Knowledge

Metal–halogen exchange

Source 📝

204: 190: 198:
perform intramolecular nucleophilic attack and cyclize. This reaction is a useful strategy for heterocycle formation. In the example below, Parham cyclization was used to in the cyclization of an isocyanate to form isoindolinone, which was then converted to a nitrone. The nitrone species further reacts with radicals and can be used as "spin traps" to study biological radical processes.
71:
Exchange rates usually follow the trend I > Br > Cl. Alkyl- and arylfluoride are generally unreactive toward organolithium reagents. Lithium–halogen exchange is kinetically controlled, and the rate of exchange is primarily influenced by the stabilities of the carbanion intermediates (sp > sp
24:
is a fundamental reaction that converts an organic halide into an organometallic product. The reaction commonly involves the use of electropositive metals (Li, Na, Mg) and organochlorides, bromides, and iodides. Particularly well-developed is the use of metal–halogen exchange for the preparation of
197:
Lithium–halogen exchange is a crucial part of Parham cyclization. In this reaction, an aryl halide (usually iodide or bromide) exchanges with organolithium to form a lithiated arene species. If the arene bears a side chain with an electrophillic moiety, the carbanion attached to the lithium will
67:
Lithium–halogen exchange is frequently used to prepare vinyl-, aryl- and primary alkyllithium reagents. Vinyl halides usually undergo lithium–halogen exchange with retention of the stereochemistry of the double bond. The presence of alkoxyl or related chelating groups accelerates lithium–halogen
93:
Li. A number of kinetic studies also support a nucleophilic pathway in which the carbanion on the lithium species attacks the halogen atom on the aryl halide. Another proposed mechanism involves single electron transfer with the generation of radicals. In reactions of secondary and tertiary
80:
Two mechanisms have been proposed for lithium–halogen exchange. One proposed pathway involves a nucleophilic mechanism that generates a reversible "ate-complex" intermediate. Farnham and Calabrese crystallized an "ate-complex" lithium bis(pentafluorophenyl) iodinate complexed with
37:
Two kinds of lithium–halogen exchange can be considered: reactions involving organolithium compounds and reactions involving lithium metal. Commercial organolithium compounds are produced by the heterogeneous (slurry) reaction of lithium with organic bromides and chlorides:
181:
is used to perform lithium–halogen exchange with bromide. The nucleophilic carbanion center quickly undergoes carbolithiation to the double bond, generating an anion stabilized by the adjacent sulfone group. An intramolecular
516:
Knochel, P.; Dohle, W.; Gommermann, N.; Kneisel, F. F.; Kopp, F.; Korn, T.; Sapountzis, I.; Vu, V. A. (2003). "Highly Functionalized Organomagnesium Reagents Prepared through Halogen–Metal Exchange".
114:
can be prepared by treating a preformed Grignard reagent with an organic halide. This method offers the advantage that the Mg transfer tolerates many functional groups. A typical reaction involves
637:
Adam P. Smith; Scott A. Savage; J. Christopher Love; Cassandra L. Fraser (2002). "Synthesis of 4-, 5-, and 6-methyl-2,2'-bipyridine by a Negishi Cross-coupling Strategy: 5-methyl-2,2'-bipyridine".
68:
exchange. Lithium halogen exchange is typically a fast reaction. It is usually faster than nucleophilic addition and can sometimes exceed the rate of proton transfer.
718:
Sotomayor, N.; Lete, E. (2003). "Aryl and Heteroaryllithium Compounds by Metal–Halogen Exchange. Synthesis of Carbocyclic and Heterocyclic Systems".
320: 691:
Parham, W. P.; Bradsher, C. K. (1982). "Aromatic organolithium reagents bearing electrophilic groups. Preparation by halogen–lithium exchange".
226:
Gilman, Henry; Langham, Wright; Jacoby, Arthur L. (1939). "Metalation as a Side Reaction in the Preparation of Organolithium Compounds".
189: 393:
Bailey, W. F.; Patricia, J. F. (1988). "The mechanism of the lithium–halogen Interchange reaction: a review of the literature".
98:. The mechanistic studies of lithium–halogen exchange are complicated by the formation of aggregates of organolithium species. 458:
Rogers, H. R.; Houk, J. (1982). "Preliminary studies of the mechanism of metal-halogen exchange. The kinetics of reaction of
374: 304: 203: 261:
Seebach, D.; Neumann H. (1976). "Stereospecific preparation of terminal vinyllithium derivatives by Br/Li-exchange with
489:
Fischer, H. (1969). "Electron spin resonance of transient alkyl radicals during alkyllithium-alkyl halide reactions".
799: 664:
Toth, J. E.; Hamann, P. R.; Fuchs, P. L. (1988). "Studies culminating in the total synthesis of (dl)-morphine".
115: 49:
Most of this article is about the homogeneous (one-phase) reaction of preformed organolithium compounds:
60:
is commonly used. Gilman and Wittig independently discovered this method in the late 1930s. It is not a
82: 61: 17: 636: 85:. The "ate-complex" further reacts with electrophiles and provides pentafluorophenyl iodide and C 26: 8: 423:
Farnham, W. B.; Calabrese, J. C. (1986). "Novel hypervalent (10-I-2) iodine structures".
771: 746: 614: 589: 338:-butyllithium and 1-iodo-5-hexenes provides no evidence for single-electron transfer". 314: 747:"Synthesis of a mitochondria-targeted spin trap using a novel Parham-type cyclization" 351: 278: 776: 619: 533: 440: 406: 370: 300: 243: 766: 758: 727: 700: 673: 646: 609: 601: 568: 557:-Butyl-3-Bromo-5-Formylbenzoate Through Selective Metal-Halogen Exchange Reactions" 525: 498: 471: 432: 402: 347: 274: 235: 111: 95: 365:
Carey, Francis A. (2007). "Organometallic compounds of Group I and II metals".
175: 762: 793: 731: 650: 573: 552: 247: 174:
Below lithium–halogen exchange is a step in the synthesis of morphine. Here
780: 623: 605: 537: 529: 444: 294: 57: 134: 704: 677: 502: 475: 436: 239: 334:
Bailey, W. F.; et al. (1986). "Metal—halogen interchange between
663: 462:-butyllithium with substituted bromobenzenes in hexane solution". 94:
alkyllithium and alkyl halides, radical species were detected by
186:
2 reaction by the anion forms the cyclic backbone of morphine.
422: 515: 367:
Advanced Organic Chemistry: Reaction and Synthesis Pt. B
690: 392: 297:
The Preparation of Organolithium Reagents and Intermediates
551:
Arredondo, Juan D.; Li, Hongmei; Balsells, Jaume (2012).
46:
Often the lithium halide remains in the soluble product.
590:"Recent Advances of the Halogen–Zinc Exchange Reaction" 717: 457: 295:
Leroux F., Schlosser M., Zohar E., Marek I. (2004).
193:
Synthesis of morphine using lithium–halogen exchange
171:
Several examples can be found in organic syntheses.
550: 225: 711: 587: 260: 791: 219: 388: 386: 482: 418: 416: 319:: CS1 maint: multiple names: authors list ( 657: 488: 383: 32: 588:Balkenhohl, Moritz; Knochel, Paul (2020). 770: 613: 572: 413: 744: 738: 290: 288: 228:Journal of the American Chemical Society 72:> sp) of the organolithium reagents. 581: 518:Angewandte Chemie International Edition 254: 792: 684: 333: 75: 451: 364: 327: 285: 358: 13: 202: 188: 14: 811: 630: 544: 509: 166: 101: 745:Quin, C.; et al. (2009). 594:Chemistry – A European Journal 207:Parham cyclization in MitoSpin 1: 369:(Kindle ed.). Springer. 352:10.1016/s0040-4039(00)84395-6 279:10.1016/s0040-4039(00)78926-x 213: 118:and aryl bromide or iodides: 407:10.1016/0022-328X(88)83017-1 7: 116:isopropylmagnesium chloride 10: 816: 107:Magnesium–halogen exchange 64:, as no salt is produced. 763:10.1016/j.tet.2009.07.081 53:R−Li + R′−X → R−X + R′−Li 800:Organometallic chemistry 732:10.2174/1385272033372987 651:10.15227/orgsyn.078.0051 574:10.15227/orgsyn.089.0460 62:salt metathesis reaction 33:Lithium–halogen exchange 18:organometallic chemistry 154:Zinc–halogen exchange: 137:metalate aryl halides: 42:2 Li + R−X → LiX + R−Li 27:organolithium compounds 606:10.1002/chem.201904794 530:10.1002/anie.200300579 208: 194: 141:ArBr + Li → ArMgBu 22:metal–halogen exchange 206: 192: 150:Zinc–halogen exchange 125:-PrMgCl + ArCl → 705:10.1021/ar00082a001 678:10.1021/jo00255a008 503:10.1021/j100845a044 476:10.1021/ja00366a024 437:10.1021/ja00269a055 299:. New York: Wiley. 240:10.1021/ja01870a036 162:Zn + R−I → Li + BuI 76:Mechanism and scope 395:J. Organomet. Chem 209: 195: 757:(39): 8154–8160. 672:(20): 4694–4708. 600:(17): 3688–3697. 561:Organic Syntheses 524:(36): 4302–4320. 497:(11): 3834–3838. 376:978-0-387-44899-2 346:(17): 1861–1864. 306:978-0-470-84339-0 273:(52): 4839–4842. 112:Grignard reagents 807: 785: 784: 774: 742: 736: 735: 715: 709: 708: 688: 682: 681: 661: 655: 654: 634: 628: 627: 617: 585: 579: 578: 576: 553:"Preparation of 548: 542: 541: 513: 507: 506: 486: 480: 479: 464:J. Am. Chem. Soc 455: 449: 448: 431:(9): 2449–2451. 425:J. Am. Chem. Soc 420: 411: 410: 390: 381: 380: 362: 356: 355: 340:Tetrahedron Lett 331: 325: 324: 318: 310: 292: 283: 282: 267:Tetrahedron Lett 265:-butyllithium". 258: 252: 251: 223: 129:-PrCl + ArMgCl 96:EPR spectroscopy 815: 814: 810: 809: 808: 806: 805: 804: 790: 789: 788: 743: 739: 720:Curr. Org. Chem 716: 712: 699:(10): 300–305. 689: 685: 662: 658: 635: 631: 586: 582: 549: 545: 514: 510: 487: 483: 456: 452: 421: 414: 391: 384: 377: 363: 359: 332: 328: 312: 311: 307: 293: 286: 259: 255: 224: 220: 216: 185: 169: 161: 144: 104: 92: 88: 78: 35: 12: 11: 5: 813: 803: 802: 787: 786: 737: 726:(3): 275–300. 710: 693:Acc. Chem. Res 683: 656: 629: 580: 543: 508: 481: 470:(2): 522–525. 450: 412: 382: 375: 357: 326: 305: 284: 253: 234:(1): 106–109. 217: 215: 212: 211: 210: 183: 168: 165: 164: 163: 159: 152: 151: 147: 146: 142: 131: 130: 109: 108: 103: 100: 90: 86: 77: 74: 55: 54: 44: 43: 34: 31: 9: 6: 4: 3: 2: 812: 801: 798: 797: 795: 782: 778: 773: 768: 764: 760: 756: 752: 748: 741: 733: 729: 725: 721: 714: 706: 702: 698: 694: 687: 679: 675: 671: 667: 660: 652: 648: 644: 640: 633: 625: 621: 616: 611: 607: 603: 599: 595: 591: 584: 575: 570: 566: 562: 558: 556: 547: 539: 535: 531: 527: 523: 519: 512: 504: 500: 496: 492: 491:J. Phys. Chem 485: 477: 473: 469: 465: 461: 454: 446: 442: 438: 434: 430: 426: 419: 417: 408: 404: 401:(1–2): 1–46. 400: 396: 389: 387: 378: 372: 368: 361: 353: 349: 345: 341: 337: 330: 322: 316: 308: 302: 298: 291: 289: 280: 276: 272: 268: 264: 257: 249: 245: 241: 237: 233: 229: 222: 218: 205: 201: 200: 199: 191: 187: 180: 179:-butyllithium 178: 172: 157: 156: 155: 149: 148: 140: 139: 138: 136: 135:ate complexes 128: 124: 121: 120: 119: 117: 113: 106: 105: 99: 97: 84: 73: 69: 65: 63: 59: 52: 51: 50: 47: 41: 40: 39: 30: 28: 23: 19: 754: 750: 740: 723: 719: 713: 696: 692: 686: 669: 666:J. Org. Chem 665: 659: 642: 638: 632: 597: 593: 583: 564: 560: 554: 546: 521: 517: 511: 494: 490: 484: 467: 463: 459: 453: 428: 424: 398: 394: 366: 360: 343: 339: 335: 329: 296: 270: 266: 262: 256: 231: 227: 221: 196: 176: 173: 170: 167:Applications 153: 132: 126: 122: 110: 102:Other metals 79: 70: 66: 58:Butyllithium 56: 48: 45: 36: 21: 15: 751:Tetrahedron 639:Org. Synth 214:References 133:Magnesium 315:cite book 248:0002-7863 794:Category 781:19888470 624:31742792 538:14502700 445:22175602 772:2767131 615:7155102 567:: 460. 145:+ BuBr 779:  769:  645:: 51. 622:  612:  536:  443:  373:  303:  246:  83:TMEDA 777:PMID 620:PMID 534:PMID 441:PMID 371:ISBN 321:link 301:ISBN 244:ISSN 158:LiBu 767:PMC 759:doi 728:doi 701:doi 674:doi 647:doi 610:PMC 602:doi 569:doi 526:doi 499:doi 472:doi 468:104 433:doi 429:108 403:doi 399:352 348:doi 275:doi 236:doi 16:In 796:: 775:. 765:. 755:65 753:. 749:. 722:. 697:15 695:. 670:53 668:. 643:78 641:. 618:. 608:. 598:26 596:. 592:. 565:89 563:. 559:. 532:. 522:42 520:. 495:73 493:. 466:. 439:. 427:. 415:^ 397:. 385:^ 344:27 342:. 317:}} 313:{{ 287:^ 271:17 269:. 242:. 232:61 230:. 29:. 20:, 783:. 761:: 734:. 730:: 724:7 707:. 703:: 680:. 676:: 653:. 649:: 626:. 604:: 577:. 571:: 555:t 540:. 528:: 505:. 501:: 478:. 474:: 460:n 447:. 435:: 409:. 405:: 379:. 354:. 350:: 336:t 323:) 309:. 281:. 277:: 263:t 250:. 238:: 184:N 182:S 177:n 160:3 143:2 127:i 123:i 91:5 89:H 87:6

Index

organometallic chemistry
organolithium compounds
Butyllithium
salt metathesis reaction
TMEDA
EPR spectroscopy
Grignard reagents
isopropylmagnesium chloride
ate complexes
n-butyllithium
Synthesis of morphine using lithium–halogen exchange
Parham cyclization in MitoSpin
doi
10.1021/ja01870a036
ISSN
0002-7863
doi
10.1016/s0040-4039(00)78926-x


ISBN
978-0-470-84339-0
cite book
link
doi
10.1016/s0040-4039(00)84395-6
ISBN
978-0-387-44899-2

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.