Knowledge

Lower limit topology

Source 📝

730: 1309: 243:(has more open sets) than the standard topology on the real numbers (which is generated by the open intervals). The reason is that every open interval can be written as a (countably infinite) union of half-open intervals. 605: 954: 1349: 469: 423: 548: 1055: 1674: 1639: 1600: 1553: 1509: 1469: 1146: 509: 349: 213: 168: 1215: 1117: 92: 66: 1242: 995: 824: 1021: 890: 574: 316: 783: 1433: 1413: 1393: 1373: 1189: 1166: 1075: 864: 844: 754: 594: 377: 284: 264: 1247: 725:{\displaystyle {\bigl \{}[x,+\infty ){\bigr \}}\cup {\Bigl \{}{\bigl (}-\infty ,x-{\tfrac {1}{n}}{\bigr )}\,{\Big |}\,n\in \mathbb {N} {\Bigr \}}.} 17: 1765: 895: 1318: 1606:, since separable metric spaces are second-countable. However, the topology of a Sorgenfrey line is generated by a 1472: 428: 382: 178:, the Sorgenfrey line often serves as a useful counterexample to many otherwise plausible-sounding conjectures in 518: 1791: 1748: 1435:
when the domain is equipped with the lower limit topology and the codomain carries the standard topology.
1026: 1607: 1650: 1615: 1576: 1529: 1485: 1445: 1122: 485: 325: 189: 144: 1194: 1089: 75: 49: 1220: 1743: 1520: 1352: 959: 788: 1512: 1479: 1000: 869: 553: 1775: 472: 289: 175: 759: 8: 1753: 1686: 1418: 1398: 1378: 1358: 1174: 1151: 1060: 849: 829: 739: 579: 362: 269: 249: 103: 1564: 1761: 1739: 1723:
Adam Emeryk, Władysław Kulpa. The Sorgenfrey line has no connected compactification.
1439: 1312: 134: 126: 43: 1556: 1395:(when the codomain carries the standard topology) is the same as the usual limit of 756:
is compact, this cover has a finite subcover, and hence there exists a real number
216: 179: 99: 1706: 98:) and has a number of interesting properties. It is the topology generated by the 1771: 1757: 1568: 1516: 1304:{\displaystyle \forall \alpha \geq \alpha _{0}:L\leq x_{\alpha }<L+\epsilon } 1168: 1083: 240: 1082:
The name "lower limit topology" comes from the following fact: a sequence (or
1785: 512: 479: 183: 95: 69: 1642: 1560: 31: 1603: 356: 319: 171: 352: 215:
with itself is also a useful counterexample, known as the
1707:"general topology - The Sorgenfrey line is a Baire Space" 471:
are also clopen. This shows that the Sorgenfrey line is
674: 1653: 1618: 1579: 1532: 1488: 1448: 1421: 1401: 1381: 1361: 1321: 1250: 1223: 1197: 1177: 1154: 1125: 1092: 1063: 1029: 1003: 962: 898: 872: 852: 832: 791: 762: 742: 608: 582: 556: 521: 488: 431: 385: 365: 328: 292: 272: 252: 192: 147: 78: 52: 515:. To see this, consider a non-empty compact subset 1668: 1633: 1594: 1547: 1503: 1463: 1427: 1407: 1387: 1367: 1343: 1303: 1236: 1209: 1183: 1160: 1140: 1111: 1069: 1049: 1015: 989: 948: 884: 858: 838: 818: 777: 748: 724: 588: 568: 542: 503: 463: 417: 371: 343: 310: 278: 258: 207: 162: 86: 60: 949:{\displaystyle q(x)\in (a(x),x]\cap \mathbb {Q} } 714: 695: 646: 1783: 1311:. The Sorgenfrey line can thus be used to study 72:; it is different from the standard topology on 1676:does not have any connected compactifications. 1344:{\displaystyle f:\mathbb {R} \to \mathbb {R} } 1756:reprint of 1978 ed.), Berlin, New York: 687: 653: 636: 611: 464:{\displaystyle \{x\in \mathbb {R} :x\geq a\}} 222:In complete analogy, one can also define the 1738: 458: 432: 418:{\displaystyle \{x\in \mathbb {R} :x<a\}} 412: 386: 543:{\displaystyle C\subseteq \mathbb {R} _{l}} 1355:, then the ordinary right-sided limit of 1656: 1621: 1582: 1535: 1491: 1451: 1337: 1329: 1128: 1043: 942: 708: 700: 692: 530: 491: 442: 396: 331: 195: 150: 80: 54: 576:, consider the following open cover of 14: 1784: 1023:, are pairwise disjoint, the function 1526:In terms of compactness properties, 1191:from the right", meaning for every 1050:{\displaystyle q:C\to \mathbb {Q} } 24: 1251: 661: 628: 25: 1803: 40:right half-open interval topology 1669:{\displaystyle \mathbb {R} _{l}} 1634:{\displaystyle \mathbb {R} _{l}} 1595:{\displaystyle \mathbb {R} _{l}} 1548:{\displaystyle \mathbb {R} _{l}} 1504:{\displaystyle \mathbb {R} _{l}} 1473:perfectly normal Hausdorff space 1464:{\displaystyle \mathbb {R} _{l}} 1141:{\displaystyle \mathbb {R} _{l}} 504:{\displaystyle \mathbb {R} _{l}} 344:{\displaystyle \mathbb {R} _{l}} 228:left half-open interval topology 208:{\displaystyle \mathbb {R} _{l}} 163:{\displaystyle \mathbb {R} _{l}} 892:. Now choose a rational number 1717: 1699: 1333: 1210:{\displaystyle \epsilon >0} 1106: 1093: 1039: 984: 975: 969: 963: 935: 926: 920: 914: 908: 902: 813: 804: 798: 792: 772: 766: 631: 616: 305: 293: 13: 1: 1692: 1112:{\displaystyle (x_{\alpha })} 359:). Furthermore, for all real 233: 239:The lower limit topology is 87:{\displaystyle \mathbb {R} } 61:{\displaystyle \mathbb {R} } 27:Topology on the real numbers 7: 1749:Counterexamples in Topology 1725:Comm. Math. Univ. Carolinae 1680: 1237:{\displaystyle \alpha _{0}} 18:Half-open interval topology 10: 1808: 1711:Mathematics Stack Exchange 141:and is sometimes written 990:{\displaystyle (a(x),x]} 819:{\displaystyle (a(x),x]} 1148:converges to the limit 866:. This is true for all 785:such that the interval 1744:Seebach, J. Arthur Jr. 1670: 1635: 1596: 1549: 1505: 1465: 1429: 1409: 1389: 1369: 1345: 1305: 1238: 1217:there exists an index 1211: 1185: 1162: 1142: 1113: 1071: 1051: 1017: 1016:{\displaystyle x\in C} 991: 956:. Since the intervals 950: 886: 885:{\displaystyle x\in C} 860: 840: 820: 779: 750: 726: 590: 570: 569:{\displaystyle x\in C} 544: 505: 465: 419: 373: 345: 312: 280: 260: 209: 164: 88: 62: 1671: 1636: 1597: 1550: 1506: 1466: 1430: 1410: 1390: 1370: 1346: 1306: 1239: 1212: 1186: 1163: 1143: 1114: 1077:is at most countable. 1072: 1057:is injective, and so 1052: 1018: 992: 951: 887: 861: 841: 826:contains no point of 821: 780: 751: 727: 591: 571: 545: 506: 466: 420: 374: 346: 313: 311:{\displaystyle [a,b)} 281: 261: 210: 165: 89: 63: 1651: 1616: 1577: 1530: 1486: 1446: 1419: 1399: 1379: 1359: 1319: 1248: 1221: 1195: 1175: 1152: 1123: 1090: 1061: 1027: 1001: 960: 896: 870: 850: 830: 789: 778:{\displaystyle a(x)} 760: 740: 606: 580: 554: 519: 486: 473:totally disconnected 429: 383: 363: 326: 290: 270: 250: 224:upper limit topology 190: 145: 76: 50: 36:lower limit topology 1480:countability axioms 511:must be an at most 104:half-open intervals 1792:Topological spaces 1740:Steen, Lynn Arthur 1687:List of topologies 1666: 1631: 1592: 1545: 1501: 1461: 1425: 1405: 1385: 1365: 1341: 1313:right-sided limits 1301: 1234: 1207: 1181: 1158: 1138: 1109: 1067: 1047: 1013: 997:, parametrized by 987: 946: 882: 856: 836: 816: 775: 746: 722: 683: 586: 566: 540: 501: 461: 415: 369: 341: 308: 276: 256: 205: 160: 122:are real numbers. 94:(generated by the 84: 58: 1767:978-0-486-68735-3 1440:separation axioms 1428:{\displaystyle x} 1408:{\displaystyle f} 1388:{\displaystyle x} 1368:{\displaystyle f} 1184:{\displaystyle L} 1161:{\displaystyle L} 1070:{\displaystyle C} 859:{\displaystyle x} 839:{\displaystyle C} 749:{\displaystyle C} 682: 589:{\displaystyle C} 372:{\displaystyle a} 279:{\displaystyle b} 259:{\displaystyle a} 135:Robert Sorgenfrey 127:topological space 16:(Redirected from 1799: 1778: 1731: 1730:(1977), 483–487. 1721: 1715: 1714: 1703: 1675: 1673: 1672: 1667: 1665: 1664: 1659: 1640: 1638: 1637: 1632: 1630: 1629: 1624: 1601: 1599: 1598: 1593: 1591: 1590: 1585: 1554: 1552: 1551: 1546: 1544: 1543: 1538: 1521:second-countable 1510: 1508: 1507: 1502: 1500: 1499: 1494: 1470: 1468: 1467: 1462: 1460: 1459: 1454: 1434: 1432: 1431: 1426: 1414: 1412: 1411: 1406: 1394: 1392: 1391: 1386: 1374: 1372: 1371: 1366: 1350: 1348: 1347: 1342: 1340: 1332: 1310: 1308: 1307: 1302: 1288: 1287: 1269: 1268: 1243: 1241: 1240: 1235: 1233: 1232: 1216: 1214: 1213: 1208: 1190: 1188: 1187: 1182: 1167: 1165: 1164: 1159: 1147: 1145: 1144: 1139: 1137: 1136: 1131: 1118: 1116: 1115: 1110: 1105: 1104: 1076: 1074: 1073: 1068: 1056: 1054: 1053: 1048: 1046: 1022: 1020: 1019: 1014: 996: 994: 993: 988: 955: 953: 952: 947: 945: 891: 889: 888: 883: 865: 863: 862: 857: 845: 843: 842: 837: 825: 823: 822: 817: 784: 782: 781: 776: 755: 753: 752: 747: 731: 729: 728: 723: 718: 717: 711: 699: 698: 691: 690: 684: 675: 657: 656: 650: 649: 640: 639: 615: 614: 595: 593: 592: 587: 575: 573: 572: 567: 549: 547: 546: 541: 539: 538: 533: 510: 508: 507: 502: 500: 499: 494: 470: 468: 467: 462: 445: 424: 422: 421: 416: 399: 378: 376: 375: 370: 350: 348: 347: 342: 340: 339: 334: 317: 315: 314: 309: 285: 283: 282: 277: 265: 263: 262: 257: 217:Sorgenfrey plane 214: 212: 211: 206: 204: 203: 198: 180:general topology 169: 167: 166: 161: 159: 158: 153: 93: 91: 90: 85: 83: 67: 65: 64: 59: 57: 21: 1807: 1806: 1802: 1801: 1800: 1798: 1797: 1796: 1782: 1781: 1768: 1758:Springer-Verlag 1735: 1734: 1722: 1718: 1705: 1704: 1700: 1695: 1683: 1660: 1655: 1654: 1652: 1649: 1648: 1625: 1620: 1619: 1617: 1614: 1613: 1586: 1581: 1580: 1578: 1575: 1574: 1569:locally compact 1539: 1534: 1533: 1531: 1528: 1527: 1513:first-countable 1495: 1490: 1489: 1487: 1484: 1483: 1455: 1450: 1449: 1447: 1444: 1443: 1420: 1417: 1416: 1400: 1397: 1396: 1380: 1377: 1376: 1360: 1357: 1356: 1336: 1328: 1320: 1317: 1316: 1283: 1279: 1264: 1260: 1249: 1246: 1245: 1228: 1224: 1222: 1219: 1218: 1196: 1193: 1192: 1176: 1173: 1172: 1171:it "approaches 1153: 1150: 1149: 1132: 1127: 1126: 1124: 1121: 1120: 1100: 1096: 1091: 1088: 1087: 1062: 1059: 1058: 1042: 1028: 1025: 1024: 1002: 999: 998: 961: 958: 957: 941: 897: 894: 893: 871: 868: 867: 851: 848: 847: 831: 828: 827: 790: 787: 786: 761: 758: 757: 741: 738: 737: 713: 712: 707: 694: 693: 686: 685: 673: 652: 651: 645: 644: 635: 634: 610: 609: 607: 604: 603: 581: 578: 577: 555: 552: 551: 534: 529: 528: 520: 517: 516: 495: 490: 489: 487: 484: 483: 441: 430: 427: 426: 395: 384: 381: 380: 364: 361: 360: 335: 330: 329: 327: 324: 323: 291: 288: 287: 286:, the interval 271: 268: 267: 251: 248: 247: 236: 199: 194: 193: 191: 188: 187: 154: 149: 148: 146: 143: 142: 131:Sorgenfrey line 79: 77: 74: 73: 53: 51: 48: 47: 28: 23: 22: 15: 12: 11: 5: 1805: 1795: 1794: 1780: 1779: 1766: 1733: 1732: 1716: 1697: 1696: 1694: 1691: 1690: 1689: 1682: 1679: 1678: 1677: 1663: 1658: 1646: 1628: 1623: 1611: 1589: 1584: 1572: 1542: 1537: 1524: 1498: 1493: 1476: 1458: 1453: 1436: 1424: 1404: 1384: 1364: 1339: 1335: 1331: 1327: 1324: 1300: 1297: 1294: 1291: 1286: 1282: 1278: 1275: 1272: 1267: 1263: 1259: 1256: 1253: 1231: 1227: 1206: 1203: 1200: 1180: 1169:if and only if 1157: 1135: 1130: 1108: 1103: 1099: 1095: 1079: 1078: 1066: 1045: 1041: 1038: 1035: 1032: 1012: 1009: 1006: 986: 983: 980: 977: 974: 971: 968: 965: 944: 940: 937: 934: 931: 928: 925: 922: 919: 916: 913: 910: 907: 904: 901: 881: 878: 875: 855: 835: 815: 812: 809: 806: 803: 800: 797: 794: 774: 771: 768: 765: 745: 734: 733: 732: 721: 716: 710: 706: 703: 697: 689: 681: 678: 672: 669: 666: 663: 660: 655: 648: 643: 638: 633: 630: 627: 624: 621: 618: 613: 598: 597: 585: 565: 562: 559: 537: 532: 527: 524: 498: 493: 480:compact subset 476: 460: 457: 454: 451: 448: 444: 440: 437: 434: 414: 411: 408: 405: 402: 398: 394: 391: 388: 368: 338: 333: 307: 304: 301: 298: 295: 275: 255: 244: 235: 232: 202: 197: 157: 152: 129:is called the 125:The resulting 96:open intervals 82: 56: 26: 9: 6: 4: 3: 2: 1804: 1793: 1790: 1789: 1787: 1777: 1773: 1769: 1763: 1759: 1755: 1751: 1750: 1745: 1741: 1737: 1736: 1729: 1726: 1720: 1712: 1708: 1702: 1698: 1688: 1685: 1684: 1661: 1647: 1644: 1626: 1612: 1609: 1605: 1587: 1573: 1570: 1566: 1562: 1558: 1540: 1525: 1522: 1518: 1514: 1496: 1481: 1477: 1474: 1456: 1441: 1437: 1422: 1402: 1382: 1362: 1354: 1325: 1322: 1314: 1298: 1295: 1292: 1289: 1284: 1280: 1276: 1273: 1270: 1265: 1261: 1257: 1254: 1229: 1225: 1204: 1201: 1198: 1178: 1170: 1155: 1133: 1101: 1097: 1085: 1081: 1080: 1064: 1036: 1033: 1030: 1010: 1007: 1004: 981: 978: 972: 966: 938: 932: 929: 923: 917: 911: 905: 899: 879: 876: 873: 853: 833: 810: 807: 801: 795: 769: 763: 743: 735: 719: 704: 701: 679: 676: 670: 667: 664: 658: 641: 625: 622: 619: 602: 601: 600: 599: 583: 563: 560: 557: 535: 525: 522: 514: 513:countable set 496: 481: 477: 474: 455: 452: 449: 446: 438: 435: 409: 406: 403: 400: 392: 389: 366: 358: 354: 336: 321: 302: 299: 296: 273: 253: 246:For any real 245: 242: 238: 237: 231: 229: 225: 220: 218: 200: 185: 181: 177: 173: 155: 140: 136: 132: 128: 123: 121: 117: 113: 109: 105: 101: 97: 71: 68:, the set of 45: 41: 37: 33: 19: 1747: 1727: 1724: 1719: 1710: 1701: 1478:In terms of 1438:In terms of 351:(i.e., both 227: 223: 221: 138: 130: 124: 119: 115: 111: 107: 70:real numbers 46:defined on 39: 35: 29: 1643:Baire space 1608:quasimetric 1561:paracompact 846:apart from 379:, the sets 170:. Like the 32:mathematics 1693:References 1604:metrizable 1563:, but not 1519:, but not 1244:such that 550:. Fix an 234:Properties 172:Cantor set 1746:(1995) , 1565:σ-compact 1517:separable 1334:→ 1299:ϵ 1285:α 1277:≤ 1262:α 1258:≥ 1255:α 1252:∀ 1226:α 1199:ϵ 1102:α 1040:→ 1008:∈ 939:∩ 912:∈ 877:∈ 705:∈ 671:− 662:∞ 659:− 642:∪ 629:∞ 561:∈ 526:⊆ 453:≥ 439:∈ 393:∈ 176:long line 114:), where 1786:Category 1681:See also 1557:Lindelöf 1353:function 182:. The 174:and the 44:topology 1776:0507446 1602:is not 184:product 137:or the 102:of all 1774:  1764:  736:Since 357:closed 320:clopen 133:after 34:, the 1754:Dover 1641:is a 1471:is a 1351:is a 1315:: if 241:finer 226:, or 139:arrow 100:basis 42:is a 1762:ISBN 1567:nor 1559:and 1515:and 1290:< 1202:> 478:Any 425:and 407:< 355:and 353:open 266:and 118:and 1555:is 1511:is 1415:at 1375:at 1119:in 1084:net 482:of 322:in 318:is 186:of 38:or 30:In 1788:: 1772:MR 1770:, 1760:, 1742:; 1728:18 1709:. 1482:, 1442:, 1086:) 230:. 219:. 1752:( 1713:. 1662:l 1657:R 1645:. 1627:l 1622:R 1610:. 1588:l 1583:R 1571:. 1541:l 1536:R 1523:. 1497:l 1492:R 1475:. 1457:l 1452:R 1423:x 1403:f 1383:x 1363:f 1338:R 1330:R 1326:: 1323:f 1296:+ 1293:L 1281:x 1274:L 1271:: 1266:0 1230:0 1205:0 1179:L 1156:L 1134:l 1129:R 1107:) 1098:x 1094:( 1065:C 1044:Q 1037:C 1034:: 1031:q 1011:C 1005:x 985:] 982:x 979:, 976:) 973:x 970:( 967:a 964:( 943:Q 936:] 933:x 930:, 927:) 924:x 921:( 918:a 915:( 909:) 906:x 903:( 900:q 880:C 874:x 854:x 834:C 814:] 811:x 808:, 805:) 802:x 799:( 796:a 793:( 773:) 770:x 767:( 764:a 744:C 720:. 715:} 709:N 702:n 696:| 688:) 680:n 677:1 668:x 665:, 654:( 647:{ 637:} 632:) 626:+ 623:, 620:x 617:[ 612:{ 596:: 584:C 564:C 558:x 536:l 531:R 523:C 497:l 492:R 475:. 459:} 456:a 450:x 447:: 443:R 436:x 433:{ 413:} 410:a 404:x 401:: 397:R 390:x 387:{ 367:a 337:l 332:R 306:) 303:b 300:, 297:a 294:[ 274:b 254:a 201:l 196:R 156:l 151:R 120:b 116:a 112:b 110:, 108:a 106:[ 81:R 55:R 20:)

Index

Half-open interval topology
mathematics
topology
real numbers
open intervals
basis
half-open intervals
topological space
Robert Sorgenfrey
Cantor set
long line
general topology
product
Sorgenfrey plane
finer
clopen
open
closed
totally disconnected
compact subset
countable set
net
if and only if
right-sided limits
function
separation axioms
perfectly normal Hausdorff space
countability axioms
first-countable
separable

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.