Knowledge

Lower mantle

Source đź“ť

319:), asthenosphere, and mesospheric shell. Daly's hypothetical depths to the lithosphere-asthenosphere boundary ranged from 80 to 100 km (50 to 62 mi), and the top of the mesospheric shell (base of the asthenosphere) were from 200 to 480 km (124 to 298 mi). Thus, Daly's asthenosphere was inferred to be 120 to 400 km (75 to 249 mi) thick. According to Daly, the base of the solid Earth mesosphere could extend to the base of the mantle (and, thus, to the top of the 1309: 20: 268:
between ferropericlase and bridgmanite to 10–14 depleting bridgmanite and enriching ferropericlase of Fe. The HS to LS transition are reported to affect the physical properties of the iron bearing minerals. For example, the density and incompressibility was reported to increase from HS to LS state in
254:
studies at relevant pressures and temperatures revealed that a lower mantle composed of greater than 93% bridgmanite phase has corresponding shear-wave velocities to measured seismic velocities. The suggested composition is consistent with a chondritic lower mantle. Thus, the bulk composition of the
187:
as the primary heat transport contribution, while conduction and radiative heat transfer are considered negligible. As a result, the lower mantle's temperature gradient as a function of depth is approximately adiabatic. Calculation of the geothermal gradient observed a decrease from 0.47 kelvins per
263:
The electronic environment of two iron-bearing minerals in the lower mantle (bridgmanite, ferropericlase) transitions from a high-spin (HS) to a low-spin (LS) state. Fe in ferropericlase undergoes the transition between 50–90 GPa. Bridgmanite contains both Fe and Fe in the structure, the Fe occupy
249:
model. The first principle calculation of the density and velocity profile across the lower mantle geotherm of varying bridgmanite and ferropericlase proportion observed a match to the PREM model at an 8:2 proportion. This proportion is consistent with the pyrolitic bulk composition at the lower
264:
the A-site and transition to a LS state at 120 GPa. While Fe occupies both A- and B-sites, the B-site Fe undergoes HS to LS transition at 30–70 GPa while the A-site Fe exchanges with the B-site Al cation and becomes LS. This spin transition of the iron cation results in the increase in
182:
The temperature of the lower mantle ranges from 1,960 K (1,690 Â°C; 3,070 Â°F) at the topmost layer to 2,630 K (2,360 Â°C; 4,270 Â°F) at a depth of 2,700 kilometres (1,700 mi). Models of the temperature of the lower mantle approximate
55:(PREM) separates the lower mantle into three sections, the uppermost (660–770 km), mid-lower mantle (770–2700 km), and the D layer (2700–2900 km). Pressure and temperature in the lower mantle range from 24–127 GPa and 1900–2600 143:
The lower mantle was initially labelled as the D-layer in Bullen's spherically symmetric model of the Earth. The PREM seismic model of the Earth's interior separated the D-layer into three distinctive layers defined by the discontinuity in
250:
mantle. Furthermore, shear wave velocity calculations of pyrolitic lower mantle compositions considering minor elements resulted in a match with the PREM shear velocity profile within 1%. On the other hand,
211:
suggesting homogeneity between the upper and lower mantle with a Mg/Si ratio of 1.27. This model implies that the lower mantle is composed of 75% bridgmanite, 17% ferropericlase, and 8% CaSiO
71:, and calcium-silicate perovskite. The high pressure in the lower mantle has been shown to induce a spin transition of iron-bearing bridgmanite and ferropericlase, which may affect both 188:
kilometre (0.47 Â°C/km; 1.4 Â°F/mi) at the uppermost lower mantle to 0.24 kelvins per kilometre (0.24 Â°C/km; 0.70 Â°F/mi) at 2,600 kilometres (1,600 mi).
921:
Murakami, Motohiko; Ohishi, Yasuo; Hirao, Naohisa; Hirose, Kei (May 2012). "A perovskitic lower mantle inferred from high-pressure, high-temperature sound velocity data".
152:
660–770 km: A discontinuity in compression wave velocity (6–11%) followed by a steep gradient is indicative of the transformation of the mineral
736: 200:-perovskite). The proportion of each component has been a subject of discussion historically where the bulk composition is suggested to be, 1025:"Effects of the Electronic Spin Transitions of Iron in Lower Mantle Minerals: Implications for Deep Mantle Geophysics and Geochemistry" 456:
Katsura, Tomoo; Yoneda, Akira; Yamazaki, Daisuke; Yoshino, Takashi; Ito, Eiji (2010). "Adiabatic temperature profile in the mantle".
127:. This measurement is estimated from seismic data and high-pressure laboratory experiments. The base of the mesosphere includes the 1146: 837:
Wang, Xianlong; Tsuchiya, Taku; Hase, Atsushi (2015). "Computational support for a pyrolitic lower mantle containing ferric iron".
1289: 1112: 196:
The lower mantle is mainly composed of three components, bridgmanite, ferropericlase, and calcium-silicate perovskite (CaSiO
882:"Is the mantle chemically stratified? Insights from sound velocity modeling and isotope evolution of an early magma ocean" 347: 135:
at approximately 2,700 to 2,890 km (1,678 to 1,796 mi). The base of the lower mantle is about 2700 km.
719: 379: 246: 52: 1338: 1312: 1236: 775: 515: 1139: 1095:
Kumazawa, M; Fukao, Y (1977). "Dual Plate Tectonics Model". In Manghnani, Murli; Akimoto, Syun-Iti (eds.).
654:"Enhanced convection and fast plumes in the lower mantle induced by the spin transition in ferropericlase" 1155: 39:, represents approximately 56% of Earth's total volume, and is the region from 660 to 2900 km below 1333: 711: 334:, based on a combination of "mesosphere" and "plate", for postulated reference frames in which mantle 613:"Spin transition-induced anomalies in the lower mantle: implications for mid-mantle partial layering" 320: 1256: 1251: 171: 132: 1246: 1241: 1132: 157: 44: 293: 273:
of the lower mantle is currently being investigated and discussed using numerical simulations.
251: 1294: 1218: 1213: 265: 242: 48: 897: 1277: 1036: 989: 930: 893: 846: 787: 778:(2010-01-08). "Iron Partitioning and Density Changes of Pyrolite in Earth's Lower Mantle". 748: 665: 559: 465: 417: 205: 8: 1200: 1184: 235: 112: 64: 1040: 1001: 993: 934: 850: 791: 752: 669: 563: 469: 421: 218:
Chondritic: suggests that the Earth's lower mantle was accreted from the composition of
1104: 1054: 962: 819: 652:
Bower, Dan J.; Gurnis, Michael; Jackson, Jennifer M.; Sturhahn, Wolfgang (2009-05-28).
593: 504: 297: 116: 1282: 1174: 1108: 1074: 1005: 954: 946: 862: 811: 803: 715: 683: 634: 585: 577: 521: 511: 481: 433: 429: 385: 375: 335: 1058: 823: 597: 245:. It was shown that the density profile along the geotherm is in agreement with the 1169: 1100: 1044: 997: 966: 938: 901: 854: 795: 756: 673: 624: 567: 473: 425: 408:
Dziewonski, Adam M.; Anderson, Don L. (1981). "Preliminary reference Earth model".
269:
ferropericlase. The effects of the spin transition on the transport properties and
222:
suggesting a Mg/Si ratio of approximately 1. This infers that bridgmanite and CaSiO
1261: 1208: 316: 304: 906: 881: 880:
Hyung, Eugenia; Huang, Shichun; Petaev, Michail I.; Jacobsen, Stein B. (2016).
548:"Iron Partitioning in Earth's Mantle: Toward a Deep Lower Mantle Discontinuity" 477: 68: 1327: 1189: 1081: 1009: 950: 866: 807: 687: 638: 581: 485: 437: 389: 799: 572: 547: 525: 1179: 958: 815: 760: 589: 145: 120: 79: 72: 1023:
Lin, Jung-Fu; Speziale, Sergio; Mao, Zhu; Marquardt, Hauke (April 2013).
678: 629: 612: 312: 153: 87: 942: 774:
Irifune, T.; Shinmei, T.; McCammon, C. A.; Miyajima, N.; Rubie, D. C.;
327: 289: 285: 208: 184: 175: 86:
at a depth of 660 kilometers (410 mi). At a depth of 660 km,
1049: 1024: 611:
Shahnas, M.H.; Pysklywec, R.N.; Justo, J.F.; Yuen, D.A. (2017-05-09).
1124: 858: 331: 219: 164: 40: 270: 231: 163:
770–2700 km: A gradual increase in velocity indicative of the
60: 59:. It has been proposed that the composition of the lower mantle is 980:
Badro, James (2014-05-30). "Spin Transitions in Mantle Minerals".
307:
era, Daly (1940) inferred that the outer Earth consisted of three
300: 156:
to bridgmanite and ferropericlase and the transition between the
83: 653: 308: 128: 56: 19: 773: 204:
Pyrolitic: derived from petrological composition trends from
455: 651: 174:
is considered the transition from the lower mantle to the
920: 610: 879: 1022: 78:
The upper boundary is defined by the sharp increase in
167:
compression of the mineral phases in the lower mantle.
16:
The region from 660 to 2900 km below Earth's surface
737:"The density variation of the earth's central core" 372:
The Earth's lower mantle: composition and structure
255:lower mantle is currently a subject of discussion. 1097:High-Pressure Research: Applications in Geophysics 1073: 503: 407: 369: 230:Laboratory multi-anvil compression experiments of 292:) is derived from "mesospheric shell", coined by 23:Structure of Earth. The mesosphere is labeled as 1325: 836: 741:Bulletin of the Seismological Society of America 708:'Mantle Plumes and Their Record in Earth History 705: 506:Composition and petrology of the earth's mantle 119:. This reaction marks the boundary between the 1140: 1094: 982:Annual Review of Earth and Planetary Sciences 458:Physics of the Earth and Planetary Interiors 410:Physics of the Earth and Planetary Interiors 1147: 1133: 1048: 905: 677: 628: 571: 1088: 701: 699: 697: 501: 18: 258: 1326: 1154: 734: 234:simulated conditions of the adiabatic 138: 1128: 979: 694: 545: 75:dynamics and lower mantle chemistry. 1071: 541: 539: 537: 535: 497: 495: 451: 449: 447: 403: 401: 399: 365: 363: 1076:Strength and Structure of the Earth 1002:10.1146/annurev-earth-042711-105304 886:Earth and Planetary Science Letters 63:, containing three major phases of 13: 1105:10.1016/B978-0-12-468750-9.50014-0 348:Large low-shear-velocity provinces 226:-perovskites are major components. 14: 1350: 617:Geophysical Journal International 532: 492: 444: 396: 360: 53:preliminary reference Earth model 35:, historically also known as the 1308: 1307: 1252:D’’ discontinuity (lower mantle) 1247:660 discontinuity (upper mantle) 1242:410 discontinuity (upper mantle) 1072:Daly, Reginald Aldworth (1940). 1099:. Academic Press. p. 127. 1065: 1016: 973: 914: 873: 830: 767: 238:and measured the density using 131:zone which lies just above the 728: 645: 604: 191: 1: 353: 658:Geophysical Research Letters 502:Ringwood, Alfred E. (1976). 430:10.1016/0031-9201(81)90046-7 7: 370:Kaminsky, Felix V. (2017). 341: 10: 1355: 1237:MohoroviÄŤić (crust–mantle) 907:10.1016/j.epsl.2016.02.001 712:Cambridge University Press 478:10.1016/j.pepi.2010.07.001 276: 160:layer to the lower mantle. 1303: 1270: 1229: 1162: 284:(not to be confused with 1290:Gutenberg (upper mantle) 1271:Regional discontinuities 706:Condie, Kent C. (2001). 546:Badro, J. (2003-04-03). 898:2016E&PSL.440..158H 800:10.1126/science.1181443 573:10.1126/science.1081311 252:Brillouin spectroscopic 170:2700–2900 km: The 1339:Structure of the Earth 1295:Lehmann (upper mantle) 1230:Global discontinuities 761:10.1785/BSSA0320010019 330:, was introduced as a 303:professor. In the pre- 294:Reginald Aldworth Daly 215:-perovskite by volume. 28: 1029:Reviews of Geophysics 735:Bullen, K.E. (1942). 266:partition coefficient 22: 1257:Core–mantle boundary 679:10.1029/2009GL037706 259:Spin transition zone 220:chondritic meteorite 133:mantle–core boundary 1262:Inner-core boundary 1185:Lithospheric mantle 1041:2013RvGeo..51..244L 994:2014AREPS..42..231B 943:10.1038/nature11004 935:2012Natur.485...90M 851:2015NatGe...8..556W 792:2010Sci...327..193I 753:1942BuSSA..32...19B 670:2009GeoRL..3610306B 564:2003Sci...300..789B 470:2010PEPI..183..212K 422:1981PEPI...25..297D 326:A derivative term, 139:Physical properties 1156:Structure of Earth 630:10.1093/gji/ggx198 374:. Cham: Springer. 298:Harvard University 111:) decomposes into 29: 1321: 1320: 1283:continental crust 1114:978-0-12-468750-9 1050:10.1002/rog.20010 839:Nature Geoscience 786:(5962): 193–195. 714:. pp. 3–10. 558:(5620): 789–791. 288:, a layer of the 243:X-ray diffraction 1346: 1311: 1310: 1149: 1142: 1135: 1126: 1125: 1119: 1118: 1092: 1086: 1085: 1079: 1069: 1063: 1062: 1052: 1020: 1014: 1013: 977: 971: 970: 918: 912: 911: 909: 877: 871: 870: 859:10.1038/ngeo2458 834: 828: 827: 771: 765: 764: 732: 726: 725: 703: 692: 691: 681: 649: 643: 642: 632: 608: 602: 601: 575: 543: 530: 529: 509: 499: 490: 489: 464:(1–2): 212–218. 453: 442: 441: 405: 394: 393: 367: 113:Mg-Si perovskite 110: 109: 108: 100: 99: 27:in this diagram. 1354: 1353: 1349: 1348: 1347: 1345: 1344: 1343: 1324: 1323: 1322: 1317: 1299: 1266: 1225: 1158: 1153: 1123: 1122: 1115: 1093: 1089: 1070: 1066: 1021: 1017: 978: 974: 929:(7396): 90–94. 919: 915: 878: 874: 835: 831: 772: 768: 733: 729: 722: 704: 695: 650: 646: 609: 605: 544: 533: 518: 510:. McGraw-Hill. 500: 493: 454: 445: 406: 397: 382: 368: 361: 356: 344: 315:(including the 305:plate tectonics 279: 261: 225: 214: 199: 194: 158:transition zone 141: 117:magnesiowĂĽstite 107: 104: 103: 102: 98: 95: 94: 93: 91: 82:velocities and 45:transition zone 41:Earth's surface 17: 12: 11: 5: 1352: 1342: 1341: 1336: 1334:Earth's mantle 1319: 1318: 1316: 1315: 1304: 1301: 1300: 1298: 1297: 1292: 1287: 1286: 1285: 1274: 1272: 1268: 1267: 1265: 1264: 1259: 1254: 1249: 1244: 1239: 1233: 1231: 1227: 1226: 1224: 1223: 1222: 1221: 1216: 1206: 1205: 1204: 1194: 1193: 1192: 1187: 1172: 1166: 1164: 1160: 1159: 1152: 1151: 1144: 1137: 1129: 1121: 1120: 1113: 1087: 1064: 1035:(2): 244–275. 1015: 988:(1): 231–248. 972: 913: 872: 845:(7): 556–559. 829: 766: 727: 720: 693: 644: 623:(2): 765–773. 603: 531: 516: 491: 443: 416:(4): 297–356. 395: 380: 358: 357: 355: 352: 351: 350: 343: 340: 278: 275: 260: 257: 228: 227: 223: 216: 212: 197: 193: 190: 180: 179: 168: 161: 140: 137: 105: 96: 69:ferropericlase 43:; between the 25:Stiffer mantle 15: 9: 6: 4: 3: 2: 1351: 1340: 1337: 1335: 1332: 1331: 1329: 1314: 1306: 1305: 1302: 1296: 1293: 1291: 1288: 1284: 1281: 1280: 1279: 1276: 1275: 1273: 1269: 1263: 1260: 1258: 1255: 1253: 1250: 1248: 1245: 1243: 1240: 1238: 1235: 1234: 1232: 1228: 1220: 1217: 1215: 1212: 1211: 1210: 1207: 1202: 1198: 1195: 1191: 1190:Asthenosphere 1188: 1186: 1183: 1182: 1181: 1178: 1177: 1176: 1173: 1171: 1168: 1167: 1165: 1161: 1157: 1150: 1145: 1143: 1138: 1136: 1131: 1130: 1127: 1116: 1110: 1106: 1102: 1098: 1091: 1083: 1082:Prentice Hall 1078: 1077: 1068: 1060: 1056: 1051: 1046: 1042: 1038: 1034: 1030: 1026: 1019: 1011: 1007: 1003: 999: 995: 991: 987: 983: 976: 968: 964: 960: 956: 952: 948: 944: 940: 936: 932: 928: 924: 917: 908: 903: 899: 895: 891: 887: 883: 876: 868: 864: 860: 856: 852: 848: 844: 840: 833: 825: 821: 817: 813: 809: 805: 801: 797: 793: 789: 785: 781: 777: 770: 762: 758: 754: 750: 746: 742: 738: 731: 723: 721:0-521-01472-7 717: 713: 709: 702: 700: 698: 689: 685: 680: 675: 671: 667: 663: 659: 655: 648: 640: 636: 631: 626: 622: 618: 614: 607: 599: 595: 591: 587: 583: 579: 574: 569: 565: 561: 557: 553: 549: 542: 540: 538: 536: 527: 523: 519: 513: 508: 507: 498: 496: 487: 483: 479: 475: 471: 467: 463: 459: 452: 450: 448: 439: 435: 431: 427: 423: 419: 415: 411: 404: 402: 400: 391: 387: 383: 381:9783319556840 377: 373: 366: 364: 359: 349: 346: 345: 339: 337: 333: 329: 324: 322: 318: 314: 310: 306: 302: 299: 295: 291: 287: 283: 274: 272: 267: 256: 253: 248: 244: 241: 237: 233: 221: 217: 210: 207: 203: 202: 201: 189: 186: 177: 173: 169: 166: 162: 159: 155: 151: 150: 149: 147: 136: 134: 130: 126: 122: 118: 114: 89: 85: 81: 76: 74: 70: 66: 62: 58: 54: 50: 46: 42: 38: 34: 26: 21: 1197:Lower mantle 1196: 1180:Upper mantle 1096: 1090: 1080:. New York: 1075: 1067: 1032: 1028: 1018: 985: 981: 975: 926: 922: 916: 889: 885: 875: 842: 838: 832: 783: 779: 776:Frost, D. J. 769: 747:(1): 19–29. 744: 740: 730: 707: 661: 657: 647: 620: 616: 606: 555: 551: 505: 461: 457: 413: 409: 371: 325: 281: 280: 262: 239: 229: 206:upper mantle 195: 181: 148:velocities: 146:seismic wave 142: 125:lower mantle 124: 121:upper mantle 80:seismic wave 77: 73:mantle plume 36: 33:lower mantle 32: 30: 24: 892:: 158–168. 313:lithosphere 192:Composition 154:ringwoodite 88:ringwoodite 65:bridgmanite 1328:Categories 1219:Inner core 1214:Outer core 1201:Mesosphere 517:0070529329 354:References 328:mesoplates 290:atmosphere 286:mesosphere 282:Mesosphere 209:peridotite 185:convection 176:outer core 49:outer core 37:mesosphere 1010:0084-6597 951:0028-0836 867:1752-0894 808:0036-8075 688:0094-8276 639:0956-540X 582:0036-8075 486:0031-9201 438:0031-9201 390:988167555 332:heuristic 309:spherical 165:adiabatic 92:Îł-(Mg,Fe) 61:pyrolitic 1313:Category 1059:21661449 959:22552097 824:19243930 816:19965719 598:12208090 590:12677070 526:16375050 342:See also 336:hotspots 311:layers: 271:rheology 236:geotherm 232:pyrolite 47:and the 1037:Bibcode 990:Bibcode 967:4387193 931:Bibcode 894:Bibcode 847:Bibcode 788:Bibcode 780:Science 749:Bibcode 666:Bibcode 560:Bibcode 552:Science 466:Bibcode 418:Bibcode 338:exist. 301:geology 277:History 240:in situ 172:D-layer 84:density 1278:Conrad 1175:Mantle 1163:Shells 1111:  1057:  1008:  965:  957:  949:  923:Nature 865:  822:  814:  806:  718:  686:  664:(10). 637:  596:  588:  580:  524:  514:  484:  436:  388:  378:  51:. The 1199:(aka 1170:Crust 1055:S2CID 963:S2CID 820:S2CID 594:S2CID 317:crust 1209:Core 1109:ISBN 1006:ISSN 955:PMID 947:ISSN 863:ISSN 812:PMID 804:ISSN 716:ISBN 684:ISSN 635:ISSN 586:PMID 578:ISSN 522:OCLC 512:ISBN 482:ISSN 434:ISSN 386:OCLC 376:ISBN 321:core 296:, a 247:PREM 123:and 115:and 31:The 1101:doi 1045:doi 998:doi 939:doi 927:485 902:doi 890:440 855:doi 796:doi 784:327 757:doi 674:doi 625:doi 621:210 568:doi 556:300 474:doi 462:183 426:doi 323:). 101:SiO 1330:: 1107:. 1053:. 1043:. 1033:51 1031:. 1027:. 1004:. 996:. 986:42 984:. 961:. 953:. 945:. 937:. 925:. 900:. 888:. 884:. 861:. 853:. 841:. 818:. 810:. 802:. 794:. 782:. 755:. 745:32 743:. 739:. 710:. 696:^ 682:. 672:. 662:36 660:. 656:. 633:. 619:. 615:. 592:. 584:. 576:. 566:. 554:. 550:. 534:^ 520:. 494:^ 480:. 472:. 460:. 446:^ 432:. 424:. 414:25 412:. 398:^ 384:. 362:^ 129:D″ 67:, 1203:) 1148:e 1141:t 1134:v 1117:. 1103:: 1084:. 1061:. 1047:: 1039:: 1012:. 1000:: 992:: 969:. 941:: 933:: 910:. 904:: 896:: 869:. 857:: 849:: 843:8 826:. 798:: 790:: 763:. 759:: 751:: 724:. 690:. 676:: 668:: 641:. 627:: 600:. 570:: 562:: 528:. 488:. 476:: 468:: 440:. 428:: 420:: 392:. 224:3 213:3 198:3 178:. 106:4 97:2 90:( 57:K

Index


Earth's surface
transition zone
outer core
preliminary reference Earth model
K
pyrolitic
bridgmanite
ferropericlase
mantle plume
seismic wave
density
ringwoodite
Mg-Si perovskite
magnesiowĂĽstite
upper mantle
lower mantle
D″
mantle–core boundary
seismic wave
ringwoodite
transition zone
adiabatic
D-layer
outer core
convection
upper mantle
peridotite
chondritic meteorite
pyrolite

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑