Knowledge

Horn antenna

Source 📝

1072: 522: 765: 31: 1104: 363: 214: 1128: 174: 1023:. Also, the aperture isn't partially obstructed by the feed and its supports, as with ordinary front-fed parabolic dishes, allowing it to achieve aperture efficiencies of 70% as opposed to 55–60% for front-fed dishes. The disadvantage is that it is far larger and heavier for a given aperture area than a parabolic dish, and must be mounted on a cumbersome turntable to be fully steerable. This design was used for a few 514: 371: 185:(a metal pipe used to carry radio waves) out into space, or collect radio waves into a waveguide for reception. It typically consists of a short length of rectangular or cylindrical metal tube (the waveguide), closed at one end, flaring into an open-ended conical or pyramidal shaped horn on the other end. The radio waves are usually introduced into the waveguide by a 44: 440:, they can have pyramidal or conical cross sections. Exponential horns have minimum internal reflections, and almost constant impedance and other characteristics over a wide frequency range. They are used in applications requiring high performance, such as feed horns for communication satellite antennas and radio telescopes. 537:
For a given frequency and horn length, there is some flare angle that gives minimum reflection and maximum gain. The internal reflections in straight-sided horns come from the two locations along the wave path where the impedance changes abruptly; the mouth or aperture of the horn, and the throat
349:
As the size of a horn (expressed in wavelengths) is increased, the phase error increases, giving the horn a wider radiation pattern. Keeping the beamwidth narrow requires a longer horn (smaller flare angle) to keep the phase error constant. The increasing phase error limits the aperture size of
466:– This simple dual-mode horn superficially looks like a pyramidal horn with a square output aperture. On closer inspection, however, the square output aperture is seen to be rotated 45° relative to the waveguide. These horns are typically machined into split blocks and used at sub-mm wavelengths. 546:
of the antenna is low because the small mouth approximates an open-ended waveguide, with a large impedance step. As the angle is increased, the reflection at the mouth decreases rapidly and the antenna's gain increases. In contrast, in wide horns with flare angles approaching 90° most of the
1801: 1013:
in 1961. It is also referred to as the "sugar scoop" due to its characteristic shape. It consists of a horn antenna with a reflector mounted in the mouth of the horn at a 45 degree angle so the radiated beam is at right angles to the horn axis. The reflector is a segment of a parabolic
396:– A pyramidal horn with only one pair of sides flared and the other pair parallel. It produces a fan-shaped beam, which is narrow in the plane of the flared sides, but wide in the plane of the narrow sides. These types are often used as feed horns for wide search radar antennas. 260:). When radio waves travelling through the waveguide hit the opening, this impedance-step reflects a significant fraction of the wave energy back down the guide toward the source, so that not all of the power is radiated. This is similar to the reflection at an open-ended 446:– A horn with parallel slots or grooves, small compared with a wavelength, covering the inside surface of the horn, transverse to the axis. Corrugated horns have wider bandwidth and smaller sidelobes and cross-polarization, and are widely used as feed horns for 1802:
L. Chang, L. -L. Chen, J. -Q. Zhang and D. Li, "An Open Boundary Quad-Ridged Horn Antenna Operating at 1-18 GHz," 2020 9th Asia-Pacific Conference on Antennas and Propagation (APCAP), Xiamen, China, 2020, pp. 1-2, doi: 10.1109/APCAP50217.2020.9246141. (2020).
157:. The usable bandwidth of horn antennas is typically of the order of 10:1, and can be up to 20:1 (for example allowing it to operate from 1 GHz to 20 GHz). The input impedance is slowly varying over this wide frequency range, allowing low 34:
Pyramidal microwave horn antenna, with a bandwidth of 0.8 to 18 GHz. A coaxial cable feedline attaches to the connector visible at top. This type is called a ridged horn; the curving fins visible inside the mouth of the horn increase the antenna's
382:
Below are the main types of horn antennas. Horns can have different flare angles as well as different expansion curves (elliptic, hyperbolic, etc.) in the E-field and H-field directions, making possible a wide variety of different beam profiles.
338:
increases smoothly from the edges of the aperture plane to the center, because of the difference in length of the center point and the edge points from the apex point. The difference in phase between the center point and the edges is called the
1301: 639: 547:
reflection is at the throat. The horn's gain is again low because the throat approximates an open-ended waveguide. As the angle is decreased, the amount of reflection at this site drops, and the horn's gain again increases.
1018:
fed off-axis. The advantage of this design over a standard parabolic antenna is that the horn shields the antenna from radiation coming from angles outside the main beam axis, so its radiation pattern has very small
484:– a long narrow horn, long enough so the phase error is a negligible fraction of a wavelength, so it essentially radiates a plane wave. It has an aperture efficiency of 1.0 so it gives the maximum gain and minimum 390:(fig. a) – a horn antenna with the horn in the shape of a four-sided pyramid, with a rectangular cross section. They are a common type, used with rectangular waveguides, and radiate linearly polarized radio waves. 932: 343:. This phase error, which increases with the flare angle, reduces the gain and increases the beamwidth, giving horns wider beamwidths than similar-sized plane-wave antennas such as parabolic dishes. 863: 134:
in World War II stimulated horn research to design feed horns for radar antennas. The corrugated horn invented by Kay in 1962 has become widely used as a feed horn for microwave antennas such as
287:
To improve these poor characteristics, the ends of the waveguide are flared out to form a horn. The taper of the horn changes the impedance gradually along the horn's length. This acts like an
350:
practical horns to about 15 wavelengths; larger apertures would require impractically long horns. This limits the gain of practical horns to about 1000 (30 dBi) and the corresponding minimum
472:– A pyramidal horn with ridges or fins attached to the inside of the horn, extending down the center of the sides. The fins lower the cutoff frequency, increasing the antenna's bandwidth. 517:
Corrugated horn antenna with a bandwidth of 3.7 to 6 GHz designed to attach to SMA waveguide feedline. This was used as a feedhorn for a parabolic antenna on a British military base.
1039:, which can achieve equally good sidelobe performance with a lighter more compact construction. Probably the most photographed and well-known example is the 15-meter-long (50-foot) 681: 993:= 0.522. So an approximate figure of 0.5 is often used. The aperture efficiency increases with the length of the horn, and for aperture-limited horns is approximately unity. 248:
If a simple open-ended waveguide is used as an antenna, without the horn, the sudden end of the conductive walls causes an abrupt impedance change at the aperture, from the
460:– (The Potter horn ) This horn can be used to replace the corrugated horn for use at sub-mm wavelengths where the corrugated horn is lossy and difficult to fabricate. 498:– A special type of horn antenna designed as a four-pronged structure with open boundaries. It covers width the frequency range and polarization is dual linear. 1133:
AT&T Long-Lines KS-15676 C-band (4–6 GHz) microwave relay horn-reflector antennas on roof of AT&T telephone switching center, Seattle, Washington, USA
542:
of the horn (the angle the sides make with the axis). In narrow horns with small flare angles most of the reflection occurs at the mouth of the horn. The
276:, wasting energy and possibly overheating the transmitter. In addition, the small aperture of the waveguide (less than one wavelength) causes significant 560: 291:, allowing most of the wave energy to radiate out the end of the horn into space, with minimal reflection. The taper functions similarly to a tapered 1861: 1611: 2199: 1692: 295:, or an optical medium with a smoothly varying refractive index. In addition, the wide aperture of the horn projects the waves in a narrow beam. 1865: 550:
This discussion shows that there is some flare angle between 0° and 90° which gives maximum gain and minimum reflection. This is called the
488:
for a given aperture size. The gain is not affected by the length but only limited by diffraction at the aperture. Used as feed horns in
530: 434:(fig. e) – A horn with curved sides, in which the separation of the sides increases as an exponential function of length. Also called a 504:– Similar to the open boundary quad-ridged horn above. It was designed to operate over a wide frequency range, low VSWR, and high gain. 874: 306:. However conical and pyramidal horns are most widely used, because they have straight sides and are easier to design and fabricate. 2307: 205:
of satellite dishes, the open mouth of the horn is often covered by a plastic sheet transparent to radio waves, to exclude moisture.
17: 554:. Most practical horn antennas are designed as optimum horns. In a pyramidal horn, the dimensions that give an optimum horn are: 2110: 193:
antenna. The waves then radiate out the horn end in a narrow beam. In some equipment the radio waves are conducted between the
2570: 201:
and the antenna by a waveguide; in this case the horn is attached to the end of the waveguide. In outdoor horns, such as the
2565: 1824: 1670: 1582: 1284: 1722: 1560: 302:
taper. Exponential horns are used in special applications that require minimum signal loss, such as satellite antennas and
810: 1532: 2539: 2357: 2077: 2018: 1901: 1732: 1702: 1660: 1636: 1542: 1365: 1031:
ground antennas during the 1960s. Its largest use, however, was as fixed antennas for microwave relay links in the
768:
Large pyramidal horn used in 1951 to detect the 21 cm/8.3 inches (1.43 GHz) radiation from hydrogen gas in the
177:
Pyramidal horn antennas for a variety of frequencies. They have flanges at the top to attach to standard waveguides.
2008: 1919: 1274: 1891: 800:
of a pyramidal horn antenna (the ratio of the radiated power intensity along its beam axis to the intensity of an
2580: 478:– A horn which is divided into several subhorns by metal partitions (septums) inside, attached to opposite walls. 1248: 1094: 1052: 126:
in his pioneering experiments with microwaves. The modern horn antenna was invented independently in 1938 by
245:
of a tube to the impedance of free space, enabling the waves from the tube to radiate efficiently into space.
221:
on a Hughes Direcway home satellite dish. A transparent plastic sheet covers the horn mouth to keep out rain.
1767:
Johansson, Joakim F.; Whyborn, Nicholas D. (May 1992). "The Diagonal Horn as a Sub-Millimeter Wave Antenna".
154: 116: 36: 1953: 650: 2179: 979:
The aperture efficiency ranges from 0.4 to 0.8 in practical horn antennas. For optimum pyramidal horns,
2204: 2103: 1151: 761:. Tables showing dimensions for optimum horns for various frequencies are given in microwave handbooks. 334:, is a scaled-up reproduction of the fields in the waveguide. Because the wavefronts are spherical, the 1014:
reflector, and the focus of the reflector is at the apex of the horn, so the device is equivalent to a
2585: 1563:"A Broadband Double Ridged Horn Antenna for Radiated Immunity and Emissions Test from 18 GHz to 50 GHz" 1059:. Another more recent horn-reflector design is the cass-horn, which is a combination of a horn with a 521: 2575: 2442: 1561:
Tsung-Ching Lin; Chih-Hung Lee; Ming-Kun Hsieh; Cheng-Nan Chiu; Ding-Bing Lin; Hsin-Piao Lin (2021).
1071: 1854: 1604: 1402: 346:
At the flare angle, the radiation of the beam lobe is down about 20 dB from its maximum value.
2437: 2347: 1348: 1114: 2337: 2146: 1028: 538:
where the sides begin to flare out. The amount of reflection at these two sites varies with the
253: 2519: 2457: 2194: 2096: 2037: 1343: 1171: 1056: 773: 447: 2174: 2067: 1992: 1410: 1327: 1110: 1090: 1048: 123: 104: 2482: 2382: 2254: 2229: 1776: 1748:
Potter, P. D. (1963). "A new horn antenna with suppressed sidelobes and equal beamwidths".
1335: 1220: 1164: 1078: 1040: 299: 226: 190: 108: 764: 122:
One of the first horn antennas was constructed in 1897 by Bengali-Indian radio researcher
8: 2402: 2294: 2249: 1002: 971: 273: 265: 189:
attached to the side, with the central conductor projecting into the waveguide to form a
158: 76: 2069:
Practical Conic Sections: The Geometric Properties of Ellipses, Parabolas and Hyperbolas
1780: 1339: 2544: 2392: 2332: 2327: 2224: 2136: 1972: 1842: 1830: 1592: 1488: 1449: 1390: 1371: 1060: 1032: 801: 526: 288: 43: 2529: 2422: 2342: 2264: 2159: 2073: 2014: 1897: 1834: 1820: 1728: 1698: 1666: 1632: 1578: 1538: 1361: 1280: 1036: 1015: 331: 292: 281: 261: 92: 1816: 1574: 1492: 1453: 1005:
is known as a Hogg-horn, or horn-reflector antenna, invented by Alfred C. Beck and
2503: 2317: 2279: 2244: 1968: 1812: 1784: 1570: 1480: 1468: 1441: 1429: 1375: 1353: 634:{\displaystyle a_{E}={\sqrt {2\lambda L_{E}}}\qquad a_{H}={\sqrt {3\lambda L_{H}}}} 48: 2509: 2472: 2447: 2372: 2362: 2219: 2189: 2169: 2154: 2119: 1626: 1113:
in Andover, Maine, USA, used in 1960s to communicate with the first direct relay
1024: 1006: 489: 451: 425: 315: 303: 230: 139: 72: 64: 1035:
microwave network. Since the 1970s this design has been superseded by shrouded
2534: 2467: 2452: 2427: 2302: 2259: 2234: 2184: 1804: 1562: 1484: 1445: 413: 403: 327: 323: 314:
The waves travel down a horn as spherical wavefronts, with their origin at the
249: 242: 198: 135: 1930: 1512: 1357: 1186: 2559: 2514: 2407: 2397: 2352: 2239: 1694:
Quasioptical Systems: Gaussian beam quasioptical propagation and applications
335: 269: 186: 127: 428:, with a circular cross section. They are used with cylindrical waveguides. 2462: 2432: 2417: 2412: 2387: 2284: 2269: 2214: 2209: 1086: 1044: 794: 790: 715: 543: 319: 96: 84: 30: 2312: 2164: 786: 277: 194: 112: 957: 234: 161:(VSWR) over the bandwidth. The gain of horn antennas ranges up to 25 75:
to direct radio waves in a beam. Horns are widely used as antennas at
1978: 1788: 1567:
2021 7th International Conference on Applied System Innovation (ICASI)
1103: 412:(fig. c) – A sectoral horn flared in the direction of the magnetic or 402:(fig. b) – A sectoral horn flared in the direction of the electric or 213: 2367: 2274: 1127: 1082: 1020: 1010: 769: 485: 375: 362: 351: 330:
at the aperture plane at the mouth of the horn, which determines the
218: 202: 182: 150: 100: 88: 80: 68: 1809:
2020 9th Asia-Pacific Conference on Antennas and Propagation (APCAP)
173: 2524: 2322: 2128: 146: 1724:
Astrophysics, Volume 12 of Methods of experimental physics, Part 2
644:
For a conical horn, the dimensions that give an optimum horn are:
1805:"An Open Boundary Quad-Ridged Horn Antenna Operating at 1-18 GHz" 1411:"The work of Jagadis Chandra Bose: 100 years of MM-wave research" 1328:"The work of Jagadis Chandra Bose: 100 years of MM-wave research" 1118: 927:{\displaystyle G=\left({\frac {\pi d}{\lambda }}\right)^{2}e_{A}} 238: 162: 99:
of other antennas, and as directive antennas for such devices as
2088: 1954:"Project Echo: A Horn-Reflector Antenna for Space Communication" 370: 2498: 757:
horn). The optimum horn yields maximum gain for a given horn
2477: 513: 131: 1417:. Vol. 2, no. 3. Belgorod, Russia. pp. 87–96. 241:. It provides a gradual transition structure to match the 1935:, filed November 26, 1941, Alfred C. Beck, Harold T. Friis 1191:, filed November 26, 1941, Alfred C. Beck, Harold T. Friis 264:
or a boundary between optical mediums with a low and high
1430:"Metal Horns as Directive Receivers of Ultra-Short Waves" 257: 145:
An advantage of horn antennas is that since they have no
1332:
1997 IEEE MTT-S International Microwave Symposium Digest
969:
is a dimensionless parameter between 0 and 1 called the
749:
An optimum horn does not yield maximum gain for a given
727:
is the slant height of the side in the H-field direction
298:
The horn shape that gives minimum reflected power is an
1915: 1913: 1109:
Large 54-meter (177 ft) horn reflector antenna at
268:, like at a glass surface. The reflected waves cause 1952:
Crawford, A.B.; Hogg, D. C.; Hunt, L. E. (July 1961).
1889: 1624: 181:
A horn antenna is used to transmit radio waves from a
119:, low losses, and simple construction and adjustment. 877: 858:{\displaystyle G={\frac {4\pi A}{\lambda ^{2}}}e_{A}} 813: 705:
is the width of the aperture in the H-field direction
696:
is the width of the aperture in the E-field direction
653: 563: 1988: 1986: 1910: 1769:
IEEE Transactions on Microwave Theory and Techniques
1659:
Bakshi, K. A.; Bakshi, A. V.; Bakshi, U. A. (2009).
47:
The first modern horn antenna in 1938 with inventor
2045:
Bell System Practices, Issue 3, Section 402-421-100
1517:, filed: December 10, 1946, granted: April 19, 1949 1179:
Bell System Practices, Issue 3, Section 402-421-100
1009:in 1941 and further developed by David C. Hogg at 83:frequencies, above 300 MHz. They are used as 1658: 926: 857: 675: 633: 280:of the waves issuing from it, resulting in a wide 95:, as standard calibration antennas to measure the 1983: 2557: 1951: 1766: 1043:at Bell Labs in Holmdel, New Jersey, with which 733:is the diameter of the cylindrical horn aperture 525:Exponential feed horn for 26-meter (85 ft) 149:elements, they can operate over a wide range of 2010:Satellite systems: principles and technologies 1427: 1154:(uses 1 horn antenna for Jupiter observations) 1001:A type of antenna that combines a horn with a 2104: 2038:"KS-15676 Horn-Reflector Antenna Description" 1428:Southworth, G. C.; King, A. P. (March 1939). 1421: 1172:"KS-15676 Horn-Reflector Antenna Description" 753:. That is achieved with a very long horn (an 739:is the slant height of the cone from the apex 1890:Tasuku, Teshirogi; Tsukasa Yoneyama (2001). 1686: 1684: 1682: 1665:. Technical Publications. pp. 6.1–6.3. 1625:Stutzman, Warren L.; Gary A. Thiele (1998). 1506: 1214: 1212: 1210: 1208: 1206: 225:A horn antenna serves the same function for 1947: 1945: 1943: 1467:Barrow, W. L.; Chu, L. J. (February 1939). 531:Goldstone Deep Space Communications Complex 529:spacecraft communication antenna at NASA's 2111: 2097: 2032: 2030: 1864:) CS1 maint: numeric names: authors list ( 1218: 1111:AT&T satellite communications facility 986:= 0.511., while for optimum conical horns 950:is the aperture diameter of a conical horn 217:Corrugated conical horn antenna used as a 130:and G. C. Southworth The development of 2002: 2000: 1885: 1883: 1881: 1879: 1877: 1875: 1860:CS1 maint: multiple names: authors list ( 1690: 1679: 1654: 1652: 1650: 1648: 1610:CS1 maint: multiple names: authors list ( 1466: 1347: 1299: 1203: 996: 1940: 1716: 1714: 1460: 1085:in Holmdel, New Jersey, USA, with which 763: 520: 512: 369: 361: 212: 172: 91:) for larger antenna structures such as 42: 29: 2027: 1526: 1524: 1325: 1279:. Technical Publications. p. 159. 1272: 1242: 1240: 14: 2558: 2006: 1997: 1872: 1747: 1645: 1319: 676:{\displaystyle d={\sqrt {3\lambda L}}} 2092: 2065: 1720: 1711: 1697:. USA: IEEE Press. pp. 173–174. 1556: 1554: 1530: 1513:Barrow, Wilmer L, US patent 2467578 1055:in 1965, for which they won the 1978 1924: 1521: 1469:"Theory of the Electromagnetic Horn" 1408: 1334:. Vol. 45. pp. 2267–2273. 1237: 785:Horns have very little loss, so the 772:galaxy. Currently on display at the 718:of the side in the E-field direction 424:(fig. d) – A horn in the shape of a 309: 27:Funnel-shaped waveguide radio device 1893:Modern millimeter-wave technologies 1727:. USA: Academic Press. p. 11. 492:and other high-resolution antennas. 24: 1973:10.1002/j.1538-7305.1961.tb01639.x 1896:. USA: IOS Press. pp. 87–89. 1551: 789:of a horn is roughly equal to its 776:in Green Bank, West Virginia, U.S. 272:in the waveguide, increasing the 237:in a musical instrument such as a 111:. Their advantages are moderate 25: 2597: 2540:Circularly disposed antenna array 2358:Folded inverted conformal antenna 2118: 1246: 1219:Bevelacqua, Peter Joseph (2009). 1158: 67:that consists of a flaring metal 1721:Meeks, Marion Littleton (1976). 1326:Emerson, D. T. (December 1997). 1126: 1102: 1070: 868:For conical horns, the gain is: 502:Open boundary double-ridged horn 318:of the horn, a point called the 165:, with 10–20 dBi being typical. 2059: 1817:10.1109/APCAP50217.2020.9246141 1795: 1760: 1741: 1618: 1575:10.1109/ICASI52993.2021.9568460 804:with the same input power) is: 597: 508: 208: 2013:. USA: Springer. p. 275. 1631:. USA: J. Wiley. p. 299. 1293: 1266: 1181:. AT&T Co. September 1975. 1095:microwave background radiation 1053:microwave background radiation 496:Open boundary quad-ridged horn 289:impedance matching transformer 168: 13: 1: 2571:Radio frequency antenna types 2047:. AT&T Co. September 1975 1961:Bell System Technical Journal 1662:Antennas And Wave Propagation 1253:Radio-Electronics.com website 1197: 2566:Telecommunications equipment 2180:Dielectric resonator antenna 1300:Rodriguez, Vincente (2010). 1061:cassegrain parabolic antenna 944:is the area of the aperture, 378:for air search radar antenna 7: 2072:. Courier. pp. 49–50. 2056:on Albert LaFrance website 1691:Goldsmith, Paul F. (1998). 1183:on Albert LaFrance website 1152:Microwave Radiometer (Juno) 1145: 159:voltage standing wave ratio 10: 2602: 1537:. USA: IET. pp. 2–4. 1485:10.1109/JRPROC.1939.228693 1446:10.1109/JRPROC.1939.229011 1302:"A brief history of horns" 1255:. Adrio Communications Ltd 1225:Antenna-theory.com website 284:without much directivity. 2491: 2443:Regenerative loop antenna 2293: 2145: 2127: 1931:U. S. patent no. 2416675 1628:Antenna theory and design 1534:Microwave horns and feeds 1358:10.1109/MWSYM.1997.602853 1187:U. S. patent no. 2416675 18:Horn (telecommunications) 2438:Reflective array antenna 2348:Corner reflector antenna 1531:Olver, A. David (1994). 1276:Antennas And Propagation 1115:communications satellite 357: 252:in the waveguide to the 2338:Collinear antenna array 1273:Narayan, C. P. (2007). 1139:Horn-reflector antennas 1037:parabolic dish antennas 1029:communication satellite 780: 254:impedance of free space 2581:Bangladeshi inventions 2520:Reconfigurable antenna 2483:Yagi–Uda antenna 2458:Short backfire antenna 2195:Folded unipole antenna 2007:Pattan, Bruno (1993). 1979:Alcatel-Lucent website 1473:Proceedings of the IRE 1434:Proceedings of the IRE 1409:Grigorov, Igor (ed.). 1308:. Same Page Publishing 1306:In Compliance Magazine 1221:"Horn antenna - Intro" 1077:15-meter (50 ft) 1063:using two reflectors. 1057:Nobel Prize in Physics 997:Horn-reflector antenna 928: 859: 777: 774:Green Bank Observatory 677: 635: 534: 518: 458:Dual-mode conical horn 379: 367: 222: 178: 105:automatic door openers 52: 40: 2175:Crossed field antenna 2066:Downs, J. W. (1993). 929: 860: 767: 678: 636: 524: 516: 482:Aperture-limited horn 373: 365: 227:electromagnetic waves 216: 191:quarter-wave monopole 176: 124:Jagadish Chandra Bose 109:microwave radiometers 46: 33: 2492:Application-specific 2383:Log-periodic antenna 2255:Rubber ducky antenna 2230:Inverted vee antenna 2205:Ground-plane antenna 1920:Narayan 2007, p. 168 1515:Electromagnetic horn 1079:Holmdel horn antenna 1041:Holmdel Horn Antenna 875: 811: 651: 561: 2403:Offset dish antenna 2250:Random wire antenna 1933:Horn antenna system 1781:1992ITMTT..40..795J 1340:1997imsd.conf..553E 1189:Horn antenna system 1033:AT&T Long Lines 1003:parabolic reflector 972:aperture efficiency 266:index of refraction 2545:Television antenna 2393:Microstrip antenna 2333:Choke ring antenna 2328:Cassegrain antenna 2225:Inverted-F antenna 2137:Isotropic radiator 1569:. pp. 63–66. 1167:Antenna-Theory.com 1093:discovered cosmic 1051:discovered cosmic 924: 855: 778: 673: 631: 535: 519: 380: 374:Stack of sectoral 368: 366:Horn antenna types 322:. The pattern of 223: 179: 93:parabolic antennas 53: 41: 2586:Indian inventions 2553: 2552: 2530:Reference antenna 2423:Parabolic antenna 2343:Conformal antenna 2265:Turnstile antenna 2160:Biconical antenna 1993:Meeks, 1976, p.13 1937:on Google Patents 1826:978-1-7281-9805-7 1789:10.1109/22.137380 1672:978-81-8431-278-2 1584:978-1-6654-4143-8 1286:978-81-8431-176-1 1193:on Google Patents 1016:parabolic antenna 902: 843: 802:isotropic antenna 745:is the wavelength 671: 629: 595: 416:in the waveguide. 406:in the waveguide. 332:radiation pattern 310:Radiation pattern 293:transmission line 282:radiation pattern 262:transmission line 16:(Redirected from 2593: 2576:Antennas (radio) 2504:Corner reflector 2318:Beverage antenna 2280:Umbrella antenna 2245:Monopole antenna 2200:Franklin antenna 2113: 2106: 2099: 2090: 2089: 2084: 2083: 2063: 2057: 2055: 2053: 2052: 2042: 2034: 2025: 2024: 2004: 1995: 1990: 1981: 1976: 1967:(4): 1095–1099. 1958: 1949: 1938: 1928: 1922: 1917: 1908: 1907: 1887: 1870: 1869: 1858: 1852: 1848: 1846: 1838: 1811:. pp. 1–2. 1799: 1793: 1792: 1764: 1758: 1757: 1745: 1739: 1738: 1718: 1709: 1708: 1688: 1677: 1676: 1656: 1643: 1642: 1622: 1616: 1615: 1608: 1602: 1598: 1596: 1588: 1558: 1549: 1548: 1528: 1519: 1510: 1504: 1503: 1501: 1499: 1464: 1458: 1457: 1425: 1419: 1418: 1406: 1400: 1396: 1394: 1386: 1384: 1382: 1351: 1323: 1317: 1316: 1314: 1313: 1297: 1291: 1290: 1270: 1264: 1263: 1261: 1260: 1244: 1235: 1234: 1232: 1231: 1216: 1182: 1176: 1130: 1106: 1074: 1025:radio telescopes 933: 931: 930: 925: 923: 922: 913: 912: 907: 903: 898: 890: 864: 862: 861: 856: 854: 853: 844: 842: 841: 832: 821: 755:aperture limited 682: 680: 679: 674: 672: 661: 640: 638: 637: 632: 630: 628: 627: 612: 607: 606: 596: 594: 593: 578: 573: 572: 490:radio telescopes 452:radio telescopes 448:satellite dishes 432:Exponential horn 354:to about 5–10°. 304:radio telescopes 140:radio telescopes 136:satellite dishes 49:Wilmer L. Barrow 21: 2601: 2600: 2596: 2595: 2594: 2592: 2591: 2590: 2556: 2555: 2554: 2549: 2510:Evolved antenna 2487: 2473:Vivaldi antenna 2448:Rhombic antenna 2373:Helical antenna 2363:Fractal antenna 2308:AS-2259 Antenna 2289: 2220:Helical antenna 2190:Discone antenna 2170:Coaxial antenna 2155:Batwing antenna 2147:Omnidirectional 2141: 2123: 2117: 2087: 2080: 2064: 2060: 2050: 2048: 2040: 2036: 2035: 2028: 2021: 2005: 1998: 1991: 1984: 1956: 1950: 1941: 1929: 1925: 1918: 1911: 1904: 1888: 1873: 1859: 1850: 1849: 1840: 1839: 1827: 1800: 1796: 1765: 1761: 1746: 1742: 1735: 1719: 1712: 1705: 1689: 1680: 1673: 1657: 1646: 1639: 1623: 1619: 1609: 1600: 1599: 1590: 1589: 1585: 1559: 1552: 1545: 1529: 1522: 1511: 1507: 1497: 1495: 1465: 1461: 1426: 1422: 1398: 1397: 1388: 1387: 1380: 1378: 1368: 1324: 1320: 1311: 1309: 1298: 1294: 1287: 1271: 1267: 1258: 1256: 1245: 1238: 1229: 1227: 1217: 1204: 1200: 1174: 1170: 1161: 1148: 1143: 1142: 1141: 1140: 1136: 1135: 1134: 1131: 1123: 1122: 1107: 1099: 1098: 1075: 1007:Harald T. Friis 999: 991: 984: 967: 918: 914: 908: 891: 889: 885: 884: 876: 873: 872: 849: 845: 837: 833: 822: 820: 812: 809: 808: 783: 725: 712: 703: 694: 660: 652: 649: 648: 623: 619: 611: 602: 598: 589: 585: 577: 568: 564: 562: 559: 558: 511: 444:Corrugated horn 360: 328:magnetic fields 312: 231:acoustical horn 211: 171: 28: 23: 22: 15: 12: 11: 5: 2599: 2589: 2588: 2583: 2578: 2573: 2568: 2551: 2550: 2548: 2547: 2542: 2537: 2535:Spiral antenna 2532: 2527: 2522: 2517: 2512: 2507: 2501: 2495: 2493: 2489: 2488: 2486: 2485: 2480: 2475: 2470: 2468:Sterba antenna 2465: 2460: 2455: 2453:Sector antenna 2450: 2445: 2440: 2435: 2430: 2428:Plasma antenna 2425: 2420: 2415: 2410: 2405: 2400: 2395: 2390: 2385: 2380: 2375: 2370: 2365: 2360: 2355: 2350: 2345: 2340: 2335: 2330: 2325: 2320: 2315: 2310: 2305: 2303:Adcock antenna 2299: 2297: 2291: 2290: 2288: 2287: 2282: 2277: 2272: 2267: 2262: 2260:Sloper antenna 2257: 2252: 2247: 2242: 2237: 2235:J-pole antenna 2232: 2227: 2222: 2217: 2212: 2207: 2202: 2197: 2192: 2187: 2185:Dipole antenna 2182: 2177: 2172: 2167: 2162: 2157: 2151: 2149: 2143: 2142: 2140: 2139: 2133: 2131: 2125: 2124: 2116: 2115: 2108: 2101: 2093: 2086: 2085: 2078: 2058: 2026: 2019: 1996: 1982: 1939: 1923: 1909: 1902: 1871: 1851:|website= 1825: 1794: 1775:(5): 795–800. 1759: 1740: 1733: 1710: 1703: 1678: 1671: 1644: 1637: 1617: 1601:|website= 1583: 1550: 1543: 1520: 1505: 1459: 1420: 1399:|journal= 1366: 1349:10.1.1.39.8748 1318: 1292: 1285: 1265: 1249:"Horn antenna" 1236: 1201: 1199: 1196: 1195: 1194: 1184: 1168: 1160: 1159:External links 1157: 1156: 1155: 1147: 1144: 1138: 1137: 1132: 1125: 1124: 1108: 1101: 1100: 1076: 1069: 1068: 1067: 1066: 1065: 998: 995: 989: 982: 977: 976: 965: 961: 951: 945: 935: 934: 921: 917: 911: 906: 901: 897: 894: 888: 883: 880: 866: 865: 852: 848: 840: 836: 831: 828: 825: 819: 816: 782: 779: 747: 746: 740: 734: 728: 723: 719: 710: 706: 701: 697: 692: 684: 683: 670: 667: 664: 659: 656: 642: 641: 626: 622: 618: 615: 610: 605: 601: 592: 588: 584: 581: 576: 571: 567: 510: 507: 506: 505: 499: 493: 479: 473: 467: 461: 455: 441: 429: 419: 418: 417: 407: 391: 388:Pyramidal horn 359: 356: 311: 308: 270:standing waves 250:wave impedance 210: 207: 170: 167: 71:shaped like a 61:microwave horn 26: 9: 6: 4: 3: 2: 2598: 2587: 2584: 2582: 2579: 2577: 2574: 2572: 2569: 2567: 2564: 2563: 2561: 2546: 2543: 2541: 2538: 2536: 2533: 2531: 2528: 2526: 2523: 2521: 2518: 2516: 2515:Ground dipole 2513: 2511: 2508: 2505: 2502: 2500: 2497: 2496: 2494: 2490: 2484: 2481: 2479: 2476: 2474: 2471: 2469: 2466: 2464: 2461: 2459: 2456: 2454: 2451: 2449: 2446: 2444: 2441: 2439: 2436: 2434: 2431: 2429: 2426: 2424: 2421: 2419: 2416: 2414: 2411: 2409: 2408:Patch antenna 2406: 2404: 2401: 2399: 2398:Moxon antenna 2396: 2394: 2391: 2389: 2386: 2384: 2381: 2379: 2376: 2374: 2371: 2369: 2366: 2364: 2361: 2359: 2356: 2354: 2353:Curtain array 2351: 2349: 2346: 2344: 2341: 2339: 2336: 2334: 2331: 2329: 2326: 2324: 2321: 2319: 2316: 2314: 2311: 2309: 2306: 2304: 2301: 2300: 2298: 2296: 2292: 2286: 2283: 2281: 2278: 2276: 2273: 2271: 2268: 2266: 2263: 2261: 2258: 2256: 2253: 2251: 2248: 2246: 2243: 2241: 2240:Mast radiator 2238: 2236: 2233: 2231: 2228: 2226: 2223: 2221: 2218: 2216: 2213: 2211: 2208: 2206: 2203: 2201: 2198: 2196: 2193: 2191: 2188: 2186: 2183: 2181: 2178: 2176: 2173: 2171: 2168: 2166: 2163: 2161: 2158: 2156: 2153: 2152: 2150: 2148: 2144: 2138: 2135: 2134: 2132: 2130: 2126: 2121: 2114: 2109: 2107: 2102: 2100: 2095: 2094: 2091: 2081: 2079:0-486-42876-1 2075: 2071: 2070: 2062: 2046: 2039: 2033: 2031: 2022: 2020:0-442-01357-4 2016: 2012: 2011: 2003: 2001: 1994: 1989: 1987: 1980: 1974: 1970: 1966: 1962: 1955: 1948: 1946: 1944: 1936: 1934: 1927: 1921: 1916: 1914: 1905: 1903:1-58603-098-1 1899: 1895: 1894: 1886: 1884: 1882: 1880: 1878: 1876: 1867: 1863: 1856: 1844: 1836: 1832: 1828: 1822: 1818: 1814: 1810: 1806: 1798: 1790: 1786: 1782: 1778: 1774: 1770: 1763: 1755: 1751: 1744: 1736: 1734:0-12-475952-1 1730: 1726: 1725: 1717: 1715: 1706: 1704:0-7803-3439-6 1700: 1696: 1695: 1687: 1685: 1683: 1674: 1668: 1664: 1663: 1655: 1653: 1651: 1649: 1640: 1638:0-471-02590-9 1634: 1630: 1629: 1621: 1613: 1606: 1594: 1586: 1580: 1576: 1572: 1568: 1564: 1557: 1555: 1546: 1544:0-85296-809-4 1540: 1536: 1535: 1527: 1525: 1518: 1516: 1509: 1494: 1490: 1486: 1482: 1478: 1474: 1470: 1463: 1455: 1451: 1447: 1443: 1440:(2): 95–102. 1439: 1435: 1431: 1424: 1416: 1412: 1407:reprinted in 1404: 1392: 1377: 1373: 1369: 1367:0-7803-3814-6 1363: 1359: 1355: 1350: 1345: 1341: 1337: 1333: 1329: 1322: 1307: 1303: 1296: 1288: 1282: 1278: 1277: 1269: 1254: 1250: 1243: 1241: 1226: 1222: 1215: 1213: 1211: 1209: 1207: 1202: 1192: 1190: 1185: 1180: 1173: 1169: 1166: 1165:Horn Antennas 1163: 1162: 1153: 1150: 1149: 1129: 1120: 1116: 1112: 1105: 1096: 1092: 1091:Robert Wilson 1088: 1084: 1080: 1073: 1064: 1062: 1058: 1054: 1050: 1049:Robert Wilson 1046: 1042: 1038: 1034: 1030: 1026: 1022: 1017: 1012: 1008: 1004: 994: 992: 985: 974: 973: 968: 962: 959: 955: 952: 949: 946: 943: 940: 939: 938: 919: 915: 909: 904: 899: 895: 892: 886: 881: 878: 871: 870: 869: 850: 846: 838: 834: 829: 826: 823: 817: 814: 807: 806: 805: 803: 799: 796: 792: 788: 775: 771: 766: 762: 760: 756: 752: 751:aperture size 744: 741: 738: 735: 732: 729: 726: 720: 717: 713: 707: 704: 698: 695: 689: 688: 687: 668: 665: 662: 657: 654: 647: 646: 645: 624: 620: 616: 613: 608: 603: 599: 590: 586: 582: 579: 574: 569: 565: 557: 556: 555: 553: 548: 545: 541: 532: 528: 523: 515: 503: 500: 497: 494: 491: 487: 483: 480: 477: 474: 471: 468: 465: 464:Diagonal horn 462: 459: 456: 453: 449: 445: 442: 439: 438: 433: 430: 427: 423: 420: 415: 411: 408: 405: 401: 398: 397: 395: 394:Sectoral horn 392: 389: 386: 385: 384: 377: 372: 364: 355: 353: 347: 344: 342: 337: 333: 329: 325: 321: 317: 307: 305: 301: 296: 294: 290: 285: 283: 279: 275: 271: 267: 263: 259: 256:, (about 377 255: 251: 246: 244: 240: 236: 232: 228: 220: 215: 206: 204: 200: 196: 192: 188: 187:coaxial cable 184: 175: 166: 164: 160: 156: 152: 148: 143: 141: 137: 133: 129: 128:Wilmer Barrow 125: 120: 118: 114: 110: 106: 102: 98: 94: 90: 86: 85:feed antennas 82: 78: 74: 70: 66: 62: 58: 50: 45: 38: 32: 19: 2463:Slot antenna 2433:Quad antenna 2418:Planar array 2413:Phased array 2388:Loop antenna 2378:Horn antenna 2377: 2285:Whip antenna 2270:T2FD antenna 2215:Halo antenna 2210:G5RV antenna 2068: 2061: 2049:. Retrieved 2044: 2009: 1964: 1960: 1932: 1926: 1892: 1808: 1797: 1772: 1768: 1762: 1753: 1749: 1743: 1723: 1693: 1661: 1627: 1620: 1566: 1533: 1514: 1508: 1496:. Retrieved 1479:(1): 51–64. 1476: 1472: 1462: 1437: 1433: 1423: 1414: 1379:. Retrieved 1331: 1321: 1310:. Retrieved 1305: 1295: 1275: 1268: 1257:. Retrieved 1252: 1247:Poole, Ian. 1228:. Retrieved 1224: 1188: 1178: 1087:Arno Penzias 1045:Arno Penzias 1000: 987: 980: 978: 970: 963: 953: 947: 941: 936: 867: 797: 784: 758: 754: 750: 748: 742: 736: 730: 721: 716:slant height 708: 699: 690: 685: 643: 552:optimum horn 551: 549: 539: 536: 509:Optimum horn 501: 495: 481: 475: 469: 463: 457: 443: 436: 435: 431: 422:Conical horn 421: 410:H-plane horn 409: 400:E-plane horn 399: 393: 387: 381: 348: 345: 340: 320:phase center 313: 297: 286: 247: 224: 209:How it works 180: 144: 121: 60: 57:horn antenna 56: 54: 2313:AWX antenna 2295:Directional 2165:Cage aerial 1750:Microwave J 1498:October 28, 787:directivity 540:flare angle 476:Septum horn 470:Ridged horn 437:scalar horn 341:phase error 300:exponential 278:diffraction 235:sound waves 195:transmitter 169:Description 151:frequencies 113:directivity 2560:Categories 2051:2011-12-20 1312:2010-11-12 1259:2010-11-11 1230:2010-11-11 1198:References 958:wavelength 527:Cassegrain 376:feed horns 203:feed horns 101:radar guns 89:feed horns 2506:(passive) 2368:Gizmotchy 2275:T-antenna 2129:Isotropic 1853:ignored ( 1843:cite book 1835:226852649 1603:ignored ( 1593:cite book 1401:ignored ( 1391:cite book 1381:March 15, 1344:CiteSeerX 1083:Bell Labs 1021:sidelobes 1011:Bell Labs 900:λ 893:π 835:λ 827:π 770:Milky Way 666:λ 617:λ 583:λ 486:beamwidth 352:beamwidth 243:impedance 233:does for 219:feed horn 183:waveguide 155:bandwidth 153:, a wide 117:bandwidth 81:microwave 69:waveguide 37:bandwidth 2525:Rectenna 2323:Cantenna 1756:: 71–78. 1493:51635676 1454:51632525 1415:Antentop 1146:See also 1097:in 1964. 793:. The 324:electric 229:that an 199:receiver 147:resonant 115:, broad 107:, and 87:(called 2120:Antenna 1777:Bibcode 1376:9039614 1336:Bibcode 1119:Telstar 956:is the 714:is the 414:H-field 404:E-field 239:trumpet 65:antenna 2499:ALLISS 2076:  2017:  1900:  1833:  1823:  1731:  1701:  1669:  1635:  1581:  1541:  1491:  1452:  1374:  1364:  1346:  1283:  937:where 759:length 686:where 63:is an 2478:WokFi 2122:types 2041:(PDF) 1957:(PDF) 1831:S2CID 1489:S2CID 1450:S2CID 1372:S2CID 1175:(PDF) 358:Types 336:phase 132:radar 2074:ISBN 2015:ISBN 1898:ISBN 1866:link 1862:link 1855:help 1821:ISBN 1729:ISBN 1699:ISBN 1667:ISBN 1633:ISBN 1612:link 1605:help 1579:ISBN 1539:ISBN 1500:2015 1403:help 1383:2012 1362:ISBN 1281:ISBN 1089:and 1047:and 1027:and 795:gain 791:gain 781:Gain 544:gain 450:and 426:cone 326:and 316:apex 138:and 97:gain 79:and 73:horn 1977:on 1969:doi 1813:doi 1785:doi 1571:doi 1481:doi 1442:doi 1354:doi 1081:at 274:SWR 197:or 163:dBi 103:, 77:UHF 59:or 51:. 2562:: 2043:. 2029:^ 1999:^ 1985:^ 1965:40 1963:. 1959:. 1942:^ 1912:^ 1874:^ 1847:: 1845:}} 1841:{{ 1829:. 1819:. 1807:. 1783:. 1773:40 1771:. 1752:. 1713:^ 1681:^ 1647:^ 1597:: 1595:}} 1591:{{ 1577:. 1565:. 1553:^ 1523:^ 1487:. 1477:27 1475:. 1471:. 1448:. 1438:27 1436:. 1432:. 1413:. 1395:: 1393:}} 1389:{{ 1370:. 1360:. 1352:. 1342:. 1330:. 1304:. 1251:. 1239:^ 1223:. 1205:^ 1177:. 1117:, 142:. 55:A 39:. 2112:e 2105:t 2098:v 2082:. 2054:. 2023:. 1975:. 1971:: 1906:. 1868:) 1857:) 1837:. 1815:: 1791:. 1787:: 1779:: 1754:6 1737:. 1707:. 1675:. 1641:. 1614:) 1607:) 1587:. 1573:: 1547:. 1502:. 1483:: 1456:. 1444:: 1405:) 1385:. 1356:: 1338:: 1315:. 1289:. 1262:. 1233:. 1121:. 990:A 988:e 983:A 981:e 975:, 966:A 964:e 960:, 954:λ 948:d 942:A 920:A 916:e 910:2 905:) 896:d 887:( 882:= 879:G 851:A 847:e 839:2 830:A 824:4 818:= 815:G 798:G 743:λ 737:L 731:d 724:H 722:L 711:E 709:L 702:H 700:a 693:E 691:a 669:L 663:3 658:= 655:d 625:H 621:L 614:3 609:= 604:H 600:a 591:E 587:L 580:2 575:= 570:E 566:a 533:. 454:. 258:Ω 20:)

Index

Horn (telecommunications)

bandwidth

Wilmer L. Barrow
antenna
waveguide
horn
UHF
microwave
feed antennas
feed horns
parabolic antennas
gain
radar guns
automatic door openers
microwave radiometers
directivity
bandwidth
Jagadish Chandra Bose
Wilmer Barrow
radar
satellite dishes
radio telescopes
resonant
frequencies
bandwidth
voltage standing wave ratio
dBi

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.