3186: 3182: 3176: 3173: 3171: 3168: 3166: 3163: 3161: 3158: 3156: 3153: 3151: 3148: 3147: 3145: 3141: 3131: 3128: 3126: 3123: 3121: 3118: 3116: 3113: 3111: 3108: 3106: 3103: 3101: 3098: 3096: 3093: 3091: 3088: 3086: 3083: 3082: 3080: 3078: 3074: 3068: 3065: 3063: 3060: 3058: 3055: 3053: 3050: 3048: 3045: 3043: 3040: 3038: 3034: 3030: 3028: 3025: 3023: 3020: 3018: 3014: 3010: 3008: 3005: 3003: 3000: 2998: 2995: 2993: 2990: 2988: 2985: 2983: 2980: 2979: 2977: 2975: 2971: 2965: 2964:Wedge product 2962: 2960: 2957: 2953: 2950: 2949: 2948: 2945: 2943: 2940: 2936: 2933: 2932: 2931: 2928: 2926: 2923: 2921: 2918: 2916: 2913: 2909: 2908:Vector-valued 2906: 2905: 2904: 2901: 2899: 2896: 2892: 2889: 2888: 2887: 2884: 2882: 2879: 2877: 2874: 2873: 2871: 2867: 2861: 2858: 2856: 2853: 2851: 2848: 2844: 2841: 2840: 2839: 2838:Tangent space 2836: 2834: 2831: 2829: 2826: 2824: 2821: 2820: 2818: 2814: 2811: 2809: 2805: 2799: 2796: 2794: 2790: 2786: 2784: 2781: 2779: 2775: 2771: 2767: 2765: 2762: 2760: 2757: 2755: 2752: 2750: 2747: 2745: 2742: 2740: 2737: 2735: 2732: 2728: 2725: 2724: 2723: 2720: 2718: 2715: 2713: 2710: 2708: 2705: 2703: 2700: 2698: 2695: 2693: 2690: 2688: 2685: 2683: 2680: 2678: 2675: 2673: 2669: 2665: 2663: 2659: 2655: 2653: 2650: 2649: 2647: 2641: 2635: 2632: 2630: 2627: 2625: 2622: 2620: 2617: 2615: 2612: 2610: 2607: 2603: 2602:in Lie theory 2600: 2599: 2598: 2595: 2593: 2590: 2586: 2583: 2582: 2581: 2578: 2576: 2573: 2572: 2570: 2568: 2564: 2558: 2555: 2553: 2550: 2548: 2545: 2543: 2540: 2538: 2535: 2533: 2530: 2528: 2525: 2523: 2520: 2518: 2515: 2514: 2512: 2509: 2505:Main results 2503: 2497: 2494: 2492: 2489: 2487: 2486:Tangent space 2484: 2482: 2479: 2477: 2474: 2472: 2469: 2467: 2464: 2462: 2459: 2455: 2452: 2450: 2447: 2446: 2445: 2442: 2438: 2435: 2434: 2433: 2430: 2429: 2427: 2423: 2418: 2414: 2407: 2402: 2400: 2395: 2393: 2388: 2387: 2384: 2372: 2369: 2367: 2364: 2362: 2359: 2357: 2354: 2353: 2351: 2347: 2341: 2338: 2336: 2333: 2331: 2328: 2327: 2325: 2321: 2315: 2314:Schur's lemma 2312: 2310: 2307: 2305: 2302: 2300: 2297: 2295: 2292: 2290: 2289:Gauss's lemma 2287: 2285: 2282: 2281: 2279: 2275: 2269: 2266: 2264: 2261: 2259: 2256: 2254: 2251: 2250: 2248: 2244: 2238: 2235: 2233: 2230: 2228: 2225: 2223: 2220: 2216: 2212: 2209: 2207: 2204: 2202: 2199: 2197: 2194: 2193: 2192: 2191:Metric tensor 2189: 2187: 2186:Inner product 2184: 2182: 2179: 2177: 2174: 2170: 2167: 2165: 2162: 2160: 2157: 2155: 2152: 2151: 2150: 2147: 2146: 2144: 2140: 2135: 2131: 2124: 2119: 2117: 2112: 2110: 2105: 2104: 2101: 2094: 2091: 2090: 2080: 2076: 2075: 2070: 2066: 2062: 2056: 2052: 2048: 2044: 2043: 2023: 2019: 2015: 2008: 1999: 1994: 1990: 1986: 1982: 1975: 1967: 1963: 1961:9780203912669 1957: 1953: 1949: 1946:. CRC Press. 1945: 1944: 1939: 1933: 1925: 1921: 1917: 1911: 1907: 1903: 1897: 1889: 1885: 1881: 1875: 1871: 1867: 1861: 1859: 1840: 1836: 1830: 1826: 1816: 1813: 1811: 1808: 1807: 1801: 1799: 1795: 1790: 1788: 1787: 1782: 1773: 1764: 1762: 1757: 1755: 1750: 1748: 1744: 1739: 1737: 1732: 1727:1945) is the 1726: 1722: 1721:Chern theorem 1712: 1704: 1700: 1680: 1675: 1669: 1665: 1661: 1656: 1652: 1648: 1645: 1640: 1636: 1629: 1626: 1623: 1620: 1613: 1612: 1611: 1609: 1601: 1591: 1583: 1567: 1559: 1545: 1537: 1533: 1506: 1500: 1494: 1491: 1488: 1475: 1469: 1466: 1463: 1451: 1444: 1440: 1436: 1432: 1419: 1413: 1410: 1407: 1395: 1392: 1389: 1385: 1381: 1377: 1369: 1368: 1367: 1359: 1355: 1350: 1336: 1334: 1330: 1325: 1322: 1311: 1307: 1303: 1295: 1291: 1287: 1282: 1272: 1270: 1266: 1262: 1257: 1255: 1251: 1246: 1244: 1240: 1230: 1225:Special cases 1222: 1200: 1197: 1192: 1188: 1184: 1181: 1178: 1172: 1169: 1166: 1160: 1148: 1147: 1146: 1135: 1128: 1122: 1114: 1091: 1086: 1082: 1076: 1069: 1065: 1062: 1059: 1056: 1053: 1050: 1047: 1044: 1039: 1035: 1027: 1026: 1025: 1020:For triangles 1017: 1014: 1009: 1004: 997: 993: 988: 982: 973: 967: 958: 952: 929: 926: 920: 916: 910: 903: 895: 894: 893: 885: 869: 865: 862: 856: 853: 850: 845: 841: 835: 828: 807: 804: 799: 795: 772: 769: 764: 759: 753: 749: 745: 742: 732: 728: 724: 719: 716: 713: 710: 705: 701: 691: 677: 674: 671: 668: 665: 660: 656: 650: 643: 622: 618: 614: 611: 606: 602: 581: 578: 575: 565: 551: 548: 545: 542: 539: 536: 531: 527: 506: 503: 498: 494: 471: 467: 462: 458: 455: 452: 430: 428: 424: 419: 417: 412: 408: 404: 400: 392: 387: 380: 374: 368: 364: 351: 327: 321: 315: 312: 309: 306: 303: 300: 294: 290: 284: 277: 273: 270: 267: 263: 258: 254: 246: 245: 244: 241: 235: 229: 225: 216: 207: 201: 197: 183: 181: 177: 172: 170: 166: 161: 159: 155: 151: 147: 143: 139: 130: 120: 117: 109: 98: 95: 91: 88: 84: 81: 77: 74: 70: 67: –  66: 62: 61:Find sources: 55: 51: 45: 44: 39:This article 37: 33: 28: 27: 22: 3170:Moving frame 3165:Morse theory 3155:Gauge theory 2947:Tensor field 2876:Closed/Exact 2855:Vector field 2823:Distribution 2764:Hypercomplex 2759:Quaternionic 2496:Vector field 2454:Smooth atlas 2349:Applications 2293: 2277:Main results 2072: 2053:. Springer. 2050: 2026:. Retrieved 2021: 2017: 2007: 1988: 1984: 1974: 1964:– via 1942: 1932: 1905: 1896: 1869: 1846:. Retrieved 1829: 1791: 1784: 1778: 1758: 1751: 1740: 1730: 1718: 1702: 1698: 1695: 1589: 1581: 1565: 1557: 1546: 1535: 1531: 1524: 1357: 1353: 1342: 1326: 1320: 1309: 1305: 1294:homeomorphic 1284: 1264: 1258: 1247: 1236: 1228: 1215: 1136: 1129: 1106: 1023: 1012: 1005: 989: 974: 956: 944: 891: 692: 566: 436: 427:Jordan curve 420: 410: 406: 402: 398: 385: 381: 366: 362: 343: 239: 227: 223: 205: 189: 173: 162: 145: 141: 135: 112: 106:October 2020 103: 93: 86: 79: 72: 60: 48:Please help 43:verification 40: 3115:Levi-Civita 3105:Generalized 3077:Connections 3027:Lie algebra 2959:Volume form 2860:Vector flow 2833:Pushforward 2828:Lie bracket 2727:Lie algebra 2692:G-structure 2481:Pushforward 2461:Submanifold 3263:Categories 3238:Stratifold 3196:Diffeology 2992:Associated 2793:Symplectic 2778:Riemannian 2707:Hyperbolic 2634:Submersion 2542:Hopf–Rinow 2476:Submersion 2471:Smooth map 2309:Ricci flow 2258:Hyperbolic 2028:2020-11-17 1915:0132125897 1879:0817634908 1848:2019-07-22 1821:References 1290:polyhedron 951:orientable 221:, and let 165:on a plane 76:newspapers 3120:Principal 3095:Ehresmann 3052:Subbundle 3042:Principal 3017:Fibration 2997:Cotangent 2869:Covectors 2722:Lie group 2702:Hermitian 2645:manifolds 2614:Immersion 2609:Foliation 2547:Noether's 2532:Frobenius 2527:De Rham's 2522:Darboux's 2413:Manifolds 2253:Hermitian 2206:Signature 2169:Sectional 2149:Curvature 2079:EMS Press 2024:: 137–144 1783:'s novel 1781:Greg Egan 1662:− 1495:χ 1470:χ 1467:− 1449:∂ 1445:∈ 1437:∑ 1414:χ 1411:− 1393:⁡ 1386:∈ 1378:∑ 1275:Polyhedra 1233:Triangles 1189:∫ 1182:π 1173:α 1170:− 1167:π 1161:∑ 1134:being 1. 1121:geodesics 1083:κ 1074:∂ 1070:∫ 1066:− 1063:α 1060:∑ 1057:− 1054:π 1036:∫ 908:∂ 904:∫ 866:π 833:∂ 829:∫ 770:π 746:π 702:∫ 678:π 648:∂ 644:∫ 552:π 528:∫ 316:χ 313:π 282:∂ 278:∫ 255:∫ 186:Statement 150:curvature 3216:Orbifold 3211:K-theory 3201:Diffiety 2925:Pullback 2739:Oriented 2717:Kenmotsu 2697:Hadamard 2643:Types of 2592:Geodesic 2417:Glossary 2268:Kenmotsu 2181:Geodesic 2134:Glossary 2049:(2014). 1904:(1976). 1888:24667701 1868:(1992). 1804:See also 1786:Diaspora 960:, where 437:Suppose 360:. Here, 190:Suppose 158:topology 3160:History 3143:Related 3057:Tangent 3035:)  3015:)  2982:Adjoint 2974:Bundles 2952:density 2850:Torsion 2816:Vectors 2808:Tensors 2791:)  2776:)  2772:,  2770:Pseudo− 2749:Poisson 2682:Finsler 2677:Fibered 2672:Contact 2670:)  2662:Complex 2660:)  2629:Section 2335:Hilbert 2330:Finsler 2081:, 2001 1924:1529515 1723:(after 1595:⁠ 1577:⁠ 1571:⁠ 1554:⁠ 1366:. Then 1329:measure 1313:(where 1308:= 2 − 2 964:is the 371:is the 348:is the 243:. Then 232:be the 213:be the 196:compact 154:surface 90:scholar 3125:Vector 3110:Koszul 3090:Cartan 3085:Affine 3067:Vector 3062:Tensor 3047:Spinor 3037:Normal 3033:Stable 2987:Affine 2891:bundle 2843:bundle 2789:Almost 2712:Kähler 2668:Almost 2658:Almost 2652:Closed 2552:Sard's 2508:(list) 2263:Kähler 2159:Scalar 2154:tensor 2057:  1958:  1922:  1912:  1886:  1876:  1696:where 1510:  1351:. Let 1265:defect 1107:where 787:. Now 416:angles 344:where 209:. Let 167:, the 140:, the 92:  85:  78:  71:  63:  3233:Sheaf 3007:Fiber 2783:Rizza 2754:Prime 2585:Local 2575:Curve 2437:Atlas 2164:Ricci 1842:(PDF) 1288:of a 1217:than 1111:is a 1008:torus 966:genus 955:2 − 2 425:of a 194:is a 152:of a 97:JSTOR 83:books 3100:Form 3002:Dual 2935:flow 2798:Tame 2774:Sub− 2687:Flat 2567:Maps 2055:ISBN 2022:2020 1956:ISBN 1920:OCLC 1910:ISBN 1884:OCLC 1874:ISBN 1741:The 1719:The 1574:and 1241:and 983:is 4 594:and 486:and 144:(or 69:news 3022:Jet 1993:doi 1989:157 1948:doi 1779:In 1738:). 1592:− 2 1568:− 2 1390:int 1237:In 389:is 375:of 236:of 217:of 52:by 3265:: 3013:Co 2077:, 2071:, 2020:. 2016:. 1987:. 1983:. 1954:. 1918:. 1882:. 1857:^ 1800:. 1763:. 1756:. 1749:. 1544:. 1321:πχ 1271:. 1221:. 1003:. 884:. 690:. 564:. 411:ds 379:. 354:ds 346:dA 160:. 3031:( 3011:( 2787:( 2768:( 2666:( 2656:( 2419:) 2415:( 2405:e 2398:t 2391:v 2213:/ 2136:) 2132:( 2122:e 2115:t 2108:v 2063:. 2031:. 2001:. 1995:: 1968:. 1950:: 1926:. 1890:. 1851:. 1731:n 1729:2 1709:i 1703:i 1699:M 1681:, 1676:8 1670:3 1666:M 1657:6 1653:M 1649:2 1646:+ 1641:5 1637:M 1630:+ 1627:1 1624:= 1621:g 1604:M 1590:n 1586:/ 1582:n 1580:2 1566:n 1562:/ 1558:n 1549:n 1542:M 1538:) 1536:M 1534:( 1532:χ 1527:M 1507:, 1504:) 1501:M 1498:( 1492:6 1489:= 1484:) 1479:) 1476:v 1473:( 1464:3 1459:( 1452:M 1441:v 1433:+ 1428:) 1423:) 1420:v 1417:( 1408:6 1403:( 1396:M 1382:v 1364:v 1360:) 1358:v 1356:( 1354:χ 1345:M 1319:2 1315:g 1310:g 1306:χ 1298:π 1219:π 1201:. 1198:K 1193:T 1185:+ 1179:= 1176:) 1164:( 1151:π 1143:π 1139:π 1132:T 1125:T 1117:M 1109:T 1092:, 1087:g 1077:T 1051:2 1048:= 1045:K 1040:T 1013:R 1001:π 999:2 985:π 977:M 970:g 962:g 957:g 947:π 930:s 927:d 921:g 917:k 911:M 870:2 863:3 857:= 854:s 851:d 846:g 842:k 836:M 808:0 805:= 800:g 796:k 773:2 765:= 760:8 754:2 750:R 743:4 733:2 729:R 725:1 720:= 717:A 714:d 711:K 706:M 675:2 672:= 669:s 666:d 661:g 657:k 651:M 623:R 619:/ 615:1 612:= 607:g 603:k 582:0 579:= 576:K 549:2 546:= 543:A 540:d 537:K 532:M 507:0 504:= 499:g 495:k 472:2 468:R 463:/ 459:1 456:= 453:K 443:R 439:M 407:g 403:k 399:M 397:∂ 395:∫ 386:M 384:∂ 377:M 369:) 367:M 365:( 363:χ 358:M 328:, 325:) 322:M 319:( 310:2 307:= 304:s 301:d 295:g 291:k 285:M 274:+ 271:A 268:d 264:K 259:M 240:M 238:∂ 228:g 224:k 219:M 211:K 206:M 204:∂ 192:M 119:) 113:( 108:) 104:( 94:· 87:· 80:· 73:· 46:. 23:.

Index

Gauss–Bonnet gravity

verification
improve this article
adding citations to reliable sources
"Gauss–Bonnet theorem"
news
newspapers
books
scholar
JSTOR
Learn how and when to remove this message

differential geometry
curvature
surface
topology
on a plane
sum of its angles
Carl Friedrich Gauss
Pierre Ossian Bonnet
compact
Riemannian manifold
Gaussian curvature
geodesic curvature
element of area
Euler characteristic
piecewise smooth
angles
winding number

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.