Knowledge

Radio telescope

Source đź“ť

716: 696: 20: 802: 468: 786: 388: 680: 648: 183: 35: 920: 837: 203: 664: 2500: 1002:(LOFAR), finished in 2012, is located in western Europe and consists of about 81,000 small antennas in 48 stations distributed over an area several hundreds of kilometers in diameter and operates between 1.25 and 30 m wavelengths. VLBI systems using post-observation processing have been constructed with antennas thousands of miles apart. Radio interferometers have also been used to obtain detailed images of the anisotropies and the polarization of the 319: 2560: 2584: 2510: 254:(wavelength about 14.6 meters). It was mounted on a turntable that allowed it to rotate in any direction, earning it the name "Jansky's merry-go-round." It had a diameter of approximately 100 ft (30 m) and stood 20 ft (6 m) tall. By rotating the antenna, the direction of the received interfering radio source (static) could be pinpointed. A small shed to the side of the antenna housed an 2536: 2572: 616: 2548: 632: 770: 508:
Although the dish is 500 meters in diameter, only a 300-meter circular area on the dish is illuminated by the feed antenna at any given time, so the actual effective aperture is 300 meters. Construction was begun in 2007 and completed July 2016 and the telescope became operational September 25, 2016.
367:
of the radio waves being observed. This dictates the dish size a radio telescope needs for a useful resolution. Radio telescopes that operate at wavelengths of 3 meters to 30 cm (100 MHz to 1 GHz) are usually well over 100 meters in diameter. Telescopes working at wavelengths shorter
507:
is in a cabin suspended above the dish on cables. The active dish is composed of 4,450 moveable panels controlled by a computer. By changing the shape of the dish and moving the feed cabin on its cables, the telescope can be steered to point to any region of the sky up to 40° from the zenith.
915:
will add to each other while two waves that have opposite phases will cancel each other out. This creates a combined telescope that is equivalent in resolution (though not in sensitivity) to a single antenna whose diameter is equal to the spacing of the antennas furthest apart in the array.
527:); most other telescopes employ passive detection, i.e., receiving only. Arecibo was another stationary dish telescope like FAST. Arecibo's 305 m (1,001 ft) dish was built into a natural depression in the landscape, the antenna was steerable within an angle of about 20° of the 298:. He built the first parabolic "dish" radio telescope, 9 metres (30 ft) in diameter, in his back yard in Wheaton, Illinois in 1937. He repeated Jansky's pioneering work, identifying the Milky Way as the first off-world radio source, and he went on to conduct the first sky survey at 715: 891:. Recent advances in the stability of electronic oscillators also now permit interferometry to be carried out by independent recording of the signals at the various antennas, and then later correlating the recordings at some central processing facility. This process is known as 121:
are very far away, the radio waves coming from them are extremely weak, so radio telescopes require very large antennas to collect enough radio energy to study them, and extremely sensitive receiving equipment. Radio telescopes are typically large
856:, which means combining the signals from multiple antennas so that they simulate a larger antenna, in order to achieve greater resolution. Astronomical radio interferometers usually consist either of arrays of parabolic dishes (e.g., the 695: 258:
pen-and-paper recording system. After recording signals from all directions for several months, Jansky eventually categorized them into three types of static: nearby thunderstorms, distant thunderstorms, and a faint steady hiss above
346:
arrays similar to "TV antennas" or large stationary reflectors with movable focal points. Since the wavelengths being observed with these types of antennas are so long, the "reflector" surfaces can be constructed from coarse wire
341:
is very large. As a consequence, the types of antennas that are used as radio telescopes vary widely in design, size, and configuration. At wavelengths of 30 meters to 3 meters (10–100 MHz), they are generally either
679: 937:
A high-quality image requires a large number of different separations between telescopes. Projected separation between any two telescopes, as seen from the radio source, is called a baseline. For example, the
310:
created technology which was applied to radio astronomy after the war, and radio astronomy became a branch of astronomy, with universities and research institutes constructing large radio telescopes.
577:, which also was the world's largest fully steerable telescope for 30 years until the Green Bank antenna was constructed. The third-largest fully steerable radio telescope is the 76-meter 2190: 631: 615: 604:
A more typical radio telescope has a single antenna of about 25 meters diameter. Dozens of radio telescopes of about this size are operated in radio observatories all over the world.
384:
for parts of the spectrum most useful for observing the universe are coordinated in the Scientific Committee on Frequency Allocations for Radio Astronomy and Space Science.
1251: 1848: 263:, of unknown origin. Jansky finally determined that the "faint hiss" repeated on a cycle of 23 hours and 56 minutes. This period is the length of an astronomical 1740: 519:, though it suffered catastrophic collapse on 1 December 2020. Arecibo was one of the world's few radio telescope also capable of active (i.e., transmitting) 739:
Since 1965, humans have launched three space-based radio telescopes. The first one, KRT-10, was attached to Salyut 6 orbital space station in 1979. In 1997,
601:, at a diameter of 110 m (360 ft), is expected to become the world's largest fully steerable single-dish radio telescope when completed in 2028. 801: 161:
using an antenna built to study radio receiver noise. The first purpose-built radio telescope was a 9-meter parabolic dish constructed by radio amateur
102:
portion of the spectrum coming from astronomical objects. Unlike optical telescopes, radio telescopes can be used in the daytime as well as at night.
647: 1622: 895:. Interferometry does increase the total signal collected, but its primary purpose is to vastly increase the resolution through a process called 622: 488: 476: 1838: 1355: 1181: 1828: 663: 979: 686: 550:, which consists of a 576-meter circle of rectangular radio reflectors, each of which can be pointed towards a central conical receiver. 1763: 1398: 983: 1529: 19: 2468: 2219: 1942: 1779: 1098: 861: 574: 408: 1486:
Rohlfs, K., & Wilson, T. L. (2004). Tools of radio astronomy. Astronomy and astrophysics library. Berlin, Germany: Springer.
2180: 1902: 1382: 455: 275:, and by comparing his observations with optical astronomical maps, Jansky concluded that the radiation was coming from the 2156: 2050: 1154: 451: 769: 2148: 589:, England, completed in 1957. The fourth-largest fully steerable radio telescopes are six 70-meter dishes: three Russian 785: 1982: 1191: 1164: 1138: 1083: 872: 553:
The above stationary dishes are not fully "steerable"; they can only be aimed at points in an area of the sky near the
376:
The increasing use of radio frequencies for communication makes astronomical observations more and more difficult (see
1247: 557:, and cannot receive from sources near the horizon. The largest fully steerable dish radio telescope is the 100 meter 2619: 1818: 1640: 1583: 1501: 1215: 892: 2513: 2379: 1748: 1650: 702: 654: 566: 495:. The 500-meter-diameter (1,600 ft) dish with an area as large as 30 football fields is built into a natural 2254: 1872: 1577: 987: 900: 458:
in 5 different frequency bands, centered on 23 GHz, 33 GHz, 41 GHz, 61 GHz, and 94 GHz.
2235: 1972: 1808: 923: 2614: 1658: 1522: 722: 492: 423:", also known as the "21 centimeter line": 1,420.40575177 MHz, used by many radio telescopes including 271:
to come back to the same location in the sky. Thus Jansky suspected that the hiss originated outside of the
2604: 2422: 2100: 2000: 1327: 955: 135: 2443: 2334: 2200: 2108: 1922: 1724: 1573: 1003: 853: 825: 284: 154: 2164: 169:
in 1937. The sky survey he performed is often considered the beginning of the field of radio astronomy.
2526: 1674: 1277: 1228: 831: 2609: 1962: 1882: 1599: 1589: 930:
consisting of 66 12-metre (39 ft), and 7-metre (23 ft) diameter radio telescopes designed to work at
396: 130:
and space probes. They may be used individually or linked together electronically in an array. Radio
75: 2503: 2172: 2140: 2040: 1716: 1604: 1515: 1302: 1088: 1007: 975: 582: 565:, United States, constructed in 2000. The largest fully steerable radio telescope in Europe is the 377: 334: 87: 986:
surveys of radio sources. An example of a large physically connected radio telescope array is the
2412: 2402: 1866: 1732: 1093: 931: 594: 512: 852:
One of the most notable developments came in 1946 with the introduction of the technique called
2124: 2010: 1014: 467: 193: 1372: 2417: 2384: 2304: 1912: 1858: 1798: 1698: 1128: 946:
has 27 telescopes with 351 independent baselines at once, which achieves a resolution of 0.2
598: 1402: 2485: 2274: 2132: 1690: 1666: 971: 875:). All of the telescopes in the array are widely separated and are usually connected using 638: 558: 516: 381: 322: 8: 2588: 2458: 2269: 2264: 2259: 2116: 2020: 1892: 1080:– distributed computing to search data tapes for primordial black holes, pulsars, and ETI 999: 943: 535:, giving use of a 270-meter diameter portion of the dish for any individual observation. 444: 343: 239: 158: 641:, Green Bank, West Virginia, US, the largest fully steerable radio telescope dish (2002) 2576: 2564: 2438: 2407: 2354: 2314: 2284: 2227: 1992: 1771: 1470: 1072: 896: 857: 360: 24: 387: 2463: 2309: 1632: 1497: 1378: 1211: 1187: 1160: 1134: 963: 888: 472: 437: 356: 219: 166: 150: 123: 95: 91: 2540: 2453: 2349: 2344: 2279: 2030: 1682: 1438: 1424: 1032: 939: 841: 670: 578: 500: 303: 276: 268: 218:
The first radio antenna used to identify an astronomical radio source was built by
368:
than 30 cm (above 1 GHz) range in size from 3 to 90 meters in diameter.
2374: 2319: 1538: 1108: 1040: 1026: 524: 295: 83: 79: 63: 1452: 363:
of a dish antenna is determined by the ratio of the diameter of the dish to the
2448: 2329: 927: 865: 845: 338: 231: 227: 189: 67: 51: 182: 2598: 2369: 2324: 2299: 967: 912: 884: 876: 869: 562: 543: 520: 420: 392: 280: 255: 919: 487:
The world's largest filled-aperture (i.e. full dish) radio telescope is the
2552: 2294: 1567: 1489: 1255: 836: 532: 504: 403:
Some of the more notable frequency bands used by radio telescopes include:
352: 307: 272: 264: 447:
had several receivers that together covered the whole 1–10 GHz range.
34: 2473: 2364: 2359: 2289: 1051:, radio telescopes are able to "image" most astronomical objects such as 959: 951: 947: 428: 424: 291: 208: 162: 134:
are preferentially located far from major centers of population to avoid
131: 1303:"China Exclusive: China starts building world's largest radio telescope" 202: 1077: 413: 364: 318: 279:
and was strongest in the direction of the center of the galaxy, in the
260: 243: 139: 99: 78:
in the sky. Radio telescopes are the main observing instrument used in
71: 27:
as seen in 1969, when it was used to receive live televised video from
2478: 1706: 1332: 1103: 1036: 880: 539: 480: 251: 247: 223: 127: 28: 1186:(2 ed.). Springer Science & Business Media. pp. 8–10. 2339: 2191:
Special Astrophysical Observatory of the Russian Academy of Science
2081: 808: 776: 752: 586: 1507: 1227:
Ley, Willy; Menzel, Donald H.; Richardson, Robert S. (June 1965).
226:, in 1932. Jansky was assigned the task of identifying sources of 1932: 1060: 47: 43: 1952: 1557: 1127:
Marr, Jonathan M.; Snell, Ronald L.; Kurtz, Stanley E. (2015).
1056: 1052: 1048: 1044: 748: 554: 547: 528: 235: 118: 114: 106: 302:
radio frequencies, discovering other radio sources. The rapid
2071: 995: 792: 744: 740: 726: 706: 590: 511:
The world's second largest filled-aperture telescope was the
496: 143: 126:
similar to those employed in tracking and communicating with
39: 1252:
Commonwealth Scientific and Industrial Research Organisation
1553: 991: 966:
interferometer was also developed independently in 1946 by
908: 904: 570: 348: 326: 110: 2547: 538:
The largest individual radio telescope of any kind is the
1328:"China Finishes Building World's Largest Radio Telescope" 299: 188:
Full-size replica of the first radio telescope, Jansky's
146:, motor vehicles, and other man-made electronic devices. 1849:
Combined Array for Research in Millimeter-wave Astronomy
1013:
The world's largest physically connected telescope, the
149:
Radio waves from space were first detected by engineer
1357:
China Begins Operating World's Largest Radio Telescope
1130:
Fundamentals of Radio Astronomy: Observational Methods
267:, the time it takes any "fixed" object located on the 94:
are the main observing instrument used in traditional
2524: 1031:
Many astronomical objects are not only observable in
1183:
The Invisible Universe: The Story of Radio Astronomy
1159:. Encyclopædia Britannica, Inc. 2008. p. 1583. 907:
from the different telescopes on the principle that
1226: 294:, was one of the pioneers of what became known as 211:'s "dish" radio telescope, Wheaton, Illinois, 1937 1953:Multi-Element Radio Linked Interferometer Network 860:), arrays of one-dimensional antennas (e.g., the 16:Directional radio antenna used in radio astronomy 2596: 1496:. New York: Grosset & Dunlap. pp. 390–399. 1017:(SKA), is planned to start operations in 2025. 962:for interferometry and aperture synthesis. The 864:) or two-dimensional arrays of omnidirectional 623:Five-hundred-meter Aperture Spherical Telescope 489:Five-hundred-meter Aperture Spherical Telescope 1839:Canadian Hydrogen Intensity Mapping Experiment 1126: 1043:. Besides observing energetic objects such as 1523: 1829:Australian Square Kilometre Array Pathfinder 1020: 1623:500 meter Aperture Spherical Telescope 1364: 1220: 978:mapped the radio sky to produce the famous 832:Radio astronomy § Radio interferometry 734: 687:Goldstone Deep Space Communications Complex 483:(bottom) radio telescopes at the same scale 1530: 1516: 673:, Jodrell Bank Observatory, England (1957) 234:service. Jansky's antenna was an array of 1179: 1147: 172: 105:Since astronomical radio sources such as 90:emitted by astronomical objects, just as 1943:Molonglo Observatory Synthesis Telescope 1780:Warkworth Radio Astronomical Observatory 1173: 1099:Search for extraterrestrial intelligence 918: 893:Very Long Baseline Interferometry (VLBI) 862:Molonglo Observatory Synthesis Telescope 835: 625:(FAST), under construction, China (2016) 607: 575:Max Planck Institute for Radio Astronomy 466: 386: 317: 33: 18: 1370: 899:. This technique works by superposing ( 848:formed of 27 parabolic dish telescopes. 819: 409:United States National Radio Quiet Zone 395:(or opacity) to various wavelengths of 2597: 1492:(1979). Isaac Asimov's Book of facts; 689:, Mojave Desert, California, US (1958) 685:The 70 meter DSS 14 "Mars" antenna at 2444:Cosmic microwave background radiation 2181:Pushchino Radio Astronomy Observatory 1903:Large Latin American Millimeter Array 1511: 657:, in Bad MĂĽnstereifel, Germany (1971) 456:cosmic microwave background radiation 2509: 2157:National Radio Astronomy Observatory 2051:Westerbork Synthesis Radio Telescope 1399:"Microwave Probing of the Invisible" 1353: 452:Wilkinson Microwave Anisotropy Probe 2149:Mullard Radio Astronomy Observatory 1537: 1354:Wong, Gillian (25 September 2016), 1120: 725:, Galenki, Russia, second of three 325:, a 326.5 MHz dipole array in 192:array of 1932, preserved at the US 13: 1983:Northern Extended Millimeter Array 1480: 1208:The Early Years of Radio Astronomy 1084:List of astronomical observatories 729:in the former Soviet Union, (1984) 709:in the former Soviet Union, (1978) 14: 2631: 1819:Australia Telescope Compact Array 1641:Caltech Submillimeter Observatory 1584:Very Long Baseline Interferometry 1245: 2582: 2570: 2558: 2546: 2534: 2508: 2499: 2498: 1059:, and even radio emissions from 800: 784: 768: 714: 694: 678: 662: 646: 630: 614: 567:Effelsberg 100-m Radio Telescope 433:1,406 MHz and 430 MHz 333:The range of frequencies in the 201: 181: 23:The 64-meter radio telescope at 1873:Giant Metrewave Radio Telescope 1741:UTR-2 decameter radio telescope 1463: 1445: 1431: 1417: 1391: 1347: 1156:Britannica Concise Encyclopedia 988:Giant Metrewave Radio Telescope 499:depression in the landscape in 50:. Consists of an array of 2040 42:low frequency radio telescope, 1973:Northern Cross Radio Telescope 1809:Atacama Large Millimeter Array 1320: 1295: 1270: 1239: 1210:. Cambridge University Press. 1200: 924:Atacama Large Millimeter Array 380:). Negotiations to defend the 371: 1: 1229:"The Observatory on the Moon" 1133:. CRC Press. pp. 21–24. 1114: 462: 196:in Green Bank, West Virginia. 2423:Gravitational-wave astronomy 2001:Primeval Structure Telescope 1471:"What are Radio Telescopes?" 911:that coincide with the same 523:of near-Earth objects (see: 491:(FAST) completed in 2016 by 391:Plot of Earth's atmospheric 136:electromagnetic interference 7: 2335:Christiaan Alexander Muller 2201:Vermilion River Observatory 2109:Algonquin Radio Observatory 1574:Astronomical interferometer 1377:. OUP Oxford. p. 139. 1066: 1004:Cosmic Microwave Background 854:astronomical interferometry 844:in Socorro, New Mexico, an 826:Astronomical interferometer 747:. The last one was sent by 573:, Germany, operated by the 290:An amateur radio operator, 224:Bell Telephone Laboratories 155:Bell Telephone Laboratories 124:parabolic ("dish") antennas 10: 2636: 1675:Large Millimeter Telescope 1453:"What is Radio Astronomy?" 1307:English.peopledaily.com.cn 1180:Verschuur, Gerrit (2007). 1024: 974:. In the early 1950s, the 950:at 3 cm wavelengths. 932:sub-millimeter wavelengths 829: 823: 355:. At shorter wavelengths 230:that might interfere with 76:astronomical radio sources 2494: 2431: 2393: 2247: 2212: 2099: 2064: 1963:Murchison Widefield Array 1883:Green Bank Interferometer 1791: 1707:RATAN-600 Radio Telescope 1613: 1598: 1590:Astronomical radio source 1545: 1374:A Dictionary of Astronomy 1021:Astronomical observations 998:. The largest array, the 705:, Crimea, first of three 440:: 1,420 to 1,666 MHz 397:electromagnetic radiation 357:parabolic "dish" antennas 2620:Astronomical instruments 2173:Onsala Space Observatory 2165:Nançay Radio Observatory 2141:Jodrell Bank Observatory 2041:Very Long Baseline Array 1717:Sardinia Radio Telescope 1231:. For Your Information. 1089:List of radio telescopes 1010:interferometer in 2004. 976:Cambridge Interferometer 735:Radiotelescopes in space 583:Jodrell Bank Observatory 531:by moving the suspended 427:in its discovery of the 335:electromagnetic spectrum 313: 88:electromagnetic spectrum 2403:Submillimetre astronomy 2015:Australia, South Africa 1867:Event Horizon Telescope 1206:Sullivan, W.T. (1984). 1094:List of telescope types 595:NASA Deep Space Network 513:Arecibo radio telescope 407:Every frequency in the 2125:Green Bank Observatory 2011:Square Kilometre Array 1442:vol.157, p. 158, 1946. 1428:vol.158, p. 339, 1946. 1233:Galaxy Science Fiction 1015:Square Kilometre Array 934: 849: 484: 400: 330: 194:Green Bank Observatory 173:Early radio telescopes 55: 31: 2418:High-energy astronomy 2305:Sebastian von Hoerner 1913:Long Wavelength Array 1859:European VLBI Network 1799:Allen Telescope Array 1699:Qitai Radio Telescope 1371:Ridpath, Ian (2012). 922: 846:interferometric array 839: 760:Space radiotelescopes 608:Gallery of big dishes 599:Qitai Radio Telescope 503:and cannot move; the 470: 416:: 608 to 614 MHz 390: 321: 37: 22: 2615:Astronomical imaging 2486:Solar radio emission 2275:Jocelyn Bell Burnell 2133:Haystack Observatory 1667:Green Bank Telescope 1651:Effelsberg Telescope 972:University of Sydney 820:Radio interferometry 639:Green Bank Telescope 559:Green Bank Telescope 517:Arecibo, Puerto Rico 382:frequency allocation 323:Ooty radio telescope 304:development of radar 242:designed to receive 165:in his back yard in 82:, which studies the 2605:American inventions 2459:Pulsar timing array 2265:Edward George Bowen 2255:Elizabeth Alexander 2117:Arecibo Observatory 2021:Submillimeter Array 1923:Low-Frequency Array 1893:Korean VLBI Network 1759:Southern Hemisphere 1670:(West Virginia, US) 1248:"The Dish turns 45" 1235:. pp. 132–150. 1000:Low-Frequency Array 944:Socorro, New Mexico 887:, or other type of 593:, and three in the 445:Arecibo Observatory 344:directional antenna 246:radio signals at a 222:, an engineer with 159:Holmdel, New Jersey 2439:Aperture synthesis 2408:Infrared astronomy 2345:Joseph Lade Pawsey 2315:Kenneth Kellermann 2285:Nan Dieter-Conklin 1993:One-Mile Telescope 1772:Parkes Observatory 1405:on August 31, 2007 1258:on August 24, 2008 1073:Aperture synthesis 956:group in Cambridge 935: 897:aperture synthesis 858:One-Mile Telescope 850: 485: 471:Comparison of the 401: 361:angular resolution 337:that makes up the 331: 138:(EMI) from radio, 98:which studies the 92:optical telescopes 56: 32: 25:Parkes Observatory 2522: 2521: 2464:Radio propagation 2413:Optical astronomy 2310:Karl Guthe Jansky 2120:(Puerto Rico, US) 2095: 2094: 1887:West Virginia, US 1636:(Puerto Rico, US) 1633:Arecibo Telescope 1384:978-0-19-960905-5 1041:radio wavelengths 889:transmission line 775:KRT-10 dish of a 743:sent the second, 359:predominate. The 220:Karl Guthe Jansky 167:Wheaton, Illinois 151:Karl Guthe Jansky 96:optical astronomy 62:is a specialized 2627: 2610:Radio telescopes 2587: 2586: 2585: 2575: 2574: 2573: 2563: 2562: 2561: 2551: 2550: 2539: 2538: 2537: 2530: 2512: 2511: 2502: 2501: 2479:HD 164595 signal 2454:Odd radio circle 2432:Related articles 2350:Ruby Payne-Scott 2280:Arthur Covington 2270:Ronald Bracewell 2240: 2232: 2224: 2205: 2196: 2186: 2177: 2169: 2161: 2153: 2145: 2137: 2129: 2121: 2113: 2087: 2077: 2056: 2046: 2036: 2031:Very Large Array 2026: 2016: 2006: 1997: 1988: 1978: 1968: 1958: 1948: 1938: 1928: 1918: 1908: 1907:Argentina/Brazil 1898: 1888: 1878: 1863: 1854: 1844: 1834: 1824: 1814: 1804: 1784: 1776: 1768: 1760: 1753: 1749:Yevpatoria RT-70 1745: 1737: 1729: 1721: 1712: 1703: 1695: 1687: 1683:Lovell Telescope 1679: 1671: 1663: 1655: 1646: 1637: 1628: 1611: 1610: 1600:Radio telescopes 1532: 1525: 1518: 1509: 1508: 1475: 1474: 1467: 1461: 1460: 1449: 1443: 1435: 1429: 1421: 1415: 1414: 1412: 1410: 1401:. Archived from 1395: 1389: 1388: 1368: 1362: 1361: 1351: 1345: 1344: 1342: 1341: 1324: 1318: 1317: 1315: 1314: 1299: 1293: 1292: 1290: 1289: 1278:"Microstructure" 1274: 1268: 1267: 1265: 1263: 1254:. Archived from 1243: 1237: 1236: 1224: 1218: 1204: 1198: 1197: 1177: 1171: 1170: 1151: 1145: 1144: 1124: 970:'s group at the 940:Very Large Array 842:Very Large Array 804: 788: 772: 718: 703:Yevpatoria RT-70 698: 682: 666: 650: 634: 618: 579:Lovell Telescope 501:Guizhou province 277:Milky Way Galaxy 269:celestial sphere 205: 185: 2635: 2634: 2630: 2629: 2628: 2626: 2625: 2624: 2595: 2594: 2593: 2583: 2581: 2571: 2569: 2559: 2557: 2545: 2535: 2533: 2525: 2523: 2518: 2490: 2427: 2395: 2389: 2375:Gart Westerhout 2243: 2238: 2230: 2222: 2208: 2203: 2194: 2184: 2183:(PRAO ASC LPI, 2175: 2167: 2159: 2151: 2143: 2135: 2127: 2119: 2111: 2091: 2085: 2075: 2060: 2054: 2044: 2034: 2024: 2014: 2004: 1995: 1986: 1976: 1966: 1956: 1946: 1936: 1926: 1916: 1906: 1896: 1886: 1876: 1861: 1852: 1842: 1832: 1822: 1812: 1802: 1792:Interferometers 1787: 1782: 1774: 1766: 1758: 1751: 1743: 1735: 1733:Usuda Telescope 1727: 1719: 1710: 1701: 1693: 1685: 1677: 1669: 1661: 1653: 1644: 1635: 1626: 1615: 1602: 1594: 1564:Radio telescope 1541: 1539:Radio astronomy 1536: 1483: 1481:Further reading 1478: 1469: 1468: 1464: 1451: 1450: 1446: 1436: 1432: 1422: 1418: 1408: 1406: 1397: 1396: 1392: 1385: 1369: 1365: 1352: 1348: 1339: 1337: 1326: 1325: 1321: 1312: 1310: 1301: 1300: 1296: 1287: 1285: 1276: 1275: 1271: 1261: 1259: 1244: 1240: 1225: 1221: 1205: 1201: 1194: 1178: 1174: 1167: 1153: 1152: 1148: 1141: 1125: 1121: 1117: 1109:Radar telescope 1069: 1029: 1027:Radio astronomy 1023: 834: 828: 822: 817: 816: 815: 812: 805: 796: 789: 780: 773: 762: 761: 751:in 2011 called 737: 730: 719: 710: 699: 690: 683: 674: 667: 658: 651: 642: 635: 626: 619: 610: 525:radar astronomy 465: 374: 316: 296:radio astronomy 216: 215: 214: 213: 212: 206: 198: 197: 186: 175: 86:portion of the 84:radio frequency 80:radio astronomy 70:used to detect 60:radio telescope 17: 12: 11: 5: 2633: 2623: 2622: 2617: 2612: 2607: 2592: 2591: 2579: 2567: 2555: 2543: 2520: 2519: 2517: 2516: 2506: 2495: 2492: 2491: 2489: 2488: 2483: 2482: 2481: 2476: 2466: 2461: 2456: 2451: 2449:Interferometry 2446: 2441: 2435: 2433: 2429: 2428: 2426: 2425: 2420: 2415: 2410: 2405: 2399: 2397: 2391: 2390: 2388: 2387: 2382: 2377: 2372: 2367: 2362: 2357: 2352: 2347: 2342: 2337: 2332: 2330:Bernard Lovell 2327: 2322: 2317: 2312: 2307: 2302: 2297: 2292: 2287: 2282: 2277: 2272: 2267: 2262: 2260:John G. Bolton 2257: 2251: 2249: 2245: 2244: 2242: 2241: 2233: 2228:ESA New Norcia 2225: 2216: 2214: 2210: 2209: 2207: 2206: 2198: 2188: 2178: 2170: 2162: 2154: 2146: 2138: 2130: 2122: 2114: 2105: 2103: 2097: 2096: 2093: 2092: 2090: 2089: 2079: 2068: 2066: 2062: 2061: 2059: 2058: 2048: 2038: 2035:New Mexico, US 2028: 2018: 2008: 1998: 1990: 1980: 1970: 1960: 1950: 1940: 1930: 1920: 1917:New Mexico, US 1910: 1900: 1890: 1880: 1870: 1864: 1856: 1853:California, US 1846: 1836: 1826: 1816: 1806: 1803:California, US 1795: 1793: 1789: 1788: 1786: 1785: 1777: 1769: 1767:(South Africa) 1761: 1755: 1754: 1746: 1738: 1730: 1722: 1714: 1704: 1696: 1691:Ooty Telescope 1688: 1680: 1672: 1664: 1656: 1648: 1638: 1630: 1619: 1617: 1608: 1596: 1595: 1593: 1592: 1587: 1581: 1571: 1561: 1549: 1547: 1543: 1542: 1535: 1534: 1527: 1520: 1512: 1506: 1505: 1487: 1482: 1479: 1477: 1476: 1462: 1457:Public Website 1444: 1430: 1416: 1390: 1383: 1363: 1346: 1319: 1294: 1269: 1238: 1219: 1199: 1193:978-0387683607 1192: 1172: 1166:978-1593394929 1165: 1146: 1140:978-1498770194 1139: 1118: 1116: 1113: 1112: 1111: 1106: 1101: 1096: 1091: 1086: 1081: 1075: 1068: 1065: 1035:but also emit 1025:Main article: 1022: 1019: 964:Lloyd's mirror 928:Atacama desert 824:Main article: 821: 818: 814: 813: 806: 799: 797: 790: 783: 781: 774: 767: 764: 763: 759: 758: 757: 736: 733: 732: 731: 720: 713: 711: 700: 693: 691: 684: 677: 675: 668: 661: 659: 653:The 100 meter 652: 645: 643: 637:The 100 meter 636: 629: 627: 621:The 500 meter 620: 613: 609: 606: 597:. The planned 464: 461: 460: 459: 448: 441: 434: 431: 417: 411: 373: 370: 339:radio spectrum 315: 312: 232:radiotelephone 207: 200: 199: 187: 180: 179: 178: 177: 176: 174: 171: 68:radio receiver 15: 9: 6: 4: 3: 2: 2632: 2621: 2618: 2616: 2613: 2611: 2608: 2606: 2603: 2602: 2600: 2590: 2580: 2578: 2568: 2566: 2556: 2554: 2549: 2544: 2542: 2532: 2531: 2528: 2515: 2507: 2505: 2497: 2496: 2493: 2487: 2484: 2480: 2477: 2475: 2472: 2471: 2470: 2467: 2465: 2462: 2460: 2457: 2455: 2452: 2450: 2447: 2445: 2442: 2440: 2437: 2436: 2434: 2430: 2424: 2421: 2419: 2416: 2414: 2411: 2409: 2406: 2404: 2401: 2400: 2398: 2392: 2386: 2385:Robert Wilson 2383: 2381: 2378: 2376: 2373: 2371: 2370:Govind Swarup 2368: 2366: 2363: 2361: 2358: 2356: 2353: 2351: 2348: 2346: 2343: 2341: 2338: 2336: 2333: 2331: 2328: 2326: 2325:John D. Kraus 2323: 2321: 2320:Frank J. Kerr 2318: 2316: 2313: 2311: 2308: 2306: 2303: 2301: 2300:Antony Hewish 2298: 2296: 2293: 2291: 2288: 2286: 2283: 2281: 2278: 2276: 2273: 2271: 2268: 2266: 2263: 2261: 2258: 2256: 2253: 2252: 2250: 2246: 2237: 2234: 2229: 2226: 2221: 2218: 2217: 2215: 2211: 2202: 2199: 2192: 2189: 2182: 2179: 2174: 2171: 2166: 2163: 2158: 2155: 2150: 2147: 2142: 2139: 2134: 2131: 2126: 2123: 2118: 2115: 2110: 2107: 2106: 2104: 2102: 2101:Observatories 2098: 2083: 2080: 2073: 2070: 2069: 2067: 2063: 2052: 2049: 2042: 2039: 2032: 2029: 2022: 2019: 2012: 2009: 2002: 1999: 1994: 1991: 1984: 1981: 1974: 1971: 1964: 1961: 1954: 1951: 1944: 1941: 1934: 1931: 1924: 1921: 1914: 1911: 1904: 1901: 1894: 1891: 1884: 1881: 1874: 1871: 1868: 1865: 1860: 1857: 1850: 1847: 1840: 1837: 1830: 1827: 1820: 1817: 1810: 1807: 1800: 1797: 1796: 1794: 1790: 1781: 1778: 1773: 1770: 1765: 1762: 1757: 1756: 1750: 1747: 1742: 1739: 1734: 1731: 1726: 1723: 1718: 1715: 1708: 1705: 1700: 1697: 1692: 1689: 1684: 1681: 1676: 1673: 1668: 1665: 1660: 1659:Galenki RT-70 1657: 1652: 1649: 1642: 1639: 1634: 1631: 1624: 1621: 1620: 1618: 1612: 1609: 1606: 1601: 1597: 1591: 1588: 1585: 1582: 1579: 1575: 1572: 1569: 1565: 1562: 1559: 1555: 1551: 1550: 1548: 1544: 1540: 1533: 1528: 1526: 1521: 1519: 1514: 1513: 1510: 1503: 1502:0-8038-9347-7 1499: 1495: 1491: 1488: 1485: 1484: 1472: 1466: 1458: 1454: 1448: 1441: 1440: 1434: 1427: 1426: 1420: 1404: 1400: 1394: 1386: 1380: 1376: 1375: 1367: 1359: 1358: 1350: 1335: 1334: 1329: 1323: 1308: 1304: 1298: 1283: 1279: 1273: 1257: 1253: 1249: 1242: 1234: 1230: 1223: 1217: 1216:0-521-25485-X 1213: 1209: 1203: 1195: 1189: 1185: 1184: 1176: 1168: 1162: 1158: 1157: 1150: 1142: 1136: 1132: 1131: 1123: 1119: 1110: 1107: 1105: 1102: 1100: 1097: 1095: 1092: 1090: 1087: 1085: 1082: 1079: 1076: 1074: 1071: 1070: 1064: 1062: 1058: 1054: 1050: 1046: 1042: 1038: 1034: 1033:visible light 1028: 1018: 1016: 1011: 1009: 1005: 1001: 997: 993: 990:, located in 989: 985: 981: 977: 973: 969: 968:Joseph Pawsey 965: 961: 957: 953: 949: 945: 941: 933: 929: 925: 921: 917: 914: 910: 906: 903:) the signal 902: 898: 894: 890: 886: 885:optical fiber 882: 878: 877:coaxial cable 874: 871: 870:Tony Hewish's 867: 863: 859: 855: 847: 843: 838: 833: 827: 810: 803: 798: 794: 787: 782: 778: 771: 766: 765: 756: 754: 750: 746: 742: 728: 724: 723:Galenki RT-70 721:The 70 meter 717: 712: 708: 704: 701:The 70 meter 697: 692: 688: 681: 676: 672: 669:The 76 meter 665: 660: 656: 649: 644: 640: 633: 628: 624: 617: 612: 611: 605: 602: 600: 596: 592: 588: 584: 580: 576: 572: 568: 564: 563:West Virginia 560: 556: 551: 549: 545: 544:Nizhny Arkhyz 542:located near 541: 536: 534: 530: 526: 522: 521:radar imaging 518: 514: 509: 506: 502: 498: 494: 490: 482: 479:(middle) and 478: 474: 469: 457: 453: 449: 446: 442: 439: 435: 432: 430: 426: 422: 421:Hydrogen line 418: 415: 412: 410: 406: 405: 404: 398: 394: 393:transmittance 389: 385: 383: 379: 378:Open spectrum 369: 366: 362: 358: 354: 350: 345: 340: 336: 328: 324: 320: 311: 309: 305: 301: 297: 293: 288: 286: 282: 281:constellation 278: 274: 270: 266: 262: 257: 253: 249: 245: 241: 237: 233: 229: 225: 221: 210: 204: 195: 191: 184: 170: 168: 164: 160: 156: 152: 147: 145: 141: 137: 133: 132:observatories 129: 125: 120: 116: 112: 108: 103: 101: 97: 93: 89: 85: 81: 77: 73: 69: 65: 61: 53: 49: 45: 41: 36: 30: 26: 21: 2589:Solar System 2394:Astronomy by 2355:Arno Penzias 2295:Cyril Hazard 1937:South Africa 1728:(Uzbekistan) 1568:Radio window 1563: 1494:Sky Watchers 1493: 1465: 1456: 1447: 1437: 1433: 1423: 1419: 1407:. Retrieved 1403:the original 1393: 1373: 1366: 1356: 1349: 1338:. Retrieved 1336:. 2016-07-06 1331: 1322: 1311:. Retrieved 1309:. 2008-12-26 1306: 1297: 1286:. Retrieved 1284:. 1996-02-05 1282:Jb.man.ac.uk 1281: 1272: 1260:. Retrieved 1256:the original 1241: 1232: 1222: 1207: 1202: 1182: 1175: 1155: 1149: 1129: 1122: 1030: 1012: 936: 873:Pulsar Array 851: 738: 603: 552: 537: 533:feed antenna 510: 505:feed antenna 486: 402: 375: 353:chicken wire 332: 308:World War II 289: 273:Solar System 265:sidereal day 217: 148: 104: 59: 57: 2577:Outer space 2565:Spaceflight 2474:Wow! signal 2365:Martin Ryle 2360:Grote Reber 2290:Frank Drake 2231:(Australia) 2065:Space-based 2055:Netherlands 1927:Netherlands 1897:South Korea 1775:(Australia) 1725:Suffa RT-70 1262:October 16, 1006:, like the 960:Nobel Prize 958:obtained a 952:Martin Ryle 948:arc seconds 942:(VLA) near 901:interfering 811:dish (left) 515:located in 454:mapped the 429:Wow! signal 425:The Big Ear 372:Frequencies 292:Grote Reber 285:Sagittarius 163:Grote Reber 153:in 1932 at 72:radio waves 52:cage dipole 38:Antenna of 2599:Categories 2396:EM methods 1616:telescopes 1614:Individual 1490:Asimov, I. 1360:, ABC News 1340:2016-07-06 1313:2016-02-24 1288:2016-02-24 1115:References 1078:Astropulse 830:See also: 807:Assembled 779:on a stamp 655:Effelsberg 463:Big dishes 414:Channel 37 365:wavelength 261:shot noise 244:short wave 240:reflectors 140:television 128:satellites 100:light wave 54:elements. 2541:Astronomy 2380:Paul Wild 2213:Multi-use 2193:(SAORAS, 1967:Australia 1955:(MERLIN, 1947:Australia 1833:Australia 1823:Australia 1752:(Ukraine) 1744:(Ukraine) 1654:(Germany) 1333:Space.com 1104:Telescope 1037:radiation 881:waveguide 791:Japanese 540:RATAN-600 481:RATAN-600 438:Waterhole 300:very high 248:frequency 29:Apollo 11 2504:Category 2340:Jan Oort 2239:(Canada) 2223:(Canada) 2176:(Sweden) 2168:(France) 2112:(Canada) 2082:Spektr-R 1925:(LOFAR, 1905:(LLAMA, 1862:(Europe) 1851:(CARMA, 1841:(CHIME, 1831:(ASKAP, 1678:(Mexico) 1662:(Russia) 1546:Concepts 1409:June 13, 1067:See also 1053:galaxies 809:Spektr-R 777:Salyut-6 753:Spektr-R 587:Cheshire 351:such as 329:, India 250:of 20.5 119:galaxies 46:region, 2527:Portals 2514:Commons 2053:(WSRT, 2043:(VLBA, 2003:(PaST, 1945:(MOST, 1933:MeerKAT 1875:(GMRT, 1821:(ATCA, 1811:(ALMA, 1764:HartRAO 1736:(Japan) 1720:(Italy) 1702:(China) 1694:(India) 1625:(FAST, 1578:History 1552:Units ( 1246:CSIRO. 1061:planets 1057:nebulae 1049:quasars 1045:pulsars 926:in the 868:(e.g., 866:dipoles 475:(top), 473:Arecibo 306:during 236:dipoles 115:nebulas 107:planets 64:antenna 48:Ukraine 44:Kharkiv 2248:People 2195:Russia 2185:Russia 2086:Russia 2033:(VLA, 2023:(SMA, 2013:(SKA, 1987:France 1965:(MWA, 1915:(LWA, 1895:(KVN, 1885:(GBI, 1843:Canada 1801:(ATA, 1711:Russia 1643:(CSO, 1586:(VLBI) 1558:jansky 1500:  1439:Nature 1425:Nature 1381:  1214:  1190:  1163:  1137:  749:Russia 671:Lovell 555:zenith 548:Russia 529:zenith 256:analog 228:static 190:dipole 2553:Stars 2076:Japan 2072:HALCA 2005:China 1977:Italy 1877:India 1869:(EHT) 1813:Chile 1627:China 996:India 913:phase 909:waves 905:waves 793:HALCA 745:HALCA 741:Japan 727:RT-70 707:RT-70 591:RT-70 569:near 497:karst 493:China 419:The " 314:Types 209:Reber 144:radar 111:stars 74:from 40:UTR-2 2469:SETI 2236:PARL 2220:DRAO 2204:(US) 2160:(US) 2152:(UK) 2144:(UK) 2136:(US) 2128:(US) 1996:(UK) 1783:(NZ) 1686:(UK) 1605:List 1556:and 1554:watt 1498:ISBN 1411:2007 1379:ISBN 1264:2008 1212:ISBN 1188:ISBN 1161:ISBN 1135:ISBN 1047:and 992:Pune 982:and 840:The 795:dish 571:Bonn 477:FAST 450:The 443:The 436:The 349:mesh 327:Ooty 238:and 117:and 66:and 1039:at 1008:CBI 954:'s 585:in 581:at 561:in 283:of 252:MHz 157:in 2601:: 2045:US 2025:US 1957:UK 1645:US 1455:. 1330:. 1305:. 1280:. 1250:. 1063:. 1055:, 994:, 984:3C 980:2C 883:, 879:, 755:. 546:, 287:. 142:, 113:, 109:, 58:A 2529:: 2197:) 2187:) 2088:) 2084:( 2078:) 2074:( 2057:) 2047:) 2037:) 2027:) 2017:) 2007:) 1989:) 1985:( 1979:) 1975:( 1969:) 1959:) 1949:) 1939:) 1935:( 1929:) 1919:) 1909:) 1899:) 1889:) 1879:) 1855:) 1845:) 1835:) 1825:) 1815:) 1805:) 1713:) 1709:( 1647:) 1629:) 1607:) 1603:( 1580:) 1576:( 1570:) 1566:( 1560:) 1531:e 1524:t 1517:v 1504:. 1473:. 1459:. 1413:. 1387:. 1343:. 1316:. 1291:. 1266:. 1196:. 1169:. 1143:. 399:.

Index


Parkes Observatory
Apollo 11

UTR-2
Kharkiv
Ukraine
cage dipole
antenna
radio receiver
radio waves
astronomical radio sources
radio astronomy
radio frequency
electromagnetic spectrum
optical telescopes
optical astronomy
light wave
planets
stars
nebulas
galaxies
parabolic ("dish") antennas
satellites
observatories
electromagnetic interference
television
radar
Karl Guthe Jansky
Bell Telephone Laboratories

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑