Knowledge

Mach wave

Source đź“ť

20: 87: 73:
compression in supersonic flows). A Mach wave is the weak limit of an oblique shock wave where time averages of flow quantities don't change (a normal shock is the other limit). If the size of the object moving at the speed of sound is near 0, then this domain of influence of the wave is called a
176:
used grooves in the wall of a duct to produce Mach waves in a duct, which were then photographed by the schlieren method, to obtain data about the flow in nozzles and ducts. Mach angles may also occasionally be visualized out of their condensation in air, for example
152: 26:
of an attached shock on a sharp-nosed supersonic body. The Mach angle is acute, showing that the body exceeds Mach 1. The angle of the Mach wave (~59 degrees) indicates a velocity of about Mach 1.17.
90:
A sonic boom produced by an aircraft moving at M=2.92, calculated from the cone angle of 20 degrees. Observers hear nothing until the shock wave, on the edges of the cone, crosses their location.
241:
Zelʹdovich, I︠A︡kov Borisovich, Yurii Petrovich Raizer, and Wallace D. Hayes. Physics of shock waves and high-temperature hydrodynamic phenomena. Vol. 1. New York: Academic Press, 1966.
232:
Landau, Lev Davidovich, and Evgenii Mikhailovich Lifshitz. Fluid mechanics: Landau And Lifshitz: course of theoretical physics, Volume 6. Vol. 6. Elsevier, 2013.
66:. Thus, it is possible to have shockless compression or expansion in a supersonic flow by having the production of Mach waves sufficiently spaced ( 343:
Supersonic wind tunnel test demonstration (Mach 2.5) with flat plate and wedge creating an oblique shock along with numerous Mach waves(Video)
101:, which is the angle formed between the Mach wave wavefront and a vector that points opposite to the vector of motion. It is given by 107: 312: 275: 199: 172:
or shadowgraph observations to determine the local Mach number of the flow. Early observations by
357: 19: 209: 169: 23: 8: 327: 281: 70: 308: 285: 271: 194: 51: 58:
if sufficient Mach waves are present at any location. Such a shock wave is called a
263: 259: 362: 43: 31: 342: 267: 351: 204: 162: 214: 178: 173: 55: 304: 182: 47: 54:. These weak waves can combine in supersonic flow to become a 299:
E. Carscallen, William; Patrick, H. Oosthuizen (2013-07-12).
86: 147:{\displaystyle \mu =\arcsin \left({\frac {1}{M}}\right),} 254:
Sasoh, Akihiro (2020-01-02). "4.3 Oblique Shock Wave".
110: 298: 146: 349: 94:A Mach wave propagates across the flow at the 256:Compressible Fluid Dynamics and Shock Waves 85: 42:, is a pressure wave traveling with the 18: 301:Introduction to Compressible Fluid Flow 249: 247: 350: 253: 244: 13: 14: 374: 336: 321: 292: 235: 226: 1: 220: 81: 46:caused by a slight change of 7: 262:Singapore. pp. 80–82. 200:Prandtl–Meyer expansion fan 188: 10: 379: 168:Mach waves can be used in 268:10.1007/978-981-15-0504-1 181:around aircraft during 148: 91: 27: 210:Schlieren photography 205:Shadowgraph technique 149: 89: 22: 108: 24:Schlieren photograph 144: 92: 40:weak discontinuity 38:, also known as a 28: 314:978-1-4398-7792-0 277:978-981-15-0504-1 258:. Nagoya, Japan: 195:Compressible flow 135: 52:compressible flow 370: 331: 325: 319: 318: 296: 290: 289: 251: 242: 239: 233: 230: 153: 151: 150: 145: 140: 136: 128: 378: 377: 373: 372: 371: 369: 368: 367: 348: 347: 339: 334: 326: 322: 315: 297: 293: 278: 260:Springer Nature 252: 245: 240: 236: 231: 227: 223: 191: 127: 123: 109: 106: 105: 84: 17: 12: 11: 5: 376: 366: 365: 360: 358:Fluid dynamics 346: 345: 338: 337:External links 335: 333: 332: 320: 313: 303:(2 ed.). 291: 276: 243: 234: 224: 222: 219: 218: 217: 212: 207: 202: 197: 190: 187: 155: 154: 143: 139: 134: 131: 126: 122: 119: 116: 113: 83: 80: 44:speed of sound 32:fluid dynamics 15: 9: 6: 4: 3: 2: 375: 364: 361: 359: 356: 355: 353: 344: 341: 340: 329: 324: 316: 310: 306: 302: 295: 287: 283: 279: 273: 269: 265: 261: 257: 250: 248: 238: 229: 225: 216: 213: 211: 208: 206: 203: 201: 198: 196: 193: 192: 186: 184: 180: 175: 171: 166: 164: 160: 141: 137: 132: 129: 124: 120: 117: 114: 111: 104: 103: 102: 100: 97: 88: 79: 77: 72: 69: 65: 61: 57: 53: 49: 45: 41: 37: 33: 25: 21: 16:Pressure wave 323: 300: 294: 255: 237: 228: 167: 158: 156: 98: 95: 93: 75: 67: 63: 59: 39: 35: 29: 179:vapor cones 163:Mach number 50:added to a 352:Categories 328:Mach angle 221:References 215:Shock wave 174:Ernst Mach 96:Mach angle 82:Mach angle 71:isentropic 64:Mach front 56:shock wave 305:CRC Press 286:213248761 183:transonic 170:schlieren 121:⁡ 112:μ 76:Mach cone 60:Mach stem 36:Mach wave 330:at NASA. 189:See also 185:flight. 48:pressure 161:is the 311:  284:  274:  157:where 118:arcsin 363:Waves 282:S2CID 309:ISBN 272:ISBN 34:, a 264:doi 68:cf. 62:or 30:In 354:: 307:. 280:. 270:. 246:^ 165:. 78:. 317:. 288:. 266:: 159:M 142:, 138:) 133:M 130:1 125:( 115:= 99:ÎĽ

Index


Schlieren photograph
fluid dynamics
speed of sound
pressure
compressible flow
shock wave
isentropic

Mach number
schlieren
Ernst Mach
vapor cones
transonic
Compressible flow
Prandtl–Meyer expansion fan
Shadowgraph technique
Schlieren photography
Shock wave


Springer Nature
doi
10.1007/978-981-15-0504-1
ISBN
978-981-15-0504-1
S2CID
213248761
CRC Press
ISBN

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑