Knowledge

Hypoxia in fish

Source πŸ“

528:
water in contact with air contains more oxygen. This is true only in stagnant water; in running water all layers are mixed together and oxygen levels are the same throughout the water column. One environment where ASR often takes place is tidepools, particularly at night. Separation from the sea at low tide means that water is not renewed, fish crowding within the pool means that oxygen is quickly depleted, and absence of light at night means that there is no photosynthesis to replenish the oxygen. Examples of tidepool species that perform ASR include the
1115:
hypoxic exposure lasts sufficiently long, the fish will succumb to a depletion of its glycogen stores and/or the over-accumulation of deleterious anaerobic end-products. Furthermore, the severely limited energetic scope that comes with a metabolically suppressed state means that the fish is unable to complete critical tasks such a predator avoidance and reproduction. Perhaps for these reasons, goldfish prioritize their use of aerobic metabolism in most hypoxic environments, reserving metabolic suppression for the extreme case of anoxia.
1107:, and this technique is seldom used for fish. The few studies that have used calorimetry reveal that some fish species employ metabolic suppression in hypoxia/anoxia (e.g., goldfish, tilapia, European eel) while others do not (e.g. rainbow trout, zebrafish). The species that employ metabolic suppression are more hypoxia-tolerant than the species that do not, which suggests that metabolic suppression enhances hypoxia tolerance. Consistent with this, differences in hypoxia tolerance among isolated 825: 5781: 6773: 6755: 1099:
gonad development, and ventilation efforts. And biochemically, metabolic rate can be further lowered below standard metabolic rate through reduced gluconeogenesis, protein synthesis and degradation rates, and ion pumping across cellular membranes. Reductions in these processes lower ATP use rates, but it remains unclear whether metabolic suppression is induced through an initial reduction in ATP use or ATP supply.
6785: 544:
four of them performed ASR during hypoxia. Another study looked at 24 species of tropical fish common to the pet trade, from tetras to barbs to cichlids, and found that all of them performed ASR. An unusual situation in which ASR is performed is during winter, in lakes covered by ice, at the interface between water and ice or near air bubbles trapped underneath the ice.
160: 1179:. For example, the crucian carp, a highly hypoxia-tolerant fish, has evolved to survive months of anoxic waters. A key adaptation is the ability to convert lactate to ethanol in the muscle and excrete it out of their gills. Although this process is energetically costly it is crucial to their survival in hypoxic waters. 749:(Hb) within their red blood cells to bind chemically and deliver 95% of the oxygen extracted from the environment to the working tissues. Maintaining oxygen extraction and delivery to the tissues allows continued activity under hypoxic stress and is in part determined by modifications in two different blood parameters: 1162:
contain the largest glycogen content (300-2000 ΞΌmol glocosyl units/g) in their tissue compared to hypoxia-sensitive fish, such as rainbow trout, which contain only 100 ΞΌmol glocosyl units/g. The more glycogen stored in a tissue indicates the capacity for that tissue to undergo glycolysis and produce
1059:
are used as alternative pathways for ATP production. However, these pathways are much less efficient than aerobic metabolism. For example, when using the same substrate, the total yield of ATP in anaerobic metabolism is 15 times lower than in aerobic metabolism. This level of ATP production is not
688:
when the temperature was raised from 7.5 Β°C to 15 Β°C. This difference may be due to the temperature regimes that these fish are typically found in, or there could be an underlying protective mechanism to prevent a loss of ion balance in stressful temperatures. Temperature also affects the
1098:
The mechanisms that fish use to suppress metabolic rate occur at behavioral, physiological and biochemical levels. Behaviorally, metabolic rate can be lowered through reduced locomotion, feeding, courtship, and mating. Physiologically, metabolic rate can be lowered through reduced growth, digestion,
1029:
isoforms. The anodic isoforms have low oxygen affinities (high P50) and marked Bohr effects, while the cathodic lack significant pH effects and are therefore thought to confer hypoxia tolerance. Several species of African cichlids raised from early stage development under either hypoxic or normoxic
769:
exhibit lower hematocrits. Hematocrit may be increased in response to both short-term (acute) or long-term (chronic) hypoxia exposure and results in an increase in the total amount of oxygen the blood can carry, also known as the oxygen carrying capacity of the blood. Acute changes in hematocrit are
590:
There are two main types of air breathing fishβ€”facultative and non-facultative. Under normoxic conditions facultative fish can survive without having to breathe air from the surface of the water. However, non-facultative fish must respire at the surface even in normal dissolved oxygen levels because
563:
Some species may hold an air bubble within the mouth during ASR. This may assist buoyancy as well as increase the oxygen content of the water passing over the bubble on its way to the gills. Another way to reduce buoyancy costs is to perform ASR on rocks or plants that provide support near the water
527:
level in the environment, fish swim up to the surface of the water column and ventilate at the top layer of the water where it contains relatively higher level of dissolved oxygen, a behavior called aquatic surface respiration (ASR). Oxygen diffuses into water from air and therefore the top layer of
478:
Hypoxia can modify normal behavior. Parental behaviour meant to provide oxygen to the eggs is often affected by hypoxia. For example, fanning behavior (swimming on the spot near the eggs to create a flow of water over them, and thus a constant supply of oxygen) is often increased when oxygen is less
284:, an outward K "leak" channel is inhibited. It remains unclear how these K channels are inhibited by a shortage of oxygen because there are yet to be any known direct binding sites for "a lack of oxygen", only whole cell and ion channel responses to hypoxia. K "leak" channels are two-pore-domain 1299:
domain, and the oxygen-dependent degradation domain (ODD), which render the HIF-Ξ± subunit sensitive to oxygen levels. The evolutionary similarity between HIF sequences in fish, tetrapods and birds, as well as the conservation of important functional domains suggests that HIF function and regulation
1153:
is present in tissue as a long term energy storage molecule. It can be converted into glucose and subsequently used as the starting material in glycolysis. A key adaptation to long-term survival during hypoxia is the ability of an organism to store large amounts of glycogen. Many hypoxia-tolerant
1290:
HIF-Ξ± and -Ξ² sequences shows that the isoforms of both subunits present in mammals are also represented in fish Within fish, HIF sequences group close together and are distinct from tetrapod and bird sequences. As well, amino acid analysis of available fish HIF-Ξ± and -Ξ² sequences reveals that they
1135:
The first prediction holds true. When membrane permeability to Na+ and K+ ions was compared between reptiles and mammals, reptile membranes were discovered to be five times less leaky. The second prediction has been more difficult to prove experimentally, however, indirect measures have showed a
586:
Aerial respiration is the 'gulping' of air at the surface of water to directly extract oxygen from the atmosphere. Aerial respiration evolved in fish that were exposed to more frequent hypoxia; also, species that engage in aerial respiration tend to be more hypoxia tolerant than those which do not
543:
But ASR is not limited to the intertidal environment. Most tropical and temperate fish species living in stagnant waters engage in ASR during hypoxia. One study looked at 26 species representing eight families of non-air breathing fishes from the North American great plains, and found that all but
413:
activation. There is evidence for both of these hypotheses depending on the species used for the study. For the neuroepithelial cells in the zebrafish gills, there is strong evidence supporting the "membrane hypothesis" due to their capacity to respond to hypoxia after removal of the contents of
1140:
during hypoxic conditions. Results seem to be tissue-specific, as crucian carp exposed to hypoxia do not undergo a reduction in Na+/K+ ATPase activity in their brain. Although evidence is limited, ion channel arrest enables organisms to maintain ion channel concentration gradients and membrane
1114:
Fish that are capable of hypoxia-induced metabolic suppression reduce their metabolic rates by 30% to 80% relative to standard metabolic rates. Because this is not a complete cessation of metabolic rate, metabolic suppression can only prolong hypoxic survival, not sustain it indefinitely. If the
622:
inhabiting near the surface of the water. To cope with the increased predation risk upon surfacing, some fish perform ASR or aerial respiration in schools to 'dilute' the predation risk. When fish can visually detect the presence of their aerial predators, they simply refrain from surfacing, or
439:, many of them are not capable of breathing air, and they rely on aquatic surface respiration as a supply of more oxygenated water at the surface of the water. However, many species of teleost fish are obligate water breathers and do not display either of these surface respiratory behaviours. 1230:
Microarray studies done on fish species exposed to hypoxia typically show a metabolic switch, that is, a decrease in the expression of genes involved in aerobic metabolism and an increase in expression of genes involved in anaerobic metabolism. Zebrafish embryos exposed to hypoxia decreased
1050:
Aerobic respiration, in which oxygen is used as the terminal electron acceptor, is crucial to all water-breathing fish. When fish are deprived of oxygen, they require other ways to produce ATP. Thus, a switch from aerobic metabolism to anaerobic metabolism occurs at the onset of hypoxia.
836:
The binding affinity of hemoglobin to oxygen is estimated using a measurement called P50 (the partial pressure of oxygen at which hemoglobin is 50% bound with oxygen) and can be extremely variable. If the hemoglobin has a weak affinity for oxygen, it is said to have a high P50 and therefore
720:, is also able to remodel their gills in response to hypoxic conditions. In response to oxygen levels 95% lower than normoxic conditions, apoptosis of ILCM increases lamellar surface area by up to 60% after just 24 hours. However, this comes at a significant osmoregulatory cost, reducing 156:-of-LOE value therefore imply enhanced hypoxia tolerances. In either case, LOE is a more holistic representation of overall hypoxia tolerance because it incorporates all contributors to hypoxia tolerance, including aerobic metabolism, anaerobic metabolism and metabolic suppression. 205:
In mammals there are several structures that have been implicated as oxygen sensing structures; however, all of these structures are situated to detect aortic or internal hypoxia since mammals rarely run into environmental hypoxia. These structures include the type I cells of the
292:
of the cell and play a major role in setting the equilibrium resting membrane potential of the cell. Once this "leak" channel is closed, the K is no longer able to freely flow out of the cell, and the membrane potential of the NEC increases; the cell becomes depolarized. This
676:
activity which are influenced by both hypoxia and temperature. In cold (15 Β°C) water the crucian carp has more ILCM, but when the temperature is increased to 25 Β°C the ILCM is removed, just as it would be in hypoxic conditions. This same transition in
782:. While increasing hematocrit means that the blood can carry a larger total amount of oxygen, a possible advantage during hypoxia, increasing the number of RBCs in the blood can also lead to certain disadvantages. First, A higher hematocrit results in more 556:, a South American species, exposure to hypoxia induces within hours the development of additional blood vessels inside the lower lip, enhancing its ability to take up oxygen during ASR. Swimming upside down may also help fishes perform ASR, as in some 430:
and behavioural strategies. Fish that use air breathing organs (ABO) tend to live in environments with highly variable oxygen content and rely on aerial respiration during times when there is not enough oxygen to support water-breathing. Though all
1102:
The prevalence of metabolic suppression use among fish species has not been thoroughly explored. This is partly because the metabolic rates of hypoxia-exposed fish, including suppressed metabolic rates, can only be accurately measured using direct
774:) activating receptors on the spleen that cause the release of RBCs into circulation. During chronic hypoxia exposure, the mechanism used to increase hematocrit is independent of the spleen and results from hormonal stimulation of the kidney by 117:
is nevertheless closely tied to a fish's hypoxia tolerance, in part because some fish prioritize their use of aerobic metabolism over anaerobic metabolism and metabolic suppression. It therefore remains a widely used hypoxia tolerance metric.
365:
by the glossopharyngeal nerve (cranial nerve IX); however all four arches are innervated by the vagus nerve (cranial nerve X). Both the glossopharyngeal and vagus nerves carry sensory nerve fibres into the brain and central nervous system.
547:
Some species may show morphological adaptations, such as a flat head and an upturned mouth, that allow them to perform ASR without breaking the water surface (which would make them more visible to aerial predators). One example is the
3735:
Cao, Yi-Bin; Chen, Xue-Qun; Wang, Shen; Wang, Yu-Xiang; Du, Ji-Zeng (22 October 2008). "Evolution and Regulation of the Downstream Gene of Hypoxia-Inducible Factor-1Ξ± in Naked Carp (Gymnocypris przewalskii) from Lake Qinghai, China".
329:
If the post-synaptic cell is a sensory neuron, then an increased firing rate in that neuron will transmit the signal to the central nervous system for integration. Whereas, if the post-synaptic cell is a connective pillar cell or a
479:
available. This has been documented in sticklebacks, gobies, and clownfishes, among others. Gobies may also increase the size of the openings in the nest they build, even though this may increase the risk of predation on the eggs.
5630:
Rahman, Md. Saydur (2007), "Molecular cloning, characterization and expression of two hypoxia-inducible factor alpha subunits, HIF-1Ξ± and HIF-2Ξ±, in a hypoxia-tolerant marine teleost, Atlantic croaker (Micropogonias undulatus)",
689:
speed at which the gills can be remodelled: for example, at 20 Β°C in hypoxia, the crucian carp can completely remove its ILCM in 6 hours, whereas at 8 Β°C, the same process takes 3–7 days. The ILCM is likely removed by
693:, but it is possible that when the fish is faced with the double stress of hypoxia at high temperature, the lamellae may be lost by physical degradation. Covering the gill lamellae may protect species like the crucian carp from 1123:
In addition to a reduction in the rate of protein synthesis, it appears that some species of hypoxia-tolerant fish conserve energy by employing Hochachka's ion channel arrest hypothesis. This hypothesis makes two predictions:
740:
Fish exhibit a wide range of tactics to counteract aquatic hypoxia, but when escape from the hypoxic stress is not possible, maintaining oxygen extraction and delivery becomes an essential component to survival. Except for the
494:
As oxygen levels decrease, fish may at first increase movements in an attempt to escape the hypoxic zone, but eventually they greatly reduce their activity levels, thus reducing their energetic (and therefore oxygen) demands.
4944:
van Ginneken, VJ; Onderwater, M; Olivar, OL; van den Thillart, GE (2001). "Metabolic depression and investigation of glucose/ethanol conversion in the European eel (Anguilla anguilla Linnaeus 1758) during anaerobiosis".
4707:
van Ginneken, VJ; Onderwater, M; Olivar, OL; van den Thillart, GE (2001). "Metabolic depression and investigation of glucose/ethanol conversion in the European eel (Anguilla anguilla Linnaeus 1758) during anaerobiosis".
1190:
studies done on different fish species exposed to low-oxygen conditions have shown that at the genetic level fish respond to hypoxia by changing the expression of genes involved in oxygen transport, ATP production, and
1175:. A challenge hypoxia-tolerant fish face is how to produce ATP anaerobically without creating a significant Pasteur effect. Along with a reduction in metabolism, some fish have adapted traits to avoid accumulation of 3853:
Wood, CM; Mcdonald, DG; Mcmahon, BR (1982). "The influence of experimental anemia on blood acid-base regulation in vivo and in vitro in the starry flounder (Platichthys stellatus) and rainbow trout (Salmo gairdneri)".
225:
cells. In fish, the neuroepithelial cells (NEC) have been implicated as the major oxygen sensing cells. NEC have been found in all teleost fish studied to date, and are likely a highly conserved structure within many
36:
and organism function in an oxygen-depleted environment. The biggest challenge fish face when exposed to low oxygen conditions is maintaining metabolic energy balance, as 95% of the oxygen consumed by fish is used for
636:
surface area, with some species such as goldfish doubling their lamellar surface areas in as little as 8 hours. The increased respiratory surface area comes as a trade-off with increased metabolic costs because the
631:
Gill remodelling happens in only a few species of fish, and it involves the buildup or removal of an inter-lamellar cell mass (ILCM). As a response to hypoxia, some fish are able to remodel their gills to increase
1263:. A decrease in protein synthesis is an important response to hypoxia to decrease ATP demand for whole organism metabolic suppression. Decreases in the expression of genes involved in protein synthesis, such as 4908:
van Ginneken, V; Addink, A; van den Thillart, GE (1997). "Metabolic rate and level of activity determined in tilapia (Oreochromis mossambicus Peters) by direct and indirect calorimetry and videomonitoring".
4671:
van Ginneken, V; Addink, A; van den Thillart, GE (1997). "Metabolic rate and level of activity determined in tilapia (Oreochromis mossambicus Peters) by direct and indirect calorimetry and videomonitoring".
48:. Therefore, hypoxia survival requires a coordinated response to secure more oxygen from the depleted environment and counteract the metabolic consequences of decreased ATP production at the mitochondria. 845:
environments. The use of high affinity (low P50) hemoglobins results in reduced ventillatory and therefore energetic requirements when facing hypoxic insult. The oxygen binding affinity of hemoglobin (Hb-O
19:
Fish are exposed to large oxygen fluctuations in their aquatic environment since the inherent properties of water can result in marked spatial and temporal differences in the concentration of oxygen (see
3842:
Perry, SF, Esbaugh, A, Braun, M, and Gilmour, KM. 2009. Gas Transport and Gill Function in Water Breathing Fish. In Cardio-Respiratory Control in Vertebrates, (ed. Glass ML, Wood SC), pp. 5-35. Berlin:
1042:) while suppressing metabolic demands. The ability to decrease energy demand by metabolic suppression is essential to ensure hypoxic survival due to the limited efficiency of anaerobic ATP production. 1300:
is similar between fish and mammalian species. There is also evidence of novel HIF mechanisms present in fish not found in mammals. In mammals, HIF-Ξ± protein is continuously synthesized and regulated
786:
blood (especially in cold water) increasing the amount of energy the cardiac system requires to pump the blood through the system and secondly depending on the transit time of the blood across the
4195:
Rutjes, HA; Nieveen, MC; Weber, RE; Witte, F; Van; den Thillart, GE (September 2007). "Multiple strategies of Lake Victoria cichlids to cope with lifelong hypoxia include hemoglobin switching".
4873:
van Waversveld, J; Addink, ADF; van den Thillart, GE (1989). "The anaerobic energy metabolism of goldfish determined by simultaneous direct and indirect calorimetry during anoxia and hypoxia".
3196:
Urbina, Mauricio A. (2011), "Leap of faith: Voluntary emersion behaviour and physiological adaptations to aerial exposure in a non-aestivating freshwater fish in response to aquatic hypoxia",
1312:, substantial increases in HIF-1Ξ± and HIF-3Ξ± mRNA were observed in all tissues after hypoxia exposure. Likewise, mRNA levels of HIF-1Ξ± and HIF-2Ξ± were hypoxia-responsive in the ovaries of the 390:
in mice, and it predicts that oxygen sensing is an ion balance initiated process. The mitochondrial hypothesis was also proposed for the carotid body of mice, but it relies on the levels of
3569:
Evans, DH; Piermarini, PM; Choe, KP (January 2005). "The multifunctional fish gill: dominant site of gas exchange, osmoregulation, acid-base regulation, and excretion of nitrogenous waste".
1278:
as a key regulator of gene expression changes in response to hypoxia However, a direct link between fish HIFs and gene expression changes in response to hypoxia has yet to be found.
571:
for example, survival was approximately four times higher in individuals able to perform ASR as compared to fish not allowed to perform ASR during their exposure to extreme hypoxia.
5359:
van der Meer, DL; den Thillart, GE; Witte, F; et al. (November 2005). "Gene expression profiling of the long-term adaptive response to hypoxia in the gills of adult zebrafish".
989:
influx of water and cell swelling. The dilution of the cell contents causes further spatial separation of hemoglobin from the inorganic phosphates and again serves to increase Hb-O
1149:
The limiting factor for fish undergoing hypoxia is the availability of fermentable substrate for anaerobic metabolism; once substrate runs out, ATP production ceases. Endogenous
578:, gestating females (this species is a livebearer) spend about 50% of their time in ASR as compared to only 15% in non-gestating females under the same low levels of oxygen. 5176:
Hylland, P.; Milton, S.; Pek, M.; Nilsson, G. E.; Lutz, P. L. (1997). "Brain Na+/K+-ATPase activity in two anoxia tolerant vertebrates: Crucian carp and freshwater turtle".
3881:
Yamamoto, K.; Itazawa, Y.; Kobayashi, H. (1985). "Direct observations of fish spleen by an abdominal window method and its application to exercised and hypoxic yellowtail".
1846:
Farrell, AP; Daxboeck, C; Randall, DJ (1979). "The effect of input pressure and flow on the pattern and resistance to flow in the isolated perfused gill of a teleost fish".
1450:
Mandic, M.; Speers-Roesch, B.; Richards, J.G. (2012). "Hypoxia tolerance in sculpins is associated with high anaerobic enzyme activity in brain but not in liver or muscle".
3017:
Petrosky, B.R.; Magnuson, J.J. (1973). "Behavioral responses of Northern pike, yellow perch and bluegill to oxygen concentrations under simulated winterkill conditions".
2694:
Reebs, S.G.; Whoriskey, F.G.; FitzGerald, G.J. (1984). "Diel patterns of fanning activity, egg respiration, and the nocturnal behavior of male three spined sticklebacks,
301:
Ca to flow down its concentration gradient into the cell causing the intracellular Ca concentration to greatly increase. Once the Ca is inside the cell, it binds to the
778:. Increasing hematocrit in response to erythropoietin is observed after approximately one week and is therefore likely under genetic control of hypoxia inducible factor 4092:
Nikinmaa, M; Boutilier, RG (1995). "Adrenergic control of red cell pH, organic phosphate concentrations and haemoglobin function in teleost fish". In Heisler, N (ed.).
841:. Conversely, fish hemoglobins with a low P50 bind strongly to oxygen and are then of obvious advantage when attempting to extract oxygen from hypoxic or variable PO 2974:
Magnuson, J.J.; Beckel, A.L.; Mills, K.; Brandt, S.B. (1985). "Surviving winter hypoxia: behavioral adaptations of fishes in a northern Wisconsin winterkill lake".
1881:
Lopez-Barneo, J; Lopez-Lopez, JR; Urena, J; Gonzalez, C (1988). "Chemotransduction in the carotid body: K+ current modulated by PO2 in type I chemoreceptor cells".
5581:"Cloning and expression analysis of two distinct HIF-alpha isoforms--gcHIF-1alpha and gcHIF-4alpha--from the hypoxia-tolerant grass carp, Ctenopharyngodon idellus" 2651:
Mandic, M; Sloman, KA Richards JG (2009). "Escaping to the surface: a phylogenetically independent analysis of hypoxia-induced respiratory behaviors in sculpins".
4230:
Abbaraju, NV; Rees, BB (June 2012). "Effects of dissolved oxygen on glycolytic enzyme specific activities in liver and skeletal muscle of Fundulus heteroclitus".
1001:
and directly drives mitochondrial ATP synthesis using the cytosolic pool of protons that likely accumulates in hypoxia (via lactic acidosis and ATP hydrolysis).
618:
Both ASR and aerial respiration require fish to travel to the top of water column and this behaviour increases the predation risks by aerial predators or other
4507:"Responses to hypoxia recovery: Repayment of oxygen debt is not associated with compensatory protein synthesis in the Amazonian cichlid, Astronotus ocellatus" 4546:
Smith, RW; Houlihan, DF; Nilsson, GE; Brechin, JG (1996). "Tissue-specific changes in protein synthesis rates in vivo during anoxia in the crucian carp".
2729:
Wannamaker, C.M.; Rice, J.A. (2000). "Effects of hypoxia on movements and behavior of selected estuarine organisms from the southeastern United States".
1223:, which is normally only found in muscle tissue, has also been observed after hypoxia exposure in the gills of zebrafish and in non-muscle tissue of the 5022:
Buck, L. T.; Hochachka, P. W. (1993). "Anoxic suppression of Na+/K+-ATPase and constant membrane potential in hepatocytes: support for channel arrest".
4431:
Wang, Tobias; Lefevre, Sjannie; Thanh Huong, Do Thi; Cong, Nguyen van; Bayley, Mark (2009). "Chapter 8 the Effects of Hypoxia on Growth and Digestion".
4314:
Wang, Tobias; Lefevre, Sjannie; Thanh Huong, Do Thi; Cong, Nguyen van; Bayley, Mark (2009). "Chapter 8 the Effects of Hypoxia on Growth and Digestion".
3237:
Plath M, Tobler M, Riesch R, GarcΓ­a de LeΓ³n FJ, Giere O, Schlupp I. 2007. Survival in an extreme habitat: the roles of behaviour and energy limitation.
899:(BNHE) on the RBC membrane via circulating catelcholamines. This process causes the internal pH of the RBC to increase through the outwards movement of 1030:
conditions were contrasted in an attempt to compare Hb isoforms. They demonstrated there were Hb isoforms specific to the hypoxia-raised individuals.
732:
by over 10%. The morphological response to hypoxia by scaleless carp is the fastest respiratory surface remodelling reported in vertebrates thus far.
3087:
Sundin, L.; Reid, S.G.; Rantin, F.T.; Milson, W.K. (2000). "Branchial receptors and cardiorespiratory reflexes in a neotropical fish, the tambaqui (
1111:
populations appear to result from differences in the use of metabolic suppression, with the more tolerant stickleback using metabolic suppression.
610:; they are highly vascularized and provide additional method of extracting oxygen from the air. Fish also use ABO for storing the retained oxygen. 598:
Many air breathing freshwater teleosts use ABOs to effectively extract oxygen from air while maintaining functions of the gills. ABOs are modified
515:. Some sharks that ram-ventilate their gills may understandably increase their swimming speeds under hypoxia, to bring more water to the gills. 2312:
Domenici, P.; Steffensen, J.F.; Batty, R.S. (2000). "The effect of progressive hypoxia on swimming activity and schooling in Atlantic herring".
486:
Behavioural adaptations meant to survive when oxygen is scarce include reduced activity levels, aquatic surface respiration, and air breathing.
4789:
Stangl, P; Wegener, G (1996). "Calorimetric and biochemical studies on the effects of environmental hypoxia and chemicals on freshwater fish".
3694:
Matey, V.; Richards, J. G.; Wang, Y.; Wood, C. M.; Rogers, J.; Davies, R.; Murray, B. W.; Chen, X.-Q.; Du, J.; Brauner, C. J. (1 April 2008).
761:
In general, hematocrit is the number of red blood cells (RBC) in circulation and is highly variable among fish species. Active fish, like the
790:
and the diffusion rate of oxygen, an increased hematocrit may result in less efficient transfer of oxygen from the environment to the blood.
3251:
Timmerman, C.M.; Chapman, L.J. (2003). "The effect of gestational state on oxygen consumption and response to hypoxia in the sailfin molly,
1983:
Lefevre, Sjannie (2011), "Hypoxia tolerance and partitioning of bimodal respiration in the striped catfish (Pangasianodon hypophthalmus)",
1719:
Jonz, MG; Nurse, CA (2003). "Neuroepithelial cells and associated innervation of the zebrafish gill: A confocal immunofluorescence study".
1171:
When anaerobic pathways are turned on, glycogen stores are depleted and accumulation of acidic waste products occurs. This is known as a
230:
of fish. NEC are also found in all four gill arches within several different structures, such as along the filaments, at the ends of the
6485: 5682: 5219:
Vornanen, Matti; Stecyk, Jonathan A.W.; Nilsson, GΓΆran E. (2009). "Chapter 9 the Anoxia-Tolerant Crucian Carp (Carassius Carassius L.)".
4750:"Calorespirometry reveals that goldfish prioritize aerobic metabolism over metabolic rate depression in all but near-anoxic environments" 4109:"Acidosis Maintains the Function of Brain Mitochondria in Hypoxia-Tolerant Triplefin Fish: A Strategy to Survive Acute Hypoxic Exposure?" 1495:"Calorespirometry reveals that goldfish prioritize aerobic metabolism over metabolic rate depression in all but near-anoxic environments" 1038:
To deal with decreased ATP production through the electron transport chain, fish must activate anaerobic means of energy production (see
2499:
Carlson, J.K.; Parsons, G.R. (2001). "The effects of hypoxia on three sympatric shark species: physiological and behavioral responses".
2427:
Metcalfe, J.D.; Butler, P.J. (1984). "Changes in activity and ventilation in response to hypoxia in unrestrained, unoperated dogfish (
6227: 1926:"NADPH oxidase is an O2 sensor in airway chemoreceptors: Evidence from K+ current modulation in wild-type and oxidase-deficient mice" 2772:
Stierhoff, K.L.; Targett, T.E.; Grecay, P.A. (2003). "Hypoxia tolerance of the mummichog: the role of access to the water surface".
1017:, but especially in fish that are required to cope with both fluctuating temperature and oxygen availability. Hbs isolated from the 2876:
Kramer, D.L.; McClure, M. (1982). "Aquatic surface respiration, a widespread adaptation to hypoxia in tropical freshwater fishes".
802:
delivery in the face of low ambient oxygen is to increase the affinity of the blood. The oxygen content of the blood is related to
2238:
Jones, J.C.; Reynolds, J.D. (1999). "The influence of oxygen stress on female choice for male nest structure in the common goby".
1060:
sufficient to maintain a high metabolic rate, therefore, the only survival strategy for fish is to alter their metabolic demands.
2585:
Congleton, J.L. (1980). "Observations of the responses of some southern California tidepool fishes to nocturnal hypoxic stress".
552:, whose upturned mouth suggests surface feeding, but whose feeding habits are not particularly restricted to the surface. In the 3696:"The effect of hypoxia on gill morphology and ionoregulatory status in the Lake Qinghai scaleless carp, Gymnocypris przewalskii" 2211:
Jones, J.C.; Reynolds, J.D. (1999). "Oxygen and the trade-off between egg ventilation and brood protection in the common goby".
1586:
Gonzalez, C; Almaraz, L; Obeso, A; Rigual, R (1994). "Carotid body chemoreceptors: from natural stimuli to sensory discharges".
4011:"Control of cell volume and ion transport by beta-adrenergic catecholamines in erythrocytes of rainbow trout, Salmo gairdneri" 4154:
Tamburrini, M; Verde, C; Olianas, A; Giardina, B; Corda, M; Sanna, MT; Fais, A; Deiana, AM; Prisco, G; Pellegrini, M (2001).
2349:
Dalla Via, D.; Van; den Thillart, G.; Cattani, O.; Cortesi, P. (1998). "Behavioural responses and biochemical correlates in
242:
pathways. Since neuroepithelial cells are distributed throughout the gills, they are often ideally situated to detect both
5455:
Ton, C; Stamatiou, D; Liew, CC (April 2003). "Gene expression profile of zebrafish exposed to hypoxia during development".
5057:
Else, PL; Hulbert, AJ (July 1987). "Evolution of mammalian endothermic metabolism: "leaky" membranes as a source of heat".
2807:
Kramer, Donald L. (1982), "Aquatic surface respiration, a widespread adaptation to hypoxia in tropical freshwater fishes",
6054: 4624:"Oxygen consumption rate v. rate of energy utilization of fishes: a comparison and brief history of the two measurements" 3126:
Chapman, L.J.; Kaufman, L.; Chapman, C.A. (1994). "Why swim upside down? A comparative study of two mochokid catfishes".
1219:
and increased demand for hemoglobin synthesis, leading to increased oxygen uptake and transport. Increased expression of
3161:
Gee, J.H.; Gee, P.A. (1991). "Reaction of gobioid fishes to hypoxia: buoyancy control and aquatic surface respiration".
672:
is one species able to remodel its gill filaments in response to hypoxia. Their inter-lamellar cells have high rates of
966:
to maintain ionic equilibrium within the RBC results in a steady decline in cellular ATP, also serving to increase Hb-O
3941:
Semenza, GL (2004). "O2-regulated gene expression: transcriptional control of cardiorespiratory physiology by HIF-1".
6826: 6084: 5236: 4448: 4364: 4331: 3409: 2052:
Perry, S.F. (2006), "Does bradycardia or hypertension enhance gas transfer in rainbow trout (Oncorhynchus mykiss)?",
1385: 4283:"Anoxic depression of spontaneous locomotor activity in crucian carp quantified by a computerized imaging technique" 3652:"Temperature alters the respiratory surface area of crucian carp Carassius carassius and goldfish Carassius auratus" 4466:"AMP-activated protein kinase activity during metabolic rate depression in the hypoxic goldfish, Carassius auratus" 98:
is often used to represent hypoxia tolerance, it more accurately represents the ability to take up environmental O
5738: 5675: 1056: 483:
often move their young fry closer to the water surface, where oxygen is more available, during hypoxic episodes.
56:
A fish's hypoxia tolerance can be represented in different ways. A commonly used representation is the critical O
2380:
Kramer, D.L.; Mehegan, J.P. (1981). "Aquatic surface respiration, an adaptive response to hypoxia in the guppy,
6821: 6816: 4826:"Metabolic depression and the evolution of hypoxia tolerance in threespine stickleback, Gasterosteus aculeatus" 1301: 121:
A fish's hypoxia tolerance can also be represented as the amount of time it can spend at a particular hypoxic P
5404:
Fraser, J; de Mello, LV; Ward, D; Rees, HH; Williams, DR; Fang, YC; Brass, A; Gracey, AY; Cossins, AR (2006).
3052:
Lewis, W.M. Jr (1970). "Morphological adaptations of cyprinodontoids for inhabiting oxygen deficient waters".
2849:
Gee, J.H.; Tallman, R.F.; Smart, H.J. (1978). "Reactions of some great plains fishes to progressive hypoxia".
499:
show this exact pattern. Other examples of fishes that reduce their activity levels under hypoxia include the
466:
hypoxia response is simply a stress response, and the advantages found in early studies may only result after
3392:
Chapman, Lauren J.; McKenzie, David J. (2009). "Chapter 2 Behavioral Responses and Ecological Consequences".
2124:
Torricelli, P.; Lugli, M.; Gandolfi, G. (1985). "A quantitative analysis of the fanning activity in the male
1803:
Lesage, F; Lazdunski, M (2000). "Molecular and functional properties of two-pore-domain potassium channels".
1403:"Responses by fishes to environmental hypoxia: integration through Fry's concept of aerobic metabolic scope" 1091:) are used. Metabolic suppression also reduces the accumulation rate of deleterious anaerobic end-products ( 6789: 5823: 4058:
Nikinmaa, Mikko (1983), "Adrenergic regulation of haemoglobin oxygen affinity in rainbow trout red cells",
5723: 3902:"Effects of moderate and substantial hypoxia on erythropoietin levels in rainbow trout kidney and spleen" 524: 21: 1623:"Hypoxia-induced secretion of serotonin from intact pulmonary neuroepithelial bodies in neonatal rabbit" 809:
and is illustrated using an oxygen equilibrium curve (OEC). Fish hemoglobins, with the exception of the
398:(ROS) production as a cue for hypoxia. Specifically, the oxygen sensitive K currents are inhibited by 6475: 6202: 6172: 6059: 5668: 3789:"Physiological responses to prolonged aquatic hypoxia in the Queensland lungfish Neoceratodus forsteri" 2281:
Courtenay, S.C.; Keenleyside, M.H.A. (1983). "Wriggler-hanging: a response to hypoxia by brood-rearing
1271:, have been shown in the muscle of the mudsucker and gills of adult zebrafish after hypoxia exposure . 2612:
Sloman, K.A.; Mandic, M.M.; Todgham, A.E.; et al. (2008). "The response of the tidepool sculpin,
6748: 6741: 6708: 6450: 6122: 5803: 3788: 2180:"O2 replenishment to fish nests: males adjust brood care to ambient conditions and brood development" 2097:
Iersel, J.J.A. van. 1953. An analysis of the parental behaviour of the male three-spine stickleback (
1275: 998: 837:
constrains the environment in which a fish can inhabit to those with relatively high environmental PO
779: 391: 215: 2919:
Klinger, S.A.; Magnuson, J.J.; Gallepp, G.W. (1982). "Survival mechanisms of the central mudminnow (
997:) species seem to take advantage of intracellular acidosis and appears to "bypasse" the traditional 877:
as well as a variety of other teleosts, increased RBC pH stems from the activation of B-andrenergic
6811: 6758: 6517: 533: 45: 3530:"Rates of hypoxia induction alter mechanisms of O2 uptake and the critical O2 tension of goldfish" 2326: 2017:
Holeton, GF; Randall, DJ (1967). "Changes in blood pressure in the rainbow trout during hypoxia".
1539:"A new analysis of hypoxia tolerance in fishes using a database of critical oxygen level (P crit)" 181:. On the other hand, oxygen consumption rate is unaffected by the changes in oxygen tension when P 6736: 6718: 6280: 6029: 5780: 4156:"The hemoglobin system of the brown moray Gymnothorax unicolor: Structure/function relationships" 1340: 1248: 1236: 706: 599: 414:
the cell. However, there is no evidence against multiple sites for oxygen sensing in organisms.
395: 29: 5092:
Busk, M; Boutilier, RG (2005). "Metabolic arrest and its regulation in anoxic eel hepatocytes".
4382:"The energetic consequence of specific dynamic action in southern bluefin tuna Thunnus maccoyii" 3978:"Molecular Ecology of Teleost Fish Hemoglobins Strategies for Adapting to Changing Environments" 3342:
Sloman, KA; Sloman, RD; De Boeck, G; Scott, GR; Iftikar, FI; Wood, CM; Almeida-Val, VMF (2009).
1368:
Richards, Jeffrey G. (2009). "Chapter 10 Metabolic and Molecular Responses of Fish to Hypoxia".
6698: 6522: 6507: 6330: 6049: 5938: 2321: 1292: 1291:
contain all functional domains shown to be important for mammalian HIF function, including the
1108: 1073: 1009:
Nearly all animals have more than one kind of Hb present in the RBC. Multiple Hb isoforms (see
623:
prefer to surface in areas where they can be detected less easily (i.e. turbid, shaded areas).
508: 350: 331: 222: 211: 38: 1494: 6728: 6713: 6222: 6039: 4347:
Wu, Rudolf S.S. (2009). "Chapter 3 Effects of Hypoxia on Fish Reproduction and Development".
1260: 850: 646: 6723: 6019: 5310: 5261: 4989: 4954: 4918: 4798: 4717: 4681: 4635: 4282: 4239: 3745: 3611:"Hypoxia induces adaptive and reversible gross morphological changes in crucian carp gills" 3475: 3264: 2983: 2940: 2885: 2816: 2781: 2738: 2551: 2508: 2471: 2393: 1937: 1890: 1414: 1240: 1069: 1039: 681: 234:
and throughout the lamellae. Two separate neural pathways have been identified within the
110: 1304:
by changing oxygen conditions, but it has been shown in different fish species that HIF-Ξ±
832:
required for half of the hemoglobin oxygen binding sites to be saturated with oxygen (P50)
8: 6512: 6455: 6255: 6142: 5931: 1264: 1072:(called standard metabolic rate in ectothermic animals). This reduces the fish's rate of 557: 451: 5314: 5265: 5252:
Shoubridge, E. (1980), "Ethanol: novel end product of vertebrate anaerobic metabolism",
4993: 4958: 4922: 4802: 4721: 4685: 4639: 4243: 3749: 3480:) and their behavioural modulation by perceived threat of predation and water turbidity" 3268: 2987: 2944: 2889: 2820: 2785: 2742: 2555: 2512: 2475: 2397: 1941: 1894: 1418: 1131:
Membrane permeability decreases even more during hypoxic conditions (ion channel arrest)
1068:
Metabolic suppression is the regulated and reversible reduction of metabolic rate below
6094: 5607: 5580: 5526: 5480: 5468: 5432: 5405: 5201: 5117: 4890: 4850: 4825: 4263: 4131: 4108: 4075: 4035: 4010: 3819: 3769: 3510: 3451: 3426: 3371: 3300:"Physiological, behavioral and biochemical adaptations of intertidal fishes to hypoxia" 3280: 3221: 3178: 3143: 3069: 3034: 2999: 2956: 2901: 2832: 2676: 2567: 2524: 2409: 2263: 2137: 1863: 1828: 1744: 1696: 1671: 1647: 1622: 1563: 1538: 1475: 1268: 878: 633: 512: 289: 263: 5299:"Hypoxia-induced gene expression profiling in the euryoxic fish Gillichthys mirabilis" 5228: 5189: 4966: 4930: 4729: 4693: 4583:"A simple and affordable calorespirometer for assessing the metabolic rates of fishes" 4440: 4356: 4323: 3807: 3401: 2750: 1377: 6440: 6345: 6250: 6162: 6157: 6104: 5911: 5718: 5708: 5648: 5612: 5561: 5518: 5472: 5437: 5386: 5338: 5333: 5298: 5277: 5232: 5193: 5158: 5109: 5074: 5039: 5035: 5005: 4855: 4810: 4771: 4653: 4604: 4563: 4528: 4487: 4444: 4413: 4360: 4327: 4255: 4212: 4177: 4172: 4155: 4136: 4040: 3958: 3923: 3811: 3761: 3717: 3673: 3632: 3586: 3551: 3502: 3456: 3405: 3363: 3321: 3213: 3108: 2793: 2754: 2668: 2633: 2598: 2255: 2069: 2034: 2000: 1965: 1960: 1925: 1906: 1820: 1816: 1785: 1736: 1701: 1652: 1603: 1568: 1519: 1467: 1432: 1381: 1232: 1192: 803: 399: 314: 281: 267: 5530: 5484: 5205: 5121: 4894: 4559: 4267: 4079: 3954: 3823: 3284: 3225: 3003: 2960: 2905: 2836: 2680: 2571: 2528: 2413: 2267: 1867: 1832: 6182: 6127: 6089: 6044: 6002: 5926: 5713: 5640: 5602: 5592: 5553: 5510: 5464: 5427: 5417: 5376: 5368: 5328: 5318: 5269: 5224: 5185: 5148: 5101: 5066: 5031: 4997: 4962: 4926: 4882: 4845: 4837: 4806: 4761: 4725: 4689: 4643: 4594: 4555: 4518: 4477: 4436: 4403: 4393: 4352: 4319: 4294: 4247: 4204: 4167: 4126: 4116: 4067: 4030: 4026: 4022: 3989: 3950: 3913: 3863: 3803: 3773: 3753: 3707: 3663: 3622: 3578: 3541: 3514: 3494: 3446: 3438: 3397: 3355: 3311: 3272: 3205: 3170: 3135: 3100: 3061: 3026: 2991: 2948: 2893: 2858: 2824: 2789: 2746: 2711: 2660: 2625: 2594: 2559: 2516: 2479: 2401: 2362: 2331: 2294: 2247: 2220: 2191: 2061: 2026: 1992: 1955: 1945: 1898: 1855: 1812: 1775: 1728: 1691: 1683: 1642: 1634: 1595: 1558: 1550: 1509: 1479: 1459: 1422: 1373: 1313: 1244: 1208: 697:
and environmental toxins during normoxia by limiting their surface area for inward
529: 496: 443: 339: 318: 302: 5503:
American Journal of Physiology. Regulatory, Integrative and Comparative Physiology
5361:
American Journal of Physiology. Regulatory, Integrative and Comparative Physiology
5070: 4197:
American Journal of Physiology. Regulatory, Integrative and Comparative Physiology
3375: 3209: 1748: 1599: 1215:. Changes in the sequestration and metabolism of iron may suggest hypoxia induced 249: 6831: 6399: 6379: 6207: 6194: 6177: 6132: 6014: 5953: 5877: 5872: 5808: 5795: 4505:
Lewis, JM; Costa, I; Val, AL; Almeida Val, VM; Gamperl, AK; Driedzic, WR (2007).
1687: 1638: 945: 766: 607: 480: 467: 358: 346:
beds, and the total surface area for gas exchange per lamella will be increased.
163:
Oxygen consumption rate decreases with decreasing environmental oxygen tension (P
5501:
Nikinmaa, M; Rees, BB (May 2005). "Oxygen-dependent gene expression in fishes".
3343: 1537:
Rogers, N.J.; Urbina, M.A.; Reardon, E.E.; McKenzie, D.J.; Wilson, R.J. (2016).
6675: 6648: 6540: 6532: 6465: 6435: 6374: 6356: 6310: 6300: 5904: 5857: 5644: 5514: 5372: 4208: 3582: 2629: 2065: 1996: 1330: 1216: 1187: 1172: 994: 787: 775: 771: 742: 654: 463: 455: 294: 4251: 3757: 3276: 2520: 6805: 6777: 6680: 6594: 6414: 6389: 6384: 6340: 6335: 6290: 6285: 6265: 6137: 5916: 5835: 4121: 2155:
Takegaki, T.; Nakazono, A. (1999). "Responses of the egg-tending gobiid fish
2110:
Sevenster, P. 1961. A causal analysis of a displacement activity (fanning in
2086: 1554: 1279: 1199:
exposed to hypoxia there were changes in the expression of genes involved in
874: 814: 641:
are a very important site for many important processes including respiratory
575: 459: 423: 410: 383: 379: 349:
In fish, the hypoxic signal is carried up to the brain for processing by the
342:
and previously unused lamellae will be recruited through recruitment of more
298: 259: 42: 5422: 5273: 5001: 4980:
Hochachka, P. (1986), "Defense strategies against hypoxia and hypothermia",
4943: 4706: 2298: 2224: 2196: 2179: 1902: 613: 90:
is therefore thought to be more hypoxia-tolerant than a fish with a higher P
6670: 6494: 6409: 6369: 6270: 6212: 6152: 6079: 6074: 6064: 5980: 5970: 5899: 5882: 5789: 5750: 5743: 5652: 5616: 5597: 5565: 5522: 5476: 5441: 5390: 5342: 5323: 5162: 5113: 4859: 4841: 4775: 4657: 4608: 4532: 4491: 4417: 4259: 4216: 4181: 4140: 3994: 3977: 3962: 3927: 3815: 3765: 3721: 3677: 3636: 3590: 3555: 3506: 3476:"Reflex cardioventilatory responses to hypoxia in the flathead grey mulet ( 3460: 3442: 3367: 3325: 3217: 3112: 3104: 2758: 2672: 2637: 2335: 2259: 2251: 2073: 2004: 1969: 1950: 1824: 1789: 1740: 1705: 1656: 1572: 1523: 1471: 1436: 1159: 1018: 824: 717: 669: 642: 574:
ASR may be performed more often when the need for oxygen is higher. In the
436: 387: 285: 231: 207: 5544:
Kenneth, NS; Rocha, S (2008). "Regulation of gene expression by hypoxia".
5281: 5197: 5078: 5043: 5009: 4567: 4299: 4044: 2038: 1910: 1764:"A comparative analysis of putative oxygen sensing cells in the fish gill" 1607: 32:
with varied behavioral, physiological, and cellular responses to maintain
6653: 6641: 6567: 6325: 6320: 6295: 6275: 6217: 6112: 6007: 5985: 5975: 5948: 5818: 5770: 3867: 3344:"The role of size in synchronous air breathing of Hoplosternum littorale" 2030: 1325: 1224: 1176: 1137: 1104: 1092: 1087:
s by reducing the rate at which the fish's finite anaerobic fuel stores (
930: 765:, tend to have higher hematocrits, whereas less active fish, such as the 603: 567:
ASR significantly affects survival of fish during severe hypoxia. In the
500: 447: 354: 128:
before it loses dorsal-ventral equilibrium (called time-to-LOE), or the P
33: 5381: 3734: 6703: 6502: 6470: 6404: 6394: 6315: 6305: 5990: 5958: 5943: 5889: 5862: 5845: 5557: 4886: 4766: 4749: 4599: 4582: 4523: 4506: 4482: 4465: 4071: 3712: 3695: 3693: 3546: 3529: 3316: 3299: 3182: 3147: 3073: 3038: 2995: 2952: 2897: 2828: 2563: 2484: 2451: 2405: 2141: 1859: 1780: 1763: 1514: 1309: 1296: 1052: 982: 922: 750: 746: 713: 702: 694: 662: 619: 427: 375: 362: 25: 5153: 5136: 4648: 4623: 4408: 4398: 4381: 3918: 3901: 3668: 3651: 3627: 3610: 1732: 1427: 1402: 6460: 6445: 6430: 6260: 5921: 5867: 5852: 5830: 5813: 5760: 1335: 1220: 1204: 1196: 1155: 1014: 783: 729: 698: 690: 650: 549: 537: 343: 335: 271: 235: 4872: 3609:
Sollid, J; De Angelis, P; Gundersen, K; Nilsson, GE (October 2003).
3174: 3139: 3065: 3030: 2862: 2715: 2366: 1880: 374:
Through studies using mammalian model organisms, there are two main
6663: 6604: 6550: 6545: 6364: 6232: 5894: 5840: 5755: 5105: 3498: 3359: 2664: 1463: 1283: 1256: 1247:, and increased expression of genes involved in glycolysis such as 1212: 1150: 1128:
Hypoxia-tolerant animals naturally have low membrane permeabilities
1088: 1026: 1010: 725: 685: 568: 553: 432: 5134: 4907: 4670: 3474:
Shingles, A.; McKenzie, D.J.; Claireaux, G.; Domenici, P. (2005).
701:
while still maintaining oxygen transport due to an extremely high
41:
production releasing the chemical energy of nutrients through the
6636: 6631: 6609: 6582: 6577: 6572: 6117: 6069: 5963: 5733: 5728: 5135:
Bogdanova, A.; Grenacher, B.; Nikinmaa, M.; Gassmann, M. (2005).
3900:
Lai, JC; Kakuta, I; Mok, HO; Rummer, JL; Randall, D (July 2006).
3473: 1252: 986: 810: 673: 658: 458:
to oxygen uptake has not been supported in a recent study of the
324: 3608: 426:
and most fish are able to cope with this stress using different
313:
complex on the NEC cell membrane which initiates the release of
6555: 2456:
investigations on the respiration and behaviour of the eelpout
2348: 1308:
levels are also responsive to hypoxia. In the hypoxia tolerant
1227:
suggesting increased oxygen transport throughout fish tissues.
1076:
use, which prolongs its survival time at severely hypoxic sub-P
1022: 762: 721: 378:
for the location of oxygen sensing in chemoreceptor cells: the
278: 255: 250:
Mechanisms of neurotransmitter release in neuroepithelial cells
243: 218: 142:
is decreased from normoxia to anoxia at some set rate (called P
5406:"Hypoxia-inducible myoglobin expression in non-muscle tissues" 4379: 4153: 2616:, to hypoxia in laboratory, mecocosm and field environments". 1095:
and protons), which delays their negative impact on the fish.
1045: 793: 6658: 6587: 5997: 5358: 1672:"Neuroepithelial oxygen chemoreceptors of the zebrafish gill" 993:
affinity. Intertidal hypoxia-tolerant triplefin fish (Family
638: 504: 310: 306: 274: 227: 113:
and metabolic suppression to hypoxia tolerance (see below). P
270:
and signal transmission onto nearby cells. Once NEC of the
109:
s and does not incorporate the significant contributions of
6560: 6147: 5700: 5691: 4545: 4380:
Fitzgibbon, QP; Seymour, RS; Ellis, D; Buchanan, J (2007).
2542:
Kramer, D.L. (1987). "Dissolved oxygen and fish behavior".
1536: 1449: 1305: 1287: 1200: 678: 592: 239: 5137:"Hypoxic responses of Na +/K+ ATPase in trout hepatocytes" 4430: 4313: 4096:. Vol. 21. Berlin: Springer-Verlag. pp. 107–133. 3424: 1585: 386:
hypothesis. The membrane hypothesis was proposed for the
210:, the neuroepithelial bodies of the lungs as well as some 6599: 6167: 4008: 3341: 2973: 1924:
Fu, XW; Wang, D; Nurse, CA; Dinauer, MC; Cutz, E (2000).
614:
Predation risk associated with ASR and aerial respiration
4504: 4373: 4091: 3880: 2693: 716:, a closely related species native to the high-altitude 159: 5660: 5175: 4194: 4009:
Borgese, F; Garcia-Romeu, F; Motais, R (January 1987).
2311: 2159:
to the fluctuation of dissolved oxygen in the burrow".
2123: 454:
in teleosts. However, the benefit of these changes in
5403: 3086: 2918: 2771: 1845: 1761: 5218: 4280: 4274: 4107:
Devaux, JBL; Hedges, CP; Hickey, AJR (January 2019).
3125: 581: 4580: 4094:
Advances in Comparative and Environmental Physiology
2449: 2280: 1136:
decrease in Na+/K+-ATPase activity in eel and trout
853:; the principal modulators used for controlling Hb-O 5223:. Fish Physiology. Vol. 27. pp. 397–441. 4435:. Fish Physiology. Vol. 27. pp. 361–396. 4318:. Fish Physiology. Vol. 27. pp. 361–396. 3852: 3568: 3427:"Hypoxia and the antipredator behaviours of fishes" 2611: 1372:. Fish Physiology. Vol. 27. pp. 443–485. 1141:potentials without consuming large amounts of ATP. 868: 828:
Oxygen equilibrium curve (OEC) demonstrating the PO
422:Many hypoxic environments never reach the level of 5579:Law, SH; Wu, RS; Ng, PK; Yu, RM; Kong, RY (2006). 4351:. Fish Physiology. Vol. 27. pp. 79–141. 4307: 4106: 3899: 3649: 2731:Journal of Experimental Marine Biology and Ecology 1923: 297:causes voltage-gated Ca channels to open, and for 5296: 4823: 4747: 3396:. Fish Physiology. Vol. 27. pp. 25–77. 1492: 770:the result of circulating stress hormones (see - 305:release machinery and facilitates binding of the 149:-of-LOE). A higher time-to-LOE value or a lower P 6803: 5454: 5354: 5352: 3650:Sollid, J; Weber, RE; Nilsson, GE (March 2005). 3425:Domenici, P; LefranΓ§ois, C; Shingles, A (2007). 3250: 3016: 2154: 1493:Regan, M.D.; Gill, I.S.; Richards, J.G. (2017). 3391: 2848: 1802: 1762:Coolidge, EH; Ciuhandu, CC; Milsom, WK (2008). 1669: 1620: 1400: 2728: 2498: 2426: 2177: 2016: 1166: 626: 518: 369: 325:Signal transduction up to higher brain centres 254:Neuroepithelial cells (NEC) are thought to be 5676: 5349: 5091: 5021: 4788: 4743: 4741: 4739: 4581:Regan, MD; Gosline, JM; Richards, JG (2013). 4281:Nilsson, GE; Rosen, PR; Johansson, D (1993). 3527: 3291: 2875: 2450:Fisher, P.; Rademacher, K.; Kils, U. (1992). 2379: 2237: 2210: 595:cannot extract enough oxygen from the water. 417: 277:come in contact with either environmental or 5543: 5500: 5496: 5494: 4463: 4229: 3387: 3385: 2650: 1621:Fu, XW; Nurse, CA; Wong, V; Cutz, E (2002). 200: 5056: 1144: 1046:Switch from aerobic to anaerobic metabolism 794:Changing the binding affinity of hemoglobin 5683: 5669: 5297:Gracey, AY; Troll, JV; Somero, GN (2001). 5292: 5290: 5251: 4824:Regan, MD; Gill, IS; Richards, JG (2017). 4748:Regan, MD; Gill, IS; Richards, JG (2017). 4736: 1363: 1361: 1359: 1357: 1355: 1182: 753:and the binding properties of hemoglobin. 489: 6228:Tradeoffs for locomotion in air and water 5606: 5596: 5578: 5491: 5431: 5421: 5380: 5332: 5322: 5152: 4979: 4849: 4765: 4647: 4598: 4522: 4481: 4407: 4397: 4340: 4298: 4171: 4130: 4120: 4034: 3993: 3917: 3711: 3667: 3626: 3604: 3602: 3600: 3545: 3450: 3382: 3337: 3335: 3315: 2618:Comparative Biochemistry and Physiology A 2587:Comparative Biochemistry and Physiology A 2584: 2483: 2325: 2195: 2054:Comparative Biochemistry and Physiology A 1985:Comparative Biochemistry and Physiology A 1959: 1949: 1779: 1718: 1695: 1646: 1562: 1513: 1426: 1316:during both short and long term hypoxia. 864:Reducing inorganic phosphate interactions 75:) at which a fish can maintain a stable O 16:Response of fish to environmental hypoxia 4057: 3838: 3836: 3834: 3832: 3689: 3687: 3297: 1670:Jonz, MG; Fearon, IM; Nurse, CA (2004). 1367: 1063: 1004: 970:affinity. As a further result of inward 944:ions and the compensatory activation of 823: 158: 5287: 3940: 1982: 1352: 473: 6804: 5629: 4621: 3975: 3597: 3332: 3195: 3160: 2806: 2541: 1118: 1033: 798:An alternative mechanism to preserve O 5664: 5094:Physiological and Biochemical Zoology 3829: 3684: 3487:Physiological and Biochemical Zoology 3051: 2178:Green, B.S.; McCormick, M.I. (2005). 2051: 1452:Physiological and Biochemical Zoology 3786: 3528:Regan, M.D.; Richards, J.G. (2017). 1231:expression of genes involved in the 357:(cranial nerve X) nerves. The first 135:at which it loses equilibrium when P 51: 6784: 6055:Electroreception and electrogenesis 4060:Journal of Comparative Physiology B 3982:Integrative and Comparative Biology 3728: 2114:L.). Behaviour Supplement 9: 1-170. 2101:L.). Behaviour Supplement 3: 1-159. 1274:Research in mammals has implicated 857:affinity under hypoxic insult are: 13: 5469:10.1152/physiolgenomics.00128.2002 4346: 1401:Claireaux, G.; Chabot, D. (2016). 849:) is regulated through a suite of 582:Aerial respiration (air breathing) 14: 6843: 4875:Journal of Comparative Physiology 1154:species, such as carp, goldfish, 821:binding and have sigmoidal OECs. 246:as well as environmental oxygen. 195: 6783: 6772: 6771: 6754: 6753: 5779: 5623: 5572: 5537: 5448: 5397: 5245: 5212: 5169: 5128: 5036:10.1152/ajpregu.1993.265.5.r1020 4232:Fish Physiology and Biochemistry 4173:10.1046/j.1432-1327.2001.02333.x 2794:10.1046/j.1095-8649.2003.00172.x 1817:10.1152/ajprenal.2000.279.5.F793 869:pH and inorganic phosphates (Pi) 735: 442:Typically, acute hypoxia causes 5739:Environmental impact of fishing 5085: 5050: 5015: 4973: 4937: 4901: 4866: 4817: 4782: 4754:Journal of Experimental Biology 4700: 4664: 4615: 4587:Journal of Experimental Biology 4574: 4560:10.1152/ajpregu.1996.271.4.r897 4539: 4511:Journal of Experimental Biology 4498: 4470:Journal of Experimental Biology 4464:Jibb, LA; Richards, JG (2008). 4457: 4424: 4386:Journal of Experimental Biology 4287:Journal of Experimental Biology 4223: 4188: 4147: 4100: 4085: 4051: 4002: 3969: 3955:10.1152/japplphysiol.00770.2003 3934: 3906:Journal of Experimental Biology 3893: 3874: 3846: 3780: 3700:Journal of Experimental Biology 3656:Journal of Experimental Biology 3643: 3562: 3534:Journal of Experimental Biology 3521: 3467: 3418: 3257:Environmental Biology of Fishes 3244: 3231: 3189: 3154: 3119: 3093:Journal of Experimental Biology 3080: 3045: 3010: 2976:Environmental Biology of Fishes 2967: 2933:Environmental Biology of Fishes 2912: 2878:Environmental Biology of Fishes 2869: 2842: 2809:Environmental Biology of Fishes 2800: 2765: 2722: 2687: 2644: 2605: 2578: 2544:Environmental Biology of Fishes 2535: 2501:Environmental Biology of Fishes 2492: 2443: 2433:Journal of Experimental Biology 2420: 2386:Environmental Biology of Fishes 2373: 2342: 2305: 2274: 2231: 2204: 2171: 2148: 2117: 2104: 2091: 2079: 2045: 2010: 1976: 1917: 1874: 1839: 1796: 1755: 1502:Journal of Experimental Biology 1057:substrate-level phosphorylation 587:air-breath during the hypoxia. 4548:American Journal of Physiology 4027:10.1113/jphysiol.1987.sp016359 3738:Journal of Molecular Evolution 2464:Marine Ecology Progress Series 2353:to gradual hypoxic exposure". 1712: 1663: 1614: 1579: 1530: 1486: 1443: 1394: 1276:hypoxia inducible factor (HIF) 925:the RBC is an increase in Hb-O 780:hypoxia inducible factor (HIF) 309:complex on the vesicle to the 64:), which is the lowest water O 1: 5229:10.1016/S1546-5098(08)00009-5 5190:10.1016/s0304-3940(97)00727-1 5071:10.1152/ajpregu.1987.253.1.R1 4967:10.1016/S0040-6031(01)00463-4 4931:10.1016/S0040-6031(96)03106-1 4730:10.1016/S0040-6031(01)00463-4 4694:10.1016/S0040-6031(96)03106-1 4441:10.1016/S1546-5098(08)00008-3 4357:10.1016/S1546-5098(08)00003-4 4324:10.1016/S1546-5098(08)00008-3 3808:10.1016/S1569-9048(02)00113-1 3402:10.1016/S1546-5098(08)00002-2 3210:10.1016/j.physbeh.2011.02.009 2931:) for low oxygen in winter". 2751:10.1016/s0022-0981(00)00160-x 1600:10.1152/physrev.1994.74.4.829 1378:10.1016/S1546-5098(08)00010-1 1346: 1293:basic helix-loop-helix (bHLH) 1013:) are particularly common in 985:of the RBC increases causing 813:, are tetramers that exhibit 756: 745:that does not, most fish use 665:, and environmental sensing. 288:that are open at the resting 240:motor and sensory nerve fibre 5824:intramembranous ossification 4811:10.1016/0040-6031(95)02586-3 2599:10.1016/0300-9629(80)90026-2 1688:10.1113/jphysiol.2004.069294 1639:10.1113/jphysiol.2001.013071 7: 2851:Canadian Journal of Zoology 2704:Canadian Journal of Zoology 2355:Canadian Journal of Zoology 1319: 1167:Tolerance of waste products 627:Gill remodelling in hypoxia 519:Aquatic surface respiration 462:. It is possible that the 370:Locations of oxygen sensors 266:changes for the release of 262:cells because they rely on 10: 6848: 6203:Fin and flipper locomotion 6173:Sequential hermaphroditism 6060:Jamming avoidance response 5777: 5645:10.1016/j.gene.2007.03.009 5515:10.1152/ajpregu.00626.2004 5373:10.1152/ajpregu.00089.2005 4209:10.1152/ajpregu.00536.2006 3583:10.1152/physrev.00050.2003 2630:10.1016/j.cbpa.2008.01.004 2460:under short-terms hypoxia" 2161:Bulletin of Marine Science 2066:10.1016/j.cbpa.2006.02.026 1997:10.1016/j.cbpa.2010.10.029 523:In response to decreasing 418:Acute responses to hypoxia 6767: 6691: 6624: 6531: 6493: 6484: 6423: 6354: 6241: 6193: 6103: 6028: 5788: 5698: 4252:10.1007/s10695-011-9542-8 3976:Powers, Dennis A (1980). 3758:10.1007/s00239-008-9175-4 3431:Philos Trans R Soc Lond B 2927:) and brook stickleback ( 2285:(Teleostei, Cichlidae)". 2087:Oxygen and fish behaviour 999:oxidative phosphorylation 921:. The net consequence of 450:and an elevation in gill 392:oxidative phosphorylation 201:Oxygen sensing structures 6827:Water quality indicators 5690: 4122:10.3389/fphys.2018.01941 2384:(Pisces, Poeciliidae)". 2283:Herotilapia multispinosa 2157:Valenciennea longipinnis 1145:Enhanced glycogen stores 910:and inwards movement of 534:three-spined stickleback 86:). A fish with a lower P 46:electron transport chain 6719:Glossary of ichthyology 6281:Diel vertical migration 5423:10.1073/pnas.0508270103 5274:10.1126/science.7384807 5030:(5 Pt 2): R1020–R1025. 5002:10.1126/science.2417316 4628:Journal of Fish Biology 3277:10.1023/a:1027300701599 3239:Die Naturwissenschaften 2774:Journal of Fish Biology 2521:10.1023/a:1011641302048 2314:Journal of Fish Biology 2299:10.1163/156853983x00219 2225:10.1163/156853999501586 1903:10.1126/science.2456613 1543:Conservation Physiology 1407:Journal of Fish Biology 1341:Hypoxia (environmental) 1249:phosphoglycerate mutase 1237:succinate dehydrogenase 1183:Gene expression changes 600:gastrointestinal tracts 490:Reduced activity levels 396:reactive oxygen species 353:(cranial nerve IX) and 6085:Surface wave detection 6050:Hydrodynamic reception 5724:Diseases and parasites 5598:10.1186/1471-2199-7-15 5457:Physiological Genomics 5410:Proc Natl Acad Sci USA 5324:10.1073/pnas.98.4.1993 5303:Proc Natl Acad Sci USA 4842:10.1098/rsbl.2017.0392 3796:Respiratory Physiology 3787:Kind, Peter K (2002), 3443:10.1098/rstb.2007.2103 3105:10.1242/jeb.203.7.1225 2696:Gasterosteus aculeatus 2336:10.1006/jfbi.2000.1413 2252:10.1006/anbe.1998.0940 2112:Gasterosteus aculeatus 2099:Gasterosteus aculeatus 1951:10.1073/pnas.97.8.4374 1930:Proc Natl Acad Sci USA 1555:10.1093/conphys/cow012 1109:threespine stickleback 1021:can be separated into 833: 509:small-spotted catshark 332:vascular smooth muscle 223:vascular smooth muscle 192: 6822:Environmental science 6817:Chemical oceanography 6223:Undulatory locomotion 6040:Ampullae of Lorenzini 5585:BMC Molecular Biology 4300:10.1242/jeb.180.1.153 3571:Physiological Reviews 3298:Richards, JG (2011). 2614:Oligocottus maculosus 2429:Scyliorhinus canicula 2197:10.1093/beheco/ari007 2128:(Pisces: Gobiidae)". 1280:Phylogenetic analysis 1261:lactate dehydrogenase 1064:Metabolic suppression 1005:Changing Hb- isoforms 851:allosteric modulators 827: 238:gill arches both the 162: 6451:Genetically modified 5147:(Pt 10): 1793–1801. 4554:(4 Pt 2): R897–904. 3995:10.1093/icb/20.1.139 3868:10.1242/jeb.96.1.221 3348:Physiol Biochem Zool 3089:Colossoma macropomum 2653:Physiol Biochem Zool 2031:10.1242/jeb.46.2.297 1302:post-translationally 1241:malate dehydrogenase 1070:basal metabolic rate 1040:anaerobic metabolism 933:. The net influx of 647:acid-base regulation 474:Behavioral responses 470:to the environment. 111:anaerobic glycolysis 6256:Aquatic respiration 6143:Life history theory 5315:2001PNAS...98.1993G 5266:1980Sci...209..308S 4994:1986Sci...231..234H 4959:2001TcAc..373...23V 4923:1997TcAc..291....1V 4803:1996TcAc..271..101S 4722:2001TcAc..373...23V 4686:1997TcAc..291....1V 4640:2016JFBio..88...10N 4622:Nelson, JA (2016). 4244:2012FPBio..38..615A 3750:2008JMolE..67..570C 3437:(1487): 2105–2121. 3269:2003EnvBF..68..293T 3099:(Pt 7): 1225–1239. 2988:1985EnvBF..14..241M 2945:1982EnvBF...7..113K 2925:Pimephales promelas 2923:), fathead minnow ( 2890:1982EnvBF...7...47K 2821:1982EnvBF...7...47K 2786:2003JFBio..63..580S 2743:2000JEMBE.249..145W 2556:1987EnvBF..18...81K 2513:2001EnvBF..61..427C 2476:1992MEPS...88..181F 2398:1981EnvBF...6..299K 2382:Poecilia reticulata 2126:Padogobius martensi 2085:Reebs, S.G. (2009) 1942:2000PNAS...97.4374F 1895:1988Sci...241..580L 1774:(Pt 8): 1231–1242. 1419:2016JFBio..88..232C 1282:of available fish, 1265:elongation factor-2 1203:metabolism such as 1119:Energy conservation 1034:Metabolic challenge 776:erythropoetin (EPO) 558:upside-down catfish 452:vascular resistance 382:hypothesis and the 79:consumption rate (M 28:). Fish respond to 6095:Weberian apparatus 5558:10.1042/BJ20081055 4947:Thermochimica Acta 4911:Thermochimica Acta 4887:10.1007/bf00691503 4791:Thermochimica Acta 4767:10.1242/jeb.145169 4710:Thermochimica Acta 4674:Thermochimica Acta 4600:10.1242/jeb.093500 4593:(Pt 24): 4507–13. 4524:10.1242/jeb.005371 4517:(Pt 11): 1935–43. 4483:10.1242/jeb.019117 4476:(Pt 19): 3111–22. 4072:10.1007/BF00689729 3713:10.1242/jeb.010181 3621:(Pt 20): 3667–73. 3547:10.1242/jeb.154948 3317:10.1242/jeb.047951 3253:Poecilia latipinna 2996:10.1007/bf00002627 2953:10.1007/bf00001781 2898:10.1007/bf00011822 2829:10.1007/BF00011822 2564:10.1007/bf00002597 2485:10.3354/meps088181 2406:10.1007/bf00005759 2184:Behavioral Ecology 1860:10.1007/BF00691471 1781:10.1242/jeb.015248 1515:10.1242/jeb.145169 1297:Per-ARNT-Sim (PAS) 1269:ribosomal proteins 1195:. In the liver of 834: 743:Antarctic ice fish 659:hormone regulation 651:nitrogen excretion 513:viviparous eelpout 435:have some form of 290:membrane potential 264:membrane potential 193: 6799: 6798: 6709:Fish common names 6620: 6619: 6251:Aquatic predation 6075:Capacity for pain 5804:Age determination 5260:(4453): 308–309, 5154:10.1242/jeb.01572 4988:(4735): 234–241, 4649:10.1111/jfb.12824 4399:10.1242/jeb.02641 4166:(14): 4104–4111. 4115:. 9, 1914: 1941. 3919:10.1242/jeb.02279 3912:(Pt 14): 2734–8. 3669:10.1242/jeb.01505 3662:(Pt 6): 1109–16. 3628:10.1242/jeb.00594 3540:(14): 2536–2544. 3310:(Pt 2): 191–199. 2929:Culaea inconstans 2458:Zoarces viviparus 2361:(11): 2108–2113. 1889:(4865): 580–582. 1733:10.1002/cne.10680 1682:(Pt 3): 737–752. 1633:(Pt 2): 503–510. 1428:10.1111/jfb.12833 1233:citric acid cycle 1193:protein synthesis 929:affinity via the 861:Increasing RBC pH 315:neurotransmitters 268:neurotransmitters 52:Hypoxia tolerance 6839: 6787: 6786: 6775: 6774: 6757: 6756: 6491: 6490: 5783: 5714:Ethnoichthyology 5685: 5678: 5671: 5662: 5661: 5656: 5655: 5627: 5621: 5620: 5610: 5600: 5576: 5570: 5569: 5541: 5535: 5534: 5498: 5489: 5488: 5452: 5446: 5445: 5435: 5425: 5416:(8): 2977–2981. 5401: 5395: 5394: 5384: 5356: 5347: 5346: 5336: 5326: 5309:(4): 1993–1998. 5294: 5285: 5284: 5249: 5243: 5242: 5216: 5210: 5209: 5173: 5167: 5166: 5156: 5132: 5126: 5125: 5089: 5083: 5082: 5065:(1 Pt 2): R1–7. 5054: 5048: 5047: 5019: 5013: 5012: 4977: 4971: 4970: 4941: 4935: 4934: 4905: 4899: 4898: 4870: 4864: 4863: 4853: 4836:(11): 20170392. 4821: 4815: 4814: 4786: 4780: 4779: 4769: 4745: 4734: 4733: 4704: 4698: 4697: 4668: 4662: 4661: 4651: 4619: 4613: 4612: 4602: 4578: 4572: 4571: 4543: 4537: 4536: 4526: 4502: 4496: 4495: 4485: 4461: 4455: 4454: 4428: 4422: 4421: 4411: 4401: 4377: 4371: 4370: 4344: 4338: 4337: 4311: 4305: 4304: 4302: 4278: 4272: 4271: 4227: 4221: 4220: 4192: 4186: 4185: 4175: 4151: 4145: 4144: 4134: 4124: 4104: 4098: 4097: 4089: 4083: 4082: 4055: 4049: 4048: 4038: 4006: 4000: 3999: 3997: 3973: 3967: 3966: 3949:(3): 1173–1177. 3938: 3932: 3931: 3921: 3897: 3891: 3890: 3878: 3872: 3871: 3850: 3844: 3843:Springer-Verlag. 3840: 3827: 3826: 3793: 3784: 3778: 3777: 3732: 3726: 3725: 3715: 3706:(7): 1063–1074. 3691: 3682: 3681: 3671: 3647: 3641: 3640: 3630: 3606: 3595: 3594: 3566: 3560: 3559: 3549: 3525: 3519: 3518: 3484: 3471: 3465: 3464: 3454: 3422: 3416: 3415: 3389: 3380: 3379: 3339: 3330: 3329: 3319: 3295: 3289: 3288: 3248: 3242: 3235: 3229: 3228: 3193: 3187: 3186: 3158: 3152: 3151: 3123: 3117: 3116: 3084: 3078: 3077: 3049: 3043: 3042: 3014: 3008: 3007: 2971: 2965: 2964: 2916: 2910: 2909: 2873: 2867: 2866: 2857:(9): 1962–1966. 2846: 2840: 2839: 2804: 2798: 2797: 2769: 2763: 2762: 2726: 2720: 2719: 2691: 2685: 2684: 2648: 2642: 2641: 2609: 2603: 2602: 2582: 2576: 2575: 2539: 2533: 2532: 2496: 2490: 2489: 2487: 2447: 2441: 2440: 2424: 2418: 2417: 2392:(3–4): 299–313. 2377: 2371: 2370: 2346: 2340: 2339: 2329: 2320:(6): 1526–1538. 2309: 2303: 2302: 2278: 2272: 2271: 2240:Animal Behaviour 2235: 2229: 2228: 2208: 2202: 2201: 2199: 2175: 2169: 2168: 2152: 2146: 2145: 2136:(3/4): 288–301. 2121: 2115: 2108: 2102: 2095: 2089: 2083: 2077: 2076: 2049: 2043: 2042: 2014: 2008: 2007: 1980: 1974: 1973: 1963: 1953: 1936:(8): 4374–4379. 1921: 1915: 1914: 1878: 1872: 1871: 1843: 1837: 1836: 1811:(5): F793–F801. 1800: 1794: 1793: 1783: 1759: 1753: 1752: 1716: 1710: 1709: 1699: 1667: 1661: 1660: 1650: 1618: 1612: 1611: 1583: 1577: 1576: 1566: 1534: 1528: 1527: 1517: 1499: 1490: 1484: 1483: 1447: 1441: 1440: 1430: 1398: 1392: 1391: 1365: 1314:Atlantic croaker 1245:citrate synthase 1209:heme oxygenase 1 980: 979: 978: 963: 962: 961: 954: 953: 943: 942: 941: 920: 919: 918: 909: 908: 907: 897:exchange protein 896: 895: 894: 887: 886: 608:labyrinth organs 530:tidepool sculpin 525:dissolved oxygen 497:Atlantic herring 481:Rainbow cichlids 444:hyperventilation 351:glossopharyngeal 340:vasoconstriction 6847: 6846: 6842: 6841: 6840: 6838: 6837: 6836: 6812:Aquatic ecology 6802: 6801: 6800: 6795: 6763: 6687: 6616: 6527: 6480: 6419: 6350: 6243: 6237: 6189: 6133:Ichthyoplankton 6099: 6031: 6024: 6020:Digital Library 6015:Teleost leptins 5954:Shark cartilage 5878:pharyngeal slit 5873:pharyngeal arch 5809:Anguilliformity 5794: 5792: 5784: 5775: 5694: 5689: 5659: 5628: 5624: 5577: 5573: 5542: 5538: 5509:(5): R1079–90. 5499: 5492: 5453: 5449: 5402: 5398: 5357: 5350: 5295: 5288: 5250: 5246: 5239: 5217: 5213: 5174: 5170: 5133: 5129: 5090: 5086: 5055: 5051: 5020: 5016: 4978: 4974: 4942: 4938: 4906: 4902: 4871: 4867: 4830:Biology Letters 4822: 4818: 4787: 4783: 4746: 4737: 4705: 4701: 4669: 4665: 4620: 4616: 4579: 4575: 4544: 4540: 4503: 4499: 4462: 4458: 4451: 4429: 4425: 4378: 4374: 4367: 4345: 4341: 4334: 4312: 4308: 4279: 4275: 4228: 4224: 4203:(3): R1376–83. 4193: 4189: 4152: 4148: 4105: 4101: 4090: 4086: 4056: 4052: 4007: 4003: 3974: 3970: 3939: 3935: 3898: 3894: 3879: 3875: 3851: 3847: 3841: 3830: 3791: 3785: 3781: 3733: 3729: 3692: 3685: 3648: 3644: 3607: 3598: 3567: 3563: 3526: 3522: 3482: 3472: 3468: 3423: 3419: 3412: 3390: 3383: 3340: 3333: 3296: 3292: 3249: 3245: 3241:94: 991-6. PMID 3236: 3232: 3194: 3190: 3175:10.2307/1446244 3159: 3155: 3140:10.2307/1446679 3124: 3120: 3085: 3081: 3066:10.2307/1441653 3050: 3046: 3031:10.2307/1442367 3015: 3011: 2972: 2968: 2917: 2913: 2874: 2870: 2863:10.1139/z78-263 2847: 2843: 2805: 2801: 2770: 2766: 2727: 2723: 2716:10.1139/z84-051 2692: 2688: 2649: 2645: 2610: 2606: 2583: 2579: 2540: 2536: 2497: 2493: 2448: 2444: 2425: 2421: 2378: 2374: 2367:10.1139/z98-141 2347: 2343: 2310: 2306: 2279: 2275: 2236: 2232: 2209: 2205: 2176: 2172: 2153: 2149: 2122: 2118: 2109: 2105: 2096: 2092: 2084: 2080: 2050: 2046: 2015: 2011: 1981: 1977: 1922: 1918: 1879: 1875: 1844: 1840: 1801: 1797: 1760: 1756: 1717: 1713: 1668: 1664: 1619: 1615: 1584: 1580: 1535: 1531: 1497: 1491: 1487: 1448: 1444: 1399: 1395: 1388: 1366: 1353: 1349: 1322: 1185: 1169: 1147: 1121: 1086: 1085: 1079: 1066: 1048: 1036: 1007: 992: 977: 975: 974: 973: 971: 969: 960: 958: 957: 956: 952: 950: 949: 948: 946: 940: 938: 937: 936: 934: 928: 917: 915: 914: 913: 911: 906: 904: 903: 902: 900: 893: 891: 890: 889: 885: 883: 882: 881: 879: 871: 856: 848: 844: 840: 831: 820: 807: 801: 796: 767:starry flounder 759: 738: 705:oxygen binding 629: 616: 584: 521: 492: 476: 468:acclimatization 420: 407: 403: 372: 334:cell, then the 327: 252: 203: 198: 191: 187: 186: 180: 176: 175: 169: 168: 155: 154: 148: 147: 141: 140: 134: 133: 127: 126: 116: 108: 107: 101: 97: 93: 89: 85: 84: 78: 74: 73: 67: 63: 59: 54: 17: 12: 11: 5: 6845: 6835: 6834: 6829: 6824: 6819: 6814: 6797: 6796: 6794: 6793: 6781: 6768: 6765: 6764: 6762: 6761: 6751: 6746: 6745: 6744: 6739: 6731: 6726: 6721: 6716: 6711: 6706: 6701: 6695: 6693: 6689: 6688: 6686: 6685: 6684: 6683: 6678: 6668: 6667: 6666: 6661: 6656: 6646: 6645: 6644: 6639: 6628: 6626: 6622: 6621: 6618: 6617: 6615: 6614: 6613: 6612: 6607: 6602: 6592: 6591: 6590: 6585: 6580: 6575: 6565: 6564: 6563: 6558: 6553: 6548: 6537: 6535: 6533:Wild fisheries 6529: 6528: 6526: 6525: 6520: 6515: 6510: 6505: 6499: 6497: 6488: 6482: 6481: 6479: 6478: 6473: 6468: 6463: 6458: 6456:Hallucinogenic 6453: 6448: 6443: 6438: 6433: 6427: 6425: 6421: 6420: 6418: 6417: 6412: 6407: 6402: 6397: 6392: 6387: 6382: 6377: 6372: 6367: 6361: 6359: 6352: 6351: 6349: 6348: 6343: 6338: 6333: 6331:Schooling fish 6328: 6323: 6318: 6313: 6308: 6303: 6298: 6293: 6291:Filter feeders 6288: 6283: 6278: 6273: 6268: 6266:Bottom feeders 6263: 6258: 6253: 6247: 6245: 6239: 6238: 6236: 6235: 6230: 6225: 6220: 6215: 6210: 6205: 6199: 6197: 6191: 6190: 6188: 6187: 6186: 6185: 6175: 6170: 6165: 6160: 6155: 6150: 6145: 6140: 6135: 6130: 6125: 6120: 6115: 6109: 6107: 6101: 6100: 6098: 6097: 6092: 6087: 6082: 6077: 6072: 6067: 6062: 6057: 6052: 6047: 6042: 6036: 6034: 6026: 6025: 6023: 6022: 6017: 6012: 6011: 6010: 6005: 5995: 5994: 5993: 5988: 5978: 5973: 5968: 5967: 5966: 5956: 5951: 5946: 5941: 5936: 5935: 5934: 5924: 5919: 5914: 5912:Leydig's organ 5909: 5908: 5907: 5905:pharyngeal jaw 5902: 5892: 5887: 5886: 5885: 5880: 5875: 5870: 5865: 5860: 5858:branchial arch 5850: 5849: 5848: 5838: 5833: 5828: 5827: 5826: 5821: 5811: 5806: 5800: 5798: 5786: 5785: 5778: 5776: 5774: 5773: 5768: 5763: 5758: 5753: 5748: 5747: 5746: 5741: 5736: 5726: 5721: 5716: 5711: 5705: 5703: 5696: 5695: 5688: 5687: 5680: 5673: 5665: 5658: 5657: 5639:(2): 273–282, 5622: 5571: 5536: 5490: 5447: 5396: 5367:(5): R1512–9. 5348: 5286: 5244: 5237: 5211: 5184:(1–2): 89–92. 5168: 5127: 5106:10.1086/432857 5084: 5049: 5014: 4972: 4936: 4900: 4881:(3): 263–268. 4865: 4816: 4781: 4760:(4): 564–572. 4735: 4699: 4663: 4614: 4573: 4538: 4497: 4456: 4449: 4423: 4372: 4365: 4339: 4332: 4306: 4273: 4222: 4187: 4146: 4099: 4084: 4050: 4001: 3988:(1): 139–162. 3968: 3943:J Appl Physiol 3933: 3892: 3883:Jpn J Ichthyol 3873: 3845: 3828: 3802:(2): 179–190, 3779: 3744:(5): 570–580. 3727: 3683: 3642: 3596: 3561: 3520: 3499:10.1086/432143 3493:(5): 744–755. 3478:Mugil cephalus 3466: 3417: 3410: 3381: 3360:10.1086/605936 3331: 3290: 3263:(3): 293–299. 3243: 3230: 3204:(2): 240–247, 3188: 3153: 3134:(1): 130–135. 3118: 3079: 3060:(2): 319–326. 3044: 3025:(1): 124–133. 3009: 2982:(4): 241–250. 2966: 2939:(2): 113–120. 2911: 2868: 2841: 2799: 2780:(3): 580–592. 2764: 2737:(2): 145–163. 2721: 2686: 2665:10.1086/605932 2659:(6): 703–738. 2643: 2624:(3): 284–292. 2604: 2593:(4): 719–722. 2577: 2534: 2507:(4): 427–433. 2491: 2442: 2419: 2372: 2341: 2304: 2293:(3): 183–197. 2273: 2246:(1): 189–196. 2230: 2219:(7): 819–832. 2203: 2190:(2): 389–397. 2170: 2147: 2116: 2103: 2090: 2078: 2060:(2): 163–172, 2044: 2025:(2): 297–305. 2009: 1991:(2): 207–214, 1975: 1916: 1873: 1854:(3): 233–240. 1848:J Comp Physiol 1838: 1795: 1754: 1711: 1662: 1613: 1594:(4): 829–898. 1578: 1529: 1508:(4): 564–572. 1485: 1464:10.1086/667938 1442: 1413:(1): 232–251. 1393: 1386: 1350: 1348: 1345: 1344: 1343: 1338: 1333: 1331:Eutrophication 1328: 1321: 1318: 1217:erythropoiesis 1188:DNA microarray 1184: 1181: 1173:Pasteur effect 1168: 1165: 1146: 1143: 1133: 1132: 1129: 1120: 1117: 1083: 1081: 1077: 1065: 1062: 1047: 1044: 1035: 1032: 1006: 1003: 995:Tripterygiidae 990: 981:movement, the 976: 967: 959: 951: 939: 926: 916: 905: 892: 884: 870: 867: 866: 865: 862: 854: 846: 842: 838: 829: 818: 805: 799: 795: 792: 788:branchial arch 772:catecholamines 758: 755: 737: 734: 728:levels in the 684:occurs in the 655:osmoregulation 628: 625: 615: 612: 583: 580: 569:shortfin molly 520: 517: 491: 488: 475: 472: 456:blood pressure 419: 416: 405: 401: 371: 368: 359:branchial arch 326: 323: 319:synaptic cleft 295:depolarization 251: 248: 202: 199: 197: 196:Oxygen sensing 194: 189: 184: 182: 178: 173: 171: 166: 164: 152: 150: 145: 143: 138: 136: 131: 129: 124: 122: 114: 105: 103: 99: 95: 91: 87: 82: 80: 76: 71: 69: 65: 61: 57: 53: 50: 15: 9: 6: 4: 3: 2: 6844: 6833: 6830: 6828: 6825: 6823: 6820: 6818: 6815: 6813: 6810: 6809: 6807: 6792: 6791: 6782: 6780: 6779: 6770: 6769: 6766: 6760: 6759:more lists... 6752: 6750: 6747: 6743: 6740: 6738: 6735: 6734: 6732: 6730: 6727: 6725: 6722: 6720: 6717: 6715: 6714:Fish families 6712: 6710: 6707: 6705: 6702: 6700: 6699:Aquarium life 6697: 6696: 6694: 6690: 6682: 6681:fleshy-finned 6679: 6677: 6674: 6673: 6672: 6669: 6665: 6662: 6660: 6657: 6655: 6652: 6651: 6650: 6649:Cartilaginous 6647: 6643: 6640: 6638: 6635: 6634: 6633: 6630: 6629: 6627: 6623: 6611: 6608: 6606: 6603: 6601: 6598: 6597: 6596: 6593: 6589: 6586: 6584: 6581: 6579: 6576: 6574: 6571: 6570: 6569: 6566: 6562: 6559: 6557: 6554: 6552: 6549: 6547: 6544: 6543: 6542: 6539: 6538: 6536: 6534: 6530: 6524: 6521: 6519: 6516: 6514: 6511: 6509: 6506: 6504: 6501: 6500: 6498: 6496: 6492: 6489: 6487: 6483: 6477: 6474: 6472: 6469: 6467: 6464: 6462: 6459: 6457: 6454: 6452: 6449: 6447: 6444: 6442: 6439: 6437: 6434: 6432: 6429: 6428: 6426: 6422: 6416: 6413: 6411: 6408: 6406: 6403: 6401: 6398: 6396: 6393: 6391: 6388: 6386: 6383: 6381: 6378: 6376: 6373: 6371: 6368: 6366: 6363: 6362: 6360: 6358: 6353: 6347: 6344: 6342: 6339: 6337: 6334: 6332: 6329: 6327: 6324: 6322: 6319: 6317: 6314: 6312: 6309: 6307: 6304: 6302: 6299: 6297: 6294: 6292: 6289: 6287: 6286:Electric fish 6284: 6282: 6279: 6277: 6274: 6272: 6269: 6267: 6264: 6262: 6259: 6257: 6254: 6252: 6249: 6248: 6246: 6240: 6234: 6231: 6229: 6226: 6224: 6221: 6219: 6216: 6214: 6211: 6209: 6206: 6204: 6201: 6200: 6198: 6196: 6192: 6184: 6181: 6180: 6179: 6176: 6174: 6171: 6169: 6166: 6164: 6161: 6159: 6156: 6154: 6151: 6149: 6146: 6144: 6141: 6139: 6136: 6134: 6131: 6129: 6126: 6124: 6121: 6119: 6116: 6114: 6111: 6110: 6108: 6106: 6102: 6096: 6093: 6091: 6088: 6086: 6083: 6081: 6078: 6076: 6073: 6071: 6068: 6066: 6063: 6061: 6058: 6056: 6053: 6051: 6048: 6046: 6043: 6041: 6038: 6037: 6035: 6033: 6027: 6021: 6018: 6016: 6013: 6009: 6006: 6004: 6001: 6000: 5999: 5996: 5992: 5989: 5987: 5984: 5983: 5982: 5979: 5977: 5974: 5972: 5969: 5965: 5962: 5961: 5960: 5957: 5955: 5952: 5950: 5947: 5945: 5942: 5940: 5937: 5933: 5930: 5929: 5928: 5925: 5923: 5920: 5918: 5917:Mauthner cell 5915: 5913: 5910: 5906: 5903: 5901: 5898: 5897: 5896: 5893: 5891: 5888: 5884: 5881: 5879: 5876: 5874: 5871: 5869: 5866: 5864: 5861: 5859: 5856: 5855: 5854: 5851: 5847: 5844: 5843: 5842: 5839: 5837: 5836:Chromatophore 5834: 5832: 5829: 5825: 5822: 5820: 5817: 5816: 5815: 5812: 5810: 5807: 5805: 5802: 5801: 5799: 5797: 5791: 5787: 5782: 5772: 5769: 5767: 5764: 5762: 5759: 5757: 5754: 5752: 5749: 5745: 5742: 5740: 5737: 5735: 5732: 5731: 5730: 5727: 5725: 5722: 5720: 5717: 5715: 5712: 5710: 5707: 5706: 5704: 5702: 5697: 5693: 5686: 5681: 5679: 5674: 5672: 5667: 5666: 5663: 5654: 5650: 5646: 5642: 5638: 5634: 5626: 5618: 5614: 5609: 5604: 5599: 5594: 5590: 5586: 5582: 5575: 5567: 5563: 5559: 5555: 5551: 5547: 5540: 5532: 5528: 5524: 5520: 5516: 5512: 5508: 5504: 5497: 5495: 5486: 5482: 5478: 5474: 5470: 5466: 5463:(2): 97–106. 5462: 5458: 5451: 5443: 5439: 5434: 5429: 5424: 5419: 5415: 5411: 5407: 5400: 5392: 5388: 5383: 5378: 5374: 5370: 5366: 5362: 5355: 5353: 5344: 5340: 5335: 5330: 5325: 5320: 5316: 5312: 5308: 5304: 5300: 5293: 5291: 5283: 5279: 5275: 5271: 5267: 5263: 5259: 5255: 5248: 5240: 5238:9780123746320 5234: 5230: 5226: 5222: 5215: 5207: 5203: 5199: 5195: 5191: 5187: 5183: 5179: 5178:Neurosci Lett 5172: 5164: 5160: 5155: 5150: 5146: 5142: 5138: 5131: 5123: 5119: 5115: 5111: 5107: 5103: 5100:(6): 926–36. 5099: 5095: 5088: 5080: 5076: 5072: 5068: 5064: 5060: 5053: 5045: 5041: 5037: 5033: 5029: 5025: 5018: 5011: 5007: 5003: 4999: 4995: 4991: 4987: 4983: 4976: 4968: 4964: 4960: 4956: 4952: 4948: 4940: 4932: 4928: 4924: 4920: 4917:(1–2): 1–13. 4916: 4912: 4904: 4896: 4892: 4888: 4884: 4880: 4876: 4869: 4861: 4857: 4852: 4847: 4843: 4839: 4835: 4831: 4827: 4820: 4812: 4808: 4804: 4800: 4796: 4792: 4785: 4777: 4773: 4768: 4763: 4759: 4755: 4751: 4744: 4742: 4740: 4731: 4727: 4723: 4719: 4715: 4711: 4703: 4695: 4691: 4687: 4683: 4680:(1–2): 1–13. 4679: 4675: 4667: 4659: 4655: 4650: 4645: 4641: 4637: 4633: 4629: 4625: 4618: 4610: 4606: 4601: 4596: 4592: 4588: 4584: 4577: 4569: 4565: 4561: 4557: 4553: 4549: 4542: 4534: 4530: 4525: 4520: 4516: 4512: 4508: 4501: 4493: 4489: 4484: 4479: 4475: 4471: 4467: 4460: 4452: 4450:9780123746320 4446: 4442: 4438: 4434: 4427: 4419: 4415: 4410: 4405: 4400: 4395: 4391: 4387: 4383: 4376: 4368: 4366:9780123746320 4362: 4358: 4354: 4350: 4343: 4335: 4333:9780123746320 4329: 4325: 4321: 4317: 4310: 4301: 4296: 4292: 4288: 4284: 4277: 4269: 4265: 4261: 4257: 4253: 4249: 4245: 4241: 4238:(3): 615–24. 4237: 4233: 4226: 4218: 4214: 4210: 4206: 4202: 4198: 4191: 4183: 4179: 4174: 4169: 4165: 4161: 4160:Eur J Biochem 4157: 4150: 4142: 4138: 4133: 4128: 4123: 4118: 4114: 4113:Front Physiol 4110: 4103: 4095: 4088: 4081: 4077: 4073: 4069: 4065: 4061: 4054: 4046: 4042: 4037: 4032: 4028: 4024: 4020: 4016: 4012: 4005: 3996: 3991: 3987: 3983: 3979: 3972: 3964: 3960: 3956: 3952: 3948: 3944: 3937: 3929: 3925: 3920: 3915: 3911: 3907: 3903: 3896: 3888: 3884: 3877: 3869: 3865: 3861: 3857: 3849: 3839: 3837: 3835: 3833: 3825: 3821: 3817: 3813: 3809: 3805: 3801: 3797: 3790: 3783: 3775: 3771: 3767: 3763: 3759: 3755: 3751: 3747: 3743: 3739: 3731: 3723: 3719: 3714: 3709: 3705: 3701: 3697: 3690: 3688: 3679: 3675: 3670: 3665: 3661: 3657: 3653: 3646: 3638: 3634: 3629: 3624: 3620: 3616: 3612: 3605: 3603: 3601: 3592: 3588: 3584: 3580: 3577:(1): 97–177. 3576: 3572: 3565: 3557: 3553: 3548: 3543: 3539: 3535: 3531: 3524: 3516: 3512: 3508: 3504: 3500: 3496: 3492: 3488: 3481: 3479: 3470: 3462: 3458: 3453: 3448: 3444: 3440: 3436: 3432: 3428: 3421: 3413: 3411:9780123746320 3407: 3403: 3399: 3395: 3388: 3386: 3377: 3373: 3369: 3365: 3361: 3357: 3354:(6): 625–34. 3353: 3349: 3345: 3338: 3336: 3327: 3323: 3318: 3313: 3309: 3305: 3301: 3294: 3286: 3282: 3278: 3274: 3270: 3266: 3262: 3258: 3254: 3247: 3240: 3234: 3227: 3223: 3219: 3215: 3211: 3207: 3203: 3199: 3192: 3184: 3180: 3176: 3172: 3168: 3164: 3157: 3149: 3145: 3141: 3137: 3133: 3129: 3122: 3114: 3110: 3106: 3102: 3098: 3094: 3090: 3083: 3075: 3071: 3067: 3063: 3059: 3055: 3048: 3040: 3036: 3032: 3028: 3024: 3020: 3013: 3005: 3001: 2997: 2993: 2989: 2985: 2981: 2977: 2970: 2962: 2958: 2954: 2950: 2946: 2942: 2938: 2934: 2930: 2926: 2922: 2915: 2907: 2903: 2899: 2895: 2891: 2887: 2883: 2879: 2872: 2864: 2860: 2856: 2852: 2845: 2838: 2834: 2830: 2826: 2822: 2818: 2814: 2810: 2803: 2795: 2791: 2787: 2783: 2779: 2775: 2768: 2760: 2756: 2752: 2748: 2744: 2740: 2736: 2732: 2725: 2717: 2713: 2709: 2705: 2701: 2697: 2690: 2682: 2678: 2674: 2670: 2666: 2662: 2658: 2654: 2647: 2639: 2635: 2631: 2627: 2623: 2619: 2615: 2608: 2600: 2596: 2592: 2588: 2581: 2573: 2569: 2565: 2561: 2557: 2553: 2549: 2545: 2538: 2530: 2526: 2522: 2518: 2514: 2510: 2506: 2502: 2495: 2486: 2481: 2477: 2473: 2469: 2465: 2461: 2459: 2455: 2446: 2438: 2434: 2430: 2423: 2415: 2411: 2407: 2403: 2399: 2395: 2391: 2387: 2383: 2376: 2368: 2364: 2360: 2356: 2352: 2345: 2337: 2333: 2328: 2327:10.1.1.1.2926 2323: 2319: 2315: 2308: 2300: 2296: 2292: 2288: 2284: 2277: 2269: 2265: 2261: 2257: 2253: 2249: 2245: 2241: 2234: 2226: 2222: 2218: 2214: 2207: 2198: 2193: 2189: 2185: 2181: 2174: 2166: 2162: 2158: 2151: 2143: 2139: 2135: 2131: 2127: 2120: 2113: 2107: 2100: 2094: 2088: 2082: 2075: 2071: 2067: 2063: 2059: 2055: 2048: 2040: 2036: 2032: 2028: 2024: 2020: 2013: 2006: 2002: 1998: 1994: 1990: 1986: 1979: 1971: 1967: 1962: 1957: 1952: 1947: 1943: 1939: 1935: 1931: 1927: 1920: 1912: 1908: 1904: 1900: 1896: 1892: 1888: 1884: 1877: 1869: 1865: 1861: 1857: 1853: 1849: 1842: 1834: 1830: 1826: 1822: 1818: 1814: 1810: 1806: 1799: 1791: 1787: 1782: 1777: 1773: 1769: 1765: 1758: 1750: 1746: 1742: 1738: 1734: 1730: 1726: 1722: 1721:J Comp Neurol 1715: 1707: 1703: 1698: 1693: 1689: 1685: 1681: 1677: 1673: 1666: 1658: 1654: 1649: 1644: 1640: 1636: 1632: 1628: 1624: 1617: 1609: 1605: 1601: 1597: 1593: 1589: 1582: 1574: 1570: 1565: 1560: 1556: 1552: 1549:(4): cow012. 1548: 1544: 1540: 1533: 1525: 1521: 1516: 1511: 1507: 1503: 1496: 1489: 1481: 1477: 1473: 1469: 1465: 1461: 1458:(1): 92–105. 1457: 1453: 1446: 1438: 1434: 1429: 1424: 1420: 1416: 1412: 1408: 1404: 1397: 1389: 1387:9780123746320 1383: 1379: 1375: 1371: 1364: 1362: 1360: 1358: 1356: 1351: 1342: 1339: 1337: 1334: 1332: 1329: 1327: 1324: 1323: 1317: 1315: 1311: 1307: 1303: 1298: 1294: 1289: 1285: 1281: 1277: 1272: 1270: 1266: 1262: 1258: 1254: 1250: 1246: 1242: 1238: 1234: 1228: 1226: 1222: 1218: 1214: 1210: 1206: 1202: 1198: 1194: 1189: 1180: 1178: 1174: 1164: 1161: 1157: 1152: 1142: 1139: 1130: 1127: 1126: 1125: 1116: 1112: 1110: 1106: 1100: 1096: 1094: 1090: 1075: 1071: 1061: 1058: 1054: 1043: 1041: 1031: 1028: 1024: 1020: 1016: 1012: 1002: 1000: 996: 988: 984: 965: 932: 924: 898: 876: 875:rainbow trout 863: 860: 859: 858: 852: 826: 822: 816: 815:cooperativity 812: 808: 791: 789: 785: 781: 777: 773: 768: 764: 754: 752: 748: 744: 736:Oxygen uptake 733: 731: 727: 723: 719: 715: 710: 708: 704: 700: 696: 692: 687: 683: 680: 675: 671: 666: 664: 660: 656: 652: 648: 644: 640: 635: 624: 621: 611: 609: 605: 601: 596: 594: 588: 579: 577: 576:sailfin molly 572: 570: 565: 561: 559: 555: 551: 545: 541: 539: 535: 531: 526: 516: 514: 510: 506: 502: 498: 487: 484: 482: 471: 469: 465: 461: 460:rainbow trout 457: 453: 449: 445: 440: 438: 434: 429: 428:physiological 425: 415: 412: 411:NADPH oxidase 408: 397: 393: 389: 385: 384:mitochondrial 381: 377: 367: 364: 360: 356: 352: 347: 345: 341: 337: 333: 322: 320: 316: 312: 308: 304: 300: 299:extracellular 296: 291: 287: 283: 280: 276: 273: 269: 265: 261: 260:chemoreceptor 257: 247: 245: 241: 237: 233: 229: 224: 220: 217: 213: 209: 161: 157: 119: 112: 94:. But while P 49: 47: 44: 43:mitochondrial 40: 35: 31: 27: 23: 6788: 6776: 6676:spiny-finned 6625:Major groups 6346:Intelligence 6326:Scale eaters 6271:Cleaner fish 6153:Mouthbrooder 6105:Reproduction 6080:Schreckstoff 6065:Lateral line 5981:Swim bladder 5971:Spiral valve 5900:hyomandibula 5883:pseudobranch 5766:Hypoxia in - 5765: 5636: 5632: 5625: 5588: 5584: 5574: 5552:(1): 19–29. 5549: 5545: 5539: 5506: 5502: 5460: 5456: 5450: 5413: 5409: 5399: 5382:1887/3677462 5364: 5360: 5306: 5302: 5257: 5253: 5247: 5220: 5214: 5181: 5177: 5171: 5144: 5141:J. Exp. Biol 5140: 5130: 5097: 5093: 5087: 5062: 5059:Am J Physiol 5058: 5052: 5027: 5024:Am J Physiol 5023: 5017: 4985: 4981: 4975: 4953:(1): 23–30. 4950: 4946: 4939: 4914: 4910: 4903: 4878: 4874: 4868: 4833: 4829: 4819: 4794: 4790: 4784: 4757: 4753: 4716:(1): 23–30. 4713: 4709: 4702: 4677: 4673: 4666: 4634:(1): 10–25. 4631: 4627: 4617: 4590: 4586: 4576: 4551: 4547: 4541: 4514: 4510: 4500: 4473: 4469: 4459: 4432: 4426: 4392:(2): 290–8. 4389: 4385: 4375: 4348: 4342: 4315: 4309: 4290: 4286: 4276: 4235: 4231: 4225: 4200: 4196: 4190: 4163: 4159: 4149: 4112: 4102: 4093: 4087: 4066:(1): 67–72, 4063: 4059: 4053: 4018: 4014: 4004: 3985: 3981: 3971: 3946: 3942: 3936: 3909: 3905: 3895: 3886: 3882: 3876: 3859: 3855: 3848: 3799: 3795: 3782: 3741: 3737: 3730: 3703: 3699: 3659: 3655: 3645: 3618: 3614: 3574: 3570: 3564: 3537: 3533: 3523: 3490: 3486: 3477: 3469: 3434: 3430: 3420: 3393: 3351: 3347: 3307: 3303: 3293: 3260: 3256: 3252: 3246: 3238: 3233: 3201: 3197: 3191: 3169:(1): 17–28. 3166: 3162: 3156: 3131: 3127: 3121: 3096: 3092: 3088: 3082: 3057: 3053: 3047: 3022: 3018: 3012: 2979: 2975: 2969: 2936: 2932: 2928: 2924: 2920: 2914: 2884:(1): 47–55. 2881: 2877: 2871: 2854: 2850: 2844: 2815:(1): 47–55, 2812: 2808: 2802: 2777: 2773: 2767: 2734: 2730: 2724: 2710:(329): 334. 2707: 2703: 2699: 2695: 2689: 2656: 2652: 2646: 2621: 2617: 2613: 2607: 2590: 2586: 2580: 2550:(2): 81–92. 2547: 2543: 2537: 2504: 2500: 2494: 2467: 2463: 2457: 2453: 2445: 2436: 2432: 2428: 2422: 2389: 2385: 2381: 2375: 2358: 2354: 2350: 2344: 2317: 2313: 2307: 2290: 2286: 2282: 2276: 2243: 2239: 2233: 2216: 2212: 2206: 2187: 2183: 2173: 2164: 2160: 2156: 2150: 2133: 2129: 2125: 2119: 2111: 2106: 2098: 2093: 2081: 2057: 2053: 2047: 2022: 2018: 2012: 1988: 1984: 1978: 1933: 1929: 1919: 1886: 1882: 1876: 1851: 1847: 1841: 1808: 1805:Am J Physiol 1804: 1798: 1771: 1767: 1757: 1724: 1720: 1714: 1679: 1675: 1665: 1630: 1626: 1616: 1591: 1587: 1581: 1546: 1542: 1532: 1505: 1501: 1488: 1455: 1451: 1445: 1410: 1406: 1396: 1369: 1273: 1267:and several 1229: 1186: 1170: 1148: 1134: 1122: 1113: 1101: 1097: 1067: 1049: 1037: 1019:European eel 1008: 872: 835: 797: 760: 739: 718:Lake Qinghai 711: 670:crucian carp 667: 643:gas exchange 630: 617: 604:gas bladders 597: 589: 585: 573: 566: 562: 546: 542: 522: 493: 485: 477: 441: 437:swim bladder 421: 388:carotid body 373: 348: 328: 286:ion channels 253: 208:carotid body 204: 120: 102:at hypoxic P 55: 18: 6790:WikiProject 6749:Prehistoric 6733:Threatened 6424:Other types 6321:Sardine run 6296:Forage fish 6276:Corallivory 6128:Development 6113:Bubble nest 5986:physoclisti 5976:Suckermouth 5949:Root effect 5771:Ichthyology 4797:: 101–113. 4293:: 153–162. 3862:: 221–237. 2470:: 181–184. 2351:Solea solea 1727:(1): 1–17. 1588:Physiol Rev 1326:Algal bloom 1235:including, 1225:common carp 1138:hepatocytes 1105:calorimetry 931:Bohr effect 763:blue marlin 634:respiratory 501:common sole 448:bradycardia 338:will cause 232:gill rakers 34:homeostasis 22:oxygenation 6806:Categories 6405:Groundfish 6400:Freshwater 6395:Euryhaline 6380:Coral reef 6316:Salmon run 6306:Paedophagy 6208:Amphibious 6195:Locomotion 6003:pharyngeal 5991:physostome 5944:Photophore 5890:Glossohyal 5863:gill raker 5846:dorsal fin 5796:physiology 4409:2440/43082 4021:: 123–44. 3889:: 427–433. 3856:J Exp Biol 3615:J Exp Biol 3304:J Exp Biol 3198:Physiology 2921:Umbra limi 2439:: 153–162. 2167:: 815–823. 2019:J Exp Biol 1768:J Exp Biol 1347:References 1310:grass carp 1197:mudsuckers 1053:Glycolysis 1015:ectotherms 983:osmolarity 923:alkalizing 757:Hematocrit 751:hematocrit 747:hemoglobin 714:naked carp 703:hemoglobin 682:morphology 663:metabolism 620:piscivores 536:, and the 511:, and the 376:hypotheses 363:innervated 216:peripheral 68:tension (P 60:tension (P 26:underwater 6654:chimaeras 6541:Predatory 6518:Salmonids 6476:Whitefish 6466:Poisonous 6441:Diversity 6375:Coldwater 6311:Predatory 6301:Migratory 6261:Bait ball 6244:behaviour 6163:Pregnancy 6158:Polyandry 5932:papillare 5927:Operculum 5922:Meristics 5868:gill slit 5831:Cleithrum 5761:Fish kill 5751:Fear of - 5744:- as food 5734:Fisheries 5719:Evolution 5709:Diversity 5591:(1): 15. 5546:Biochem J 4015:J Physiol 2700:trachurus 2322:CiteSeerX 2287:Behaviour 2213:Behaviour 2130:Behaviour 1676:J Physiol 1627:J Physiol 1336:Fish kill 1221:myoglobin 1205:hemopexin 1156:killifish 811:agnathans 730:cytoplasm 699:diffusion 695:parasites 691:apoptosis 564:surface. 550:mummichog 538:mummichog 344:capillary 336:serotonin 317:into the 272:zebrafish 236:zebrafish 6778:Category 6729:Smallest 6642:lampreys 6605:flatfish 6595:Demersal 6551:mackerel 6546:billfish 6486:Commerce 6415:Tropical 6390:Demersal 6385:Deep-sea 6341:Venomous 6233:RoboTuna 6183:triggers 6178:Spawning 6138:Juvenile 6123:Egg case 5756:FishBase 5653:17467194 5617:16623959 5566:18651837 5531:27670309 5523:15821280 5485:15538913 5477:12700360 5442:16469844 5391:15994372 5343:11172064 5206:28016845 5163:15879061 5122:25835417 5114:16228932 4895:23164136 4860:29093174 4776:27913601 4658:26768970 4609:24072793 4533:17515419 4492:18805810 4418:17210965 4268:18361836 4260:21818543 4217:17626121 4182:11454005 4141:30713504 4080:46536552 3963:14766767 3928:16809464 3824:22391627 3816:12161331 3766:18941827 3722:18344480 3678:15767311 3637:12966058 3591:15618479 3556:28476894 3507:16052452 3461:17472921 3368:19799504 3326:21177940 3285:20707941 3226:23174540 3218:21316378 3113:10708642 3004:26567277 2961:40460613 2906:36058867 2837:36058867 2759:10841932 2681:12981509 2673:19799503 2638:18276177 2572:41805602 2529:30061199 2414:25168337 2268:22455103 2260:10053086 2074:16574450 2005:21056112 1970:10760304 1868:24882272 1833:16605017 1825:11053038 1790:18375847 1741:12722101 1706:15331683 1657:11882682 1573:27293760 1524:27913601 1472:23303324 1437:26768976 1320:See also 1295:domain, 1284:tetrapod 1257:aldolase 1213:ferritin 1151:glycogen 1089:glycogen 1027:cathodic 1011:isoforms 726:chloride 707:affinity 686:goldfish 554:tambaqui 433:teleosts 380:membrane 244:arterial 170:) when P 6724:Largest 6637:hagfish 6632:Jawless 6610:pollock 6583:sardine 6578:herring 6573:anchovy 6523:Tilapia 6513:Octopus 6508:Catfish 6495:Farming 6410:Pelagic 6370:Coastal 6357:habitat 6213:Walking 6118:Clasper 6070:Otolith 6032:systems 6030:Sensory 5964:ganoine 5939:Papilla 5790:Anatomy 5729:Fishing 5608:1473195 5433:1413783 5311:Bibcode 5282:7384807 5262:Bibcode 5254:Science 5221:Hypoxia 5198:9389603 5079:3605374 5044:8238602 5010:2417316 4990:Bibcode 4982:Science 4955:Bibcode 4919:Bibcode 4851:5719371 4799:Bibcode 4718:Bibcode 4682:Bibcode 4636:Bibcode 4568:8897979 4433:Hypoxia 4349:Hypoxia 4316:Hypoxia 4240:Bibcode 4132:6346031 4045:3040965 4036:1183016 3774:7459192 3746:Bibcode 3515:7674442 3452:2442856 3394:Hypoxia 3265:Bibcode 3183:1446244 3148:1446679 3074:1441653 3039:1442367 2984:Bibcode 2941:Bibcode 2886:Bibcode 2817:Bibcode 2782:Bibcode 2739:Bibcode 2698:L. (f. 2552:Bibcode 2509:Bibcode 2472:Bibcode 2454:In situ 2394:Bibcode 2142:4534416 2039:6033996 1938:Bibcode 1911:2456613 1891:Bibcode 1883:Science 1697:1665292 1648:2290169 1608:7938227 1564:4849809 1480:9920660 1415:Bibcode 1370:Hypoxia 1253:enolase 1177:lactate 1093:lactate 987:osmotic 964:-ATPase 784:viscous 674:mitotic 394:and/or 311:s-snare 307:t-snare 303:vesicle 282:hypoxia 219:neurons 212:central 30:hypoxia 6832:Oxygen 6742:sharks 6659:sharks 6588:sprats 6568:Forage 6556:salmon 6436:Coarse 6218:Flying 6090:Vision 6045:Barbel 5959:Scales 5819:dermal 5699:About 5651:  5615:  5605:  5564:  5529:  5521:  5483:  5475:  5440:  5430:  5389:  5341:  5331:  5280:  5235:  5204:  5196:  5161:  5120:  5112:  5077:  5042:  5008:  4893:  4858:  4848:  4774:  4656:  4607:  4566:  4531:  4490:  4447:  4416:  4363:  4330:  4266:  4258:  4215:  4180:  4139:  4129:  4078:  4043:  4033:  3961:  3926:  3822:  3814:  3772:  3764:  3720:  3676:  3635:  3589:  3554:  3513:  3505:  3459:  3449:  3408:  3376:624488 3374:  3366:  3324:  3283:  3224:  3216:  3181:  3163:Copeia 3146:  3128:Copeia 3111:  3072:  3054:Copeia 3037:  3019:Copeia 3002:  2959:  2904:  2835:  2757:  2679:  2671:  2636:  2570:  2527:  2431:L.)". 2412:  2324:  2266:  2258:  2140:  2072:  2037:  2003:  1968:  1958:  1909:  1866:  1831:  1823:  1788:  1749:997986 1747:  1739:  1704:  1694:  1655:  1645:  1606:  1571:  1561:  1522:  1478:  1470:  1435:  1384:  1286:, and 1259:, and 1243:, and 1211:, and 1158:, and 1023:anodic 722:sodium 606:, and 591:their 532:, the 507:, the 503:, the 424:anoxia 279:aortic 258:-like 256:neuron 188:> P 177:< P 6704:Blind 6692:Lists 6471:Rough 6336:Sleep 6242:Other 6008:shark 5998:Teeth 5527:S2CID 5481:S2CID 5334:29370 5202:S2CID 5118:S2CID 4891:S2CID 4264:S2CID 4076:S2CID 3820:S2CID 3792:(PDF) 3770:S2CID 3511:S2CID 3483:(PDF) 3372:S2CID 3281:S2CID 3222:S2CID 3179:JSTOR 3144:JSTOR 3070:JSTOR 3035:JSTOR 3000:S2CID 2957:S2CID 2902:S2CID 2833:S2CID 2677:S2CID 2568:S2CID 2525:S2CID 2410:S2CID 2264:S2CID 2138:JSTOR 1961:18249 1864:S2CID 1829:S2CID 1745:S2CID 1498:(PDF) 1476:S2CID 1163:ATP. 1160:oscar 639:gills 593:gills 505:guppy 464:acute 355:vagus 275:gills 6737:rays 6671:Bony 6664:rays 6561:tuna 6503:Carp 6461:Oily 6446:Game 6431:Bait 6365:Cave 6148:Milt 5853:Gill 5841:Fins 5814:Bone 5701:fish 5692:Fish 5649:PMID 5633:Gene 5613:PMID 5562:PMID 5519:PMID 5473:PMID 5438:PMID 5387:PMID 5339:PMID 5278:PMID 5233:ISBN 5194:PMID 5159:PMID 5110:PMID 5075:PMID 5040:PMID 5006:PMID 4856:PMID 4772:PMID 4654:PMID 4605:PMID 4564:PMID 4529:PMID 4488:PMID 4445:ISBN 4414:PMID 4361:ISBN 4328:ISBN 4256:PMID 4213:PMID 4178:PMID 4137:PMID 4041:PMID 3959:PMID 3924:PMID 3812:PMID 3762:PMID 3718:PMID 3674:PMID 3633:PMID 3587:PMID 3552:PMID 3503:PMID 3457:PMID 3406:ISBN 3364:PMID 3322:PMID 3214:PMID 3167:1991 3132:1994 3109:PMID 3091:)". 3058:1970 3023:1973 2755:PMID 2702:)". 2669:PMID 2634:PMID 2256:PMID 2070:PMID 2035:PMID 2001:PMID 1966:PMID 1907:PMID 1821:PMID 1786:PMID 1737:PMID 1702:PMID 1653:PMID 1604:PMID 1569:PMID 1520:PMID 1468:PMID 1433:PMID 1382:ISBN 1306:mRNA 1288:bird 1201:heme 1078:crit 1055:and 1025:and 817:of O 724:and 712:The 679:gill 668:The 409:and 228:taxa 221:and 214:and 190:crit 179:crit 115:crit 96:crit 92:crit 88:crit 62:crit 24:and 6600:cod 6355:By 6168:Roe 5895:Jaw 5793:and 5641:doi 5637:396 5603:PMC 5593:doi 5554:doi 5550:414 5511:doi 5507:288 5465:doi 5428:PMC 5418:doi 5414:103 5377:hdl 5369:doi 5365:289 5329:PMC 5319:doi 5270:doi 5258:209 5225:doi 5186:doi 5182:235 5149:doi 5145:208 5102:doi 5067:doi 5063:253 5032:doi 5028:265 4998:doi 4986:231 4963:doi 4951:373 4927:doi 4915:291 4883:doi 4879:159 4846:PMC 4838:doi 4807:doi 4795:271 4762:doi 4758:220 4726:doi 4714:373 4690:doi 4678:291 4644:doi 4595:doi 4591:216 4556:doi 4552:271 4519:doi 4515:210 4478:doi 4474:211 4437:doi 4404:hdl 4394:doi 4390:210 4353:doi 4320:doi 4295:doi 4291:180 4248:doi 4205:doi 4201:293 4168:doi 4164:268 4127:PMC 4117:doi 4068:doi 4064:152 4031:PMC 4023:doi 4019:382 3990:doi 3951:doi 3914:doi 3910:209 3864:doi 3804:doi 3800:132 3754:doi 3708:doi 3704:211 3664:doi 3660:208 3623:doi 3619:206 3579:doi 3542:doi 3538:220 3495:doi 3447:PMC 3439:doi 3435:362 3398:doi 3356:doi 3312:doi 3308:214 3273:doi 3255:". 3206:doi 3202:103 3171:doi 3136:doi 3101:doi 3097:203 3062:doi 3027:doi 2992:doi 2949:doi 2894:doi 2859:doi 2825:doi 2790:doi 2747:doi 2735:249 2712:doi 2661:doi 2626:doi 2622:149 2595:doi 2560:doi 2517:doi 2480:doi 2437:180 2402:doi 2363:doi 2332:doi 2295:doi 2248:doi 2221:doi 2217:136 2192:doi 2062:doi 2058:144 2027:doi 1993:doi 1989:158 1956:PMC 1946:doi 1899:doi 1887:241 1856:doi 1852:133 1813:doi 1809:279 1776:doi 1772:211 1729:doi 1725:461 1692:PMC 1684:doi 1680:560 1643:PMC 1635:doi 1631:539 1596:doi 1559:PMC 1551:doi 1510:doi 1506:220 1460:doi 1423:doi 1374:doi 1074:ATP 873:In 804:PaO 361:is 39:ATP 6808:: 5647:, 5635:, 5611:. 5601:. 5587:. 5583:. 5560:. 5548:. 5525:. 5517:. 5505:. 5493:^ 5479:. 5471:. 5461:13 5459:. 5436:. 5426:. 5412:. 5408:. 5385:. 5375:. 5363:. 5351:^ 5337:. 5327:. 5317:. 5307:98 5305:. 5301:. 5289:^ 5276:, 5268:, 5256:, 5231:. 5200:. 5192:. 5180:. 5157:. 5143:. 5139:. 5116:. 5108:. 5098:78 5096:. 5073:. 5061:. 5038:. 5026:. 5004:, 4996:, 4984:, 4961:. 4949:. 4925:. 4913:. 4889:. 4877:. 4854:. 4844:. 4834:13 4832:. 4828:. 4805:. 4793:. 4770:. 4756:. 4752:. 4738:^ 4724:. 4712:. 4688:. 4676:. 4652:. 4642:. 4632:88 4630:. 4626:. 4603:. 4589:. 4585:. 4562:. 4550:. 4527:. 4513:. 4509:. 4486:. 4472:. 4468:. 4443:. 4412:. 4402:. 4388:. 4384:. 4359:. 4326:. 4289:. 4285:. 4262:. 4254:. 4246:. 4236:38 4234:. 4211:. 4199:. 4176:. 4162:. 4158:. 4135:. 4125:. 4111:. 4074:, 4062:, 4039:. 4029:. 4017:. 4013:. 3986:20 3984:. 3980:. 3957:. 3947:96 3945:. 3922:. 3908:. 3904:. 3887:31 3885:. 3860:96 3858:. 3831:^ 3818:, 3810:, 3798:, 3794:, 3768:. 3760:. 3752:. 3742:67 3740:. 3716:. 3702:. 3698:. 3686:^ 3672:. 3658:. 3654:. 3631:. 3617:. 3613:. 3599:^ 3585:. 3575:85 3573:. 3550:. 3536:. 3532:. 3509:. 3501:. 3491:78 3489:. 3485:. 3455:. 3445:. 3433:. 3429:. 3404:. 3384:^ 3370:. 3362:. 3352:82 3350:. 3346:. 3334:^ 3320:. 3306:. 3302:. 3279:. 3271:. 3261:68 3259:. 3220:, 3212:, 3200:, 3177:. 3165:. 3142:. 3130:. 3107:. 3095:. 3068:. 3056:. 3033:. 3021:. 2998:. 2990:. 2980:14 2978:. 2955:. 2947:. 2935:. 2900:. 2892:. 2880:. 2855:56 2853:. 2831:, 2823:, 2811:, 2788:. 2778:63 2776:. 2753:. 2745:. 2733:. 2708:62 2706:. 2675:. 2667:. 2657:82 2655:. 2632:. 2620:. 2591:66 2589:. 2566:. 2558:. 2548:18 2546:. 2523:. 2515:. 2505:61 2503:. 2478:. 2468:88 2466:. 2462:. 2435:. 2408:. 2400:. 2388:. 2359:76 2357:. 2330:. 2318:57 2316:. 2291:85 2289:. 2262:. 2254:. 2244:57 2242:. 2215:. 2188:16 2186:. 2182:. 2165:65 2163:. 2134:92 2132:. 2068:, 2056:, 2033:. 2023:46 2021:. 1999:, 1987:, 1964:. 1954:. 1944:. 1934:97 1932:. 1928:. 1905:. 1897:. 1885:. 1862:. 1850:. 1827:. 1819:. 1807:. 1784:. 1770:. 1766:. 1743:. 1735:. 1723:. 1700:. 1690:. 1678:. 1674:. 1651:. 1641:. 1629:. 1625:. 1602:. 1592:74 1590:. 1567:. 1557:. 1545:. 1541:. 1518:. 1504:. 1500:. 1474:. 1466:. 1456:86 1454:. 1431:. 1421:. 1411:88 1409:. 1405:. 1380:. 1354:^ 1255:, 1251:, 1239:, 1207:, 972:Na 955:/K 947:Na 935:Na 912:Na 888:/H 880:Na 709:. 661:, 657:, 653:, 649:, 645:, 602:, 560:. 540:. 446:, 321:. 5684:e 5677:t 5670:v 5643:: 5619:. 5595:: 5589:7 5568:. 5556:: 5533:. 5513:: 5487:. 5467:: 5444:. 5420:: 5393:. 5379:: 5371:: 5345:. 5321:: 5313:: 5272:: 5264:: 5241:. 5227:: 5208:. 5188:: 5165:. 5151:: 5124:. 5104:: 5081:. 5069:: 5046:. 5034:: 5000:: 4992:: 4969:. 4965:: 4957:: 4933:. 4929:: 4921:: 4897:. 4885:: 4862:. 4840:: 4813:. 4809:: 4801:: 4778:. 4764:: 4732:. 4728:: 4720:: 4696:. 4692:: 4684:: 4660:. 4646:: 4638:: 4611:. 4597:: 4570:. 4558:: 4535:. 4521:: 4494:. 4480:: 4453:. 4439:: 4420:. 4406:: 4396:: 4369:. 4355:: 4336:. 4322:: 4303:. 4297:: 4270:. 4250:: 4242:: 4219:. 4207:: 4184:. 4170:: 4143:. 4119:: 4070:: 4047:. 4025:: 3998:. 3992:: 3965:. 3953:: 3930:. 3916:: 3870:. 3866:: 3806:: 3776:. 3756:: 3748:: 3724:. 3710:: 3680:. 3666:: 3639:. 3625:: 3593:. 3581:: 3558:. 3544:: 3517:. 3497:: 3463:. 3441:: 3414:. 3400:: 3378:. 3358:: 3328:. 3314:: 3287:. 3275:: 3267:: 3208:: 3185:. 3173:: 3150:. 3138:: 3115:. 3103:: 3076:. 3064:: 3041:. 3029:: 3006:. 2994:: 2986:: 2963:. 2951:: 2943:: 2937:7 2908:. 2896:: 2888:: 2882:7 2865:. 2861:: 2827:: 2819:: 2813:7 2796:. 2792:: 2784:: 2761:. 2749:: 2741:: 2718:. 2714:: 2683:. 2663:: 2640:. 2628:: 2601:. 2597:: 2574:. 2562:: 2554:: 2531:. 2519:: 2511:: 2488:. 2482:: 2474:: 2452:" 2416:. 2404:: 2396:: 2390:6 2369:. 2365:: 2338:. 2334:: 2301:. 2297:: 2270:. 2250:: 2227:. 2223:: 2200:. 2194:: 2144:. 2064:: 2041:. 2029:: 1995:: 1972:. 1948:: 1940:: 1913:. 1901:: 1893:: 1870:. 1858:: 1835:. 1815:: 1792:. 1778:: 1751:. 1731:: 1708:. 1686:: 1659:. 1637:: 1610:. 1598:: 1575:. 1553:: 1547:1 1526:. 1512:: 1482:. 1462:: 1439:. 1425:: 1417:: 1390:. 1376:: 1084:2 1082:O 1080:P 991:2 968:2 927:2 901:H 855:2 847:2 843:2 839:2 830:2 819:2 806:2 800:2 406:2 404:O 402:2 400:H 185:2 183:O 174:2 172:O 167:2 165:O 153:2 151:O 146:2 144:O 139:2 137:O 132:2 130:O 125:2 123:O 106:2 104:O 100:2 83:2 81:O 77:2 72:2 70:O 66:2 58:2

Index

oxygenation
underwater
hypoxia
homeostasis
ATP
mitochondrial
electron transport chain
anaerobic glycolysis

carotid body
central
peripheral
neurons
vascular smooth muscle
taxa
gill rakers
zebrafish
motor and sensory nerve fibre
arterial
neuron
chemoreceptor
membrane potential
neurotransmitters
zebrafish
gills
aortic
hypoxia
ion channels
membrane potential
depolarization

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑