Knowledge

Orbital maneuver

Source 📝

1365: 503: 981: 1052: 36: 705: 595: 2533: 1419: 891: 1297:
constantly under high thrust until it reaches its target. In this high-thrust case, the trajectory approaches a straight line. If it is required that the spacecraft rendezvous with the target, rather than performing a flyby, then the spacecraft must flip its orientation halfway through the journey, and decelerate the rest of the way.
1304:
This trajectory requires that the spacecraft maintain a high acceleration for long durations. For interplanetary transfers, days, weeks or months of constant thrusting may be required. As a result, there are no currently available spacecraft propulsion systems capable of using this trajectory. It has
1296:
trajectories involve the spacecraft firing its engine in a prolonged constant burn. In the limiting case where the vehicle acceleration is high compared to the local gravitational acceleration, the spacecraft points straight toward the target (accounting for target motion), and remains accelerating
1250:
In general, inclination changes can require a great deal of delta-v to perform, and most mission planners try to avoid them whenever possible to conserve fuel. This is typically achieved by launching a spacecraft directly into the desired inclination, or as close to it as possible so as to minimize
867:
Since the Oberth maneuver happens in a very limited time (while still at low altitude), to generate a high impulse the engine necessarily needs to achieve high thrust (impulse is by definition the time multiplied by thrust). Thus the Oberth effect is far less useful for low-thrust engines, such as
727:
The off-set of the velocity vector after the end of real burn from the velocity vector at the same time resulting from the theoretical impulsive maneuver is only caused by the difference in gravitational force along the two paths (red and black in figure 1) which in general is small.
1300:
In the constant-thrust trajectory, the vehicle's acceleration increases during thrusting period, since the fuel use means the vehicle mass decreases. If, instead of constant thrust, the vehicle has constant acceleration, the engine thrust must decrease during the trajectory.
723:
In the physical world no truly instantaneous change in velocity is possible as this would require an "infinite force" applied during an "infinitely short time" but as a mathematical model it in most cases describes the effect of a maneuver on the orbit very well.
1142:
While they require one more engine burn than a Hohmann transfer and generally requires a greater travel time, some bi-elliptic transfers require a lower amount of total delta-v than a Hohmann transfer when the ratio of final to initial
875:
Historically, a lack of understanding of this effect led investigators to conclude that interplanetary travel would require completely impractical amounts of propellant, as without it, enormous amounts of energy are needed.
821:
has more usable energy (due to its kinetic energy on top of its chemical potential energy) and it turns out that the vehicle is able to employ this kinetic energy to generate more mechanical power. It is named after
1283:
is the lowest. In some cases, it may require less total delta v to raise the spacecraft into a higher orbit, change the orbit plane at the higher apogee, and then lower the spacecraft to its original altitude.
731:
In the planning phase of space missions designers will first approximate their intended orbital changes using impulsive maneuvers that greatly reduces the complexity of finding the correct orbital transitions.
1601:
Sternfeld A., Sur les trajectoires permettant d'approcher d'un corps attractif central à partir d'une orbite keplérienne donnée. - Comptes rendus de l'Académie des sciences (Paris), vol. 198, pp. 711 -
572: 1129: 720:(magnitude and/or direction) as illustrated in figure 1. It is the limit case of a burn to generate a particular amount of delta-v, as the burn time tends to zero. 929:) of the gravitating body as it pulls on the spacecraft. The technique was first proposed as a mid-course maneuver in 1961, and used by interplanetary probes from 1281: 1239:. This maneuver is also known as an orbital plane change as the plane of the orbit is tipped. This maneuver requires a change in the orbital velocity vector ( 964:(TEI). These are generally larger than small trajectory correction maneuvers. Insertion, injection and sometimes initiation are used to describe entry into a 1505: 914:
or other celestial body to alter the trajectory of a spacecraft, typically in order to save propellant, time, and expense. Gravity assistance can be used to
1316:, and others. These types of engines have very high specific impulse (fuel efficiency) but currently are only available with fairly low absolute thrust. 1247:(i.e. the point where the initial and desired orbits intersect, the line of orbital nodes is defined by the intersection of the two orbital planes). 952:
maneuvers leave a spacecraft in a destination orbit. In contrast, orbit injection maneuvers occur when a spacecraft enters a transfer orbit, e.g.
762:, high fidelity models of the trajectories are required to meet the mission goals. Calculating a "finite" burn requires a detailed model of the 894:
The trajectories that enabled NASA's twin Voyager spacecraft to tour the four gas giant planets and achieve velocity to escape our solar system
1404: 1305:
been suggested that some forms of nuclear (fission or fusion based) or antimatter powered rockets would be capable of this trajectory.
745: 1293: 431: 2410: 1687: 1192:. The drawback of such trajectories is that they take much longer to complete than higher energy (more fuel) transfers such as 1139:
at the radius of the final desired orbit, where a third delta-v is performed, injecting the spacecraft into the desired orbit.
667: 1670: 1630: 639: 2470: 203: 1618:
Capture Dynamics and Chaotic Motions in Celestial Mechanics: With Applications to the Construction of Low Energy Transfers
1538: 852:
where the application of an impulse, typically from the use of a rocket engine, close to a gravitational body (where the
581:. With a good approximation of the delta-v budget designers can estimate the propellant required for planned maneuvers. 272: 817:
when travelling at high speed generates much more useful energy than one at low speed. Oberth effect occurs because the
646: 1586: 686: 616: 514:
The Tsiolkovsky rocket equation, or ideal rocket equation, can be useful for analysis of maneuvers by vehicles using
624: 2465: 2345: 1764: 1438: 1207: 653: 2430: 2184: 2503: 2142: 2133: 1870: 1395:
and approach to a very close distance (e.g. within visual contact). Rendezvous requires a precise match of the
620: 93: 468:. For spacecraft far from Earth (for example those in orbits around the Sun) an orbital maneuver is called a 1100:. From the initial orbit, a delta-v is applied boosting the spacecraft into the first transfer orbit with an 635: 1561: 2450: 1920: 1432: 551: 1487: 1135:. At this point, a second delta-v is applied sending the spacecraft into the second elliptical orbit with 2395: 497: 424: 357: 2562: 2375: 2202: 1658: 1622: 1223: 969: 1733: 2513: 1473: 2498: 2023: 755:, where the word "finite" is used to mean "non-zero", or practically, again: over a longer period. 605: 352: 267: 522:) by expelling part of its mass at high speed. The rocket itself moves due to the conservation of 2508: 1816: 1400: 1200: 609: 223: 1210:. Following these pathways allows for long distances to be traversed for little expenditure of 2557: 2370: 1972: 1892: 1880: 1193: 1090: 989: 417: 140: 1662: 1651: 1407:, procedures which bring the spacecraft into physical contact and create a link between them. 660: 2493: 2435: 2405: 2193: 2070: 2038: 2008: 1967: 1952: 1831: 1448: 1189: 1070: 961: 953: 457: 325: 160: 68: 2518: 2340: 2124: 2013: 1982: 1910: 1885: 1860: 1821: 1802: 1757: 1313: 1107: 1060: 1013:
The orbital maneuver to perform the Hohmann transfer uses two engine impulses which move a
957: 577:
The delta-v for all the expected maneuvers are estimated for a mission are summarized in a
198: 155: 145: 73: 1308:
More practically, this type of maneuver is used in low thrust maneuvers, for example with
8: 2380: 2175: 1915: 1453: 1443: 1265: 1163: 240: 78: 708:
Figure 1: Approximation of a finite thrust maneuver with an impulsive change in velocity
2053: 1942: 1840: 1713: 1424: 716:
is the mathematical model of a maneuver as an instantaneous change in the spacecraft's
313: 188: 1364: 906:
maneuver, gravitational slingshot or swing-by is the use of the relative movement and
2420: 2318: 2248: 2003: 1957: 1875: 1666: 1626: 1582: 995: 853: 775: 228: 165: 44: 1691: 1206:
Low energy transfers follow special pathways in space, sometimes referred to as the
2400: 2096: 2058: 1932: 1902: 1855: 1516: 1359: 1007: 926: 779: 759: 347: 112: 56: 864:) than the same impulse applied further from the body for the same initial orbit. 2440: 2033: 1937: 1927: 1826: 1750: 1646: 1612: 1576: 1144: 949: 937: 861: 827: 744:. 'Non-impulsive' refers to the momentum changing slowly over a long time, as in 403: 308: 218: 193: 1034: 2536: 2488: 2480: 2475: 2360: 2355: 2286: 2266: 2257: 1850: 1836: 1812: 1807: 1782: 1097: 1018: 1003: 903: 885: 857: 823: 771: 578: 539: 476: 375: 291: 285: 208: 133: 127: 122: 1616: 1539:"Section I. The Environment of Space - Chapter 4. Interplanetary Trajectories" 1399:
of the two spacecraft, allowing them to remain at a constant distance through
502: 2551: 2390: 2385: 2304: 1947: 1865: 1737: 1546: 1396: 1388: 1336: 1330: 1244: 1151: 899: 814: 800: 380: 213: 170: 1714:
Trajectories with Constant Tangential Thrust in Central Gravitational Fields
1520: 2455: 2365: 2239: 2222: 2080: 1977: 1845: 1347: 1147:
is 11.94 or greater, depending on the intermediate semi-major axis chosen.
1132: 1066: 919: 869: 806: 98: 88: 83: 1251:
any inclination change required over the duration of the spacecraft life.
2460: 2295: 2065: 2045: 1962: 1653:
Fly Me to the Moon: An Insider's Guide to the New Science of Space Travel
1524: 1309: 1232: 1150:
The idea of the bi-elliptical transfer trajectory was first published by
1039: 980: 445: 262: 2028: 1742: 1384: 1173: 1078: 1051: 1033:). Hohmann was influenced in part by the German science fiction author 1014: 931: 915: 818: 763: 740:
Applying a low thrust over a longer period of time is referred to as a
507: 465: 342: 298: 257: 35: 2445: 1797: 1136: 834: 704: 594: 1372: 1368: 1255: 1101: 783: 717: 523: 544:
The applied change in velocity of each maneuver is referred to as
2350: 1240: 1211: 1086: 1022: 907: 831: 545: 535: 1188:
system and also in other systems, such as traveling between the
475:
When a spacecraft is not conducting a maneuver, especially in a
1342:
is the adjustment of the time-position of spacecraft along its
1259: 1017:
onto and off the transfer orbit. This maneuver was named after
911: 890: 838: 519: 515: 1025:
scientist who published a description of it in his 1925 book
2155: 1774: 1392: 1343: 1236: 1181: 1177: 1082: 461: 63: 856:
is low, and the speed is high) can give much more change in
1720:, NASA Lewis Research Center, 1960 (accessed 26 March 2014) 1346:, usually described as adjusting the orbiting spacecraft's 1185: 767: 766:
and its thrusters. The most important of details include:
510:
versus final velocity calculated from the rocket equation
1254:
Maximum efficiency of inclination change is achieved at
1176:, is a route in space which allows spacecraft to change 1085:
to another and may, in certain situations, require less
1734:
Handbook Automated Rendezvous and Docking of Spacecraft
1503: 518:
propulsion. A rocket applies acceleration to itself (a
1268: 1110: 778:, thruster positions, thrust vectors, thrust curves, 554: 1565:(Washington: NASA Technical Translation F-44, 1960). 1414: 1383:
is a sequence of orbital maneuvers during which two
1055:
Bi-elliptic transfer from blue to red circular orbit
1002:
is an elliptical orbit used to transfer between two
758:
For a few space missions, such as those including a
1650: 1275: 1123: 566: 1203:trajectories, or ballistic capture trajectories. 1180:using very little fuel. These routes work in the 2549: 1545:. NASA Jet Propulsion Laboratory. Archived from 925:The "assist" is provided by the motion (orbital 1353: 941:probes' notable fly-bys of Jupiter and Saturn. 1578:Fundamentals of Astrodynamics and Applications 1504:Oberth, Herman; Oldenbourg Verlag, R. (1970). 1096:The bi-elliptic transfer consists of two half 1758: 1287: 1231:is an orbital maneuver aimed at changing the 1217: 841:, who apparently first described the effect. 425: 1688:"Basics of Space Flight: Orbital Mechanics" 922:and/or re-direct the path of a spacecraft. 623:. Unsourced material may be challenged and 2532: 1765: 1751: 746:electrically powered spacecraft propulsion 432: 418: 1319: 1272: 972:maneuver used for Apollo lunar landings. 687:Learn how and when to remove this message 563: 1772: 1679: 1645: 1611: 1363: 1050: 979: 889: 735: 703: 501: 1574: 1046: 2550: 2411:Transposition, docking, and extraction 1605: 1499: 1497: 1199:Low energy transfer are also known as 1157: 699: 1746: 1403:. Rendezvous is commonly followed by 1031:The Accessibility of Celestial Bodies 567:{\displaystyle \Delta \mathbf {v} \,} 1685: 1639: 1562:The Attainability of Heavenly Bodies 1077:is an orbital maneuver that moves a 1027:Die Erreichbarkeit der Himmelskörper 1006:of different altitudes, in the same 621:adding citations to reliable sources 588: 1494: 975: 13: 944: 748:, rather than by a short impulse. 555: 491: 14: 2574: 2471:Kepler's laws of planetary motion 1727: 879: 204:Kepler's laws of planetary motion 2531: 2466:Interplanetary Transport Network 2346:Collision avoidance (spacecraft) 1439:Collision avoidance (spacecraft) 1417: 1324: 1208:Interplanetary Transport Network 794: 593: 559: 34: 2431:Astronomical coordinate systems 2185:Longitude of the ascending node 1706: 1575:Vallado, David Anthony (2001). 1523:. NASA-TT-F-622. Archived from 844:The Oberth effect is used in a 786:offsets, and fuel consumption. 2504:Retrograde and prograde motion 1595: 1568: 1553: 1531: 1480: 1466: 1: 1513:NASA Technical Reports Server 1459: 860:and final speed (i.e. higher 584: 16:A movement during spaceflight 2451:Equatorial coordinate system 1433:Clohessy-Wiltshire equations 1354:Space rendezvous and docking 7: 1410: 935:onwards, including the two 498:Tsiolkovsky rocket equation 358:Tsiolkovsky rocket equation 10: 2579: 2203:Longitude of the periapsis 1659:Princeton University Press 1623:Princeton University Press 1387:, one of which is often a 1357: 1328: 1288:Constant-thrust trajectory 1262:), where orbital velocity 1229:Orbital inclination change 1224:orbital inclination change 1221: 1218:Orbital inclination change 1161: 1058: 987: 970:Powered Descent Initiation 883: 798: 789: 533: 529: 495: 486: 327:Engineering and efficiency 146:Bi-elliptic transfer orbit 2527: 2514:Specific angular momentum 2419: 2331: 2275: 2211: 2164: 2104: 2095: 1991: 1901: 1790: 1781: 1581:. Springer. p. 317. 470:deep-space maneuver (DSM) 837:and a founder of modern 353:Propellant mass fraction 252:Gravitational influences 2509:Specific orbital energy 1401:orbital station-keeping 1201:weak stability boundary 1194:Hohmann transfer orbits 224:Specific orbital energy 1921:Geostationary transfer 1543:Basics of Space Flight 1376: 1320:Rendezvous and docking 1277: 1235:of an orbiting body's 1125: 1056: 1000:Hohmann transfer orbit 990:Hohmann transfer orbit 985: 984:Hohmann Transfer Orbit 895: 813:is where the use of a 742:non-impulsive maneuver 709: 568: 511: 460:systems to change the 452:(otherwise known as a 141:Hohmann transfer orbit 2494:Orbital state vectors 2436:Characteristic energy 2406:Trans-lunar injection 2194:Argument of periapsis 1871:Prograde / Retrograde 1832:Hyperbolic trajectory 1718:Technical Report R-63 1506:"Ways to spaceflight" 1488:"The Rocket Equation" 1449:Spacecraft propulsion 1435:for co-orbit analysis 1391:, arrive at the same 1367: 1314:Hall-effect thrusters 1294:constant-acceleration 1278: 1190:satellites of Jupiter 1126: 1124:{\displaystyle r_{b}} 1071:aerospace engineering 1054: 983: 962:trans-Earth injection 954:trans-lunar injection 893: 736:Low thrust propulsion 707: 617:improve this section 569: 505: 337:Preflight engineering 69:Argument of periapsis 2341:Bi-elliptic transfer 1861:Parabolic trajectory 1686:Braeunig, Robert A. 1292:Constant-thrust and 1266: 1108: 1075:bi-elliptic transfer 1061:Bi-elliptic transfer 1047:Bi-elliptic transfer 958:trans-Mars injection 552: 479:, it is said to be 393:Propulsive maneuvers 2381:Low-energy transfer 1694:on February 4, 2012 1454:Orbital spaceflight 1444:Flyby (spaceflight) 1405:docking or berthing 1276:{\displaystyle v\,} 1170:low energy transfer 1164:low energy transfer 1158:Low energy transfer 700:Impulsive maneuvers 370:Efficiency measures 273:Sphere of influence 242:Celestial mechanics 24:Part of a series on 2376:Inclination change 2024:Distant retrograde 1425:Spaceflight portal 1397:orbital velocities 1377: 1371:photographed from 1273: 1121: 1057: 1037:and his 1897 book 986: 896: 714:impulsive maneuver 710: 636:"Orbital maneuver" 564: 512: 189:Dynamical friction 2563:Orbital maneuvers 2545: 2544: 2519:Two-line elements 2327: 2326: 2249:Eccentric anomaly 2091: 2090: 1958:Orbit of the Moon 1817:Highly elliptical 1672:978-0-691-12822-1 1632:978-0-691-09480-9 1549:on April 3, 2023. 996:orbital mechanics 854:gravity potential 776:moment of inertia 697: 696: 689: 671: 442: 441: 292:Lagrangian points 229:Vis-viva equation 199:Kepler's equation 46:Orbital mechanics 2570: 2535: 2534: 2476:Lagrangian point 2371:Hohmann transfer 2316: 2302: 2293: 2284: 2264: 2255: 2246: 2237: 2233: 2229: 2220: 2200: 2191: 2182: 2173: 2153: 2149: 2140: 2131: 2122: 2102: 2101: 2071:Heliosynchronous 2020:Lagrange points 1973:Transatmospheric 1788: 1787: 1767: 1760: 1753: 1744: 1743: 1721: 1710: 1704: 1703: 1701: 1699: 1690:. Archived from 1683: 1677: 1676: 1656: 1647:Belbruno, Edward 1643: 1637: 1636: 1613:Belbruno, Edward 1609: 1603: 1599: 1593: 1592: 1572: 1566: 1559:Walter Hohmann, 1557: 1551: 1550: 1535: 1529: 1528: 1521:2060/19720008133 1510: 1501: 1492: 1491: 1484: 1478: 1477: 1470: 1427: 1422: 1421: 1420: 1381:space rendezvous 1375:in December 1965 1360:Space rendezvous 1282: 1280: 1279: 1274: 1172:, or low energy 1130: 1128: 1127: 1122: 1120: 1119: 1091:Hohmann transfer 976:Hohmann transfer 927:angular momentum 828:Austro-Hungarian 780:specific impulse 760:space rendezvous 751:Another term is 692: 685: 681: 678: 672: 670: 629: 597: 589: 573: 571: 570: 565: 562: 456:) is the use of 450:orbital maneuver 434: 427: 420: 399:Orbital maneuver 348:Payload fraction 328: 309:Lissajous orbits 243: 214:Orbital velocity 161:Hyperbolic orbit 57:Orbital elements 47: 38: 21: 20: 2578: 2577: 2573: 2572: 2571: 2569: 2568: 2567: 2548: 2547: 2546: 2541: 2523: 2441:Escape velocity 2422: 2415: 2396:Rocket equation 2323: 2315: 2309: 2300: 2291: 2282: 2271: 2262: 2253: 2244: 2235: 2231: 2227: 2218: 2207: 2198: 2189: 2180: 2171: 2160: 2151: 2147: 2143:Semi-minor axis 2138: 2134:Semi-major axis 2129: 2120: 2114: 2087: 2009:Areosynchronous 1993: 1987: 1968:Sun-synchronous 1953:Near-equatorial 1897: 1777: 1771: 1730: 1725: 1724: 1712:W. E. Moeckel, 1711: 1707: 1697: 1695: 1684: 1680: 1673: 1644: 1640: 1633: 1625:. p. 224. 1610: 1606: 1600: 1596: 1589: 1573: 1569: 1558: 1554: 1537: 1536: 1532: 1527:on May 9, 2010. 1515:. p. 200. 1508: 1502: 1495: 1486: 1485: 1481: 1472: 1471: 1467: 1462: 1423: 1418: 1416: 1413: 1362: 1356: 1333: 1327: 1322: 1290: 1267: 1264: 1263: 1226: 1220: 1166: 1160: 1145:semi-major axis 1115: 1111: 1109: 1106: 1105: 1098:elliptic orbits 1063: 1049: 1004:circular orbits 992: 978: 950:Orbit insertion 947: 945:Transfer orbits 888: 882: 862:specific energy 850:Oberth maneuver 803: 797: 792: 738: 702: 693: 682: 676: 673: 630: 628: 614: 598: 587: 558: 553: 550: 549: 542: 534:Main articles: 532: 500: 494: 492:Rocket equation 489: 438: 409: 408: 404:Orbit insertion 394: 386: 385: 371: 363: 362: 338: 330: 326: 319: 318: 314:Lyapunov orbits 305: 304: 288: 278: 277: 253: 245: 241: 234: 233: 219:Surface gravity 194:Escape velocity 184: 176: 175: 156:Parabolic orbit 152: 151: 118: 116: 113:two-body orbits 104: 103: 94:Semi-major axis 59: 49: 45: 17: 12: 11: 5: 2576: 2566: 2565: 2560: 2543: 2542: 2540: 2539: 2537:List of orbits 2528: 2525: 2524: 2522: 2521: 2516: 2511: 2506: 2501: 2496: 2491: 2489:Orbit equation 2486: 2478: 2473: 2468: 2463: 2458: 2453: 2448: 2443: 2438: 2433: 2427: 2425: 2417: 2416: 2414: 2413: 2408: 2403: 2398: 2393: 2388: 2383: 2378: 2373: 2368: 2363: 2361:Gravity assist 2358: 2356:Delta-v budget 2353: 2348: 2343: 2337: 2335: 2329: 2328: 2325: 2324: 2322: 2321: 2313: 2307: 2298: 2289: 2287:Orbital period 2279: 2277: 2273: 2272: 2270: 2269: 2267:True longitude 2260: 2258:Mean longitude 2251: 2242: 2225: 2215: 2213: 2209: 2208: 2206: 2205: 2196: 2187: 2178: 2168: 2166: 2162: 2161: 2159: 2158: 2145: 2136: 2127: 2117: 2115: 2113: 2112: 2109: 2105: 2099: 2093: 2092: 2089: 2088: 2086: 2085: 2084: 2083: 2075: 2074: 2073: 2068: 2063: 2062: 2061: 2048: 2043: 2042: 2041: 2036: 2031: 2026: 2018: 2017: 2016: 2014:Areostationary 2011: 2006: 1997: 1995: 1989: 1988: 1986: 1985: 1983:Very low Earth 1980: 1975: 1970: 1965: 1960: 1955: 1950: 1945: 1940: 1935: 1930: 1925: 1924: 1923: 1918: 1911:Geosynchronous 1907: 1905: 1899: 1898: 1896: 1895: 1893:Transfer orbit 1890: 1889: 1888: 1883: 1873: 1868: 1863: 1858: 1853: 1851:Lagrange point 1848: 1843: 1834: 1829: 1824: 1819: 1810: 1805: 1800: 1794: 1792: 1785: 1779: 1778: 1773:Gravitational 1770: 1769: 1762: 1755: 1747: 1741: 1740: 1729: 1728:External links 1726: 1723: 1722: 1705: 1678: 1671: 1638: 1631: 1604: 1594: 1587: 1567: 1552: 1530: 1493: 1479: 1464: 1463: 1461: 1458: 1457: 1456: 1451: 1446: 1441: 1436: 1429: 1428: 1412: 1409: 1358:Main article: 1355: 1352: 1329:Main article: 1326: 1323: 1321: 1318: 1289: 1286: 1271: 1222:Main article: 1219: 1216: 1162:Main article: 1159: 1156: 1131:away from the 1118: 1114: 1104:at some point 1059:Main article: 1048: 1045: 1019:Walter Hohmann 988:Main article: 977: 974: 946: 943: 904:gravity assist 886:Gravity assist 884:Main article: 881: 880:Gravity assist 878: 858:kinetic energy 824:Hermann Oberth 799:Main article: 796: 793: 791: 788: 772:center of mass 737: 734: 701: 698: 695: 694: 602:This section 601: 599: 592: 586: 583: 579:delta-v budget 561: 557: 540:delta-v budget 531: 528: 496:Main article: 493: 490: 488: 485: 477:transfer orbit 440: 439: 437: 436: 429: 422: 414: 411: 410: 407: 406: 401: 395: 392: 391: 388: 387: 384: 383: 378: 376:Gravity assist 372: 369: 368: 365: 364: 361: 360: 355: 350: 345: 339: 336: 335: 332: 331: 324: 321: 320: 317: 316: 311: 303: 302: 294: 290: 289: 284: 283: 280: 279: 276: 275: 270: 265: 260: 254: 251: 250: 247: 246: 239: 236: 235: 232: 231: 226: 221: 216: 211: 209:Orbital period 206: 201: 196: 191: 185: 182: 181: 178: 177: 174: 173: 171:Decaying orbit 168: 163: 158: 150: 149: 143: 136: 134:Transfer orbit 132: 131: 130: 128:Elliptic orbit 125: 123:Circular orbit 119: 110: 109: 106: 105: 102: 101: 96: 91: 86: 81: 76: 71: 66: 60: 55: 54: 51: 50: 43: 40: 39: 31: 30: 26: 25: 15: 9: 6: 4: 3: 2: 2575: 2564: 2561: 2559: 2558:Astrodynamics 2556: 2555: 2553: 2538: 2530: 2529: 2526: 2520: 2517: 2515: 2512: 2510: 2507: 2505: 2502: 2500: 2497: 2495: 2492: 2490: 2487: 2485: 2484:-body problem 2483: 2479: 2477: 2474: 2472: 2469: 2467: 2464: 2462: 2459: 2457: 2454: 2452: 2449: 2447: 2444: 2442: 2439: 2437: 2434: 2432: 2429: 2428: 2426: 2424: 2418: 2412: 2409: 2407: 2404: 2402: 2399: 2397: 2394: 2392: 2389: 2387: 2386:Oberth effect 2384: 2382: 2379: 2377: 2374: 2372: 2369: 2367: 2364: 2362: 2359: 2357: 2354: 2352: 2349: 2347: 2344: 2342: 2339: 2338: 2336: 2334: 2330: 2320: 2312: 2308: 2306: 2305:Orbital speed 2299: 2297: 2290: 2288: 2281: 2280: 2278: 2274: 2268: 2261: 2259: 2252: 2250: 2243: 2241: 2226: 2224: 2217: 2216: 2214: 2210: 2204: 2197: 2195: 2188: 2186: 2179: 2177: 2170: 2169: 2167: 2163: 2157: 2146: 2144: 2137: 2135: 2128: 2126: 2119: 2118: 2116: 2110: 2107: 2106: 2103: 2100: 2098: 2094: 2082: 2079: 2078: 2076: 2072: 2069: 2067: 2064: 2060: 2059:Earth's orbit 2057: 2056: 2055: 2052: 2051: 2049: 2047: 2044: 2040: 2037: 2035: 2032: 2030: 2027: 2025: 2022: 2021: 2019: 2015: 2012: 2010: 2007: 2005: 2002: 2001: 1999: 1998: 1996: 1990: 1984: 1981: 1979: 1976: 1974: 1971: 1969: 1966: 1964: 1961: 1959: 1956: 1954: 1951: 1949: 1946: 1944: 1941: 1939: 1936: 1934: 1931: 1929: 1926: 1922: 1919: 1917: 1916:Geostationary 1914: 1913: 1912: 1909: 1908: 1906: 1904: 1900: 1894: 1891: 1887: 1884: 1882: 1879: 1878: 1877: 1874: 1872: 1869: 1867: 1864: 1862: 1859: 1857: 1854: 1852: 1849: 1847: 1844: 1842: 1838: 1835: 1833: 1830: 1828: 1825: 1823: 1820: 1818: 1814: 1811: 1809: 1806: 1804: 1801: 1799: 1796: 1795: 1793: 1789: 1786: 1784: 1780: 1776: 1768: 1763: 1761: 1756: 1754: 1749: 1748: 1745: 1739: 1738:Wigbert Fehse 1735: 1732: 1731: 1719: 1715: 1709: 1693: 1689: 1682: 1674: 1668: 1664: 1660: 1655: 1654: 1648: 1642: 1634: 1628: 1624: 1620: 1619: 1614: 1608: 1598: 1590: 1588:0-7923-6903-3 1584: 1580: 1579: 1571: 1564: 1563: 1556: 1548: 1544: 1540: 1534: 1526: 1522: 1518: 1514: 1507: 1500: 1498: 1489: 1483: 1475: 1469: 1465: 1455: 1452: 1450: 1447: 1445: 1442: 1440: 1437: 1434: 1431: 1430: 1426: 1415: 1408: 1406: 1402: 1398: 1394: 1390: 1389:space station 1386: 1382: 1374: 1370: 1366: 1361: 1351: 1349: 1345: 1341: 1340:orbit phasing 1338: 1337:astrodynamics 1332: 1331:Orbit phasing 1325:Orbit phasing 1317: 1315: 1311: 1306: 1302: 1298: 1295: 1285: 1269: 1261: 1257: 1252: 1248: 1246: 1245:orbital nodes 1242: 1238: 1234: 1230: 1225: 1215: 1213: 1209: 1204: 1202: 1197: 1195: 1191: 1187: 1183: 1179: 1175: 1171: 1165: 1155: 1153: 1152:Ary Sternfeld 1148: 1146: 1140: 1138: 1134: 1116: 1112: 1103: 1099: 1094: 1092: 1088: 1084: 1080: 1076: 1072: 1068: 1062: 1053: 1044: 1042: 1041: 1036: 1032: 1028: 1024: 1020: 1016: 1011: 1009: 1005: 1001: 997: 991: 982: 973: 971: 967: 966:descent orbit 963: 959: 955: 951: 942: 940: 939: 934: 933: 928: 923: 921: 917: 913: 909: 905: 901: 900:astrodynamics 892: 887: 877: 873: 871: 870:ion thrusters 865: 863: 859: 855: 851: 847: 846:powered flyby 842: 840: 836: 833: 829: 825: 820: 816: 815:rocket engine 812: 811:Oberth effect 808: 802: 801:Oberth effect 795:Oberth effect 787: 785: 781: 777: 773: 769: 765: 761: 756: 754: 749: 747: 743: 733: 729: 725: 721: 719: 715: 706: 691: 688: 680: 677:February 2024 669: 666: 662: 659: 655: 652: 648: 645: 641: 638: –  637: 633: 632:Find sources: 626: 622: 618: 612: 611: 607: 600: 596: 591: 590: 582: 580: 575: 547: 541: 537: 527: 525: 521: 517: 509: 504: 499: 484: 482: 478: 473: 471: 467: 463: 459: 455: 451: 447: 435: 430: 428: 423: 421: 416: 415: 413: 412: 405: 402: 400: 397: 396: 390: 389: 382: 381:Oberth effect 379: 377: 374: 373: 367: 366: 359: 356: 354: 351: 349: 346: 344: 341: 340: 334: 333: 329: 323: 322: 315: 312: 310: 307: 306: 300: 296: 295: 293: 287: 286:N-body orbits 282: 281: 274: 271: 269: 268:Perturbations 266: 264: 261: 259: 256: 255: 249: 248: 244: 238: 237: 230: 227: 225: 222: 220: 217: 215: 212: 210: 207: 205: 202: 200: 197: 195: 192: 190: 187: 186: 180: 179: 172: 169: 167: 164: 162: 159: 157: 154: 153: 147: 144: 142: 138: 137: 135: 129: 126: 124: 121: 120: 114: 108: 107: 100: 97: 95: 92: 90: 89:Orbital nodes 87: 85: 82: 80: 77: 75: 72: 70: 67: 65: 62: 61: 58: 53: 52: 48: 42: 41: 37: 33: 32: 29:Astrodynamics 28: 27: 23: 22: 19: 2499:Perturbation 2481: 2456:Ground track 2366:Gravity turn 2332: 2317:   2310: 2303:   2294:   2285:   2265:   2256:   2247:   2240:True anomaly 2238:   2223:Mean anomaly 2221:   2201:   2192:   2183:   2174:   2154:   2141:   2132:   2125:Eccentricity 2123:   2081:Lunar cycler 2054:Heliocentric 1994:other points 1943:Medium Earth 1841:Non-inclined 1717: 1708: 1696:. Retrieved 1692:the original 1681: 1652: 1641: 1617: 1607: 1597: 1577: 1570: 1560: 1555: 1547:the original 1542: 1533: 1525:the original 1512: 1482: 1474:"Navigation" 1468: 1380: 1378: 1348:true anomaly 1339: 1334: 1307: 1303: 1299: 1291: 1253: 1249: 1228: 1227: 1205: 1198: 1169: 1167: 1149: 1141: 1133:central body 1095: 1074: 1067:astronautics 1064: 1038: 1035:Kurd Laßwitz 1030: 1026: 1012: 999: 993: 965: 948: 936: 930: 924: 897: 874: 866: 849: 845: 843: 810: 807:astronautics 804: 757: 752: 750: 741: 739: 730: 726: 722: 713: 711: 683: 674: 664: 657: 650: 643: 631: 615:Please help 603: 576: 543: 513: 480: 474: 469: 453: 449: 443: 398: 166:Radial orbit 117:eccentricity 99:True anomaly 84:Mean anomaly 74:Eccentricity 18: 2461:Hill sphere 2296:Mean motion 2176:Inclination 2165:Orientation 2066:Mars cycler 2004:Areocentric 1876:Synchronous 1661:. pp.  1310:ion engines 1233:inclination 1040:Two Planets 968:, e.g. the 753:finite burn 508:mass ratios 446:spaceflight 299:Halo orbits 263:Hill sphere 79:Inclination 2552:Categories 2401:Rendezvous 2097:Parameters 1933:High Earth 1903:Geocentric 1856:Osculating 1813:Elliptical 1460:References 1385:spacecraft 1174:trajectory 1093:maneuver. 1079:spacecraft 1015:spacecraft 960:(TMI) and 932:Mariner 10 920:decelerate 916:accelerate 819:propellant 764:spacecraft 647:newspapers 585:Propulsion 466:spacecraft 458:propulsion 343:Mass ratio 258:Barycenter 2446:Ephemeris 2423:mechanics 2333:Maneuvers 2276:Variation 2039:Libration 2034:Lissajous 1938:Low Earth 1928:Graveyard 1827:Horseshoe 1698:March 22, 1243:) at the 1154:in 1934. 1137:periapsis 1081:from one 835:physicist 782:, thrust 604:does not 556:Δ 183:Equations 111:Types of 2212:Position 1837:Inclined 1808:Circular 1649:(2007). 1615:(2004). 1411:See also 1373:Gemini 6 1369:Gemini 7 1256:apoapsis 1102:apoapsis 839:rocketry 784:centroid 718:velocity 524:momentum 481:coasting 2421:Orbital 2391:Phasing 2351:Delta-v 2156:Apsides 2150:,  1948:Molniya 1866:Parking 1803:Capture 1791:General 1476:. NASA. 1241:delta v 1212:delta-v 1089:than a 1087:delta-v 956:(TLI), 938:Voyager 908:gravity 830:-born, 790:Assists 661:scholar 625:removed 610:sources 546:delta-v 536:Delta-v 530:Delta-v 506:Rocket 487:General 2077:Other 1978:Tundra 1846:Kepler 1822:Escape 1775:orbits 1669:  1629:  1585:  1490:. MIT. 1260:apogee 1258:, (or 1178:orbits 1073:, the 1023:German 1021:, the 998:, the 912:planet 832:German 826:, the 809:, the 663:  656:  649:  642:  634:  520:thrust 516:rocket 2319:Epoch 2108:Shape 2046:Lunar 2000:Mars 1992:About 1963:Polar 1783:Types 1509:(PDF) 1393:orbit 1344:orbit 1237:orbit 1182:Earth 1083:orbit 1008:plane 910:of a 668:JSTOR 654:books 464:of a 462:orbit 448:, an 64:Apsis 2111:Size 2050:Sun 2029:Halo 1881:semi 1700:2012 1667:ISBN 1627:ISBN 1602:713. 1583:ISBN 1186:Moon 1069:and 768:mass 640:news 608:any 606:cite 538:and 454:burn 1886:sub 1798:Box 1736:by 1663:176 1517:hdl 1335:In 1065:In 994:In 902:a 898:In 848:or 805:In 712:An 619:by 574:). 444:In 115:by 2554:: 2234:, 2230:, 1839:/ 1815:/ 1716:, 1665:. 1657:. 1621:. 1541:. 1511:. 1496:^ 1379:A 1350:. 1312:, 1214:. 1196:. 1168:A 1043:. 1010:. 918:, 872:. 774:, 770:, 526:. 483:. 472:. 2482:n 2314:0 2311:t 2301:v 2292:n 2283:T 2263:l 2254:L 2245:E 2236:f 2232:θ 2228:ν 2219:M 2199:ϖ 2190:ω 2181:Ω 2172:i 2152:q 2148:Q 2139:b 2130:a 2121:e 1766:e 1759:t 1752:v 1702:. 1675:. 1635:. 1591:. 1519:: 1270:v 1184:- 1117:b 1113:r 1029:( 690:) 684:( 679:) 675:( 665:· 658:· 651:· 644:· 627:. 613:. 560:v 548:( 433:e 426:t 419:v 301:) 297:( 148:) 139:(

Index


Orbital mechanics
Orbital elements
Apsis
Argument of periapsis
Eccentricity
Inclination
Mean anomaly
Orbital nodes
Semi-major axis
True anomaly
two-body orbits
Circular orbit
Elliptic orbit
Transfer orbit
Hohmann transfer orbit
Bi-elliptic transfer orbit
Parabolic orbit
Hyperbolic orbit
Radial orbit
Decaying orbit
Dynamical friction
Escape velocity
Kepler's equation
Kepler's laws of planetary motion
Orbital period
Orbital velocity
Surface gravity
Specific orbital energy
Vis-viva equation

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.