Knowledge

Liquid apogee engine

Source πŸ“

17: 520:
Present telecommunication spacecraft platforms tend to benefit more from high specific impulse than high thrust. The less fuel is consumed to get into orbit, the more is available for station keeping when on station. This increase in the remaining propellant can be directly translated to an increase
454:
to be used for space applications, however to mitigate this risk, companies are investigating alternative propellants and engine designs. A change over to these alternative propellants is not straightforward, and issues such as performance, reliability and compatibility (e.g. satellite propulsion
528:
manoeuvre can be executed, the higher the efficiency of this manoeuvre, and the less propellant is required. This reduction in the propellant required can be directly translated to an increase in the bus and payload mass (at design stage), enabling better science return on these
481:
Though marketed to deliver a particular nominal thrust and nominal specific impulse at nominal propellant feed conditions, these engines actually undergo rigorous testing where performance is mapped over a range of operating conditions before being deemed
1132:
Naicker, Lolan; Baker, Adam; Coxhill, Ian; Hammond, Jeff; Martin, Houston; Perigo, David; Solway, Nick; Wall, Ronan (2012). "Progress towards a 1.1 kN apogee engine for interplanetary propulsion".
840: 381: 82:. Despite the name, an apogee engine can be used for a range of other manoeuvres, such as end-of-life deorbit, Earth orbit escape, planetary orbit insertion and planetary descent/ascent. 20:
A 400 N hypergolic liquid apogee engine, including heat shield and mounting structure, on display at DLR visitors center, Lampoldshausen, Germany. The engine was designed for use on
1114:
Houston, Martin; Smith, Pete; Naicker, Lolan; Perigo, David; Wall, Ronan (2014). "A high flow rate apogee engine solenoid valve for the next generation of ESA planetary missions".
508:. The useful life of an engine at a particular performance level is dictated by the useful life of the materials of construction, primarily those used for the combustion chamber. 533:
The actual engine chosen for a mission is dependent on the technical details of the mission. More practical considerations such as cost, lead time and export restrictions (e.g.
301:
Hypergolic propellant combinations ignite upon contact within the engine combustion chamber and offer very high ignition reliability, as well as the ability for reignition.
471:
The characteristic velocity is influenced by design details such as propellant combination, propellant feed pressure, propellant temperature, and propellant mixture ratio.
572: 486:. This means that a flight-qualified production engine can be tuned (within reason) by the manufacturer to meet particular mission requirements, such as higher thrust. 1008: 478:
A typical 500 N-class hypergolic liquid apogee engine has a vacuum specific impulse in the region of 320 s, with the practical limit estimated to be near 335 s.
24:
satellites. These were the first three-axis stabilised communication satellites in geostationary orbit to use a liquid bipropellant apogee engine for orbit insertion.
1093: 658: 848: 524:
Planetary exploration spacecraft, especially the larger ones, tend to benefit more from high thrust than high specific impulse. The quicker a high delta-
494:
Most apogee engines are operated in an on–off manner at a fixed thrust level. This is because the valves used only have two positions: open or closed.
978: 905: 779: 764:
Stechman, Carl; Harper, Steve (2010). "Performance improvements in small earth storable rocket engines - an era of approaching the theoretical".
501:, depends both on the manoeuvre and the capability of the engine. Engines are qualified for a certain minimal and maximal single-burn duration. 875:
Naicker, Lolan; Wall, Ronan; David, Perigo (2014). "An overview of development model testing for the LEROS 4 High Thrust Apogee Engine".
534: 695:
Space Technology Library Volume 1. An introduction to mission design for geostationary satellites. Chapter 4: The Apogee Manoeuvre
1063: 178:
To protect the spacecraft from the radiant heat of the combustion chamber, these engines are generally installed together with a
144:
Derivatives of these original engines are still used today and are continually being evolved and adapted for new applications.
743: 710: 642: 580: 1016: 948: 824:
Hyde, Simon (2012). "A design optimisation study of a generic bi-propellant injector for additive manufacturing".
659:"Industrial Policy Committee, Robotic Exploration Plan, Programme of Work 2009-2014 and relevant Procurement Plan" 665: 273: 1173: 516:
A simplified division can be made between apogee engines used for telecommunications and exploration missions:
162:
injector assembly containing (though dependent on the injector) central oxidant gallery and outer fuel gallery,
190:
Apogee engines typically use one fuel and one oxidizer. This propellant is usually, but not restricted to, a
141:
and The Marquardt Company were all participants in developing engines for various satellites and spacecraft.
113:, however, uses solid propellant. These solid-propellant versions are not used on new-generation satellites. 75: 933:
Valencia-Bel, Ferran (2012). "Replacement of Conventional Spacecraft Propellants with Green Propellants".
986: 787: 1147:
Perigo, David (2012). "Large platform satellite propulsion with a focus on exploration applications".
841:"Space propulsion - Moog sees higher-thrust liquid propellant engine as right fit for Mars missions" 504:
Engines are also qualified to deliver a maximal cumulative burn duration, sometimes referred to as
305: 67: 1168: 168: 1038: 735: 634: 110: 191: 45: 727: 626: 521:
in the service lifetime of the satellite, increasing the financial return on these missions.
55:
derives from the type of manoeuvre for which the engine is typically used, i.e. an in-space
221: 603: 8: 246: 79: 1071: 467:
and vacuum thrust. However, there are many other details which influence performance:
739: 728: 706: 638: 627: 106: 698: 474:
The thrust coefficient is influenced primarily by the nozzle supersonic area ratio.
464: 134: 71: 130: 702: 121:
The apogee engine traces its origin to the early 1960s, when companies such as
41: 16: 1162: 956: 546: 1094:"LEROS engine propels the Juno spacecraft on its historic voyage to Jupiter" 809:
Hyde, Simon (2012). "Combustion chamber design for additive manufacturing".
174:
Thrust coefficient limited by supersonic area ratio of the expansion nozzle.
330: 152:
A typical liquid apogee engine scheme could be defined as an engine with:
463:
The performance of an apogee engine is usually quoted in terms of vacuum
179: 126: 894:(AFRPL-TR-76-76 ed.). Martin Marietta Corporation. p. 2.3–3. 497:
The duration for which the engine is on, sometimes referred to as the
892:
USAF Propellant Handbooks: Nitric Acid / Nitrogen Tetroxide Oxidizers
198: 21: 85:
In some parts of the space industry an LAE is also referred to as a
138: 122: 56: 63: 455:
system and launch-site infrastructure) require investigation.
726:
Ley, Wilfred; Wittmann, Klaus; Hallmann, Willi, eds. (2009).
171:
limited by thermal capability of combustion chamber material,
430:
will be prohibited or restricted in the near- to mid-term.
384:
regulations. In 2011 the REACH framework legislation added
1131: 97:(DMLAT). Despite the ambiguity with respect to the use of 1113: 156:
pressure-regulated hypergolic liquid bipropellant feed,
66:
of an elliptical orbit in order to circularise it. For
1149:
Space Propulsion 2012 Conference, San Sebastian, Spain
780:"ESA investigates ALM for in-space satellite engines" 625:
Domingue, D. L.; Russell, C. T. (19 December 2007).
766:
46th AIAA/ASME/SAE/ASEE Joint Propulsion Conference
725: 159:
thermally isolated solenoid or torque motor valves,
1116:Space Propulsion 2014 Conference, Cologne, Germany 935:Space Propulsion 2012 Conference, Bordeaux, France 877:Space Propulsion 2014 Conference, Cologne, Germany 826:Space Propulsion 2012 Conference, Bordeaux, France 811:Space Propulsion 2012 Conference, Bordeaux, France 906:"Considering hydrazine-free satellite propulsion" 633:. Springer Science & Business Media. p.  78:and place the satellite on station in a circular 1160: 928: 926: 874: 624: 409:. This step increases the risk that the use of 763: 109:(AKM) or apogee boost motor (ABM) such as the 105:in these names, all use liquid propellant. An 923: 693:Pocha, J. J. (1987). "The Apogee Manoeuvre". 165:radiative and film-cooled combustion chamber, 932: 567: 565: 1127: 1125: 870: 868: 866: 759: 757: 755: 618: 883: 93:(LAT) and, depending on the propellant, a 562: 1122: 1107: 863: 752: 688: 686: 573:"Unified Propulsion System - Background" 15: 1140: 1134:Space Propulsion 2012, Bordeaux, France 734:. John Wiley & Sons, Ltd. pp.  664:. European Space Agency. Archived from 604:"Juno Jupiter probe gets British boost" 1161: 1146: 889: 838: 651: 595: 817: 692: 683: 433:Exemptions are being sought to allow 823: 808: 802: 601: 537:) also play a part in the decision. 335:), is used as a substitute for pure 719: 13: 1009:"400 N Bipropellant Apogee Motors" 74:is performed to transition from a 14: 1185: 380:is under threat in Europe due to 629:The MESSENGER Mission to Mercury 506:cumulative propellant throughput 95:dual-mode liquid apogee thruster 1086: 1056: 1031: 1001: 971: 941: 898: 890:Wright, A. C. (February 1977). 832: 511: 407:substances of very high concern 40:, refers to a type of chemical 979:"Apogee/Upper Stage Thrusters" 772: 458: 1: 1064:"Satellite Propulsion System" 1039:"Bipropellant Rocket Engines" 602:Amos, Jonathan (2012-09-04). 555: 185: 839:Werner, Debra (2013-07-15). 730:Handbook of space technology 697:. Springer. pp. 51–66. 489: 76:geostationary transfer orbit 7: 703:10.1007/978-94-009-3857-1_4 540: 46:main engine in a spacecraft 10: 1190: 116: 405:to its candidate list of 147: 1013:Astrium Space Propulsion 577:Airbus Defence and Space 306:mixed oxides of nitrogen 68:geostationary satellites 169:characteristic velocity 308:(MON), such as MON-3 ( 194:combination such as: 91:liquid apogee thruster 44:typically used as the 25: 1174:Spacecraft propulsion 19: 851:on November 15, 2014 30:liquid apogee engine 1074:on 24 November 2014 959:on 29 November 2014 87:liquid apogee motor 80:geostationary orbit 62:change made at the 949:"Green propulsion" 304:In many instances 26: 845:www.spacenews.com 745:978-0-470-69739-9 712:978-94-010-8215-0 644:978-0-387-77214-1 107:apogee kick motor 72:orbital manoeuvre 1181: 1153: 1152: 1144: 1138: 1137: 1129: 1120: 1119: 1111: 1105: 1104: 1102: 1100: 1090: 1084: 1083: 1081: 1079: 1070:. Archived from 1060: 1054: 1053: 1051: 1049: 1035: 1029: 1028: 1026: 1024: 1015:. Archived from 1005: 999: 998: 996: 994: 985:. Archived from 975: 969: 968: 966: 964: 955:. Archived from 953:www.sscspace.com 945: 939: 938: 930: 921: 920: 918: 916: 902: 896: 895: 887: 881: 880: 872: 861: 860: 858: 856: 847:. Archived from 836: 830: 829: 821: 815: 814: 806: 800: 799: 797: 795: 786:. Archived from 776: 770: 769: 761: 750: 749: 733: 723: 717: 716: 690: 681: 680: 678: 676: 670: 663: 655: 649: 648: 632: 622: 616: 615: 613: 611: 599: 593: 592: 590: 588: 579:. Archived from 569: 484:flight-qualified 465:specific impulse 453: 452: 451: 443: 442: 429: 428: 427: 419: 418: 404: 403: 402: 394: 393: 379: 378: 377: 369: 368: 355: 354: 353: 345: 344: 333: 328: 327: 326: 318: 317: 296: 295: 294: 286: 285: 269: 268: 267: 259: 258: 241: 240: 239: 231: 230: 218: 217: 216: 208: 207: 135:Bell Aerosystems 1189: 1188: 1184: 1183: 1182: 1180: 1179: 1178: 1159: 1158: 1157: 1156: 1145: 1141: 1130: 1123: 1112: 1108: 1098: 1096: 1092: 1091: 1087: 1077: 1075: 1062: 1061: 1057: 1047: 1045: 1037: 1036: 1032: 1022: 1020: 1007: 1006: 1002: 992: 990: 977: 976: 972: 962: 960: 947: 946: 942: 931: 924: 914: 912: 904: 903: 899: 888: 884: 873: 864: 854: 852: 837: 833: 822: 818: 807: 803: 793: 791: 778: 777: 773: 762: 753: 746: 724: 720: 713: 691: 684: 674: 672: 668: 661: 657: 656: 652: 645: 623: 619: 609: 607: 600: 596: 586: 584: 571: 570: 563: 558: 552: 543: 514: 492: 461: 450: 447: 446: 445: 441: 438: 437: 436: 434: 426: 423: 422: 421: 417: 414: 413: 412: 410: 401: 398: 397: 396: 392: 389: 388: 387: 385: 376: 373: 372: 371: 367: 364: 363: 362: 360: 352: 349: 348: 347: 343: 340: 339: 338: 336: 331: 325: 322: 321: 320: 316: 313: 312: 311: 309: 293: 290: 289: 288: 284: 281: 280: 279: 277: 266: 263: 262: 261: 257: 254: 253: 252: 250: 238: 235: 234: 233: 229: 226: 225: 224: 222: 215: 212: 211: 210: 206: 203: 202: 201: 199: 188: 150: 131:Reaction Motors 119: 70:, this type of 12: 11: 5: 1187: 1177: 1176: 1171: 1169:Rocket engines 1155: 1154: 1139: 1121: 1106: 1085: 1055: 1043:www.rocket.com 1030: 1000: 970: 940: 922: 897: 882: 862: 831: 816: 801: 771: 751: 744: 718: 711: 682: 650: 643: 617: 594: 560: 559: 557: 554: 550: 549: 542: 539: 531: 530: 522: 513: 510: 491: 488: 476: 475: 472: 460: 457: 448: 439: 424: 415: 399: 390: 374: 365: 350: 341: 323: 314: 299: 298: 291: 282: 271: 264: 255: 244: 236: 227: 213: 204: 187: 184: 176: 175: 172: 166: 163: 160: 157: 149: 146: 118: 115: 9: 6: 4: 3: 2: 1186: 1175: 1172: 1170: 1167: 1166: 1164: 1150: 1143: 1135: 1128: 1126: 1117: 1110: 1095: 1089: 1073: 1069: 1068:www.ihi.co.jp 1065: 1059: 1044: 1040: 1034: 1019:on 2014-04-26 1018: 1014: 1010: 1004: 989:on 2015-03-02 988: 984: 980: 974: 958: 954: 950: 944: 936: 929: 927: 911: 907: 901: 893: 886: 878: 871: 869: 867: 850: 846: 842: 835: 827: 820: 812: 805: 790:on 2014-11-29 789: 785: 781: 775: 767: 760: 758: 756: 747: 741: 737: 732: 731: 722: 714: 708: 704: 700: 696: 689: 687: 671:on 2016-03-03 667: 660: 654: 646: 640: 636: 631: 630: 621: 605: 598: 583:on 2014-09-25 582: 578: 574: 568: 566: 561: 553: 548: 547:Rocket engine 545: 544: 538: 536: 527: 523: 519: 518: 517: 509: 507: 502: 500: 499:burn duration 495: 487: 485: 479: 473: 470: 469: 468: 466: 456: 431: 408: 383: 357: 334: 307: 302: 275: 272: 248: 245: 242: 219: 197: 196: 195: 193: 183: 181: 173: 170: 167: 164: 161: 158: 155: 154: 153: 145: 142: 140: 136: 132: 128: 124: 114: 112: 108: 104: 100: 96: 92: 88: 83: 81: 77: 73: 69: 65: 61: 60: 54: 53:apogee engine 49: 47: 43: 42:rocket engine 39: 38:apogee engine 35: 31: 23: 18: 1148: 1142: 1133: 1115: 1109: 1097:. Retrieved 1088: 1076:. Retrieved 1072:the original 1067: 1058: 1046:. Retrieved 1042: 1033: 1021:. Retrieved 1017:the original 1012: 1003: 991:. Retrieved 987:the original 983:www.moog.com 982: 973: 961:. Retrieved 957:the original 952: 943: 934: 913:. Retrieved 909: 900: 891: 885: 876: 853:. Retrieved 849:the original 844: 834: 825: 819: 810: 804: 792:. Retrieved 788:the original 783: 774: 768:(2010–6884). 765: 729: 721: 694: 673:. Retrieved 666:the original 653: 628: 620: 608:. Retrieved 597: 585:. Retrieved 581:the original 576: 551: 532: 525: 515: 512:Applications 505: 503: 498: 496: 493: 483: 480: 477: 462: 432: 406: 358: 303: 300: 189: 177: 151: 143: 120: 102: 98: 94: 90: 86: 84: 58: 52: 50: 37: 33: 29: 27: 1099:15 November 1078:15 November 1048:15 November 1023:15 November 993:15 November 963:15 November 915:15 November 855:15 November 794:15 November 459:Performance 359:The use of 329:with 3 wt% 180:heat shield 1163:Categories 1136:(2394092). 1118:(2962486). 879:(2969298). 675:25 January 610:29 January 606:. BBC News 587:29 January 556:References 192:hypergolic 186:Propellant 127:Rocketdyne 784:LayerWise 529:missions. 490:Operation 89:(LAM), a 51:The name 22:Symphonie 541:See also 139:TRW Inc. 123:Aerojet 117:History 111:Waxwing 742:  738:–324. 709:  641:  148:Layout 99:engine 64:apogee 57:delta- 36:), or 669:(PDF) 662:(PDF) 382:REACH 103:motor 1101:2014 1080:2014 1050:2014 1025:2014 995:2014 965:2014 917:2014 857:2014 796:2014 740:ISBN 707:ISBN 677:2015 639:ISBN 612:2015 589:2015 535:ITAR 274:UDMH 101:and 910:ESA 736:323 699:doi 635:197 247:MMH 34:LAE 1165:: 1124:^ 1066:. 1041:. 1011:. 981:. 951:. 925:^ 908:. 865:^ 843:. 782:. 754:^ 705:. 685:^ 637:. 575:. 564:^ 356:. 332:NO 182:. 137:, 133:, 129:, 125:, 48:. 28:A 1151:. 1103:. 1082:. 1052:. 1027:. 997:. 967:. 937:. 919:. 859:. 828:. 813:. 798:. 748:. 715:. 701:: 679:. 647:. 614:. 591:. 526:v 449:4 444:H 440:2 435:N 425:4 420:H 416:2 411:N 400:4 395:H 391:2 386:N 375:4 370:H 366:2 361:N 351:4 346:O 342:2 337:N 324:4 319:O 315:2 310:N 297:. 292:4 287:O 283:2 278:N 276:/ 270:, 265:4 260:O 256:2 251:N 249:/ 243:, 237:4 232:O 228:2 223:N 220:/ 214:4 209:H 205:2 200:N 59:v 32:(

Index


Symphonie
rocket engine
main engine in a spacecraft
delta-v
apogee
geostationary satellites
orbital manoeuvre
geostationary transfer orbit
geostationary orbit
apogee kick motor
Waxwing
Aerojet
Rocketdyne
Reaction Motors
Bell Aerosystems
TRW Inc.
characteristic velocity
heat shield
hypergolic
N
2
H
4

N
2
O
4

MMH
UDMH
mixed oxides of nitrogen
NO
REACH
specific impulse
ITAR
Rocket engine

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑