Knowledge

High harmonic generation

Source đź“ť

427:
etc.). Additionally, during the high harmonic generation process, electrons are accelerated, and some of them return to their parent ion, resulting in X-ray bursts. However, the majority of these electrons do not return and instead contribute to dispersion for the co-propagating waves. The returning electrons carry phase due to processes like ionization, recombination, and propagation. Furthermore, the ionized atoms can influence the refractive index of the medium, providing another source of dispersion.
775: 315: 295: 112: 436: 33:) is a non-linear process during which a target (gas, plasma, solid or liquid sample) is illuminated by an intense laser pulse. Under such conditions, the sample will emit the high harmonics of the generation beam (above the fifth harmonic). Due to the coherent nature of the process, high-harmonics generation is a prerequisite of 770:{\displaystyle \Delta k=k_{q}-qk_{L}=\underbrace {\Delta k_{\mathrm {neutrals} }} _{<0}+\underbrace {\Delta k_{\mathrm {ions} }} _{<0}+\underbrace {\Delta k_{\mathrm {electrons} }} _{>0}+\underbrace {\Delta k_{\mathrm {geometry} }} _{>0}+\underbrace {\Delta k_{\mathrm {intrinsic} }} _{>\;\!0}+\cdots } 1446:
geometries, spectra extending to 1.6 keV, have been generated. For UV-VIS driven high harmonics, the waveguide term is small, and the phase-matching picture resembles the plane-wave geometry. In such geometries, narrow bandwidth harmonics extending to the carbon edge (300 eV) have been generated.
1445:
term is small. The generation of High-order harmonics in waveguide allows propagation with characteristics close to those of plane wave propagation. Such geometries benefit, especially X-ray spectra generated by IR beams, where long interaction volumes are needed for optimal power extraction. In such
359:
is due to wavefront phase jump close to the focus, and varies along it. Finally the dipole phase arises from the atomic response in the HHG process. When using a gas jet geometry, the optimal conditions for generating high harmonics emitted from short trajectories are obtained when the generating gas
1400:
is small. To phase-match the process, low pressures are needed. Moreover, in the UV, very high ionization levels can be tolerated (much larger than 100%). This gives HHG photon energy scalability with the intensity of the driving UV laser. Plain-wave geometry or loose focusing geometry allows highly
426:
In order to achieve intensity levels that can distort an atom's binding potential, it is necessary to focus the driving laser beam. This introduces dispersion terms affecting the phase mismatch, depending on the specific geometry (such as plane wave propagation, free focusing, hollow core waveguide,
158:
High harmonic generation strongly depends on the driving laser field and as a result the harmonics have similar temporal and spatial coherence properties. High harmonics are often generated with pulse durations shorter than that of the driving laser. This is due to the nonlinearity of the generation
130:
generated from solid targets. HHG in gases, far more widespread in application today, was first observed by McPherson and colleagues in 1987, and later by Ferray et al. in 1988, with surprising results: the high harmonics were found to decrease in intensity at low orders, as expected, but then were
2441:
Popmintchev, T.; Chen, M.-C.; Popmintchev, D.; Arpin, P.; Brown, S.; Alisauskas, S.; Andriukaitis, G.; Balciunas, T.; MĂĽcke, O. D.; Pugzlys, A.; Baltuska, A.; Shim, B.; Schrauth, S. E.; Gaeta, A.; Hernández-GarcĂ­a, C.; Plaja, L.; Becker, A.; Jaron-Becker, A.; Murnane, M. M.; et al. (2012).
334:
causes the returning electron to miss the parent nucleus. Quantum mechanically, the overlap of the returning electron wavepacket with the nuclear wavepacket is reduced. This has been observed experimentally, where the intensity of harmonics decreases rapidly with increasing ellipticity. Another
2374:
Popmintchev, D.; Hernández-García, C.; Dollar, F.; Mancuso, C. A.; Peng, P.-C.; Barwick, B.; Gorman, T. T.; Alonso-Mori, R.; Ališauskas, S.; Andriukaitis, G.; Baltuška, A.; Bostedt, C.; Chen, M.-C.; Dakovski, G. L.; Durfee, C. G.; Eckert, S.; Fan, T.-M.; Ferguson, W. R.; Frischkorn, C. G.;
363:
Furthermore, the implementation of loose focusing geometry for the driving field enables a higher number of emitters and photons to contribute to the generation process and thus, enhance the harmonic yield. When using a gas jet geometry, focusing the laser into the
84:). In 1967 New et al. observed the first third harmonic generation in a gas. In monatomic gases it is only possible to produce odd numbered harmonics for reasons of symmetry. Harmonic generation in the perturbative (weak field) regime is characterised by 339:. At intensities above 10 W·cm the magnetic component of the laser pulse, which is ignored in weak field optics, can become strong enough to deflect the returning electron. This will cause it to "miss" the parent nucleus and hence prevent HHG. 351:
process, phase matching plays an important role in high harmonic generation in the gas phase. In free-focusing geometry, the four causes of wavevector mismatch are: neutral dispersion, plasma dispersion, Gouy phase, and dipole phase.
163:. Often harmonics are only produced in a very small temporal window when the phase matching condition is met. Depletion of the generating media due to ionization also means that harmonic generation is mainly confined to the 302:
Half an optical cycle after ionization, the electron will reverse direction as the electric field changes sign, and will accelerate back towards the parent nucleus. Upon return to the parent nucleus it can then emit
1289:
is quite small and close to one. To phase-match the process of HHG, very high pressures and low ionization levels are required, thus giving a large number of emitters. In the opposite UV spectral range, the term
322:
Since the frequency of the emitted radiation depends on both the kinetic energy and on the ionization potential, the different frequencies are emitted at different recombination times (i.e. the emitted pulse is
1112: 170:
High harmonics are emitted co-linearly with the driving laser and can have a very tight angular confinement, sometimes with less divergence than that of the fundamental field and near Gaussian beam profiles.
1177: 1398: 1243: 147:/soft X-rays, synchronised with the driving laser and produced with the same repetition rate. The harmonic cut-off varies linearly with increasing laser intensity up until the saturation intensity I 131:
observed to form a plateau, with the intensity of the harmonics remaining approximately constant over many orders. Plateau harmonics spanning hundreds of eV have been measured which extend into the
327:). Furthermore, for every frequency, there are two corresponding recombination times. We refer to these two trajectories as the short trajectory (which are emitted first), and the long trajectory. 255: 1039:
is the phase accumulated by the electron during the time it spends away from the atom, etc. Each term has a specific sign which allows balancing the mismatch at a particular time and frequency.
1037: 928: 981: 831: 1443: 1332: 1287: 872: 1470: 421: 2048:
Dietrich, P.; Burnett, N. H.; Ivanov, M.; Corkum, P. B. (1994). "High-harmonic generation and correlated two-electron multiphoton ionization with elliptically polarized light".
2239:
Balcou, Philippe; Salieres, Pascal; L'Huillier, Anne; Lewenstein, Maciej (1997). "Generalized phase-matching conditions for high harmonics: The role of field-gradient forces".
1807: 423:, we need to find such parameters in the high dimensional space that will effectively make the combined refractive index at the driving laser wavelength nearly 1. 360:
is located after the focus, while generation of high harmonics from long trajectory can be obtained off-axis when the generating gas is located before the focus.
279:
This cut-off energy is derived from a semi-classical calculation, often called the three-step model. The electron is initially treated quantum mechanically as it
2515:
Rundquist, A.; Durfee, C. G.; Chang, Z.; Herne, C.; Backus, S.; Murnane, M. M.; Kapteyn, H. C. (1998). "Phase-matched generation of coherent soft X-rays".
1490: 1664:
Li, X. F.; L'Huillier, A.; Ferray, M.; Lompre, L. A.; Mainfray, G. (1989). "Multiple-harmonic generation in rare gases at high laser intensity".
2274:
Takahashi, E.; Nabekawa, Y.; Midorikawa, K. (2002). "Generation of 10-uj coherent extreme-ultraviolet light by use of high-order harmonics".
179:
The maximum photon energy producible with high harmonic generation is given by the cut-off of the harmonic plateau. This can be calculated
371:
More generally, in the X-ray spectral region, materials have a refractive index that is very close to 1. To balance the phase mismatch,
1045: 1117: 355:
The neutral dispersion is caused by the atoms while the plasma dispersion is due to the ions, and the two have opposite signs. The
1337: 1182: 1994: 1586:
McPherson, A.; et al. (1987). "Studies of multiphoton production of vacuum-ultraviolet radiation in the rare gases".
193: 155:
but these have a lower conversion efficiency so there is a balance to be found depending on the photon energies required.
2375:
et al. (2015). "Ultraviolet surprise: Efficient soft x-ray high-harmonic generation in multiply ionized plasmas".
330:
In the semiclassical picture, HHG will only occur if the driving laser field is linearly polarised. Ellipticity on the
283:
from the parent atom, but its subsequent dynamics are treated classically. The electron is assumed to be born into the
430:
The phase mismatch (> 0 phase velocity of the laser is faster than that of the X-rays) can be represented as:
986: 877: 151:
where harmonic generation stops. The saturation intensity can be increased by changing the atomic species to lighter
933: 783: 1404: 1293: 1248: 318:
Electron return energy (full blue curve) and excursion time (blue dashed curve), as a function of the return time
874:
is the contribution from ions (when neutrals are ionized, this term can be still sufficiently large in the UV),
836: 88:
efficiency with increasing harmonic order. This behaviour can be understood by considering an atom absorbing
374: 2317:
Grant-Jacob, James; Mills, Ben; Butcher, Tom; Chapman, Richard; Brocklesby, William; Frey, Jeremy (2011).
57:
of the original light's frequency. This process was first discovered in 1961 by Franken et al., using a
53:
can be used to generate new frequencies of light. The newly generated frequencies are integer multiples
81: 2581: 1766: 2442:"Bright coherent ultrahigh harmonics in the keV x-ray regime from mid-infrared femtosecond lasers". 1903:
Tisch, J. W. G.; et al. (1994). "Angularly resolved high-order harmonic generation in helium".
1621:
Ferray, M.; et al. (1988). "Multiple-harmonic conversion of 1064 nm radiation in rare gases".
1868: 1764:
Brabec, T.; Krausz, F. (2000). "Intense few-cycle laser fields: Frontiers of nonlinear optics".
2576: 1849:
Streaking of 43-attosecond soft-X-ray pulses generated by a passively CEP-stable mid-infrared,
143:
High harmonics have a number of interesting properties. They are a tunable table-top source of
2091:
Altucci, C.; Starczewski, T.; Mevel, E.; Wahlström, C.-G.; Carré, B.; L'Huillier, A. (1996).
2135: 311:. This description has become known as the recollisional model of high harmonic generation. 2536: 2463: 2386: 2333: 2283: 2248: 2205: 2150: 2104: 2057: 2006: 1959: 1912: 1877: 1816: 1775: 1720: 1673: 1630: 1595: 1560: 1551:
Burnett, N. H.; et al. (1977). "Harmonic generation in CO2 laser target interaction".
1512: 273: 265: 1401:
collinear phase matching and maximum flux extraction at the driving wavelengths where the
8: 2318: 180: 144: 20: 2540: 2467: 2390: 2337: 2287: 2252: 2209: 2154: 2108: 2061: 2010: 1963: 1916: 1881: 1820: 1779: 1724: 1677: 1634: 1599: 1564: 1516: 2526: 2497: 2453: 2420: 2174: 2030: 1832: 1746: 1646: 1455: 85: 34: 1828: 2552: 2517: 2489: 2444: 2412: 2377: 2351: 2299: 2221: 2166: 2131: 2073: 2022: 1975: 1928: 1836: 1738: 1689: 1650: 1642: 280: 116: 2501: 2178: 2034: 122:
The first high harmonic generation was observed in 1977 in interaction of intense CO
2544: 2479: 2471: 2424: 2402: 2394: 2341: 2291: 2256: 2213: 2193: 2158: 2112: 2092: 2065: 2014: 1967: 1920: 1885: 1824: 1783: 1750: 1728: 1681: 1638: 1603: 1568: 1520: 1460: 308: 287:
with zero initial velocity, and to be subsequently accelerated by the laser beam's
135:
regime. This plateau ends abruptly at a position called the high harmonic cut-off.
127: 66: 2548: 307:-like radiation during a recombination process with the atom as it returns to its 1948:"High-order harmonic generation from atoms and ions in the high intensity regime" 1538: 1503:
New, G. H. C.; Ward, J. F. (1967). "Optical Third-Harmonic Generation in Gases".
1465: 1334:
is large because of the closely located UV resonances, and in addition, the term
2162: 2018: 1971: 1889: 1524: 304: 288: 184: 45:
Perturbative harmonic generation is a process whereby laser light of frequency
2069: 1787: 1042:
The contribution from the electrons scales quadratically with the wavelength:
103:
increases, explaining the rapid decrease in the initial harmonic intensities.
2570: 2260: 2217: 1685: 365: 336: 77: 2475: 2398: 2116: 1924: 2493: 2416: 2355: 2303: 2170: 2026: 1979: 1742: 1607: 2556: 2225: 2077: 1932: 1693: 2346: 2295: 164: 2484: 2407: 2373: 95:
then emitting a single high energy photon. The probability of absorbing
1850: 356: 160: 132: 73: 58: 2238: 1946:
Krause, Jeffrey L.; Schafer, Kenneth J.; Kulander, Kenneth C. (1992).
1114:, while the contribution from atoms scales inversely with wavelength: 348: 183:
by examining the maximum energy the ionized electron can gain in the
152: 2194:"Phase of the atomic polarization in high-order harmonic generation" 1947: 1863: 1802: 1733: 1708: 1572: 2531: 2458: 983:
is the free focusing geometry, plane-wave of waveguiding geometry,
1471:
Resonant high harmonic generation from laser ablated plasma plumes
314: 1107:{\displaystyle \Delta n_{\mathrm {electrons} }\sim -\lambda ^{2}} 2191: 2090: 111: 2440: 2192:
Lewenstein, Maciej; Salieres, Pascal; L'huillier, Anne (1995).
2093:"Influence of atomic density in high-order harmonic generation" 284: 92: 62: 2316: 2129: 1709:"Laser technology: Source of coherent kiloelectronvolt X-rays" 1172:{\displaystyle \Delta n_{\mathrm {atoms} }\sim 1/\lambda ^{2}} 335:
effect which limits the intensity of the driving laser is the
1800: 331: 324: 1663: 1393:{\displaystyle \left|\Delta n_{\mathrm {electrons} }\right|} 1238:{\displaystyle \left|\Delta n_{\mathrm {electrons} }\right|} 294: 2273: 2047: 1995:"Plasma perspective on strong field multiphoton ionization" 1808:
Journal of Physics B: Atomic, Molecular and Optical Physics
1623:
Journal of Physics B: Atomic, Molecular and Optical Physics
1803:"Theoretical aspects of intense field harmonic generation" 2514: 2319:"Gas jet structure influence on high harmonic generation" 76:
solids is well understood and extensively used in modern
1801:
L'Huillier, A.; Schafer, K. J.; Kulander, K. C. (1991).
19:
For generation of the fourth and lower harmonics, see
1945: 1864:"High Harmonic Generation from Ultrafast Pump Lasers" 1407: 1340: 1296: 1251: 1185: 1120: 1048: 989: 936: 880: 839: 786: 439: 377: 196: 368:
can increase the efficiency of harmonic generation.
250:{\displaystyle E_{\mathrm {max} }=I_{p}+3.17\ U_{p}} 40: 2436: 2434: 2369: 2367: 2365: 1437: 1392: 1326: 1281: 1237: 1171: 1106: 1031: 975: 922: 866: 825: 769: 415: 249: 755: 2568: 2431: 2362: 1861: 1032:{\displaystyle \Delta k_{\mathrm {intrinsic} }} 923:{\displaystyle \Delta k_{\mathrm {electrons} }} 976:{\displaystyle \Delta k_{\mathrm {geometry} }} 826:{\displaystyle \Delta k_{\mathrm {neutrals} }} 187:of the laser. The cut-off energy is given by: 2508: 1489:P. A. Franken, A. E. Hill, C. W. Peters, and 1763: 1245:is quite large per electron, while the term 2136:"Coherence control of high-order harmonics" 1438:{\displaystyle {\vec {v}}\times {\vec {B}}} 1327:{\displaystyle \Delta n_{\mathrm {atoms} }} 1282:{\displaystyle \Delta n_{\mathrm {atoms} }} 867:{\displaystyle \Delta k_{\mathrm {ions} }} 754: 174: 115:Spectrum of a neon HHG source driven by a 2530: 2483: 2457: 2406: 2345: 1732: 1585: 1179:. Thus at long IR wavelengths, the term 1862:Schafer, K. J.; Kulander, K. C. (1997). 313: 293: 110: 1550: 1502: 2569: 1992: 1620: 1902: 1706: 416:{\displaystyle \Delta k=k_{q}-qk_{L}} 2130:Pascal, Salieres; L'Huillier, Anne; 1851:https://doi.org/10.1364/OE.25.027506 833:is the neutral atoms contribution, 13: 1379: 1376: 1373: 1370: 1367: 1364: 1361: 1358: 1355: 1346: 1318: 1315: 1312: 1309: 1306: 1297: 1273: 1270: 1267: 1264: 1261: 1252: 1224: 1221: 1218: 1215: 1212: 1209: 1206: 1203: 1200: 1191: 1142: 1139: 1136: 1133: 1130: 1121: 1082: 1079: 1076: 1073: 1070: 1067: 1064: 1061: 1058: 1049: 1023: 1020: 1017: 1014: 1011: 1008: 1005: 1002: 999: 990: 967: 964: 961: 958: 955: 952: 949: 946: 937: 914: 911: 908: 905: 902: 899: 896: 893: 890: 881: 858: 855: 852: 849: 840: 817: 814: 811: 808: 805: 802: 799: 796: 787: 738: 735: 732: 729: 726: 723: 720: 717: 714: 705: 677: 674: 671: 668: 665: 662: 659: 656: 647: 619: 616: 613: 610: 607: 604: 601: 598: 595: 586: 558: 555: 552: 549: 540: 512: 509: 506: 503: 500: 497: 494: 491: 482: 440: 378: 209: 206: 203: 14: 2593: 1493:, Phys. Rev. Lett. 7, 118 (1961). 342: 41:Perturbative harmonic generation 2310: 2267: 2232: 2185: 2123: 2084: 2041: 1986: 1939: 1896: 1855: 1843: 1794: 1707:Seres, J.; et al. (2005). 1757: 1700: 1657: 1614: 1579: 1544: 1531: 1496: 1483: 1429: 1414: 106: 1: 2549:10.1126/science.280.5368.1412 1476: 138: 930:is the plasma contribution, 159:process, phase matching and 7: 2163:10.1103/physrevlett.74.3776 2019:10.1103/physrevlett.71.1994 1972:10.1103/PhysRevLett.68.3535 1829:10.1088/0953-4075/24/15/004 1449: 10: 2598: 1890:10.1103/physrevlett.78.638 1643:10.1088/0953-4075/21/3/001 1537:J. Wildenauer, Journal of 1525:10.1103/physrevlett.19.556 268:from the laser field and I 82:second-harmonic generation 18: 2070:10.1103/physreva.50.r3585 1788:10.1103/revmodphys.72.545 1767:Reviews of Modern Physics 2261:10.1103/PhysRevA.55.3204 2218:10.1103/physreva.52.4747 1686:10.1103/physreva.39.5751 27:High-harmonic generation 2476:10.1126/science.1218497 2399:10.1126/science.aac9755 2143:Physical Review Letters 2117:10.1364/JOSAB.13.000148 1999:Physical Review Letters 1952:Physical Review Letters 1925:10.1103/physreva.49.r28 1869:Physical Review Letters 175:Semi-classical approach 72:Harmonic generation in 1993:Corkum, P. B. (1993). 1608:10.1364/JOSAB.4.000595 1439: 1394: 1328: 1283: 1239: 1173: 1108: 1033: 977: 924: 868: 827: 771: 417: 319: 299: 251: 167:of the driving pulse. 119: 1440: 1395: 1329: 1284: 1240: 1174: 1109: 1034: 978: 925: 869: 828: 772: 418: 317: 297: 252: 114: 99:photons decreases as 16:Laser science process 2347:10.1364/OE.19.009801 2296:10.1364/OL.27.001920 1405: 1338: 1294: 1249: 1183: 1118: 1046: 987: 934: 878: 837: 784: 437: 375: 298:The three-step model 274:ionization potential 266:ponderomotive energy 194: 2541:1998Sci...280.1412R 2525:(5368): 1412–1415. 2468:2012Sci...336.1287P 2452:(6086): 1287–1291. 2391:2015Sci...350.1225P 2385:(6265): 1225–1231. 2338:2011OExpr..19.9801G 2288:2002OptL...27.1920T 2253:1997PhRvA..55.3204B 2210:1995PhRvA..52.4747L 2155:1995PhRvL..74.3776S 2109:1996JOSAB..13..148A 2062:1994PhRvA..50.3585D 2011:1993PhRvL..71.1994C 1964:1992PhRvL..68.3535K 1917:1994PhRvA..49...28T 1882:1997PhRvL..78..638S 1821:1991JPhB...24.3315L 1780:2000RvMP...72..545B 1725:2005Natur.433..596S 1678:1989PhRvA..39.5751L 1635:1988JPhB...21L..31F 1600:1987JOSAB...4..595M 1565:1977ApPhL..31..172B 1517:1967PhRvL..19..556N 61:, with crystalline 21:harmonic generation 2132:Lewenstein, Maciej 2097:J. Opt. Soc. Am. B 2056:(5): R3585–R3588. 1456:Attosecond physics 1435: 1390: 1324: 1279: 1235: 1169: 1104: 1029: 973: 920: 864: 823: 767: 760: 748: 697: 687: 639: 629: 578: 568: 532: 522: 413: 320: 300: 247: 126:laser pulses with 120: 86:rapidly decreasing 49:and photon energy 35:attosecond physics 2332:(10): 9801–9806. 2282:(21): 1920–1922. 2241:Physical Review A 2198:Physical Review A 2149:(19): 3776–3779. 2050:Physical Review A 2005:(13): 1994–1997. 1958:(24): 3535–3538. 1905:Physical Review A 1815:(15): 3315–3341. 1672:(11): 5751–5761. 1666:Physical Review A 1432: 1417: 703: 701: 645: 643: 584: 582: 538: 536: 480: 478: 236: 117:Ti-sapphire laser 2589: 2582:Nonlinear optics 2561: 2560: 2534: 2512: 2506: 2505: 2487: 2461: 2438: 2429: 2428: 2410: 2371: 2360: 2359: 2349: 2323: 2314: 2308: 2307: 2271: 2265: 2264: 2247:(4): 3204–3210. 2236: 2230: 2229: 2204:(6): 4747–4754. 2189: 2183: 2182: 2140: 2127: 2121: 2120: 2088: 2082: 2081: 2045: 2039: 2038: 1990: 1984: 1983: 1943: 1937: 1936: 1900: 1894: 1893: 1859: 1853: 1847: 1841: 1840: 1798: 1792: 1791: 1761: 1755: 1754: 1736: 1704: 1698: 1697: 1661: 1655: 1654: 1618: 1612: 1611: 1583: 1577: 1576: 1553:Appl. Phys. Lett 1548: 1542: 1535: 1529: 1528: 1500: 1494: 1487: 1461:Nonlinear optics 1444: 1442: 1441: 1436: 1434: 1433: 1425: 1419: 1418: 1410: 1399: 1397: 1396: 1391: 1389: 1385: 1384: 1383: 1382: 1333: 1331: 1330: 1325: 1323: 1322: 1321: 1288: 1286: 1285: 1280: 1278: 1277: 1276: 1244: 1242: 1241: 1236: 1234: 1230: 1229: 1228: 1227: 1178: 1176: 1175: 1170: 1168: 1167: 1158: 1147: 1146: 1145: 1113: 1111: 1110: 1105: 1103: 1102: 1087: 1086: 1085: 1038: 1036: 1035: 1030: 1028: 1027: 1026: 982: 980: 979: 974: 972: 971: 970: 929: 927: 926: 921: 919: 918: 917: 873: 871: 870: 865: 863: 862: 861: 832: 830: 829: 824: 822: 821: 820: 776: 774: 773: 768: 759: 749: 744: 743: 742: 741: 696: 688: 683: 682: 681: 680: 638: 630: 625: 624: 623: 622: 577: 569: 564: 563: 562: 561: 531: 523: 518: 517: 516: 515: 474: 473: 458: 457: 422: 420: 419: 414: 412: 411: 396: 395: 256: 254: 253: 248: 246: 245: 234: 227: 226: 214: 213: 212: 67:nonlinear medium 2597: 2596: 2592: 2591: 2590: 2588: 2587: 2586: 2567: 2566: 2565: 2564: 2513: 2509: 2439: 2432: 2372: 2363: 2321: 2315: 2311: 2272: 2268: 2237: 2233: 2190: 2186: 2138: 2128: 2124: 2089: 2085: 2046: 2042: 1991: 1987: 1944: 1940: 1901: 1897: 1860: 1856: 1848: 1844: 1799: 1795: 1762: 1758: 1734:10.1038/433596a 1705: 1701: 1662: 1658: 1619: 1615: 1584: 1580: 1573:10.1063/1.89628 1549: 1545: 1539:Applied Physics 1536: 1532: 1511:(10): 556–559. 1505:Phys. Rev. Lett 1501: 1497: 1488: 1484: 1479: 1466:Photoionization 1452: 1424: 1423: 1409: 1408: 1406: 1403: 1402: 1354: 1353: 1349: 1345: 1341: 1339: 1336: 1335: 1305: 1304: 1300: 1295: 1292: 1291: 1260: 1259: 1255: 1250: 1247: 1246: 1199: 1198: 1194: 1190: 1186: 1184: 1181: 1180: 1163: 1159: 1154: 1129: 1128: 1124: 1119: 1116: 1115: 1098: 1094: 1057: 1056: 1052: 1047: 1044: 1043: 998: 997: 993: 988: 985: 984: 945: 944: 940: 935: 932: 931: 889: 888: 884: 879: 876: 875: 848: 847: 843: 838: 835: 834: 795: 794: 790: 785: 782: 781: 750: 713: 712: 708: 704: 702: 689: 655: 654: 650: 646: 644: 631: 594: 593: 589: 585: 583: 570: 548: 547: 543: 539: 537: 524: 490: 489: 485: 481: 479: 469: 465: 453: 449: 438: 435: 434: 407: 403: 391: 387: 376: 373: 372: 345: 271: 263: 241: 237: 222: 218: 202: 201: 197: 195: 192: 191: 177: 150: 141: 125: 109: 43: 24: 17: 12: 11: 5: 2595: 2585: 2584: 2579: 2563: 2562: 2507: 2430: 2361: 2326:Optics Express 2309: 2276:Optics Letters 2266: 2231: 2184: 2122: 2103:(1): 148–156. 2083: 2040: 1985: 1938: 1911:(1): R28–R31. 1895: 1876:(4): 638–641. 1854: 1842: 1793: 1774:(2): 545–591. 1756: 1699: 1656: 1613: 1578: 1559:(3): 172–174. 1543: 1541:62, 41 (1987). 1530: 1495: 1481: 1480: 1478: 1475: 1474: 1473: 1468: 1463: 1458: 1451: 1448: 1431: 1428: 1422: 1416: 1413: 1388: 1381: 1378: 1375: 1372: 1369: 1366: 1363: 1360: 1357: 1352: 1348: 1344: 1320: 1317: 1314: 1311: 1308: 1303: 1299: 1275: 1272: 1269: 1266: 1263: 1258: 1254: 1233: 1226: 1223: 1220: 1217: 1214: 1211: 1208: 1205: 1202: 1197: 1193: 1189: 1166: 1162: 1157: 1153: 1150: 1144: 1141: 1138: 1135: 1132: 1127: 1123: 1101: 1097: 1093: 1090: 1084: 1081: 1078: 1075: 1072: 1069: 1066: 1063: 1060: 1055: 1051: 1025: 1022: 1019: 1016: 1013: 1010: 1007: 1004: 1001: 996: 992: 969: 966: 963: 960: 957: 954: 951: 948: 943: 939: 916: 913: 910: 907: 904: 901: 898: 895: 892: 887: 883: 860: 857: 854: 851: 846: 842: 819: 816: 813: 810: 807: 804: 801: 798: 793: 789: 778: 777: 766: 763: 758: 753: 747: 740: 737: 734: 731: 728: 725: 722: 719: 716: 711: 707: 700: 695: 692: 686: 679: 676: 673: 670: 667: 664: 661: 658: 653: 649: 642: 637: 634: 628: 621: 618: 615: 612: 609: 606: 603: 600: 597: 592: 588: 581: 576: 573: 567: 560: 557: 554: 551: 546: 542: 535: 530: 527: 521: 514: 511: 508: 505: 502: 499: 496: 493: 488: 484: 477: 472: 468: 464: 461: 456: 452: 448: 445: 442: 410: 406: 402: 399: 394: 390: 386: 383: 380: 344: 343:Phase matching 341: 305:bremsstrahlung 289:electric field 281:tunnel ionizes 269: 261: 258: 257: 244: 240: 233: 230: 225: 221: 217: 211: 208: 205: 200: 185:electric field 176: 173: 148: 140: 137: 123: 108: 105: 42: 39: 15: 9: 6: 4: 3: 2: 2594: 2583: 2580: 2578: 2577:Laser science 2575: 2574: 2572: 2558: 2554: 2550: 2546: 2542: 2538: 2533: 2528: 2524: 2520: 2519: 2511: 2503: 2499: 2495: 2491: 2486: 2481: 2477: 2473: 2469: 2465: 2460: 2455: 2451: 2447: 2446: 2437: 2435: 2426: 2422: 2418: 2414: 2409: 2404: 2400: 2396: 2392: 2388: 2384: 2380: 2379: 2370: 2368: 2366: 2357: 2353: 2348: 2343: 2339: 2335: 2331: 2327: 2320: 2313: 2305: 2301: 2297: 2293: 2289: 2285: 2281: 2277: 2270: 2262: 2258: 2254: 2250: 2246: 2242: 2235: 2227: 2223: 2219: 2215: 2211: 2207: 2203: 2199: 2195: 2188: 2180: 2176: 2172: 2168: 2164: 2160: 2156: 2152: 2148: 2144: 2137: 2133: 2126: 2118: 2114: 2110: 2106: 2102: 2098: 2094: 2087: 2079: 2075: 2071: 2067: 2063: 2059: 2055: 2051: 2044: 2036: 2032: 2028: 2024: 2020: 2016: 2012: 2008: 2004: 2000: 1996: 1989: 1981: 1977: 1973: 1969: 1965: 1961: 1957: 1953: 1949: 1942: 1934: 1930: 1926: 1922: 1918: 1914: 1910: 1906: 1899: 1891: 1887: 1883: 1879: 1875: 1871: 1870: 1865: 1858: 1852: 1846: 1838: 1834: 1830: 1826: 1822: 1818: 1814: 1810: 1809: 1804: 1797: 1789: 1785: 1781: 1777: 1773: 1769: 1768: 1760: 1752: 1748: 1744: 1740: 1735: 1730: 1726: 1722: 1719:(7026): 596. 1718: 1714: 1710: 1703: 1695: 1691: 1687: 1683: 1679: 1675: 1671: 1667: 1660: 1652: 1648: 1644: 1640: 1636: 1632: 1628: 1624: 1617: 1609: 1605: 1601: 1597: 1593: 1589: 1582: 1574: 1570: 1566: 1562: 1558: 1554: 1547: 1540: 1534: 1526: 1522: 1518: 1514: 1510: 1506: 1499: 1492: 1486: 1482: 1472: 1469: 1467: 1464: 1462: 1459: 1457: 1454: 1453: 1447: 1426: 1420: 1411: 1386: 1350: 1342: 1301: 1256: 1231: 1195: 1187: 1164: 1160: 1155: 1151: 1148: 1125: 1099: 1095: 1091: 1088: 1053: 1040: 994: 941: 885: 844: 791: 764: 761: 756: 751: 745: 709: 698: 693: 690: 684: 651: 640: 635: 632: 626: 590: 579: 574: 571: 565: 544: 533: 528: 525: 519: 486: 475: 470: 466: 462: 459: 454: 450: 446: 443: 433: 432: 431: 428: 424: 408: 404: 400: 397: 392: 388: 384: 381: 369: 367: 361: 358: 353: 350: 340: 338: 337:Lorentz force 333: 328: 326: 316: 312: 310: 306: 296: 292: 290: 286: 282: 277: 275: 267: 242: 238: 231: 228: 223: 219: 215: 198: 190: 189: 188: 186: 182: 172: 168: 166: 162: 156: 154: 146: 136: 134: 129: 118: 113: 104: 102: 98: 94: 91: 87: 83: 79: 78:laser physics 75: 70: 68: 64: 60: 56: 52: 48: 38: 36: 32: 28: 22: 2522: 2516: 2510: 2485:10366/147089 2449: 2443: 2408:10366/147088 2382: 2376: 2329: 2325: 2312: 2279: 2275: 2269: 2244: 2240: 2234: 2201: 2197: 2187: 2146: 2142: 2125: 2100: 2096: 2086: 2053: 2049: 2043: 2002: 1998: 1988: 1955: 1951: 1941: 1908: 1904: 1898: 1873: 1867: 1857: 1845: 1812: 1806: 1796: 1771: 1765: 1759: 1716: 1712: 1702: 1669: 1665: 1659: 1626: 1622: 1616: 1591: 1587: 1581: 1556: 1552: 1546: 1533: 1508: 1504: 1498: 1491:G. Weinreich 1485: 1041: 779: 429: 425: 370: 362: 354: 347:As in every 346: 329: 321: 309:ground state 301: 278: 259: 178: 169: 165:leading edge 157: 142: 121: 100: 96: 89: 71: 54: 50: 46: 44: 30: 26: 25: 181:classically 153:noble gases 107:Development 2571:Categories 2532:2403.19636 2459:2403.19535 1629:(3): L31. 1594:(4): 595. 1477:References 357:Gouy phase 332:laser beam 161:ionization 139:Properties 133:soft X-ray 74:dielectric 59:ruby laser 1837:250751106 1651:250827054 1430:→ 1421:× 1415:→ 1347:Δ 1298:Δ 1253:Δ 1192:Δ 1161:λ 1149:∼ 1122:Δ 1096:λ 1092:− 1089:∼ 1050:Δ 991:Δ 938:Δ 882:Δ 841:Δ 788:Δ 765:⋯ 746:⏟ 706:Δ 685:⏟ 648:Δ 627:⏟ 587:Δ 566:⏟ 541:Δ 520:⏟ 483:Δ 460:− 441:Δ 398:− 379:Δ 366:Mach disk 349:nonlinear 2502:24628513 2494:22679093 2417:26785483 2356:21643236 2304:18033402 2179:35091499 2171:10058294 2134:(1995). 2035:29947935 2027:10054556 1980:10045729 1743:15703738 1450:See also 2557:9603725 2537:Bibcode 2518:Science 2464:Bibcode 2445:Science 2425:2342988 2387:Bibcode 2378:Science 2334:Bibcode 2284:Bibcode 2249:Bibcode 2226:9912816 2206:Bibcode 2151:Bibcode 2105:Bibcode 2078:9911439 2058:Bibcode 2007:Bibcode 1960:Bibcode 1933:9910285 1913:Bibcode 1878:Bibcode 1817:Bibcode 1776:Bibcode 1751:4425428 1721:Bibcode 1694:9901157 1674:Bibcode 1631:Bibcode 1596:Bibcode 1561:Bibcode 1513:Bibcode 325:chirped 272:is the 264:is the 260:where U 93:photons 65:as the 2555:  2500:  2492:  2423:  2415:  2354:  2302:  2224:  2177:  2169:  2076:  2033:  2025:  1978:  1931:  1835:  1749:  1741:  1713:Nature 1692:  1649:  1588:JOSA B 780:where 285:vacuum 235:  128:plasma 63:quartz 2527:arXiv 2498:S2CID 2454:arXiv 2421:S2CID 2322:(PDF) 2175:S2CID 2139:(PDF) 2031:S2CID 1833:S2CID 1747:S2CID 1647:S2CID 80:(see 2553:PMID 2490:PMID 2413:PMID 2352:PMID 2300:PMID 2222:PMID 2167:PMID 2074:PMID 2023:PMID 1976:PMID 1929:PMID 1739:PMID 1690:PMID 752:> 691:> 633:> 572:< 526:< 232:3.17 2545:doi 2523:280 2480:hdl 2472:doi 2450:336 2403:hdl 2395:doi 2383:350 2342:doi 2292:doi 2257:doi 2214:doi 2159:doi 2113:doi 2066:doi 2015:doi 1968:doi 1921:doi 1886:doi 1825:doi 1784:doi 1729:doi 1717:433 1682:doi 1639:doi 1604:doi 1569:doi 1521:doi 149:sat 145:XUV 31:HHG 2573:: 2551:. 2543:. 2535:. 2521:. 2496:. 2488:. 2478:. 2470:. 2462:. 2448:. 2433:^ 2419:. 2411:. 2401:. 2393:. 2381:. 2364:^ 2350:. 2340:. 2330:19 2328:. 2324:. 2298:. 2290:. 2280:27 2278:. 2255:. 2245:55 2243:. 2220:. 2212:. 2202:52 2200:. 2196:. 2173:. 2165:. 2157:. 2147:74 2145:. 2141:. 2111:. 2101:13 2099:. 2095:. 2072:. 2064:. 2054:50 2052:. 2029:. 2021:. 2013:. 2003:71 2001:. 1997:. 1974:. 1966:. 1956:68 1954:. 1950:. 1927:. 1919:. 1909:49 1907:. 1884:. 1874:78 1872:. 1866:. 1831:. 1823:. 1813:24 1811:. 1805:. 1782:. 1772:72 1770:. 1745:. 1737:. 1727:. 1715:. 1711:. 1688:. 1680:. 1670:39 1668:. 1645:. 1637:. 1627:21 1625:. 1602:. 1590:. 1567:. 1557:31 1555:. 1519:. 1509:19 1507:. 291:. 276:. 69:. 55:nω 51:ħω 37:. 2559:. 2547:: 2539:: 2529:: 2504:. 2482:: 2474:: 2466:: 2456:: 2427:. 2405:: 2397:: 2389:: 2358:. 2344:: 2336:: 2306:. 2294:: 2286:: 2263:. 2259:: 2251:: 2228:. 2216:: 2208:: 2181:. 2161:: 2153:: 2119:. 2115:: 2107:: 2080:. 2068:: 2060:: 2037:. 2017:: 2009:: 1982:. 1970:: 1962:: 1935:. 1923:: 1915:: 1892:. 1888:: 1880:: 1839:. 1827:: 1819:: 1790:. 1786:: 1778:: 1753:. 1731:: 1723:: 1696:. 1684:: 1676:: 1653:. 1641:: 1633:: 1610:. 1606:: 1598:: 1592:4 1575:. 1571:: 1563:: 1527:. 1523:: 1515:: 1427:B 1412:v 1387:| 1380:s 1377:n 1374:o 1371:r 1368:t 1365:c 1362:e 1359:l 1356:e 1351:n 1343:| 1319:s 1316:m 1313:o 1310:t 1307:a 1302:n 1274:s 1271:m 1268:o 1265:t 1262:a 1257:n 1232:| 1225:s 1222:n 1219:o 1216:r 1213:t 1210:c 1207:e 1204:l 1201:e 1196:n 1188:| 1165:2 1156:/ 1152:1 1143:s 1140:m 1137:o 1134:t 1131:a 1126:n 1100:2 1083:s 1080:n 1077:o 1074:r 1071:t 1068:c 1065:e 1062:l 1059:e 1054:n 1024:c 1021:i 1018:s 1015:n 1012:i 1009:r 1006:t 1003:n 1000:i 995:k 968:y 965:r 962:t 959:e 956:m 953:o 950:e 947:g 942:k 915:s 912:n 909:o 906:r 903:t 900:c 897:e 894:l 891:e 886:k 859:s 856:n 853:o 850:i 845:k 818:s 815:l 812:a 809:r 806:t 803:u 800:e 797:n 792:k 762:+ 757:0 739:c 736:i 733:s 730:n 727:i 724:r 721:t 718:n 715:i 710:k 699:+ 694:0 678:y 675:r 672:t 669:e 666:m 663:o 660:e 657:g 652:k 641:+ 636:0 620:s 617:n 614:o 611:r 608:t 605:c 602:e 599:l 596:e 591:k 580:+ 575:0 559:s 556:n 553:o 550:i 545:k 534:+ 529:0 513:s 510:l 507:a 504:r 501:t 498:u 495:e 492:n 487:k 476:= 471:L 467:k 463:q 455:q 451:k 447:= 444:k 409:L 405:k 401:q 393:q 389:k 385:= 382:k 270:p 262:p 243:p 239:U 229:+ 224:p 220:I 216:= 210:x 207:a 204:m 199:E 124:2 101:n 97:n 90:n 47:ω 29:( 23:.

Index

harmonic generation
attosecond physics
ruby laser
quartz
nonlinear medium
dielectric
laser physics
second-harmonic generation
rapidly decreasing
photons

Ti-sapphire laser
plasma
soft X-ray
XUV
noble gases
ionization
leading edge
classically
electric field
ponderomotive energy
ionization potential
tunnel ionizes
vacuum
electric field
Illustration of the semi-classical three-step model of HHG
bremsstrahlung
ground state

chirped

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑