Knowledge

Laser diffraction analysis

Source đź“ť

153: 59: 20: 1637: 405:, another particle-sizing technique, correlation between the two was poor for non-spherical particles. This is due to the fact that the underlying Fraunhofer and Mie theories only cover spherical particles. Non-spherical particles cause more diffuse scatter patterns and are more difficult to interpret. Some manufacturers have included algorithms in their software, which can partly compensate for non-spherical particles. 305:. Particles in estuaries are important as they allow for natural or pollutant chemical species to move around with ease. The size, density, and stability of particles in estuaries are important for their transportation. Laser diffraction analysis is used here to compare particle size distributions to support this claim as well as find cycles of change in estuaries that occur because of different particles. 1164:"Da Costa, Lydie; Suner, Ludovic; Galimand, Julie; Bonnel, Amandine; Pascreau, Tiffany; Couque, Nathalie; Fenneteau, Odile; Mohandas, Narla (January 2016). "Diagnostic tool for red blood cell membrane disorders: Assessment of a new generation ektacytometer". Blood Cells, Molecules and Diseases. 56 (1): 9–22. doi:10.1016/j.bcmd.2015.09.001. ISSN 1079-9796. PMC 4811191. PMID 26603718" 83:) of the particle’s material. Hence is it typically applied to samples of unknown optical properties, or to mixtures of different materials. For samples of known optical properties, Fraunhofer theory should only be applied for particles of an expected diameter at least 10 times larger than the light source’s wavelength, and/or to opaque particles. 131:
Multiple light detectors are used to collect the diffracted light, which are placed at fixed angles relative to the laser beam. More detector elements extend sensitivity and size limits. A computer can then be used to detect the object's particle sizes from the light energy produced and its layout,
372:
analysis. When compared, results showed that laser diffraction analysis made fast calculations that were easy to recreate after a one-time analysis, did not need large sample sizes, and produced large amounts of data. Results can easily be manipulated because the data is on a digital surface. Both
1125:
Baskurt, O. K.; Hardeman, M. R.; Uyuklu, M.; Ulker, P.; Cengiz, M.; Nemeth, N.; Shin, S.; Alexy, T.; Meiselman, H. J. (2009). "Baskurt, Oguz K.; Hardeman, M. R.; Uyuklu, Mehmet; Ulker, Pinar; Cengiz, Melike; Nemeth, Norbert; Shin, Sehyun; Alexy, Tamas; Meiselman, Herbert J. (2009). "Comparison of
86:
The Mie theory is based on measuring the scattering of electromagnetic waves on spherical particles. Hence, it is taking into account not only the diffraction at the particle’s contour, but also the refraction, reflection and absorption phenomena within the particle and at its surface. Thus, this
78:
Commercial laser diffraction analyzers leave to the user the choice of using either Fraunhofer or Mie theory for data analysis, hence the importance of understanding the strengths and limitations of both models. Fraunhofer theory only takes into account the diffraction phenomena occurring at the
490:
De Boer, A. H.; Gjaltema, D.; Hagedoorn, P.; Frijlink, H. W. (2002). "de Boer, A.H.; D Gjaltema; P Hagedoorn; H.W Frijlink (December 2002). "Characterization of inhalation aerosols: a critical evaluation of cascade impactor analysis and laser diffraction technique". International Journal of
70:
theory, stating that the intensity of light scattered by a particle is directly proportional to the particle size. The angle of the laser beam and particle size have an inversely proportional relationship, where the laser beam angle increases as particle size decreases and vice versa. The
111:
power supply, and structural packaging. Alternatively, blue laser diodes or LEDs of shorter wavelength may be used. The light source affects the detection limits, with lasers of shorter wavelengths better suited for the detection of submicron particles. Angling of the
902:"McCave, I.N. (1986). "Evaluation of a Laser-Diffraction-Size Analyzer for use with Natural Sediments" (PDF). Journal of Sedimentary Research. 56 (4): 561–564. Bibcode:1986JSedR..56..561M. doi:10.1306/212f89cc-2b24-11d7-8648000102c1865d. Retrieved 14 November 2013". 143:
In practical terms, laser diffraction instruments can measure particles in liquid suspension, using a carrier solvent, or as dry powders, using compressed air or simply gravity to mobilize the particles. Sprays and aerosols generally require a specific setup.
87:
theory is better suited than the Fraunhofer theory for particles that are not significantly larger than the wavelength of the light source, and to transparent particles. The model’s main limitation is that it requires precise knowledge of the
1078:"Viallat, A.; Abkarian, M. (2014-04-18). "Red blood cell: from its mechanics to its motion in shear flow". International Journal of Laboratory Hematology. 36 (3): 237–243. doi:10.1111/ijlh.12233. ISSN 1751-5521. PMID 24750669" 1211:"Beuselinck, L; G Govers; J Poesen; G Degraer; L Froyen (June 1998). "Grain-size analysis by laser diffractometry: comparison with the sieve-pipette method". CATENA. 32(3–4): 193–208. doi:10.1016/s0341-8162(98)00051-4". 373:
the sieve-pipette method and laser diffraction analysis are able to analyze minuscule objects, but laser diffraction analysis resulted in having better precision than its counterpart method of particle measurement.
185:
of particles in the different size classes. That the diffracted light is proportional to the particle’s volume also implies that results are assuming particle sphericity, i.e. that the particle size result is an
395:
used in laser diffraction analysis are not thoroughly validated. Different algorithms are used at times to have collected data match assumptions made by users as an attempt to avoid data that looks incorrect.
1161:
Da Costa, L.; Suner, L.; Galimand, J.; Bonnel, A.; Pascreau, T.; Couque, N.; Fenneteau, O.; Mohandas, N.; Society of Hematology Pediatric Immunology (SHIP) group; French Society of Hematology (SFH) (2016).
398:
measurement inaccuracies due to sharp edges on objects. Laser diffraction analysis has the chance of detecting imaginary particles at sharp edges because of the large angles the lasers make upon them.
339:
causing RBCs to orient themselves. Oriented and stretched red blood cells have a diffraction pattern representing the apparent particle size in each direction, making it possible to measure the
312:
and its stability when wet. The stability of soil aggregation (clumps held together by moist clay) and clay dispersion (clay separating in moist soil), the two different states of soil in the
91:(including the absorption coefficient) of the particle’s material. The lower theoretical detection limit of laser diffraction, using the Mie theory, is generally thought to lie around 10 nm. 385: assumptions including particles having random configurations and volume values. In some dispersion units, particles have been shown to align themselves together rather than have a 124:
is placed between the object being analyzed and the detector's focal point, causing only the surrounding laser diffraction to appear. The sizes the laser can analyze depend on the lens'
165:
Because the light energy recorded by the detector array is proportional to the volume of the particles, laser diffraction results are intrinsically volume-weighted. This means that the
667: 941:
Bale, A.J. (February 1987). . Estuarine, Coastal and Shelf Science. 24 (2): 253–263. Bibcode:1987ECSS...24..253B. doi:10.1016/0272-7714(87)90068-0. Retrieved 14 November 2013
128:, the distance from the lens to its point of focus. As the focal length increases, the area the laser can detect increases as well, displaying a proportional relationship. 1292: 1126:
three commercially available ektacytometers with different shearing geometries". Biorheology. 46 (3): 251–264. doi:10.3233/BIR-2009-0536. ISSN 1878-5034. PMID 19581731".
840: 368:
Since laser diffraction analysis is not the sole way of measuring particles it has been compared to the sieve-pipette method, which is a traditional technique for
878: 255: 316:
savanna region, were compared with laser diffraction analysis to determine if plowing had an effect on the two. Measurements were made before
220:. Derived from the cumulative curve, it represents the particle diameter separating the upper 50 % of the data from the lower 50 %. 193:
The main graphical representation of laser diffraction results is the volume-weighted particle size distribution, either represented as
320:
and after plowing for different intervals of time. Clay dispersion turned out to not be affected by plowing while soil aggregation did.
42:
passed through any object ranging from nanometers to millimeters in size to quickly measure geometrical dimensions of a particle. This
734:"Drop size measurement techniques for sprays: Comparison of image analysis, phase Doppler particle analysis, and laser diffraction" 1597: 643: 816: 711: 552: 116:
produced by the laser is detected by having a beam of light go through a flow of dispersed particles and then onto a
1336: 198: 173:
of particle material in the different size classes. This is in contrast to counting-based optical methods such as
79:
contour of the particle. Its main advantage is that it does not require any knowledge of the optical properties (
254:
Harmonized standards for the accuracy and precision of laser diffraction measurements have been defined both by
1506: 241:
The span, which gives a measure of the width of the particle size distribution, and is calculated as span = /D
187: 1036:"Aggregation studied by laser diffraction in relation to plowing and liming in the Cerrado region in Brazil" 781: 194: 152: 1562: 356: 1366: 576: 425: 259: 235: 214: 166: 340: 324: 178: 1277: 1237: 953:"Observation operators for the direct assimilation of TRMM microwave imager retrieved soil moisture" 928: 529: 476: 80: 1035: 594: 270:
Laser diffraction analysis has been used to measure particle-size objects in situations such as:
907: 618: 1536: 1356: 420: 415: 67: 43: 525: 1661: 1424: 1264: 1224: 915: 463: 1531: 1414: 1402: 1329: 1047: 964: 745: 606: 156:
Particle size distribution (density and cumulative undersize) obtained by laser diffraction
47: 8: 1582: 1501: 1441: 1361: 1034:
Westerhof, R; Buurman, P; van Griethuysen, C; Ayarza, M; Vilela, L; Zech, W (July 1999).
1051: 968: 749: 610: 75:
model, or Mie theory, is used as alternative to the Fraunhofer theory since the 1990s.
1300: 1252: 1188: 1163: 1107: 763: 570: 1216: 1059: 504: 491:
Pharmaceutics. 249 (1–2): 219–231. doi:10.1016/S0378-5173(02)00526-4. PMID 12433450".
1602: 1476: 1451: 1193: 1143: 1099: 1016: 982: 822: 812: 767: 707: 698:, Chichester, United Kingdom: John Wiley and Sons Ltd, pp. 105–131, 2013-08-09, 622: 558: 548: 508: 348: 1304: 1256: 1111: 58: 19: 1612: 1577: 1557: 1526: 1212: 1183: 1175: 1135: 1089: 1055: 1008: 972: 903: 753: 699: 614: 500: 449: 381:
Laser diffraction analysis has been questioned in validity in the following areas:
88: 1640: 1521: 1511: 1322: 402: 691: 595:"Evaluation of a laser-diffraction-size analyzer for use with natural sediments" 547:. Alena Mudroch, José M. Azcue, Paul Mudroch. Boca Raton, Fla: CRC Lewis. 1997. 528:(book preview), section laser diffraction, herausgegeben von Wayne P. Olson and 1617: 1607: 1567: 1516: 1434: 1387: 1371: 1179: 1000: 703: 526:
Automated Microbial Identification and Quantitation: Technologies for the 2000s
386: 352: 332: 72: 1251:
Kelly, Richard N.; Etzler, F. (2006). "What Is Wrong With Laser Diffraction".
1012: 1655: 1572: 1552: 1493: 1419: 1020: 986: 826: 626: 454: 445: 121: 562: 1592: 1461: 1456: 1397: 1197: 1147: 1103: 593:
McCave, I. N.; Bryant, R. J.; Cook, H. F.; Coughanowr, C. A. (1986-07-01).
512: 275: 125: 113: 108: 1139: 864: 841:"Understanding & Interpreting Particle Size Distribution Calculations" 806: 1622: 1483: 1466: 1446: 977: 952: 542: 335:(red blood cell, RBC) rotates relative to the shear force and the cell's 137: 133: 104: 100: 35: 1471: 1094: 1077: 392: 369: 174: 39: 758: 733: 1587: 1429: 1409: 1392: 1033: 336: 302: 279: 732:
Sijs, R; Kooij, S; Holterman, HJ; van de Zande, J; Bonn, D (2021).
132:
which the computer derives from the data collected on the particle
50:, the amount of particles that passes through a surface over time. 808:
Particle size measurements : fundamentals, practice, quality
317: 313: 298: 489: 782:"Laser diffraction for particle sizing :: Anton Paar Wiki" 209:
The most widely used numerical laser diffraction results are:
117: 99:
Laser diffraction analysis is typically accomplished via a red
1293:"Appraisal of the laser diffraction particle-sizing technique" 731: 190:. Hence particle shape cannot be determined by the technique. 1345: 160: 1160: 309: 291: 283: 249: 16:
Technology for measuring geometrical dimensions of particle
1124: 592: 389:, causing them to lead themselves in an orderly direction. 1314: 668:"Mie and Fraunhofer: use the correct approximation model" 347:
erythrocyte deformability can be measured under changing
287: 544:
Manual of physico-chemical analysis of aquatic sediments
62:
Particles moving through the spread parallel laser beam
879:"Laser Diffraction Measurement of Particle Size | USP" 66:
Laser diffraction analysis is originally based on the
234:
The mean volume-weighted diameter, also termed D or
1653: 327:under shear. Due to a special phenomenon called 1075: 446:"Grain Transportation Report, October 24, 2013" 231:values, also derived from the cumulative curve. 1082:International Journal of Laboratory Hematology 355:and is used in the diagnosis and follow up of 1330: 532:, product information, Company Sympathec GmbH 197:(which highlights the different modes) or as 53: 1250: 908:10.1306/212f89cc-2b24-11d7-8648000102c1865d 619:10.1306/212f89cc-2b24-11d7-8648000102c1865d 1337: 1323: 343:and the orientability of the cells. In an 161:Volume-weighted particle size distribution 1187: 1093: 976: 757: 453: 258:, in standard ISO 13320:2020, and by the 401:when compared to the data collecting of 294:and the sizes of bigger samples of clay. 250:Result quality and instrument validation 213:The median volume-weighted diameter, or 151: 57: 18: 1598:Multiple-prism grating laser oscillator 1654: 1290: 950: 804: 493:International Journal of Pharmaceutics 1318: 1168:Blood Cells, Molecules & Diseases 1071: 1069: 638: 636: 588: 586: 204: 13: 1076:Viallat, A.; Abkarian, M. (2014). 1066: 14: 1673: 633: 583: 199:cumulative undersize distribution 1636: 1635: 274: observing distribution of 94: 34:, is a technology that utilizes 1284: 1244: 1204: 1154: 1118: 1027: 993: 944: 935: 895: 871: 857: 833: 811:. Berlin: Springer Netherland. 798: 774: 599:Journal of Sedimentary Research 262:, in chapter USP <429>. 1507:Amplified spontaneous emission 725: 684: 660: 535: 519: 483: 438: 363: 32:laser diffraction spectroscopy 1: 1217:10.1016/s0341-8162(98)00051-4 1060:10.1016/S0016-7061(98)00133-5 505:10.1016/S0378-5173(02)00526-4 431: 301:measurements of particles in 188:equivalent spherical diameter 957:Geophysical Research Letters 376: 357:congenital hemolytic anemias 7: 1563:Chirped pulse amplification 409: 260:United States Pharmacopoeia 46:process does not depend on 10: 1678: 1367:List of laser applications 1344: 1180:10.1016/j.bcmd.2015.09.001 704:10.1002/9781118688977.ch04 696:Lasers and Optoelectronics 426:Particle size distribution 236:De Brouckere mean diameter 167:particle size distribution 147: 28:Laser diffraction analysis 23:Laser diffraction analyzer 1631: 1545: 1492: 1380: 1352: 1297:Pharmaceutical Technology 1013:10.7328/jurpcb20132811198 341:erythrocyte deformability 325:erythrocyte deformability 54:Fraunhofer vs. Mie Theory 805:Merkus, Henk G. (2009). 455:10.9752/ts056.10-24-2013 89:complex refractive index 81:complex refractive index 265: 1357:List of laser articles 1272:Cite journal requires 1232:Cite journal requires 923:Cite journal requires 575:: CS1 maint: others ( 471:Cite journal requires 421:List of laser articles 416:Diffraction tomography 331:, the membrane of the 290:, with an emphasis on 179:dynamic image analysis 157: 68:Fraunhofer diffraction 63: 44:particle size analysis 24: 1140:10.3233/BIR-2009-0536 155: 61: 22: 1532:Population inversion 978:10.1029/2005gl023623 195:density distribution 48:volumetric flow rate 1583:Laser beam profiler 1502:Active laser medium 1442:Free-electron laser 1362:List of laser types 1291:Kippax, P. (2005). 1052:1999Geode..90..277W 969:2005GeoRL..3215403D 951:Drusch, M. (2005). 750:2021AIPA...11a5315S 611:1986JSedR..56..561M 181:, which report the 1095:10.1111/ijlh.12233 297: determining 158: 64: 25: 1649: 1648: 1603:Optical amplifier 1452:Solid-state laser 818:978-1-4020-9015-8 759:10.1063/5.0018667 713:978-1-118-68897-7 530:Laser Diffraction 205:Numerical results 1669: 1639: 1638: 1613:Optical isolator 1578:Injection seeder 1558:Beam homogenizer 1537:Ultrashort pulse 1527:Lasing threshold 1339: 1332: 1325: 1316: 1315: 1309: 1308: 1288: 1282: 1281: 1275: 1270: 1268: 1260: 1248: 1242: 1241: 1235: 1230: 1228: 1220: 1208: 1202: 1201: 1191: 1158: 1152: 1151: 1122: 1116: 1115: 1097: 1073: 1064: 1063: 1046:(3–4): 277–290. 1031: 1025: 1024: 997: 991: 990: 980: 948: 942: 939: 933: 932: 926: 921: 919: 911: 899: 893: 892: 890: 889: 875: 869: 868: 865:"Iso 13320:2020" 861: 855: 854: 852: 851: 837: 831: 830: 802: 796: 795: 793: 792: 778: 772: 771: 761: 729: 723: 722: 721: 720: 688: 682: 681: 679: 678: 664: 658: 657: 655: 654: 644:"ISO 13320:2020" 640: 631: 630: 590: 581: 580: 574: 566: 539: 533: 523: 517: 516: 499:(1–2): 219–231. 487: 481: 480: 474: 469: 467: 459: 457: 442: 30:, also known as 1677: 1676: 1672: 1671: 1670: 1668: 1667: 1666: 1652: 1651: 1650: 1645: 1627: 1541: 1522:Laser linewidth 1512:Continuous wave 1488: 1381:Types of lasers 1376: 1348: 1343: 1313: 1312: 1289: 1285: 1273: 1271: 1262: 1261: 1249: 1245: 1233: 1231: 1222: 1221: 1210: 1209: 1205: 1159: 1155: 1123: 1119: 1074: 1067: 1032: 1028: 1001:"November 2013" 999: 998: 994: 949: 945: 940: 936: 924: 922: 913: 912: 901: 900: 896: 887: 885: 877: 876: 872: 863: 862: 858: 849: 847: 839: 838: 834: 819: 803: 799: 790: 788: 780: 779: 775: 730: 726: 718: 716: 714: 690: 689: 685: 676: 674: 666: 665: 661: 652: 650: 642: 641: 634: 591: 584: 568: 567: 555: 541: 540: 536: 524: 520: 488: 484: 472: 470: 461: 460: 444: 443: 439: 434: 412: 403:optical imaging 379: 366: 268: 252: 244: 230: 226: 218: 207: 169:represents the 163: 150: 97: 56: 17: 12: 11: 5: 1675: 1665: 1664: 1647: 1646: 1644: 1643: 1632: 1629: 1628: 1626: 1625: 1620: 1618:Output coupler 1615: 1610: 1608:Optical cavity 1605: 1600: 1595: 1590: 1585: 1580: 1575: 1570: 1568:Gain-switching 1565: 1560: 1555: 1549: 1547: 1543: 1542: 1540: 1539: 1534: 1529: 1524: 1519: 1517:Laser ablation 1514: 1509: 1504: 1498: 1496: 1490: 1489: 1487: 1486: 1481: 1480: 1479: 1474: 1469: 1464: 1459: 1449: 1444: 1439: 1438: 1437: 1432: 1427: 1422: 1417: 1415:Carbon dioxide 1407: 1406: 1405: 1403:Liquid-crystal 1400: 1390: 1388:Chemical laser 1384: 1382: 1378: 1377: 1375: 1374: 1372:Laser acronyms 1369: 1364: 1359: 1353: 1350: 1349: 1342: 1341: 1334: 1327: 1319: 1311: 1310: 1283: 1274:|journal= 1243: 1234:|journal= 1203: 1153: 1134:(3): 251–264. 1117: 1088:(3): 237–243. 1065: 1026: 992: 943: 934: 925:|journal= 894: 870: 856: 845:www.horiba.com 832: 817: 797: 773: 724: 712: 683: 659: 632: 605:(4): 561–564. 582: 553: 534: 518: 482: 473:|journal= 448:. 2013-10-24. 436: 435: 433: 430: 429: 428: 423: 418: 411: 408: 407: 406: 399: 396: 390: 387:turbulent flow 378: 375: 365: 362: 361: 360: 353:oxygen tension 349:osmotic stress 321: 306: 295: 267: 264: 251: 248: 247: 246: 242: 239: 232: 228: 224: 221: 216: 206: 203: 162: 159: 149: 146: 96: 93: 73:Mie scattering 55: 52: 38:patterns of a 15: 9: 6: 4: 3: 2: 1674: 1663: 1660: 1659: 1657: 1642: 1634: 1633: 1630: 1624: 1621: 1619: 1616: 1614: 1611: 1609: 1606: 1604: 1601: 1599: 1596: 1594: 1591: 1589: 1586: 1584: 1581: 1579: 1576: 1574: 1573:Gaussian beam 1571: 1569: 1566: 1564: 1561: 1559: 1556: 1554: 1553:Beam expander 1551: 1550: 1548: 1544: 1538: 1535: 1533: 1530: 1528: 1525: 1523: 1520: 1518: 1515: 1513: 1510: 1508: 1505: 1503: 1500: 1499: 1497: 1495: 1494:Laser physics 1491: 1485: 1482: 1478: 1475: 1473: 1470: 1468: 1465: 1463: 1460: 1458: 1455: 1454: 1453: 1450: 1448: 1445: 1443: 1440: 1436: 1433: 1431: 1428: 1426: 1423: 1421: 1418: 1416: 1413: 1412: 1411: 1408: 1404: 1401: 1399: 1396: 1395: 1394: 1391: 1389: 1386: 1385: 1383: 1379: 1373: 1370: 1368: 1365: 1363: 1360: 1358: 1355: 1354: 1351: 1347: 1340: 1335: 1333: 1328: 1326: 1321: 1320: 1317: 1306: 1302: 1298: 1294: 1287: 1279: 1266: 1258: 1254: 1247: 1239: 1226: 1218: 1214: 1207: 1199: 1195: 1190: 1185: 1181: 1177: 1173: 1169: 1165: 1157: 1149: 1145: 1141: 1137: 1133: 1129: 1121: 1113: 1109: 1105: 1101: 1096: 1091: 1087: 1083: 1079: 1072: 1070: 1061: 1057: 1053: 1049: 1045: 1041: 1037: 1030: 1022: 1018: 1014: 1010: 1006: 1002: 996: 988: 984: 979: 974: 970: 966: 962: 958: 954: 947: 938: 930: 917: 909: 905: 898: 884: 880: 874: 866: 860: 846: 842: 836: 828: 824: 820: 814: 810: 809: 801: 787: 783: 777: 769: 765: 760: 755: 751: 747: 744:(1): 015315. 743: 739: 735: 728: 715: 709: 705: 701: 697: 693: 687: 673: 669: 663: 649: 645: 639: 637: 628: 624: 620: 616: 612: 608: 604: 600: 596: 589: 587: 578: 572: 564: 560: 556: 554:1-56670-155-4 550: 546: 545: 538: 531: 527: 522: 514: 510: 506: 502: 498: 494: 486: 478: 465: 456: 451: 447: 441: 437: 427: 424: 422: 419: 417: 414: 413: 404: 400: 397: 394: 391: 388: 384: 383: 382: 374: 371: 358: 354: 350: 346: 345:ektacytometer 342: 338: 334: 330: 329:tank treading 326: 322: 319: 315: 311: 307: 304: 300: 296: 293: 289: 285: 281: 277: 273: 272: 271: 263: 261: 257: 240: 237: 233: 222: 219: 212: 211: 210: 202: 200: 196: 191: 189: 184: 180: 176: 172: 168: 154: 145: 141: 139: 135: 129: 127: 123: 119: 115: 110: 106: 102: 95:Optical setup 92: 90: 84: 82: 76: 74: 69: 60: 51: 49: 45: 41: 37: 33: 29: 21: 1662:Spectroscopy 1593:Mode locking 1546:Laser optics 1296: 1286: 1265:cite journal 1246: 1225:cite journal 1206: 1171: 1167: 1156: 1131: 1127: 1120: 1085: 1081: 1043: 1039: 1029: 1007:: 15. 2013. 1004: 995: 960: 956: 946: 937: 916:cite journal 897: 886:. Retrieved 882: 873: 859: 848:. Retrieved 844: 835: 807: 800: 789:. Retrieved 785: 776: 741: 738:AIP Advances 737: 727: 717:, retrieved 695: 692:"Gas Lasers" 686: 675:. Retrieved 671: 662: 651:. Retrieved 647: 602: 598: 543: 537: 521: 496: 492: 485: 464:cite journal 440: 380: 367: 344: 328: 276:soil texture 269: 253: 208: 192: 182: 170: 164: 142: 130: 126:focal length 114:light energy 109:high-voltage 98: 85: 77: 65: 31: 27: 26: 1623:Q-switching 1484:X-ray laser 1477:Ti-sapphire 1447:Laser diode 1425:Helium–neon 1174:(1): 9–22. 1128:Biorheology 883:www.usp.org 364:Comparisons 333:erythrocyte 138:wavelengths 134:frequencies 105:laser diode 101:He-Ne laser 36:diffraction 888:2022-06-02 850:2022-06-02 791:2022-06-02 786:Anton Paar 719:2021-02-11 677:2022-06-02 672:Anton Paar 653:2022-06-02 432:References 393:algorithms 370:grain size 175:microscopy 40:laser beam 1588:M squared 1410:Gas laser 1393:Dye laser 1021:1615-5335 987:0094-8276 827:634805655 768:234277789 627:1527-1404 571:cite book 377:Criticism 337:cytoplasm 303:estuaries 280:sediments 1656:Category 1641:Category 1435:Nitrogen 1305:59366547 1257:40017678 1198:26603718 1148:19581731 1112:40442456 1104:24750669 1040:Geoderma 563:35249389 513:12433450 410:See also 282:such as 1420:Excimer 1189:4811191 1048:Bibcode 965:Bibcode 746:Bibcode 607:Bibcode 318:plowing 314:Cerrado 299:in situ 148:Results 1462:Nd:YAG 1457:Er:YAG 1398:Bubble 1346:Lasers 1303:  1255:  1196:  1186:  1146:  1110:  1102:  1019:  985:  963:(15). 825:  815:  766:  710:  625:  561:  551:  511:  323:  308:  183:number 171:volume 118:sensor 1467:Raman 1301:S2CID 1253:S2CID 1108:S2CID 1005:JurPC 764:S2CID 227:and D 223:The D 1472:Ruby 1278:help 1238:help 1194:PMID 1144:PMID 1100:PMID 1017:ISSN 983:ISSN 929:help 823:OCLC 813:ISBN 708:ISBN 623:ISSN 577:link 559:OCLC 549:ISBN 509:PMID 477:help 310:soil 292:silt 286:and 284:clay 278:and 266:Uses 136:and 122:lens 120:. A 107:, a 1430:Ion 1213:doi 1184:PMC 1176:doi 1136:doi 1090:doi 1056:doi 1009:doi 973:doi 904:doi 754:doi 700:doi 648:ISO 615:doi 501:doi 497:249 450:doi 351:or 288:mud 256:ISO 177:or 103:or 1658:: 1299:. 1295:. 1269:: 1267:}} 1263:{{ 1229:: 1227:}} 1223:{{ 1192:. 1182:. 1172:56 1170:. 1166:. 1142:. 1132:46 1130:. 1106:. 1098:. 1086:36 1084:. 1080:. 1068:^ 1054:. 1044:90 1042:. 1038:. 1015:. 1003:. 981:. 971:. 961:32 959:. 955:. 920:: 918:}} 914:{{ 881:. 843:. 821:. 784:. 762:. 752:. 742:11 740:. 736:. 706:, 694:, 670:. 646:. 635:^ 621:. 613:. 603:56 601:. 597:. 585:^ 573:}} 569:{{ 557:. 507:. 495:. 468:: 466:}} 462:{{ 243:50 229:90 225:10 217:50 201:. 140:. 1338:e 1331:t 1324:v 1307:. 1280:) 1276:( 1259:. 1240:) 1236:( 1219:. 1215:: 1200:. 1178:: 1150:. 1138:: 1114:. 1092:: 1062:. 1058:: 1050:: 1023:. 1011:: 989:. 975:: 967:: 931:) 927:( 910:. 906:: 891:. 867:. 853:. 829:. 794:. 770:. 756:: 748:: 702:: 680:. 656:. 629:. 617:: 609:: 579:) 565:. 515:. 503:: 479:) 475:( 458:. 452:: 359:. 245:. 238:. 215:D

Index


diffraction
laser beam
particle size analysis
volumetric flow rate

Fraunhofer diffraction
Mie scattering
complex refractive index
complex refractive index
He-Ne laser
laser diode
high-voltage
light energy
sensor
lens
focal length
frequencies
wavelengths

particle size distribution
microscopy
dynamic image analysis
equivalent spherical diameter
density distribution
cumulative undersize distribution
D50
De Brouckere mean diameter
ISO
United States Pharmacopoeia

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑