Knowledge

Lower limit topology

Source 📝

719: 1298: 232:(has more open sets) than the standard topology on the real numbers (which is generated by the open intervals). The reason is that every open interval can be written as a (countably infinite) union of half-open intervals. 594: 943: 1338: 458: 412: 537: 1044: 1663: 1628: 1589: 1542: 1498: 1458: 1135: 498: 338: 202: 157: 1204: 1106: 81: 55: 1231: 984: 813: 1010: 879: 563: 305: 772: 1422: 1402: 1382: 1362: 1178: 1155: 1064: 853: 833: 743: 583: 366: 273: 253: 1236: 714:{\displaystyle {\bigl \{}[x,+\infty ){\bigr \}}\cup {\Bigl \{}{\bigl (}-\infty ,x-{\tfrac {1}{n}}{\bigr )}\,{\Big |}\,n\in \mathbb {N} {\Bigr \}}.} 1754: 884: 1307: 1595:, since separable metric spaces are second-countable. However, the topology of a Sorgenfrey line is generated by a 1461: 417: 371: 167:, the Sorgenfrey line often serves as a useful counterexample to many otherwise plausible-sounding conjectures in 507: 1780: 1737: 1424:
when the domain is equipped with the lower limit topology and the codomain carries the standard topology.
1015: 1596: 1639: 1604: 1565: 1518: 1474: 1434: 1111: 474: 314: 178: 133: 1183: 1078: 64: 38: 1209: 1732: 1509: 1341: 948: 777: 1501: 1468: 989: 858: 542: 1764: 461: 278: 164: 748: 8: 1742: 1675: 1407: 1387: 1367: 1347: 1163: 1140: 1049: 838: 818: 728: 568: 351: 258: 238: 92: 1553: 1750: 1728: 1712:
Adam Emeryk, Władysław Kulpa. The Sorgenfrey line has no connected compactification.
1428: 1301: 123: 115: 32: 1545: 1384:(when the codomain carries the standard topology) is the same as the usual limit of 745:
is compact, this cover has a finite subcover, and hence there exists a real number
205: 168: 88: 1695: 87:) and has a number of interesting properties. It is the topology generated by the 1760: 1746: 1557: 1505: 1293:{\displaystyle \forall \alpha \geq \alpha _{0}:L\leq x_{\alpha }<L+\epsilon } 1157: 1072: 229: 1071:
The name "lower limit topology" comes from the following fact: a sequence (or
1774: 501: 468: 172: 84: 58: 1631: 1549: 20: 1592: 345: 308: 160: 341: 204:
with itself is also a useful counterexample, known as the
1696:"general topology - The Sorgenfrey line is a Baire Space" 460:
are also clopen. This shows that the Sorgenfrey line is
663: 1642: 1607: 1568: 1521: 1477: 1437: 1410: 1390: 1370: 1350: 1310: 1239: 1212: 1186: 1166: 1143: 1114: 1081: 1052: 1018: 992: 951: 887: 861: 841: 821: 780: 751: 731: 597: 571: 545: 510: 477: 420: 374: 354: 317: 281: 261: 241: 181: 136: 67: 41: 504:. To see this, consider a non-empty compact subset 1657: 1622: 1583: 1536: 1492: 1452: 1416: 1396: 1376: 1356: 1332: 1292: 1225: 1198: 1172: 1149: 1129: 1100: 1058: 1038: 1004: 978: 937: 873: 847: 827: 807: 766: 737: 713: 577: 557: 531: 492: 452: 406: 360: 332: 299: 267: 247: 196: 151: 75: 49: 938:{\displaystyle q(x)\in (a(x),x]\cap \mathbb {Q} } 703: 684: 635: 1772: 1300:. The Sorgenfrey line can thus be used to study 61:; it is different from the standard topology on 1665:does not have any connected compactifications. 1333:{\displaystyle f:\mathbb {R} \to \mathbb {R} } 1745:reprint of 1978 ed.), Berlin, New York: 676: 642: 625: 600: 453:{\displaystyle \{x\in \mathbb {R} :x\geq a\}} 211:In complete analogy, one can also define the 1727: 447: 421: 407:{\displaystyle \{x\in \mathbb {R} :x<a\}} 401: 375: 532:{\displaystyle C\subseteq \mathbb {R} _{l}} 1344:, then the ordinary right-sided limit of 1645: 1610: 1571: 1524: 1480: 1440: 1326: 1318: 1117: 1032: 931: 697: 689: 681: 519: 480: 431: 385: 320: 184: 139: 69: 43: 565:, consider the following open cover of 1773: 1012:, are pairwise disjoint, the function 1515:In terms of compactness properties, 1180:from the right", meaning for every 1039:{\displaystyle q:C\to \mathbb {Q} } 13: 1240: 650: 617: 14: 1792: 29:right half-open interval topology 1658:{\displaystyle \mathbb {R} _{l}} 1623:{\displaystyle \mathbb {R} _{l}} 1584:{\displaystyle \mathbb {R} _{l}} 1537:{\displaystyle \mathbb {R} _{l}} 1493:{\displaystyle \mathbb {R} _{l}} 1462:perfectly normal Hausdorff space 1453:{\displaystyle \mathbb {R} _{l}} 1130:{\displaystyle \mathbb {R} _{l}} 493:{\displaystyle \mathbb {R} _{l}} 333:{\displaystyle \mathbb {R} _{l}} 217:left half-open interval topology 197:{\displaystyle \mathbb {R} _{l}} 152:{\displaystyle \mathbb {R} _{l}} 881:. Now choose a rational number 1706: 1688: 1322: 1199:{\displaystyle \epsilon >0} 1095: 1082: 1028: 973: 964: 958: 952: 924: 915: 909: 903: 897: 891: 802: 793: 787: 781: 761: 755: 620: 605: 294: 282: 1: 1681: 1101:{\displaystyle (x_{\alpha })} 348:). Furthermore, for all real 222: 228:The lower limit topology is 76:{\displaystyle \mathbb {R} } 50:{\displaystyle \mathbb {R} } 16:Topology on the real numbers 7: 1738:Counterexamples in Topology 1714:Comm. Math. Univ. Carolinae 1669: 1226:{\displaystyle \alpha _{0}} 10: 1797: 1700:Mathematics Stack Exchange 130:and is sometimes written 979:{\displaystyle (a(x),x]} 808:{\displaystyle (a(x),x]} 1137:converges to the limit 855:. This is true for all 774:such that the interval 1733:Seebach, J. Arthur Jr. 1659: 1624: 1585: 1538: 1494: 1454: 1418: 1398: 1378: 1358: 1334: 1294: 1227: 1206:there exists an index 1200: 1174: 1151: 1131: 1102: 1060: 1040: 1006: 1005:{\displaystyle x\in C} 980: 945:. Since the intervals 939: 875: 874:{\displaystyle x\in C} 849: 829: 809: 768: 739: 715: 579: 559: 558:{\displaystyle x\in C} 533: 494: 454: 408: 362: 334: 301: 269: 249: 198: 153: 77: 51: 1660: 1625: 1586: 1539: 1495: 1455: 1419: 1399: 1379: 1359: 1335: 1295: 1228: 1201: 1175: 1152: 1132: 1103: 1066:is at most countable. 1061: 1046:is injective, and so 1041: 1007: 981: 940: 876: 850: 830: 815:contains no point of 810: 769: 740: 716: 580: 560: 534: 495: 455: 409: 363: 335: 302: 300:{\displaystyle [a,b)} 270: 250: 199: 154: 78: 52: 1640: 1605: 1566: 1519: 1475: 1435: 1408: 1388: 1368: 1348: 1308: 1237: 1210: 1184: 1164: 1141: 1112: 1079: 1050: 1016: 990: 949: 885: 859: 839: 819: 778: 767:{\displaystyle a(x)} 749: 729: 595: 569: 543: 508: 475: 462:totally disconnected 418: 372: 352: 315: 279: 259: 239: 213:upper limit topology 179: 134: 65: 39: 25:lower limit topology 1469:countability axioms 500:must be an at most 93:half-open intervals 1781:Topological spaces 1729:Steen, Lynn Arthur 1676:List of topologies 1655: 1620: 1581: 1534: 1490: 1450: 1414: 1394: 1374: 1354: 1330: 1302:right-sided limits 1290: 1223: 1196: 1170: 1147: 1127: 1098: 1056: 1036: 1002: 986:, parametrized by 976: 935: 871: 845: 825: 805: 764: 735: 711: 672: 575: 555: 529: 490: 450: 404: 358: 330: 297: 265: 245: 194: 149: 111:are real numbers. 83:(generated by the 73: 47: 1756:978-0-486-68735-3 1429:separation axioms 1417:{\displaystyle x} 1397:{\displaystyle f} 1377:{\displaystyle x} 1357:{\displaystyle f} 1173:{\displaystyle L} 1150:{\displaystyle L} 1059:{\displaystyle C} 848:{\displaystyle x} 828:{\displaystyle C} 738:{\displaystyle C} 671: 578:{\displaystyle C} 361:{\displaystyle a} 268:{\displaystyle b} 248:{\displaystyle a} 124:Robert Sorgenfrey 116:topological space 1788: 1767: 1720: 1719:(1977), 483–487. 1710: 1704: 1703: 1692: 1664: 1662: 1661: 1656: 1654: 1653: 1648: 1629: 1627: 1626: 1621: 1619: 1618: 1613: 1590: 1588: 1587: 1582: 1580: 1579: 1574: 1543: 1541: 1540: 1535: 1533: 1532: 1527: 1510:second-countable 1499: 1497: 1496: 1491: 1489: 1488: 1483: 1459: 1457: 1456: 1451: 1449: 1448: 1443: 1423: 1421: 1420: 1415: 1403: 1401: 1400: 1395: 1383: 1381: 1380: 1375: 1363: 1361: 1360: 1355: 1339: 1337: 1336: 1331: 1329: 1321: 1299: 1297: 1296: 1291: 1277: 1276: 1258: 1257: 1232: 1230: 1229: 1224: 1222: 1221: 1205: 1203: 1202: 1197: 1179: 1177: 1176: 1171: 1156: 1154: 1153: 1148: 1136: 1134: 1133: 1128: 1126: 1125: 1120: 1107: 1105: 1104: 1099: 1094: 1093: 1065: 1063: 1062: 1057: 1045: 1043: 1042: 1037: 1035: 1011: 1009: 1008: 1003: 985: 983: 982: 977: 944: 942: 941: 936: 934: 880: 878: 877: 872: 854: 852: 851: 846: 834: 832: 831: 826: 814: 812: 811: 806: 773: 771: 770: 765: 744: 742: 741: 736: 720: 718: 717: 712: 707: 706: 700: 688: 687: 680: 679: 673: 664: 646: 645: 639: 638: 629: 628: 604: 603: 584: 582: 581: 576: 564: 562: 561: 556: 538: 536: 535: 530: 528: 527: 522: 499: 497: 496: 491: 489: 488: 483: 459: 457: 456: 451: 434: 413: 411: 410: 405: 388: 367: 365: 364: 359: 339: 337: 336: 331: 329: 328: 323: 306: 304: 303: 298: 274: 272: 271: 266: 254: 252: 251: 246: 206:Sorgenfrey plane 203: 201: 200: 195: 193: 192: 187: 169:general topology 158: 156: 155: 150: 148: 147: 142: 82: 80: 79: 74: 72: 56: 54: 53: 48: 46: 1796: 1795: 1791: 1790: 1789: 1787: 1786: 1785: 1771: 1770: 1757: 1747:Springer-Verlag 1724: 1723: 1711: 1707: 1694: 1693: 1689: 1684: 1672: 1649: 1644: 1643: 1641: 1638: 1637: 1614: 1609: 1608: 1606: 1603: 1602: 1575: 1570: 1569: 1567: 1564: 1563: 1558:locally compact 1528: 1523: 1522: 1520: 1517: 1516: 1502:first-countable 1484: 1479: 1478: 1476: 1473: 1472: 1444: 1439: 1438: 1436: 1433: 1432: 1409: 1406: 1405: 1389: 1386: 1385: 1369: 1366: 1365: 1349: 1346: 1345: 1325: 1317: 1309: 1306: 1305: 1272: 1268: 1253: 1249: 1238: 1235: 1234: 1217: 1213: 1211: 1208: 1207: 1185: 1182: 1181: 1165: 1162: 1161: 1160:it "approaches 1142: 1139: 1138: 1121: 1116: 1115: 1113: 1110: 1109: 1089: 1085: 1080: 1077: 1076: 1051: 1048: 1047: 1031: 1017: 1014: 1013: 991: 988: 987: 950: 947: 946: 930: 886: 883: 882: 860: 857: 856: 840: 837: 836: 820: 817: 816: 779: 776: 775: 750: 747: 746: 730: 727: 726: 702: 701: 696: 683: 682: 675: 674: 662: 641: 640: 634: 633: 624: 623: 599: 598: 596: 593: 592: 570: 567: 566: 544: 541: 540: 523: 518: 517: 509: 506: 505: 484: 479: 478: 476: 473: 472: 430: 419: 416: 415: 384: 373: 370: 369: 353: 350: 349: 324: 319: 318: 316: 313: 312: 280: 277: 276: 275:, the interval 260: 257: 256: 240: 237: 236: 225: 188: 183: 182: 180: 177: 176: 143: 138: 137: 135: 132: 131: 120:Sorgenfrey line 68: 66: 63: 62: 42: 40: 37: 36: 17: 12: 11: 5: 1794: 1784: 1783: 1769: 1768: 1755: 1722: 1721: 1705: 1686: 1685: 1683: 1680: 1679: 1678: 1671: 1668: 1667: 1666: 1652: 1647: 1635: 1617: 1612: 1600: 1578: 1573: 1561: 1531: 1526: 1513: 1487: 1482: 1465: 1447: 1442: 1425: 1413: 1393: 1373: 1353: 1328: 1324: 1320: 1316: 1313: 1289: 1286: 1283: 1280: 1275: 1271: 1267: 1264: 1261: 1256: 1252: 1248: 1245: 1242: 1220: 1216: 1195: 1192: 1189: 1169: 1158:if and only if 1146: 1124: 1119: 1097: 1092: 1088: 1084: 1068: 1067: 1055: 1034: 1030: 1027: 1024: 1021: 1001: 998: 995: 975: 972: 969: 966: 963: 960: 957: 954: 933: 929: 926: 923: 920: 917: 914: 911: 908: 905: 902: 899: 896: 893: 890: 870: 867: 864: 844: 824: 804: 801: 798: 795: 792: 789: 786: 783: 763: 760: 757: 754: 734: 723: 722: 721: 710: 705: 699: 695: 692: 686: 678: 670: 667: 661: 658: 655: 652: 649: 644: 637: 632: 627: 622: 619: 616: 613: 610: 607: 602: 587: 586: 574: 554: 551: 548: 526: 521: 516: 513: 487: 482: 469:compact subset 465: 449: 446: 443: 440: 437: 433: 429: 426: 423: 403: 400: 397: 394: 391: 387: 383: 380: 377: 357: 327: 322: 296: 293: 290: 287: 284: 264: 244: 233: 224: 221: 191: 186: 146: 141: 118:is called the 114:The resulting 85:open intervals 71: 45: 15: 9: 6: 4: 3: 2: 1793: 1782: 1779: 1778: 1776: 1766: 1762: 1758: 1752: 1748: 1744: 1740: 1739: 1734: 1730: 1726: 1725: 1718: 1715: 1709: 1701: 1697: 1691: 1687: 1677: 1674: 1673: 1650: 1636: 1633: 1615: 1601: 1598: 1594: 1576: 1562: 1559: 1555: 1551: 1547: 1529: 1514: 1511: 1507: 1503: 1485: 1470: 1466: 1463: 1445: 1430: 1426: 1411: 1391: 1371: 1351: 1343: 1314: 1311: 1303: 1287: 1284: 1281: 1278: 1273: 1269: 1265: 1262: 1259: 1254: 1250: 1246: 1243: 1218: 1214: 1193: 1190: 1187: 1167: 1159: 1144: 1122: 1090: 1086: 1074: 1070: 1069: 1053: 1025: 1022: 1019: 999: 996: 993: 970: 967: 961: 955: 927: 921: 918: 912: 906: 900: 894: 888: 868: 865: 862: 842: 822: 799: 796: 790: 784: 758: 752: 732: 724: 708: 693: 690: 668: 665: 659: 656: 653: 647: 630: 614: 611: 608: 591: 590: 589: 588: 572: 552: 549: 546: 524: 514: 511: 503: 502:countable set 485: 470: 466: 463: 444: 441: 438: 435: 427: 424: 398: 395: 392: 389: 381: 378: 355: 347: 343: 325: 310: 291: 288: 285: 262: 242: 235:For any real 234: 231: 227: 226: 220: 218: 214: 209: 207: 189: 174: 170: 166: 162: 144: 129: 125: 121: 117: 112: 110: 106: 102: 98: 94: 90: 86: 60: 57:, the set of 34: 30: 26: 22: 1736: 1716: 1713: 1708: 1699: 1690: 1467:In terms of 1427:In terms of 340:(i.e., both 216: 212: 210: 127: 119: 113: 108: 104: 100: 96: 59:real numbers 35:defined on 28: 24: 18: 1632:Baire space 1597:quasimetric 1550:paracompact 835:apart from 368:, the sets 159:. Like the 21:mathematics 1682:References 1593:metrizable 1552:, but not 1508:, but not 1233:such that 539:. Fix an 223:Properties 161:Cantor set 1735:(1995) , 1554:σ-compact 1506:separable 1323:→ 1288:ϵ 1274:α 1266:≤ 1251:α 1247:≥ 1244:α 1241:∀ 1215:α 1188:ϵ 1091:α 1029:→ 997:∈ 928:∩ 901:∈ 866:∈ 694:∈ 660:− 651:∞ 648:− 631:∪ 618:∞ 550:∈ 515:⊆ 442:≥ 428:∈ 382:∈ 165:long line 103:), where 1775:Category 1670:See also 1546:Lindelöf 1342:function 171:. The 163:and the 33:topology 1765:0507446 1591:is not 173:product 126:or the 91:of all 1763:  1753:  725:Since 346:closed 309:clopen 122:after 23:, the 1743:Dover 1630:is a 1460:is a 1340:is a 1304:: if 230:finer 215:, or 128:arrow 89:basis 31:is a 1751:ISBN 1556:nor 1548:and 1504:and 1279:< 1191:> 467:Any 414:and 396:< 344:and 342:open 255:and 107:and 1544:is 1500:is 1404:at 1364:at 1108:in 1073:net 471:of 311:in 307:is 175:of 27:or 19:In 1777:: 1761:MR 1759:, 1749:, 1731:; 1717:18 1698:. 1471:, 1431:, 1075:) 219:. 208:. 1741:( 1702:. 1651:l 1646:R 1634:. 1616:l 1611:R 1599:. 1577:l 1572:R 1560:. 1530:l 1525:R 1512:. 1486:l 1481:R 1464:. 1446:l 1441:R 1412:x 1392:f 1372:x 1352:f 1327:R 1319:R 1315:: 1312:f 1285:+ 1282:L 1270:x 1263:L 1260:: 1255:0 1219:0 1194:0 1168:L 1145:L 1123:l 1118:R 1096:) 1087:x 1083:( 1054:C 1033:Q 1026:C 1023:: 1020:q 1000:C 994:x 974:] 971:x 968:, 965:) 962:x 959:( 956:a 953:( 932:Q 925:] 922:x 919:, 916:) 913:x 910:( 907:a 904:( 898:) 895:x 892:( 889:q 869:C 863:x 843:x 823:C 803:] 800:x 797:, 794:) 791:x 788:( 785:a 782:( 762:) 759:x 756:( 753:a 733:C 709:. 704:} 698:N 691:n 685:| 677:) 669:n 666:1 657:x 654:, 643:( 636:{ 626:} 621:) 615:+ 612:, 609:x 606:[ 601:{ 585:: 573:C 553:C 547:x 525:l 520:R 512:C 486:l 481:R 464:. 448:} 445:a 439:x 436:: 432:R 425:x 422:{ 402:} 399:a 393:x 390:: 386:R 379:x 376:{ 356:a 326:l 321:R 295:) 292:b 289:, 286:a 283:[ 263:b 243:a 190:l 185:R 145:l 140:R 109:b 105:a 101:b 99:, 97:a 95:[ 70:R 44:R

Index

mathematics
topology
real numbers
open intervals
basis
half-open intervals
topological space
Robert Sorgenfrey
Cantor set
long line
general topology
product
Sorgenfrey plane
finer
clopen
open
closed
totally disconnected
compact subset
countable set
net
if and only if
right-sided limits
function
separation axioms
perfectly normal Hausdorff space
countability axioms
first-countable
separable
second-countable

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.