Knowledge

Hybrid plasmonic waveguide

Source 📝

78: 52: 74:
structure. The aim of designing the hybrid plasmonic waveguide was to combine these two different wave guiding schemes and achieve high light confinement without suffering large loss. Many different variations of this structure have been proposed. Many other types of hybrid plasmonic waveguides have been proposed since then to improve light confinement ability or to reduce fabrication complexity.
98:, which is confined near the metal surface. When these two structures are brought close to each other, the dielectric waveguide mode supported by the silicon nanowire couples to the surface plasmon mode supported by the metal surface. As a result of this mode coupling, light becomes highly confined in the region between the metal and the high index region (silicon nanowire). 111:, it can also confine light in the low index medium. Combination of these attractive features has stimulated worldwide research activity on the application of this new guiding scheme. Some notable examples of such applications are compact lasers, electro optic modulators, biosensors, polarization control devices, and thermo-optic switches. 73:
to confine light near a metal surface. The light confinement ability of plasmonic waveguides is not limited by diffraction, and, as a result, they can confine light to very small volumes. However, these guides suffer significant propagation loss because of the presence of metal as part of the guiding
94:. The most commonly used hybrid plasmonic waveguide consists of a silicon nanowire placed very near a metal surface and separated by a low index region. The silicon waveguide supports dielectric waveguide mode, which is mostly confined in silicon. The metal surface supports 106:
Hybrid plasmonic waveguide provides large confinement of light at a lower loss compared to many previously reported plasmonic waveguides. It is also compatible with silicon photonics technology, and can be integrated with silicon waveguides on the same chip. Similar to a
68:
to confine light in a high index region. They can guide light over a long distance with very low loss, but their light confinement ability is limited by diffraction. Plasmonic waveguides, on the other hand, use
320:
Y. Bian; Z. Zheng; X. Zhao; L. Liu; Y. Su; J. Liu; J. Zhu; T. Zhou (2013). "Nanoscale light guiding in a silicon-based hybrid plasmonic waveguide that incorporates an inverse metal ridge".
725:
F. Lou; L. Thylen; L. Wosinski (2013). Cheben, Pavel; Čtyroký, Jiří; Molina-Fernandez, Iñigo (eds.). "Hybrid plasmonic microdisk resonators for optical interconnect applications".
226:
R. F. Oulton; V. J. Sorger; D. A. Genov; D. F. P. Pile; X. Zhang (2008). "A hybrid plasmonic waveguide for subwavelength confinement and long range propagation".
682:
D. Perron; M. Wu; C. Horvath; D. Bachman; V. Van (2011). "All-plasmonic switching based on thermal nonlinearity in a polymer plasmonic microring resonator".
212: 631:
J. N. Caspers; J. S. Aitchison; M. Mojahedi (2013). "Experimental demonstration of an integrated hybrid plasmonic polarization rotator".
363:
M. Z. Alam; J. S. Aitchison; M. Mojahedi (2014). "A marriage of convenience: Hybridization of plasmonic and dielectric waveguide modes".
584:"Design of on-chip hybrid plasmonic Mach-Zehnder interferometer for temperature and concentration detection of chemical solution" 407: 65: 206: 406:
R. F. Oulton; V. J. Sorger; T. Zentgraf; R-M. Ma; C. Gladden; L. Dai; G. Bartal; X. Zhang (2009).
162:
W. L Barnes (2006). "Surface plasmon–polariton length scales: A route to sub-wavelength optics".
273:"A silicon-based hybrid plasmonic waveguide with a metal cap for a nano-scale light confinement" 734: 691: 640: 536: 487: 422: 372: 329: 284: 235: 171: 136: 25: 8: 778: 81:
Guided power density in a hybrid plasmonic waveguide. Light propagates in the z-direction
738: 695: 644: 540: 491: 426: 376: 333: 288: 239: 175: 140: 773: 750: 664: 608: 583: 559: 524: 505: 456: 388: 345: 90:
The operation of the hybrid plasmonic waveguides can be explained using the concept of
127:
D. K. Gramotnev; S. I. Bozhevolnyi (2010). "Plasmonics beyond the diffraction limit".
754: 707: 656: 613: 564: 448: 349: 302: 196: 21: 668: 509: 392: 183: 742: 699: 648: 603: 595: 554: 544: 495: 438: 430: 380: 337: 292: 251: 243: 179: 144: 33: 460: 55:
Cross section of hybrid plasmonic waveguide. Power propagates in the z direction.
95: 70: 225: 108: 599: 767: 500: 475: 247: 148: 91: 525:"Miniature microring resonator sensor based on a hybrid plasmonic waveguide" 711: 660: 617: 568: 452: 443: 384: 341: 306: 256: 405: 703: 652: 473: 297: 272: 24:
that achieves strong light confinement by coupling the light guided by a
434: 746: 630: 549: 476:"Ultra-compact silicon nanophotonic modulator with broadband response" 29: 362: 681: 77: 37: 126: 45: 197:
M. Z. Alam, J. Meier, J.S. Aitchison, and M. Mojahedi (2007).
51: 319: 41: 724: 522: 474:
V. J. Sorger; N. D. L-Kimura; R-M. Ma; X. Zhang (2012).
581: 32:
waveguide. It is formed by separating a medium of high
201:. Conference on Lasers and Electro-Optics (CLEO). 765: 729:. Integrated Optics: Physics and Simulations. 408:"Plasmon lasers at deep subwavelength scale" 211:: CS1 maint: multiple names: authors list ( 164:Journal of Optics A: Pure and Applied Optics 270: 161: 199:Super mode propagation in low index medium 607: 558: 548: 499: 442: 296: 255: 85: 523:L. Zhou; X. Sun; X. Li; J. Chen (2011). 76: 50: 766: 13: 582:S. Ghosh; B. M. A. Rahman (2019). 14: 790: 588:Sensors and Actuators B: Chemical 40:) from a metal surface (usually 718: 675: 624: 575: 516: 101: 467: 399: 356: 313: 264: 219: 190: 155: 120: 1: 114: 7: 365:Laser and Photonics Reviews 10: 795: 64:Dielectric waveguides use 59: 18:hybrid plasmonic waveguide 600:10.1016/j.snb.2018.09.070 184:10.1088/1464-4258/8/4/S06 66:total internal reflection 501:10.1515/nanoph-2012-0009 248:10.1038/nphoton.2008.131 149:10.1038/nphoton.2009.282 385:10.1002/lpor.201300168 342:10.1002/pssa.201228682 271:D. Dai; S. He (2009). 86:Principle of operation 82: 56: 322:Phys. Status Solidi A 80: 54: 704:10.1364/OL.36.002731 653:10.1364/OL.38.004054 298:10.1364/OE.17.016646 26:dielectric waveguide 739:2013SPIE.8781E..0XL 696:2011OptL...36.2731P 645:2013OptL...38.4054C 541:2011Senso..11.6856Z 492:2012Nanop...1...17S 435:10.1038/nature08364 427:2009Natur.461..629O 377:2014LPRv....8..394A 334:2013PSSAR.210.1424B 289:2009OExpr..1716646D 283:(19): 16646–16653. 240:2008NaPho...2.....O 176:2006JOptA...8S..87B 141:2010NaPho...4...83G 747:10.1117/12.2017108 550:10.3390/s110706856 83: 57: 48:) by a small gap. 690:(14): 2731–2733. 639:(20): 4054–4057. 421:(7264): 629–632. 22:optical waveguide 786: 759: 758: 722: 716: 715: 679: 673: 672: 628: 622: 621: 611: 579: 573: 572: 562: 552: 535:(7): 6856–6867. 520: 514: 513: 503: 471: 465: 464: 446: 412: 403: 397: 396: 360: 354: 353: 328:(7): 1424–1428. 317: 311: 310: 300: 268: 262: 261: 259: 228:Nature Photonics 223: 217: 216: 210: 202: 194: 188: 187: 159: 153: 152: 129:Nature Photonics 124: 34:refractive index 794: 793: 789: 788: 787: 785: 784: 783: 764: 763: 762: 723: 719: 680: 676: 629: 625: 580: 576: 521: 517: 472: 468: 410: 404: 400: 361: 357: 318: 314: 269: 265: 224: 220: 207:cite conference 204: 203: 195: 191: 160: 156: 125: 121: 117: 104: 96:surface plasmon 88: 71:surface plasmon 62: 12: 11: 5: 792: 782: 781: 776: 761: 760: 717: 684:Optics Letters 674: 633:Optics Letters 623: 594:(7): 490–502. 574: 515: 466: 398: 371:(3): 394–408. 355: 312: 263: 234:(8): 496–500. 218: 189: 154: 118: 116: 113: 109:slot-waveguide 103: 100: 87: 84: 61: 58: 9: 6: 4: 3: 2: 791: 780: 777: 775: 772: 771: 769: 756: 752: 748: 744: 740: 736: 732: 728: 721: 713: 709: 705: 701: 697: 693: 689: 685: 678: 670: 666: 662: 658: 654: 650: 646: 642: 638: 634: 627: 619: 615: 610: 605: 601: 597: 593: 589: 585: 578: 570: 566: 561: 556: 551: 546: 542: 538: 534: 530: 526: 519: 511: 507: 502: 497: 493: 489: 485: 481: 480:Nanophotonics 477: 470: 462: 458: 454: 450: 445: 444:10044/1/19116 440: 436: 432: 428: 424: 420: 416: 409: 402: 394: 390: 386: 382: 378: 374: 370: 366: 359: 351: 347: 343: 339: 335: 331: 327: 323: 316: 308: 304: 299: 294: 290: 286: 282: 278: 274: 267: 258: 257:10044/1/19117 253: 249: 245: 241: 237: 233: 229: 222: 214: 208: 200: 193: 185: 181: 177: 173: 169: 165: 158: 150: 146: 142: 138: 134: 130: 123: 119: 112: 110: 99: 97: 93: 92:mode coupling 79: 75: 72: 67: 53: 49: 47: 43: 39: 35: 31: 27: 23: 19: 730: 726: 720: 687: 683: 677: 636: 632: 626: 591: 587: 577: 532: 528: 518: 486:(1): 17–22. 483: 479: 469: 418: 414: 401: 368: 364: 358: 325: 321: 315: 280: 277:Opt. Express 276: 266: 231: 227: 221: 198: 192: 167: 163: 157: 135:(2): 83–91. 132: 128: 122: 105: 102:Applications 89: 63: 17: 15: 779:Plasmonics 768:Categories 733:: 87810X. 727:Proc. SPIE 170:(4): S87. 115:References 774:Photonics 755:119802655 350:115148678 36:(usually 30:plasmonic 712:21765524 669:26909408 661:24321921 618:22163989 569:22163989 510:10431638 453:19718019 393:54036931 307:19770880 735:Bibcode 692:Bibcode 641:Bibcode 609:3231671 560:3231671 537:Bibcode 529:Sensors 488:Bibcode 423:Bibcode 373:Bibcode 330:Bibcode 285:Bibcode 236:Bibcode 172:Bibcode 137:Bibcode 60:History 38:silicon 753:  710:  667:  659:  616:  606:  567:  557:  508:  461:912028 459:  451:  415:Nature 391:  348:  305:  46:silver 28:and a 20:is an 751:S2CID 665:S2CID 506:S2CID 457:S2CID 411:(PDF) 389:S2CID 346:S2CID 731:8781 708:PMID 657:PMID 614:PMID 565:PMID 449:PMID 303:PMID 213:link 42:gold 743:doi 700:doi 649:doi 604:PMC 596:doi 592:279 555:PMC 545:doi 496:doi 439:hdl 431:doi 419:461 381:doi 338:doi 326:210 293:doi 252:hdl 244:doi 180:doi 145:doi 44:or 770:: 749:. 741:. 706:. 698:. 688:36 686:. 663:. 655:. 647:. 637:38 635:. 612:. 602:. 590:. 586:. 563:. 553:. 543:. 533:11 531:. 527:. 504:. 494:. 482:. 478:. 455:. 447:. 437:. 429:. 417:. 413:. 387:. 379:. 367:. 344:. 336:. 324:. 301:. 291:. 281:17 279:. 275:. 250:. 242:. 230:. 209:}} 205:{{ 178:. 166:. 143:. 131:. 16:A 757:. 745:: 737:: 714:. 702:: 694:: 671:. 651:: 643:: 620:. 598:: 571:. 547:: 539:: 512:. 498:: 490:: 484:1 463:. 441:: 433:: 425:: 395:. 383:: 375:: 369:8 352:. 340:: 332:: 309:. 295:: 287:: 260:. 254:: 246:: 238:: 232:2 215:) 186:. 182:: 174:: 168:8 151:. 147:: 139:: 133:4

Index

optical waveguide
dielectric waveguide
plasmonic
refractive index
silicon
gold
silver

total internal reflection
surface plasmon

mode coupling
surface plasmon
slot-waveguide
Bibcode
2010NaPho...4...83G
doi
10.1038/nphoton.2009.282
Bibcode
2006JOptA...8S..87B
doi
10.1088/1464-4258/8/4/S06
cite conference
link
Bibcode
2008NaPho...2.....O
doi
10.1038/nphoton.2008.131
hdl
10044/1/19117

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.