Knowledge

Matrix isolation

Source đź“ť

259: 25: 173: 82: 242:
ion can sit in chemical isolation. The reactive species can either be generated outside (before deposition) the apparatus and then be condensed, inside the matrix (after deposition) by irradiating or heating a precursor, or by bringing together two reactants on the growing matrix surface. For the
314:
matrices at low temperatures, the rotation of the fluoroethane molecule is inhibited. Because rotational-vibrational quantum states are quenched in the matrix isolation IR spectrum of fluoroethane, all vibrational quantum states can be identified. This is especially useful for the validation of
184:
or similar refrigerant. Experiments must be performed under a high vacuum to prevent contaminants from unwanted gases freezing to the cold window. Lower temperatures are preferred, due to the improved rigidity and "glassiness" of the matrix material. Noble gases such as
327:
Matrix isolation has its origins in the first half of the 20th century with the experiments by photo-chemists and physicists freezing samples in liquefied gases. The earliest isolation experiments involved the freezing of species in transparent, low temperature organic
423:
Riedel, Sebastian; Köchner, Tobias; Wang, Xuefeng; Andrews, Lester (2 August 2010). "Polyfluoride Anions, a Matrix-Isolation and Quantum-Chemical Investigation".
379:
in matrix isolation spectroscopy rose in popularity due to its ability to generate transients involving metals, alloys and semi-conductor molecules and clusters.
283:
without rotational and translational interference. The low temperatures also help to produce simpler spectra, since only the lower electronic and vibrational
359:. In the 1970s, Koerner von Gustorf's lab used the technique to produce free metal atoms which were then deposited with organic substrates for use in 160:. This mixture is then deposited on a window that is cooled to below the melting point of the host gas. The sample may then be studied using various 332:, such as EPA (ether/isopentane/ethanol 5:5:2). The modern matrix isolation technique was developed extensively during the 1950s, in particular by 458:
Clay, Mary; Ault, Bruce S. (2010). "Infrared Matrix Isolation and Theoretical Study of the Initial Intermediates in the Reaction of Ozone with
769: 279:
of the guest particle is usually inhibited. Therefore, the matrix isolation technique may be used to simulate a spectrum of a species in the
152:
solids. A typical matrix isolation experiment involves a guest sample being diluted in the gas phase with the host material, usually a
601:
Eric Whittle; David A. Dows; George C. Pimentel (1954). "Matrix Isolation Method for the Experimental Study of Unstable Species".
511:"The interplay of VSCF/VCI calculations and matrix-isolation IR spectroscopy – Mid infrared spectrum of CH3CH2F and CD3CD2F" 981: 858: 303: 815: 351:(YAG) laser to vaporize carbon which reacted with hydrogen to produce acetylene. They also showed that laser-vaporized 1122: 762: 707: 688: 347:
Laser vaporization in matrix isolation spectroscopy was first brought about in 1969 by Schaeffer and Pearson using a
68: 46: 39: 372: 302:
some spectral regions are very difficult to interpret, as vibrational quantum states heavily overlap with multiple
552:"On the synergy of matrix-isolation infrared spectroscopy and vibrational configuration interaction computations" 1030: 1025: 835: 363:. Spectroscopic studies were done on reactive intermediates in around the early 1980s by Bell Labs. They used 1195: 1190: 1226: 755: 220:, may be used as the host material so that the reaction of the host with the guest species may be studied. 636:
Bondybey, V. E.; Smitth, A. M.; Agreiter, J. (1996). "New Developments in Matrix Isolation Spectroscopy".
1221: 1160: 850: 398: 364: 887: 787: 1117: 388: 360: 348: 33: 180:
The transparent window, on to which the sample is deposited, is usually cooled using a compressed
1165: 966: 680: 316: 920: 205: 50: 729: 1216: 1150: 1082: 940: 930: 550:
Dinu, Dennis F.; Podewitz, Maren; Grothe, Hinrich; Loerting, Thomas; Liedl, Klaus R. (2020).
298:, benefits from the matrix isolation technique. For example, in the gas-phase IR spectrum of 291: 276: 190: 247:
deposition the two species have a much shorter contact time (and lower temperature) than in
243:
deposition of two species it can be crucial to control the contact time and temperature. In
1145: 873: 610: 522: 471: 295: 258: 201: 194: 8: 1155: 1087: 1072: 1015: 403: 224: 614: 526: 475: 189:
are used not just because of their unreactivity but also because of their broad optical
1180: 950: 779: 717: 578: 551: 376: 333: 1175: 1170: 1132: 1077: 996: 976: 912: 703: 684: 653: 583: 487: 440: 299: 197: 1107: 1010: 645: 618: 573: 563: 530: 479: 432: 223:
Using the matrix isolation technique, short-lived, highly-reactive species such as
133: 132:
matrix. Initially the term matrix-isolation was used to describe the placing of a
1185: 1097: 1046: 506: 172: 344:
as the host material, and is often said to be the "father of matrix isolation".
892: 881: 568: 284: 124:
particles (atoms, molecules, ions, etc.) are embedded. The guest is said to be
535: 510: 1210: 1140: 1112: 1020: 971: 945: 228: 747: 1092: 898: 805: 795: 737: 657: 600: 587: 491: 444: 161: 1051: 986: 117: 635: 149: 649: 622: 505:
Dinu, Dennis F.; Ziegler, Benjamin; Podewitz, Maren; Liedl, Klaus R.;
483: 436: 108:. It generally involves a material being trapped within an unreactive 1102: 393: 280: 153: 101: 341: 272: 213: 157: 137: 227:
ions and reaction intermediates may be observed and identified by
81: 232: 217: 209: 105: 375:
by analyzing Al clusters. With the work of chemists like these,
181: 141: 697: 1005: 352: 337: 329: 307: 193:
in the solid state. Mono-atomic gases have relatively simple
186: 235:
can be used to form an inert matrix within which a reactive
311: 200:, which can make interpretations of the site occupancy and 742:
A Bibliography of Matrix Isolation Spectroscopy, 1954-1985
549: 825: 145: 504: 422: 371:. Smalley's group employed the use of this method with 315:
simulated infrared spectra that can be obtained from
367:
to characterize multiple molecules like SnBi and SiC
336:. He initially used higher-boiling inert gases like 677:Matrix-Isolation Techniques – A Practical Approach 306:quantum states. When fluoroethane is isolated in 144:, but more recently has referred specifically to 1208: 674: 777: 763: 509:; Grothe, Hinrich; Rauhut, Guntram (2020). 770: 756: 577: 567: 534: 69:Learn how and when to remove this message 457: 257: 231:means. For example, the solid noble gas 171: 80: 32:This article includes a list of general 698:Daintith, John (senior editor) (2004). 176:Apparatus for transmission measurements 1209: 796:Unimolecular nucleophilic substitution 744:, Rice University Press, Houston, 1988 806:Bimolecular nucleophilic substitution 751: 204:of the guest easier. In some cases a 167: 100:is an experimental technique used in 18: 859:Electrophilic aromatic substitution 702:. Oxford: Oxford University Press. 464:The Journal of Physical Chemistry A 89:species (in red) isolated in solid 85:Diagram representing a triangular, 13: 826:Nucleophilic internal substitution 816:Nucleophilic aromatic substitution 668: 355:would react with HCl to create BCl 136:in any unreactive material, often 38:it lacks sufficient corresponding 14: 1238: 515:Journal of Molecular Spectroscopy 373:time-of-flight mass spectrometry 255:the contact time is adjustable. 23: 16:Experimental chemistry technique 982:Lindemann–Hinshelwood mechanism 603:The Journal of Chemical Physics 294:, which is used to investigate 266: 262:Different deposition techniques 1031:Outer sphere electron transfer 1026:Inner sphere electron transfer 836:Nucleophilic acyl substitution 700:Oxford Dictionary of Chemistry 629: 594: 556:Theoretical Chemistry Accounts 543: 498: 451: 416: 1: 1196:Diffusion-controlled reaction 409: 271:Within the host matrix, the 7: 851:Electrophilic substitutions 382: 10: 1243: 1161:Energy profile (chemistry) 1123:More O'Ferrall–Jencks plot 788:Nucleophilic substitutions 569:10.1007/s00214-020-02682-0 399:Van der Waals interactions 365:laser-induced fluorescence 322: 292:infrared (IR) spectroscopy 1191:Michaelis–Menten kinetics 1131: 1065: 1039: 995: 959: 911: 872: 849: 786: 536:10.1016/j.jms.2019.111224 195:face-centered cubic (fcc) 1118:Potential energy surface 997:Electron/Proton transfer 882:Unimolecular elimination 361:organometallic chemistry 1166:Transition state theory 967:Intramolecular reaction 893:Bimolecular elimination 681:Oxford University Press 675:Dunkin, Iain R (1998). 349:yttrium aluminum garnet 317:computational chemistry 208:material, for example, 202:crystal-field splitting 116:matrix is a continuous 53:more precise citations. 960:Unimolecular reactions 921:Electrophilic addition 304:rotational-vibrational 263: 177: 94: 1151:Rate-determining step 1083:Reactive intermediate 941:Free-radical addition 931:Nucleophilic addition 874:Elimination reactions 261: 175: 84: 1146:Equilibrium constant 389:Host–guest chemistry 1227:Reaction mechanisms 1156:Reaction coordinate 1088:Radical (chemistry) 1073:Elementary reaction 1016:Grotthuss mechanism 780:reaction mechanisms 615:1954JChPh..22.1943W 527:2020JMoSp.36711224D 476:2010JPCA..114.2799C 425:Inorganic Chemistry 296:molecular vibration 1222:Physical chemistry 1181:Arrhenius equation 951:Oxidative addition 913:Addition reactions 728:has generic name ( 377:laser-vaporization 334:George C. Pimentel 264: 178: 168:Experimental setup 95: 1204: 1203: 1176:Activated complex 1171:Activation energy 1133:Chemical kinetics 1078:Reaction dynamics 977:Photodissociation 650:10.1021/cr940262h 623:10.1063/1.1739957 484:10.1021/jp912253t 437:10.1021/ic100981c 431:(15): 7156–7164. 198:crystal structure 93:matrix (in blue). 79: 78: 71: 1234: 1108:Collision theory 1057:Matrix isolation 1011:Harpoon reaction 888:E1cB-elimination 772: 765: 758: 749: 748: 736:Ball, David W., 733: 727: 723: 721: 713: 694: 662: 661: 644:(6): 2113–2134. 638:Chemical Reviews 633: 627: 626: 598: 592: 591: 581: 571: 547: 541: 540: 538: 507:Loerting, Thomas 502: 496: 495: 470:(8): 2799–2805. 455: 449: 448: 420: 134:chemical species 98:Matrix isolation 74: 67: 63: 60: 54: 49:this article by 40:inline citations 27: 26: 19: 1242: 1241: 1237: 1236: 1235: 1233: 1232: 1231: 1207: 1206: 1205: 1200: 1186:Eyring equation 1127: 1098:Stereochemistry 1061: 1047:Solvent effects 1035: 991: 955: 936: 926: 907: 902: 868: 864: 845: 841: 831: 821: 811: 801: 782: 776: 738:Zakya H. Kafafi 725: 724: 715: 714: 710: 691: 671: 669:Further reading 666: 665: 634: 630: 599: 595: 548: 544: 503: 499: 456: 452: 421: 417: 412: 385: 370: 358: 325: 287:are populated. 269: 240: 170: 150:low-temperature 75: 64: 58: 55: 45:Please help to 44: 28: 24: 17: 12: 11: 5: 1240: 1230: 1229: 1224: 1219: 1202: 1201: 1199: 1198: 1193: 1188: 1183: 1178: 1173: 1168: 1163: 1158: 1153: 1148: 1143: 1137: 1135: 1129: 1128: 1126: 1125: 1120: 1115: 1110: 1105: 1100: 1095: 1090: 1085: 1080: 1075: 1069: 1067: 1066:Related topics 1063: 1062: 1060: 1059: 1054: 1049: 1043: 1041: 1040:Medium effects 1037: 1036: 1034: 1033: 1028: 1023: 1018: 1013: 1008: 1002: 1000: 993: 992: 990: 989: 984: 979: 974: 969: 963: 961: 957: 956: 954: 953: 948: 943: 938: 934: 928: 924: 917: 915: 909: 908: 906: 905: 900: 896: 890: 885: 878: 876: 870: 869: 867: 866: 862: 855: 853: 847: 846: 844: 843: 839: 833: 829: 823: 819: 813: 809: 803: 799: 792: 790: 784: 783: 775: 774: 767: 760: 752: 746: 745: 734: 708: 695: 689: 670: 667: 664: 663: 628: 593: 542: 497: 450: 414: 413: 411: 408: 407: 406: 401: 396: 391: 384: 381: 368: 356: 324: 321: 285:quantum states 268: 265: 253:concentric jet 238: 169: 166: 77: 76: 31: 29: 22: 15: 9: 6: 4: 3: 2: 1239: 1228: 1225: 1223: 1220: 1218: 1215: 1214: 1212: 1197: 1194: 1192: 1189: 1187: 1184: 1182: 1179: 1177: 1174: 1172: 1169: 1167: 1164: 1162: 1159: 1157: 1154: 1152: 1149: 1147: 1144: 1142: 1141:Rate equation 1139: 1138: 1136: 1134: 1130: 1124: 1121: 1119: 1116: 1114: 1113:Arrow pushing 1111: 1109: 1106: 1104: 1101: 1099: 1096: 1094: 1091: 1089: 1086: 1084: 1081: 1079: 1076: 1074: 1071: 1070: 1068: 1064: 1058: 1055: 1053: 1050: 1048: 1045: 1044: 1042: 1038: 1032: 1029: 1027: 1024: 1022: 1021:Marcus theory 1019: 1017: 1014: 1012: 1009: 1007: 1004: 1003: 1001: 998: 994: 988: 985: 983: 980: 978: 975: 973: 972:Isomerization 970: 968: 965: 964: 962: 958: 952: 949: 947: 946:Cycloaddition 944: 942: 939: 932: 929: 922: 919: 918: 916: 914: 910: 904: 897: 894: 891: 889: 886: 883: 880: 879: 877: 875: 871: 860: 857: 856: 854: 852: 848: 837: 834: 827: 824: 817: 814: 807: 804: 797: 794: 793: 791: 789: 785: 781: 773: 768: 766: 761: 759: 754: 753: 750: 743: 739: 735: 731: 726:|author= 719: 711: 709:0-19-860918-3 705: 701: 696: 692: 690:0-19-855863-5 686: 682: 678: 673: 672: 659: 655: 651: 647: 643: 639: 632: 624: 620: 616: 612: 608: 604: 597: 589: 585: 580: 575: 570: 565: 561: 557: 553: 546: 537: 532: 528: 524: 520: 516: 512: 508: 501: 493: 489: 485: 481: 477: 473: 469: 465: 461: 454: 446: 442: 438: 434: 430: 426: 419: 415: 405: 402: 400: 397: 395: 392: 390: 387: 386: 380: 378: 374: 366: 362: 354: 350: 345: 343: 339: 335: 331: 320: 318: 313: 309: 305: 301: 297: 293: 288: 286: 282: 278: 274: 260: 256: 254: 250: 246: 241: 234: 230: 229:spectroscopic 226: 221: 219: 215: 211: 207: 203: 199: 196: 192: 188: 183: 174: 165: 163: 162:spectroscopic 159: 155: 151: 147: 143: 139: 135: 131: 127: 123: 119: 115: 111: 107: 103: 99: 92: 88: 83: 73: 70: 62: 59:December 2010 52: 48: 42: 41: 35: 30: 21: 20: 1217:Spectroscopy 1093:Molecularity 1056: 741: 699: 676: 641: 637: 631: 609:(11): 1943. 606: 602: 596: 559: 555: 545: 518: 514: 500: 467: 463: 462:-2-Butene". 459: 453: 428: 424: 418: 346: 326: 300:fluoroethane 289: 270: 267:Spectroscopy 252: 248: 244: 236: 222: 191:transparency 179: 164:procedures. 129: 125: 121: 113: 109: 97: 96: 90: 86: 65: 56: 37: 1052:Cage effect 987:RRKM theory 903:elimination 562:(12): 174. 290:Especially 277:translation 128:within the 118:solid phase 51:introducing 1211:Categories 740:, et al., 679:. Oxford: 521:: 111224. 410:References 249:merged jet 34:references 1103:Catalysis 999:reactions 718:cite book 394:Inert gas 281:gas phase 154:noble gas 120:in which 102:chemistry 658:11848824 588:33192169 492:20141193 445:20593854 404:Radicals 383:See also 342:nitrogen 273:rotation 245:twin jet 214:hydrogen 206:reactive 158:nitrogen 138:polymers 126:isolated 611:Bibcode 579:7652801 523:Bibcode 472:Bibcode 330:glasses 323:History 251:. With 233:krypton 225:radical 218:ammonia 210:methane 106:physics 47:improve 778:Basic 706:  687:  656:  586:  576:  490:  443:  182:helium 142:resins 110:matrix 36:, but 1006:Redox 842:Acyl) 353:boron 338:xenon 308:argon 187:argon 146:gases 122:guest 87:guest 895:(E2) 884:(E1) 730:help 704:ISBN 685:ISBN 654:PMID 584:PMID 488:PMID 441:PMID 340:and 312:neon 275:and 130:host 114:host 112:. A 104:and 91:host 865:Ar) 822:Ar) 646:doi 619:doi 574:PMC 564:doi 560:139 531:doi 519:367 480:doi 468:114 460:cis 433:doi 310:or 216:or 156:or 148:in 140:or 1213:: 933:(A 923:(A 861:(S 838:(S 832:i) 828:(S 818:(S 812:2) 808:(S 802:1) 798:(S 722:: 720:}} 716:{{ 683:. 652:. 642:96 640:. 617:. 607:22 605:. 582:. 572:. 558:. 554:. 529:. 517:. 513:. 486:. 478:. 466:. 439:. 429:49 427:. 319:. 212:, 937:) 935:N 927:) 925:E 901:i 899:E 863:E 840:N 830:N 820:N 810:N 800:N 771:e 764:t 757:v 732:) 712:. 693:. 660:. 648:: 625:. 621:: 613:: 590:. 566:: 539:. 533:: 525:: 494:. 482:: 474:: 447:. 435:: 369:2 357:3 239:3 237:F 72:) 66:( 61:) 57:( 43:.

Index

references
inline citations
improve
introducing
Learn how and when to remove this message

chemistry
physics
solid phase
chemical species
polymers
resins
gases
low-temperature
noble gas
nitrogen
spectroscopic

helium
argon
transparency
face-centered cubic (fcc)
crystal structure
crystal-field splitting
reactive
methane
hydrogen
ammonia
radical
spectroscopic

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑