Knowledge

Metamaterial

Source 📝

393:. These branches are characterized by their respective governing equations, which include Maxwell's equations (a wave equation describing transverse waves), other wave equations (for longitudinal and transverse waves), and diffusion equations (pertaining to diffusion processes). Crafted to govern a range of diffusion activities, diffusion metamaterials prioritize diffusion length as their central metric. This crucial parameter experiences temporal fluctuations while remaining immune to frequency variations. In contrast, wave metamaterials, designed to adjust various wave propagation paths, consider the wavelength of incoming waves as their essential metric. This wavelength remains constant over time, though it adjusts with frequency alterations. Fundamentally, the key metrics for diffusion and wave metamaterials present a stark divergence, underscoring a distinct complementary relationship between them. For comprehensive information, refer to Section I.B, "Evolution of metamaterial physics," in Ref. 31: 4357:(RAM) or by purpose shaping of the targets such that the scattered energy can be redirected away from the source. While RAMs have narrow frequency band functionality, purpose shaping limits the aerodynamic performance of the target. More recently, metamaterials or metasurfaces are synthesized that can redirect the scattered energy away from the source using either array theory or generalized Snell's law. This has led to aerodynamically favorable shapes for the targets with the reduced RCS. 418: 10467: 4415:). Subwavelength structures like metamaterials can be integrated with for instance silicon waveguides to develop and polarization beam splitters and optical couplers, adding new degrees of freedom of controlling light propagation at nanoscale for integrated photonic devices. Other applications such as integrated mode converters, polarization (de)multiplexers, structured light generation, and on-chip bio-sensors can be developed. 1348: 10024: 353:) display negative permittivity; the challenge was achieving negative permeability (Ό < 0). In 1999 Pendry demonstrated that a split ring (C shape) with its axis placed along the direction of wave propagation could do so. In the same paper, he showed that a periodic array of wires and rings could give rise to a negative refractive index. Pendry also proposed a related negative-permeability design, the 4051:. The local electromagnetic fields of the inclusions in nonlinear metamaterials can be much larger than the average value of the field. Besides, remarkable nonlinear effects have been predicted and observed if the metamaterial effective dielectric permittivity is very small (epsilon-near-zero media). In addition, exotic properties such as a negative refractive index, create opportunities to tailor the 4457:. When the electromagnetic field passes through the ring, an induced current is created. The generated field is perpendicular to the light's magnetic field. The magnetic resonance results in a negative permeability; the refraction index is negative as well. (The lens is not truly flat, since the structure's capacitance imposes a slope for the electric induction.) 1793: 4112:
processes. Through meticulous adjustment of their structure and composition, meta-biomaterials hold promise in augmenting various biomedical technologies such as medical imaging, drug delivery, and tissue engineering. This underscores the importance of comprehending biological systems through the interdisciplinary lens of materials science.
2120:. A magneto-optic effect is a phenomenon in which an electromagnetic wave propagates through such a medium. In such a material, left- and right-rotating elliptical polarizations can propagate at different speeds. When light is transmitted through a layer of magneto-optic material, the result is called the 4024:
Typically materials found in nature, when homogeneous, are thermally isotropic. That is to say, heat passes through them at roughly the same rate in all directions. However, thermal metamaterials are anisotropic usually due to their highly organized internal structure. Composite materials with highly
4553:
The Virtual Institute for Artificial Electromagnetic Materials and Metamaterials "Metamorphose VI AISBL" is an international association to promote artificial electromagnetic materials and metamaterials. It organizes scientific conferences, supports specialized journals, creates and manages research
4098:
proved mathematically that one can in principle invert the sign of a 3 materials based composite in 3D made out of only positive or negative sign Hall coefficient materials. Later in 2015 Muamer Kadic et al. showed that a simple perforation of isotropic material can lead to its change of sign of the
76:
engineered to have a property, typically rarely observed in naturally occurring materials, that is derived not from the properties of the base materials but from their newly designed structures. Metamaterials are usually fashioned from multiple materials, such as metals and plastics, and are usually
2946:
also exists and a planar object is said to be chiral if it cannot be superposed onto its mirror image unless it is lifted from the plane. 2D-chiral metamaterials that are anisotropic and lossy have been observed to exhibit directionally asymmetric transmission (reflection, absorption) of circularly
2222:
EBGs have the goal of creating high quality, low loss, periodic, dielectric structures. An EBG affects photons in the same way semiconductor materials affect electrons. PCs are the perfect bandgap material, because they allow no light propagation. Each unit of the prescribed periodic structure acts
1365:
Negative-index metamaterials (NIM) are characterized by a negative index of refraction. Other terms for NIMs include "left-handed media", "media with a negative refractive index", and "backward-wave media". NIMs where the negative index of refraction arises from simultaneously negative permittivity
4111:
Meta-biomaterials have been purposefully crafted to engage with biological systems, amalgamating principles from both metamaterial science and biological areas. Engineered at the nanoscale, these materials adeptly manipulate electromagnetic, acoustic, or thermal properties to facilitate biological
4102:
In 2015, it was also demonstrated by Christian Kern et al. that an anisotropic perforation of a single material can lead to a yet more unusual effect namely the parallel Hall effect. This means that the induced electric field inside a conducting media is no longer orthogonal to the current and the
4071:
oil. The spheres compress under pressure, and regain their shape when the pressure is relieved. Their properties differ across those two states. Unpressurized, they scatter light, making them opaque. Under pressure, they collapse into half-moon shapes, focusing light, and becoming transparent. The
3274:
These metamaterials use different parameters to achieve a negative index of refraction in materials that are not electromagnetic. Furthermore, "a new design for elastic metamaterials that can behave either as liquids or solids over a limited frequency range may enable new applications based on the
3256:
Frequency selective surface-based metamaterials block signals in one waveband and pass those at another waveband. They have become an alternative to fixed frequency metamaterials. They allow for optional changes of frequencies in a single medium, rather than the restrictive limitations of a fixed
2180:
and therefore it is called a hyperbolic metamaterial. The extreme anisotropy of HMMs leads to directional propagation of light within and on the surface. HMMs have showed various potential applications, such as sensing, reflection modulator, imaging, steering of optical signals, enhanced plasmon
4532:
The Multidisciplinary University Research Initiative (MURI) encompasses dozens of Universities and a few government organizations. Participating universities include UC Berkeley, UC Los Angeles, UC San Diego, Massachusetts Institute of Technology, and Imperial College in London. The sponsors are
4495:
Three-dimensional composites of metal/non-metallic inclusions periodically/randomly embedded in a low permittivity matrix are usually modeled by analytical methods, including mixing formulas and scattering-matrix based methods. The particle is modeled by either an electric dipole parallel to the
321:
In 1995, John M. Guerra fabricated a sub-wavelength transparent grating (later called a photonic metamaterial) having 50 nm lines and spaces, and then coupled it with a standard oil immersion microscope objective (the combination later called a super-lens) to resolve a grating in a silicon
182:
d=λ/(2NA) that can be achieved by conventional lenses having a numerical aperture NA and with illumination wavelength λ. Sub-wavelength optical metamaterials, when integrated with optical recording media, can be used to achieve optical data density higher than limited by diffraction. A form of
2207:
metamaterials (EBG or EBM) control light propagation. This is accomplished either with photonic crystals (PC) or left-handed materials (LHM). PCs can prohibit light propagation altogether. Both classes can allow light to propagate in specific, designed directions and both can be designed with
2215:, because the PC derives its properties from its bandgap characteristics. PCs are sized to match the wavelength of light, versus other metamaterials that expose sub-wavelength structure. Furthermore, PCs function by diffracting light. In contrast, metamaterial does not use diffraction. 4395:. The materials can be made through a high-precision, multi-layer deposition process. The thickness of each layer can be controlled within a fraction of a wavelength. The material is then compressed, creating precise wrinkles whose spacing can cause scattering of selected frequencies. 1314:
structured metamaterials. However, these are usually considered distinct from metamaterials, as their function arises from diffraction or interference and thus cannot be approximated as a homogeneous material. However, material structures such as photonic crystals are effective in the
2923:. The first refers to one of the two circularly polarized waves that are the propagating modes in chiral media. The second relates to the triplet of electric field, magnetic field and Poynting vector that arise in negative refractive index media, which in most cases are not chiral. 2951:, where the arrangement of a (achiral) structure together with the radiation wave vector is different from its mirror image, and observed large, tuneable linear optical activity, nonlinear optical activity, specular optical activity and circular conversion dichroism. Rizza 4504:
coefficients. In general, this procedure is known as the "point-dipole approximation", which is a good approximation for metamaterials consisting of composites of electrically small spheres. Merits of these methods include low calculation cost and mathematical simplicity.
4496:
electric field or a pair of crossed electric and magnetic dipoles parallel to the electric and magnetic fields, respectively, of the applied wave. These dipoles are the leading terms in the multipole series. They are the only existing ones for a homogeneous sphere, whose
1252:, another class of electromagnetic materials. Unlike the local resonances, Bragg scattering and corresponding Bragg stop-band have a low-frequency limit determined by the lattice spacing. The subwavelength approximation ensures that the Bragg stop-bands with the 1797: 2947:
polarized waves due to circular conversion dichrosim. On the other hand, bianisotropic response can arise from geometrical achiral structures possessing neither 2D nor 3D intrinsic chirality. Plum and colleagues investigated magneto-electric coupling due to
1794: 2955:
suggested 1D chiral metamaterials where the effective chiral tensor is not vanishing if the system is geometrically one-dimensional chiral (the mirror image of the entire structure cannot be superposed onto it by using translations without rotations).
4544:
MURI supports research that intersects more than one traditional science and engineering discipline to accelerate both research and translation to applications. As of 2009, 69 academic institutions were expected to participate in 41 research efforts.
2721:, I is the identity matrix, N is a symmetric trace-free tensor, and J is an antisymmetric tensor. Such decomposition allows us to classify the reciprocal bianisotropic response and we can identify the following three main classes: (i) chiral media ( 2218:
PCs have periodic inclusions that inhibit wave propagation due to the inclusions' destructive interference from scattering. The photonic bandgap property of PCs makes them the electromagnetic analog of electronic semi-conductor crystals.
1239:
The unusual properties of metamaterials arise from the resonant response of each constituent element rather than their spatial arrangement into a lattice. It allows considering the local effective material parameters (permittivity and
4191:
Tunable metamaterials allow arbitrary adjustments to frequency changes in the refractive index. A tunable metamaterial expands beyond the bandwidth limitations in left-handed materials by constructing various types of metamaterials.
1796: 1260:
diagram in a parameter space, for example, size and permittivity of the constituent element. Such diagram displays the domain of structure parameters allowing the metamaterial properties observation in the electromagnetic material.
2167:
Hyperbolic metamaterials (HMMs) behave as a metal for certain polarization or direction of light propagation and behave as a dielectric for the other due to the negative and positive permittivity tensor components, giving extreme
9361:
Halir, Robert; Cheben, Pavel; Luque-GonzĂĄlez, JosĂ© Manuel; Sarmiento-Merenguel, Jose DarĂ­o; Schmid, Jens H.; WangĂŒemert-PĂ©rez, Gonzalo; Xu, Dan-Xia; Wang, Shurui; Ortega-Moñux, Alejandro; Molina-FernĂĄndez, ĂĂ±igo (November 2016).
5109:
Haid, Daniel; Foster, Leon; Hart, John; Greenwald, Richard; Allen, Tom; Sareh, Pooya; Duncan, Olly (1 November 2023). "Mechanical metamaterials for sports helmets: structural mechanics, design optimisation, and performance".
2150:
Joining a slab of ENG material and slab of MNG material resulted in properties such as resonances, anomalous tunneling, transparency and zero reflection. Like negative-index materials, SNGs are innately dispersive, so their
4319:(ideally, infinite resolution). Such a behaviour is enabled by the capability of double-negative materials to yield negative phase velocity. The diffraction limit is inherent in conventional optical devices or lenses. 1488: 2352:
a non-zero value, different results appear. Either a backward wave or a forward wave can occur. Alternatively, two forward waves or two backward waves can occur, depending on the strength of the chirality parameter.
2265:
Categorizing metamaterials into double or single negative, or double positive, normally assumes that the metamaterial has independent electric and magnetic responses described by Δ and Ό. However, in many cases, the
2667: 2401: 5894:
Yang, F.B.; Zhang, Z.R.; Xu, L.J.; Liu, Z.F.; Jin, P.; Zhuang, P.F.; Lei, M.; Liu, J.R.; Jiang, J.-H.; Ouyang, X.P.; Marchesoni, F.; Huang, J.P. (2024). "Controlling mass and energy diffusion with metamaterials".
388:
From the standpoint of governing equations, contemporary researchers can classify the realm of metamaterials into three primary branches: Electromagnetic/Optical wave metamaterials, other wave metamaterials, and
3114: 2447: 1913:
do not have to be negative for a passive material to display negative refraction. Indeed, a negative refractive index for circularly polarized waves can also arise from chirality. Metamaterials with negative
6494:
Pianelli, A., Kowerdziej, R., Dudek, M., Sielezin, K., Olifierczuk, M., & Parka, J. (2020). Graphene-based hyperbolic metamaterial as a switchable reflection modulator. Optics Express, 28(5), 6708–6718.
2781: 41:
and wires mounted on interlocking sheets of fiberglass circuit board. The total array consists of 3×20×20 unit cells with overall dimensions of 10 mm × 100 mm × 100 mm (0.39 
376:
technology. In 2003, complex (both real and imaginary parts of) negative refractive index and imaging by flat lens using left handed metamaterials were demonstrated. By 2007, experiments that involved
2905: 2843: 2344:
of the wave. The effect of the chirality parameter is to split the refractive index. In isotropic media this results in wave propagation only if Δ and Ό have the same sign. In bi-isotropic media with
1319:. The middle of the visible spectrum has a wavelength of approximately 560 nm (for sunlight). Photonic crystal structures are generally half this size or smaller, that is < 280 nm. 7921:
Grebenyuk, Sergei; Abdel Fattah, Abdel Rahman; Kumar, Manoj; Toprakhisar, Burak; Rustandi, Gregorius; Vananroye, Anja; Salmon, Idris; Verfaillie, Catherine; Grillo, Mark; Ranga, Adrian (2023-01-12).
9003:
Modi, Anuj Y.; Balanis, Constantine A.; Birtcher, Craig R.; Shaman, Hussein N. (2017). "Novel Design of Ultrabroadband Radar Cross Section Reduction Surfaces Using Artificial Magnetic Conductors".
2237:
EBGs have been manufactured for frequencies ranging from a few gigahertz (GHz) to a few terahertz (THz), radio, microwave and mid-infrared frequency regions. EBG application developments include a
2026: 9622:
Guo, Rui; Decker, Manuel; Setzpfandt, Frank; Gai, Xin; Choi, Duk-Yong; Kiselev, Roman; Chipouline, Arkadi; Staude, Isabelle; Pertsch, Thomas; Neshev, Dragomir N.; Kivshar, Yuri S. (2017-07-07).
2257:. Permittivity and magnetic permeability are both positive and wave propagation is in the forward direction. Artificial materials have been fabricated which combine DPS, ENG and MNG properties. 3178: 9079:
Li, Yongfeng; Zhang, Jieqiu; Qu, Shaobo; Wang, Jiafu; Chen, Hongya; Xu, Zhuo; Zhang, Anxue (2014). "Wideband radar cross section reduction using two-dimensional phase gradient metasurfaces".
6889:
Fedotov, V. A.; Mladyonov, P. L.; Prosvirnin, S. L.; Rogacheva, A. V.; Chen, Y.; Zheludev, N. I. (2006). "Asymmetric propagation of electromagnetic waves through a planar chiral structure".
2582: 6634: 2699: 3358: 2321:
and χ or permittivity, permeability, strength of chirality, and the Tellegen parameter, respectively. In this type of media, material parameters do not vary with changes along a rotated
7836: 6700:(Proceedings of the NATO Advanced Study Institute on Photonic Crystals and Light Localization, Crete, Greece, June 18–30, 2000 ed.). London: Springer London, Limited. pp. xi. 1643: 9852:
Li, Y.; Bowler, N. (2012). "Traveling waves on three-dimensional periodic arrays of two different magnetodielectric spheres arbitrarily arranged on a simple tetragonal lattice".
2983:
is non-zero. Wave propagation properties in such chiral metamaterials demonstrate that negative refraction can be realized in metamaterials with a strong chirality and positive
8925:
Modi, A. Y.; Alyahya, M. A.; Balanis, C. A.; Birtcher, C. R. (2019). "Metasurface-Based Method for Broadband RCS Reduction of Dihedral Corner Reflectors with Multiple Bounces".
5893: 6579:
Valentine, J.; Zhang, S.; Zentgraf, T.; Ulin-Avila, E.; Genov, D. A.; Bartal, G.; Zhang, X. (2008). "Three-dimensional optical metamaterial with a negative refractive index".
3205: 3008: 1884: 1830: 1744: 1682: 1573: 1515: 1397: 1795: 6212: 1606: 1256:
effects are at higher frequencies and can be neglected. The criterion for shifting the local resonance below the lower Bragg stop-band make it possible to build a photonic
2467: 7572:
Capretti, Antonio; Wang, Yu; Engheta, Nader; Dal Negro, Luca (2015). "Enhanced third-harmonic generation in Si-compatible epsilon-near-zero indium tin oxide nanolayers".
9296:
Meng, Yuan; Chen, Yizhen; Lu, Longhui; Ding, Yimin; Cusano, Andrea; Fan, Jonathan A.; Hu, Qiaomu; Wang, Kaiyuan; Xie, Zhenwei; Liu, Zhoutian; Yang, Yuanmu (2021-11-22).
7285: 105:, acoustic, or even seismic waves: by blocking, absorbing, enhancing, or bending waves, to achieve benefits that go beyond what is possible with conventional materials. 8341:
Siddiqui, O.F.; Mo Mojahedi; Eleftheriades, G.V. (2003). "Periodically loaded transmission line with effective negative refractive index and negative group velocity".
3232: 3035: 1911: 1857: 1771: 1709: 1542: 1427: 7187:
C. Rizza; Andrea Di Falco; Michael Scalora & Alessandro Ciattoni (2015). "One-Dimensional Chirality: Strong Optical Activity in Epsilon-Near-Zero Metamaterials".
3137: 2981: 2719: 2602: 2527: 8423:
de Oliveira Neto, A. M.; Beccaro, W.; de Oliveira, A. M.; Justo, J.F. (2023). "Exploring the Internal Patterns in the Design of Ultrawideband Microwave Absorbers".
7519:
Vincenti, M. A.; De Ceglia, D.; Ciattoni, A.; Scalora, M. (2011). "Singularity-driven second- and third-harmonic generation at epsilon-near-zero crossing points".
2507: 2487: 8171:"Negative Effective Mass in Plasmonic Systems II: Elucidating the Optical and Acoustical Branches of Vibrations and the Possibility of Anti-Resonance Propagation" 5575:
Bowers J. A.; Hyde R. A. et al. "Evanescent electromagnetic wave conversion lenses I, II, III" US Patent and Trademark Office, Grant US-9081202-B2, 14 juli 2015,
4013:, but with the same density have been created. Such materials can withstand a load of at least 160,000 times their own weight by over-constraining the materials. 7682:
Kadic, Muamer; Schittny, Robert; BĂŒckmann, Tiemo; Kern, Christian; Wegener, Martin (22 June 2015). "Hall-Effect Sign Inversion in a Realizable 3D Metamaterial".
4237:
In 2007, one researcher stated that for metamaterial applications to be realized, energy loss must be reduced, materials must be extended into three-dimensional
8960:
Modi, A. Y.; Balanis, C. A.; Birtcher, C. R.; Shaman, H. (2019). "New Class of RCS-Reduction Metasurfaces Based on Scattering Cancellation Using Array Theory".
4047:. Most optical materials have a relatively weak response, meaning that their properties change by only a small amount for large changes in the intensity of the 3055: 5279: 3965:
and chirality. The bulk modulus and density are analogs of permittivity and permeability in electromagnetic metamaterials. Related to this is the mechanics of
975: 6778:
Rill, M. S.; et al. (2008-12-22). "Negative-index bianisotropic photonic metamaterial fabricated by direct laser writing and silver shadow evaporation".
5628:
AIP News, Number 628 #1, March 13 Physics Today, May 2003, Press conference at APS March Meeting, Austin, Texas, March 4, 2003, New Scientist, vol 177, p. 24.
6059: 372:
and thin wire structures. A method was provided in 2002 to realize negative-index metamaterials using artificial lumped-element loaded transmission lines in
9808: 6395: 6067: 5815: 4647: 2234:. Various geometries and structures have been proposed to fabricate EBG's special properties. In practice it is impossible to build a flawless EBG device. 2208:
bandgaps at desired frequencies. The period size of EBGs is an appreciable fraction of the wavelength, creating constructive and destructive interference.
8559:
Yu, Peng; Besteiro, Lucas V.; Huang, Yongjun; Wu, Jiang; Fu, Lan; Tan, Hark H.; Jagadish, Chennupati; Wiederrecht, Gary P.; Govorov, Alexander O. (2018).
6167:
Depine, Ricardo A.; Lakhtakia, Akhlesh (2004). "A new condition to identify isotropic dielectric-magnetic materials displaying negative phase velocity".
4625: 1336:(AMC) or High Impedance Surfaces (HIS). FSS display inductive and capacitive characteristics that are directly related to their subwavelength structure. 948: 2112:. Gyrotropic or gyromagnetic materials exhibit this characteristic. A gyrotropic material is one that has been altered by the presence of a quasistatic 6722: 5850:
Caloz, C.; Itoh, T. (2002). "Application of the transmission line theory of left-handed (LH) materials to the realization of a microstrip "LH line"".
5076:
Duncan, Olly; Shepherd, Todd; Moroney, Charlotte; Foster, Leon; Venkatraman, Praburaj D.; Winwood, Keith; Allen, Tom; Alderson, Andrew (6 June 2018).
4951: 9689:"Guided mode meta-optics: metasurface-dressed waveguides for arbitrary mode couplers and on-chip OAM emitters with a configurable topological charge" 5813:
Eleftheriades, G.V.; Iyer A.K. & Kremer, P.C. (2002). "Planar Negative Refractive Index Media Using Periodically L-C Loaded Transmission Lines".
1272:. Microwave frequency metamaterials are usually constructed as arrays of electrically conductive elements (such as loops of wire) that have suitable 960: 6950:
Plum, E.; Fedotov, V. A.; Zheludev, N. I. (2009). "Planar metamaterial with transmission and reflection that depend on the direction of incidence".
3234:
be negative for backward wave propagation. A negative refractive index due to chirality was first observed simultaneously and independently by Plum
9976: 8409: 8096: 7782:
Kern, Christian; Kadic, Muamer; Wegener, Martin (28 September 2015). "Parallel Hall effect from three-dimensional single-component metamaterials".
5977: 5940: 322:
wafer also having 50 nm lines and spaces. This super-resolved image was achieved with illumination having a wavelength of 650 nm in air.
7466:
Ciattoni, A.; Rizza, C.; Palange, E. (2010). "Extreme nonlinear electrodynamics in metamaterials with very small linear dielectric permittivity".
4554:
programs, provides training programs (including PhD and training programs for industrial partners); and technology transfer to European Industry.
4063:
Metafluids offer programmable properties such as viscosity, compressibility, and optical. One approach employed 50-500 micron diameter air-filled
10056: 8376:
Wu, B.-I.; W. Wang, J. Pacheco, X. Chen, T. Grzegorczyk and J. A. Kong; Pacheco, Joe; Chen, Xudong; Grzegorczyk, Tomasz M.; Kong, Jin Au (2005).
6642: 1439: 9750:
Flueckiger, Jonas; Schmidt, Shon; Donzella, Valentina; Sherwali, Ahmed; Ratner, Daniel M.; Chrostowski, Lukas; Cheung, Karen C. (2016-07-11).
5758: 2607: 9429:"Chip-integrated metasurface for versatile and multi-wavelength control of light couplings with independent phase and arbitrary polarization" 9114:
Yu, Nanfang; Genevet, Patrice; Kats, Mikhail A.; Aieta, Francesco; Tetienne, Jean-Philippe; Capasso, Federico; Gaburro, Zeno (October 2011).
4277:
A metamaterial absorber manipulates the loss components of metamaterials' permittivity and magnetic permeability, to absorb large amounts of
3907: 3251: 2359: 4315:
is a two or three-dimensional device that uses metamaterials, usually with negative refraction properties, to achieve resolution beyond the
7430: 4263:. Materials that can attain negative permeability allow for properties such as small antenna size, high directivity and tunable frequency. 9922: 4353:, which reduces RCS in any of various ways (e.g., absorption, diffusion, redirection). Conventionally, the RCS has been reduced either by 4289:
applications. Loss components are also relevant in applications of negative refractive index (photonic metamaterials, antenna systems) or
9194: 4854: 3063: 2915:
Handedness of metamaterials is a potential source of confusion as the metamaterial literature includes two conflicting uses of the terms
6508: 2604:
is the chiral tensor describing chiral electromagnetic and reciprocal magneto-electric response. The chiral tensor can be expressed as
2405: 1211: 980: 9687:
He, Tiantian; Meng, Yuan; Liu, Zhoutian; Hu, Futai; Wang, Rui; Li, Dan; Yan, Ping; Liu, Qiang; Gong, Mali; Xiao, Qirong (2021-11-22).
4601:
s)—composed of super-wavelength structures, such as small arrays of prisms and lenses and can operate over a broad band of frequencies
4379:
Metamaterials textured with nanoscale wrinkles could control sound or light signals, such as changing a material's color or improving
6388:"Guided Modes in a Waveguide Filled With a Pair of Single-Negative (SNG), Double-Negative (DNG), and/or Double-Positive (DPS) Layers" 2274:
polarization, while the magnetic field induces electrical polarization, known as magnetoelectric coupling. Such media are denoted as
8290:
Enoch, Stefan; Tayeb, GéRard; Sabouroux, Pierre; Guérin, Nicolas; Vincent, Patrick (2002). "A Metamaterial for Directive Emission".
2724: 4538: 990: 2927: 9240:
Rudykh, S.; Boyce, M. C. (2014). "Transforming Wave Propagation in Layered Media via Instability-Induced Interfacial Wrinkling".
8718: 2848: 2786: 10321: 9427:
Meng, Yuan; Hu, Futai; Liu, Zhoutian; Xie, Peng; Shen, Yijie; Xiao, Qirong; Fu, Xing; Bae, Sang-Hoon; Gong, Mali (2019-06-10).
9219: 4080:
or a non-Newtonian fluid. Under pressure, it becomes non-Newtonian – meaning its viscosity changes in response to shear force.
815: 9555:
Li, Zhaoyi; Kim, Myoung-Hwan; Wang, Cheng; Han, Zhaohong; Shrestha, Sajan; Overvig, Adam Christopher; Lu, Ming; Stein, Aaron;
2948: 2529:
are the two magneto-electric tensors. If the medium is reciprocal, permittivity and permeability are symmetric tensors, and
8023: 7864: 7351: 6705: 6563: 6366: 5959: 5867: 4980: 4831: 4785: 830: 825: 452: 840: 252:
began at the end of the 19th century. Some of the earliest structures that may be considered metamaterials were studied by
6295:
Zhang, S.; Park, Y.-S.; Li, J.; Lu, X.; Zhang, W.; Zhang, X. (2009). "Negative Refractive Index in Chiral Metamaterials".
1992: 10410: 10049: 4509: 4214:. Under specific conditions, the incident light couples with the surface plasmons to create self-sustaining, propagating 9896: 3142: 10169: 8909: 3998: 2078:), but not both. They act as metamaterials when combined with a different, complementary SNG, jointly acting as a DNG. 1329:, which are packets of electrical charge that collectively oscillate at the surfaces of metals at optical frequencies. 7103: 6387: 5243:. Smart Structures, Devices, and Systems II. 5649 Smart Structures, Devices, and Systems II (Poster session): 826–38. 5239:; Abbott, Derek (9 March 2005). Al-Sarawi, Said F (ed.). "T-ray sensing applications: review of global developments". 364:
et al. reported the experimental demonstration of functioning electromagnetic metamaterials by horizontally stacking,
6120: 4517: 3900: 442: 5323:
Alici, Kamil Boratay; Özbay, Ekmel (2007). "Radiation properties of a split ring resonator and monopole composite".
5290: 4435:(the refractive index). In a split ring resonator the ring and wire units act as atomic dipoles: the wire acts as a 2532: 710: 10281: 7283:
Tretyakov, S.; Sihvola, A.; JylhÀ, L. (2005). "Backward-wave regime and negative refraction in chiral composites".
4259:
that use metamaterials to improve performance. Demonstrations showed that metamaterials could enhance an antenna's
6092: 2672: 8228:
Oliveri, G.; Werner, D.H.; Massa, A. (2015). "Reconfigurable electromagnetics through metamaterials – A review".
3985:
system and the mechanical (sonic) resonance may be excited by appropriate sonic frequencies (for example audible
3314: 1400: 1241: 625: 4886:
Shelby, R. A.; Smith, D. R.; Schultz, S. (2001). "Experimental Verification of a Negative Index of Refraction".
1228:
that impinge on or interact with its structural features, which are smaller than the wavelength. To behave as a
10042: 10028: 4234:
Metamaterials are under consideration for many applications. Metamaterial antennas are commercially available.
3873: 2926:
Generally a chiral and/or bianisotropic electromagnetic response is a consequence of 3D geometrical chirality:
1204: 970: 447: 9991: 8667:
Fang, N.; Lee, H; Sun, C; Zhang, X (2005). "Sub-Diffraction-Limited Optical Imaging with a Silver Superlens".
8045:
Takayama, O.; Bogdanov, A. A., Lavrinenko, A. V. (2017). "Photonic surface waves on metamaterial interfaces".
4492:. Other component distinctions call for the use of one of these models, depending on its polarity or purpose. 1611: 1366:
and negative permeability are also known as double negative metamaterials or double negative materials (DNG).
10471: 10437: 9947:
Tretyakov, Prof. Sergei; President of the Association; Dr. Vladmir Podlozny; Secretary General (2009-12-13).
7641: 6840: 3574: 3411: 2227: 1333: 985: 690: 17: 8502: 7616: 6761: 5041:
Veselago, V. G. (1968). "The electrodynamics of substances with simultaneously negative values of Δ and Ό".
4678: 4025:
aligned internal particles or structures, such as fibers, and carbon nanotubes (CNT), are examples of this.
2143:). Two gyrotropic materials with reversed rotation directions of the two principal polarizations are called 5759:"Full-wave verification of the fundamental properties of left-handed materials in waveguide configurations" 4994: 4480:
component of the Lorentz mathematical model is small compared to the other components of the equation. The
3893: 3614: 3500: 2960: 2931: 850: 590: 457: 120:
for particular wavelengths have been the focus of a large amount of research. These materials are known as
7152:
Plum, E.; Fedotov, V. A.; Zheludev, N. I. (2009). "Extrinsic electromagnetic chirality in metamaterials".
5138: 4099:
Hall coefficient. This theoretical claim was finally experimentally demonstrated by Christian Kern et al.
580: 283:
developed materials that had similar characteristics to metamaterials. In the 1950s and 1960s, artificial
4563: 3569: 3478: 3361: 1356: 1143: 1018: 915: 890: 810: 121: 34: 9921:
U.S. Department of Defense, Office of the Assistant Secretary of Defense (Public Affairs) (2009-05-08).
8375: 5618:. 7th International Conference on Antenna Theory and Techniques ICATT’09. Lviv, Ukraine. pp. 19–24. 4143:
lies at the far end of the infrared band, just after the end of the microwave band. This corresponds to
1369:
Assuming a material well-approximated by a real permittivity and permeability, the relationship between
1332:
Frequency selective surfaces (FSS) can exhibit subwavelength characteristics and are known variously as
10442: 10378: 8845:
AlĂč, Andrea; Engheta, Nader (2005). "Achieving transparency with plasmonic and metamaterial coatings".
5525:
Zharov, Alexander A.; Zharova, Nina A.; Noskov, Roman E.; Shadrivov, Ilya V.; Kivshar, Yuri S. (2005).
4850: 4219: 2285:
Four material parameters are intrinsic to magnetoelectric coupling of bi-isotropic media. They are the
643: 361: 4043:
media, whose properties change with the power of the incident wave. Nonlinear media are essential for
3183: 2986: 1862: 1808: 1722: 1660: 1551: 1493: 1375: 329:
was the first to identify a practical way to make a left-handed metamaterial, a material in which the
10493: 10425: 10385: 6232:
Plum, E.; Zhou, J.; Dong, J.; Fedotov, V. A.; Koschny, T.; Soukoulis, C. M.; Zheludev, N. I. (2009).
5181:
Brun, M.; S. Guenneau; and A.B. Movchan (2009-02-09). "Achieving control of in-plane elastic waves".
4278: 3485: 2194: 2133: 1197: 1158: 685: 675: 615: 610: 550: 378: 354: 341:. Pendry's idea was that metallic wires aligned along the direction of a wave could provide negative 280: 109: 8266: 7737:"Experimental Evidence for Sign Reversal of the Hall Coefficient in Three-Dimensional Metamaterials" 5024: 4908: 3925: 10216: 10201: 10179: 5789: 4534: 4354: 4148: 3780: 3775: 3564: 3557: 3390: 3280: 1578: 695: 292: 243: 5078:"Review of Auxetic Materials for Sports Applications: Expanding Options in Comfort and Protection" 2452: 1128: 630: 10390: 10363: 9492:
Cheben, Pavel; Halir, Robert; Schmid, Jens H.; Atwater, Harry A.; Smith, David R. (August 2018).
8458:
Li, W.; Valentine, J. (2014). "Metamaterial Perfect Absorber Based Hot Electron Photodetection".
8230: 7248:
Wang, Bingnan; et al. (November 2009). "Chiral metamaterials: simulations and experiments".
5428:"Near-Field Optical Recording without Low-Flying Heads: Integral Near-Field Optical (INFO) Media" 4609: 4201: 4034: 3970: 3843: 3838: 3507: 1805:
The foregoing considerations are simplistic for actual materials, which must have complex-valued
1322: 1008: 535: 525: 520: 143: 7642:"Homogenization of the Three-dimensional Hall Effect and Change of Sign of the Hall Coefficient" 7448: 1133: 1103: 10498: 10400: 10395: 10368: 9926: 9172: 8827: 5426:
Guerra, John; Vezenov, Dmitri; Sullivan, Paul; Haimberger, Walter; Thulin, Lukas (2002-03-30).
4903: 4618: 4568: 4384: 4164: 4126: 3395: 3292: 1287: 955: 725: 500: 390: 199: 188: 167: 98: 8013: 7339: 6348: 4862: 4371:
Seismic metamaterials counteract the adverse effects of seismic waves on man-made structures.
3210: 3013: 1889: 1835: 1749: 1687: 1520: 1405: 10326: 10189: 10065: 9363: 9116:"Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction" 8403: 8090: 5934: 4580: 4408: 4366: 4328: 4294: 4290: 4272: 4250: 4215: 4186: 4048: 3818: 3436: 3122: 2966: 2704: 2587: 2212: 1229: 1053: 740: 730: 680: 670: 303: 269: 253: 215: 192: 184: 139: 38: 9751: 9688: 9428: 9364:"Ultra-broadband nanophotonic beamsplitter using an anisotropic sub-wavelength metamaterial" 6695: 4821: 4072:
pressure response could allow them to act as a sensor or as a dynamic hydraulic fluid. Like
2930:
metamaterials are composed by embedding 3D-chiral structures in a host medium and they show
2512: 10373: 10336: 10316: 9861: 9824: 9763: 9700: 9635: 9572: 9561:"Controlling propagation and coupling of waveguide modes using phase-gradient metasurfaces" 9505: 9440: 9385: 9309: 9249: 9127: 9088: 9012: 8969: 8864: 8756: 8676: 8623: 8517: 8467: 8432: 8350: 8299: 8182: 8123: 8054: 7934: 7844: 7801: 7748: 7701: 7581: 7538: 7485: 7411: 7376: 7304: 7257: 7206: 7161: 7118: 7066: 7019: 6969: 6908: 6855: 6797: 6737: 6588: 6453: 6404: 6354: 6304: 6258: 6135: 6076: 6014: 5914: 5824: 5773: 5651: 5548: 5497: 5439: 5392: 5332: 5244: 5201: 5150: 5050: 4960: 4895: 4708: 4662: 3656: 3473: 3453: 3441: 3385: 2231: 2125: 2117: 2056: 1978: 1281: 1225: 1178: 1078: 1043: 795: 660: 560: 545: 480: 369: 249: 9048:"A novel approach for RCS reduction using a combination of artificial magnetic conductors" 7987: 6667: 2492: 2472: 417: 8: 10430: 10405: 10276: 10233: 10111: 10106: 10086: 8529: 7269: 7186: 5485: 4469: 4388: 4260: 4140: 4132: 3997:
Structural metamaterials provide properties such as crushability and light weight. Using
3858: 3706: 3599: 3305: 2282:(which is the case for many metamaterial structures), are referred to as bi-anisotropic. 2198: 2173: 1967: 1360: 1299: 1244:). The resonance effect related to the mutual arrangement of elements is responsible for 1138: 1118: 1113: 920: 905: 790: 760: 655: 585: 346: 333:
is not followed. Such a material allows an electromagnetic wave to convey energy (have a
261: 211: 117: 9865: 9828: 9767: 9704: 9639: 9576: 9509: 9444: 9389: 9313: 9253: 9131: 9092: 9016: 8973: 8868: 8760: 8680: 8627: 8521: 8471: 8436: 8354: 8303: 8186: 8127: 8058: 7938: 7848: 7805: 7752: 7705: 7585: 7542: 7489: 7380: 7308: 7261: 7210: 7173: 7165: 7122: 7070: 7023: 6973: 6912: 6888: 6859: 6801: 6741: 6592: 6457: 6408: 6358: 6308: 6262: 6139: 6080: 6018: 5918: 5828: 5777: 5655: 5552: 5501: 5443: 5396: 5336: 5248: 5205: 5154: 5054: 4964: 4899: 4712: 4666: 1490:. All known non-metamaterial transparent materials (glass, water, ...) possess positive 10447: 10149: 9877: 9664: 9623: 9537: 9474: 9409: 9375: 9338: 9297: 9153: 9028: 8985: 8942: 8888: 8854: 8782: 8700: 8649: 8541: 8323: 8247: 8205: 8170: 8146: 8111: 8078: 7963: 7922: 7817: 7791: 7717: 7691: 7664: 7554: 7528: 7501: 7475: 7320: 7294: 7230: 7196: 6985: 6959: 6932: 6898: 6871: 6821: 6787: 6612: 6531: 6477: 6420: 6274: 6248: 6194: 6176: 6035: 6004: 5992: 5971: 5904: 5873: 5743: 5712: 5677: 5538: 5463: 5358: 5260: 5217: 5191: 5012: 4986: 4929: 4648:"Microwave transmission through a two-dimensional, isotropic, left-handed metamaterial" 4461: 4404: 4350: 4341:
was demonstrated on October 19, 2006. No practical cloaks are publicly known to exist.
4338: 4286: 4223: 3878: 3512: 3468: 3463: 3258: 3040: 2939: 1253: 1013: 753: 555: 515: 179: 30: 9813:"Traveling waves on two- and three-dimensional periodic arrays of lossless scatterers" 8907:
Next Generation Cloaking Device Demonstrated: Metamaterial renders object 'invisible'"
8722: 7736: 5852:
IEEE Antennas and Propagation Society International Symposium (IEEE Cat. No.02CH37313)
835: 10248: 10144: 10126: 9970: 9789: 9781: 9726: 9718: 9669: 9651: 9604: 9596: 9588: 9529: 9521: 9478: 9466: 9458: 9413: 9401: 9343: 9325: 9275: 9145: 8946: 8880: 8774: 8692: 8641: 8592: 8545: 8533: 8483: 8315: 8210: 8151: 8070: 8019: 7968: 7950: 7903: 7860: 7821: 7764: 7597: 7505: 7392: 7347: 7324: 7222: 7084: 7035: 7003:
Plum, E.; Liu, X.-X.; Fedotov, V. A.; Chen, Y.; Tsai, D. P.; Zheludev, N. I. (2009).
6989: 6936: 6924: 6813: 6701: 6604: 6559: 6535: 6481: 6469: 6362: 6320: 6278: 6040: 5993:"Phase diagram for the transition from photonic crystals to dielectric metamaterials" 5877: 5863: 5669: 5510: 5467: 5455: 5408: 5183: 4990: 4976: 4921: 4827: 4781: 4726: 4392: 4316: 4174: 3495: 3446: 2322: 2238: 2051:
propagating in electromagnetic metamaterials, the electric field, magnetic field and
1351:
A comparison of refraction in a left-handed metamaterial to that in a normal material
1303: 1295: 1249: 1073: 365: 288: 175: 78: 9881: 9624:"High–bit rate ultra-compact light routing with mode-selective on-chip nanoantennas" 9541: 9493: 9157: 9032: 8989: 8653: 8327: 8251: 7721: 7558: 7316: 7234: 6875: 6825: 5716: 5610: 5561: 5526: 5264: 5221: 5162: 5062: 4016:
A ceramic nanotruss metamaterial can be flattened and revert to its original state.
1964:
side of the surface normal at an interface of positive and negative index materials.
295:
were researched in the 1980s and 1990s as applications for artificial chiral media.
10415: 10331: 10291: 9952:(See the "About" section of this web site for information about this organization.) 9869: 9832: 9771: 9708: 9659: 9643: 9580: 9513: 9448: 9393: 9333: 9317: 9265: 9261: 9257: 9135: 9096: 9059: 9020: 8977: 8934: 8892: 8872: 8786: 8764: 8704: 8684: 8631: 8582: 8572: 8525: 8475: 8440: 8389: 8358: 8307: 8239: 8200: 8190: 8141: 8131: 8082: 8062: 7958: 7942: 7893: 7852: 7809: 7760: 7756: 7709: 7668: 7656: 7589: 7546: 7493: 7384: 7312: 7265: 7218: 7214: 7169: 7134: 7126: 7074: 7031: 7027: 6977: 6916: 6863: 6805: 6753: 6745: 6616: 6596: 6523: 6461: 6412: 6316: 6312: 6266: 6198: 6186: 6143: 6084: 6030: 6022: 5922: 5855: 5832: 5781: 5739: 5704: 5681: 5659: 5556: 5505: 5447: 5400: 5362: 5348: 5340: 5252: 5209: 5158: 5119: 5089: 5058: 4968: 4933: 4913: 4716: 4670: 4489: 4473: 4207: 4136: 4044: 4040: 3833: 3808: 3721: 3696: 3691: 3646: 2943: 2935: 2356:
In the general case, the constitutive relations for bi-anisotropic materials read
2326: 2241:, woodpiles made of square dielectric bars and several different types of low gain 2190: 2137: 2098: 1774: 1430: 1326: 1257: 1245: 1233: 1173: 1088: 1048: 1038: 925: 880: 863: 780: 715: 485: 409: 350: 315: 223: 203: 128: 102: 8800: 8311: 6920: 6424: 6217:
Scientific and Technical Journal of Information Technologies, Mechanics and Optics
381:
had been conducted by many groups. At microwave frequencies, the first, imperfect
10266: 10211: 10154: 10139: 8913: 8270: 7412:"New materials developed that are as light as aerogel, yet 10,000 times stronger" 6550: 5926: 5380: 4972: 4777: 4771: 4513: 4485: 4334: 4256: 4077: 3823: 3747: 3711: 3661: 3592: 3581: 3526: 3428: 2242: 2129: 2070:
Single negative (SNG) metamaterials have either negative relative permittivity (Δ
1974: 1778: 1653:. Under such circumstances, it is necessary to take the negative square root for 1339:
Electromagnetic metamaterials can be divided into different classes, as follows:
1307: 1108: 1033: 1028: 895: 770: 735: 595: 495: 382: 330: 311: 299: 276: 219: 9560: 8636: 8611: 5527:"Birefringent left-handed metamaterials and perfect lenses for vectorial fields" 4721: 4696: 1148: 10420: 10286: 10228: 10206: 9321: 8876: 8503:"Dual-band absorber for multispectral plasmon-enhanced infrared photodetection" 8501:
Yu, Peng; Wu, Jiang; Ashalley, Eric; Govorov, Alexander; Wang, Zhiming (2016).
8243: 8066: 7946: 7550: 7497: 7004: 6867: 6749: 6270: 6233: 5708: 5123: 4516:
techniques for analyzing triply-periodic electromagnetic media may be found in
4501: 4497: 4412: 4282: 4052: 3828: 3686: 3651: 3552: 3458: 2294: 2286: 2267: 2144: 2121: 2113: 1922: 1777:. Such materials are opaque for electromagnetic radiation and examples include 1068: 1063: 885: 775: 700: 650: 600: 573: 530: 505: 475: 468: 338: 334: 307: 135: 131: 9946: 9517: 8444: 7713: 7660: 5577: 3948:. As with electromagnetic waves, sonic waves can exhibit negative refraction. 2253:
Double positive mediums (DPS) do occur in nature, such as naturally occurring
27:
Materials engineered to have properties that have not yet been found in nature
10487: 10452: 10221: 10174: 10096: 9900: 9873: 9785: 9722: 9655: 9592: 9525: 9462: 9405: 9329: 9024: 8981: 8938: 8596: 8537: 7954: 7907: 7436:. Department of Mechanical Science & Engineering, University of Illinois. 6723:"Role of bianisotropy in negative permeability and left-handed metamaterials" 6416: 6383: 5859: 5836: 5484:
Guenneau, S. B.; Movchan, A.; PĂ©tursson, G.; Anantha Ramakrishna, S. (2007).
5459: 5412: 4767: 4697:"Composite Medium with Simultaneously Negative Permeability and Permittivity" 4465: 4436: 4095: 3868: 3701: 3276: 2341: 2310: 2302: 1316: 1311: 1183: 1168: 1153: 1093: 805: 720: 705: 620: 605: 510: 231: 151: 58: 54: 9360: 9140: 9115: 8906: 8769: 8744: 8688: 8362: 6721:
Marques, Ricardo; Medina, Francisco; Rafii-El-Idrissi, Rachid (2002-04-04).
6527: 6213:"Analysis of Ray Tracing Through Optical Systems with Metamaterial Elements" 5381:"Super-resolution through illumination by diffraction-born evanescent waves" 4917: 3252:
Tunable metamaterials § Frequency selective surface based metamaterials
3057:
has distinct values for left and right circularly polarized waves, given by
2032:
Negative index of refraction derives mathematically from the vector triplet
1801:
Video representing negative refraction of light at uniform planar interface.
10356: 10271: 9793: 9730: 9673: 9647: 9608: 9533: 9470: 9397: 9347: 9279: 9149: 8884: 8778: 8696: 8645: 8577: 8560: 8487: 8319: 8214: 8155: 8074: 7972: 7768: 7601: 7396: 7226: 7088: 7039: 6928: 6817: 6608: 6473: 6324: 6044: 5673: 5483: 5344: 5236: 4925: 4730: 4477: 4170: 4152: 3959: 3952: 3853: 3848: 3813: 3545: 2275: 2090: 1483:{\textstyle n=\pm {\sqrt {\varepsilon _{\mathrm {r} }\mu _{\mathrm {r} }}}} 1370: 1163: 1058: 1023: 965: 900: 820: 785: 665: 540: 342: 163: 9584: 6444:
High, A.; et al. (2015). "Visible-frequency hyperbolic metasurface".
6350:
Negative-refraction metamaterials: fundamental principles and applications
4695:
Smith, D. R.; Padilla, WJ; Vier, DC; Nemat-Nasser, SC; Schultz, S (2000).
4645: 1989:
in order to satisfy the wave number dependence on the material parameters
116:
in a manner not observed in bulk materials. Those that exhibit a negative
10351: 10346: 10238: 10116: 10101: 10091: 9837: 9812: 9776: 9556: 9453: 9064: 9047: 8859: 8394: 8377: 7593: 7299: 6809: 6666:
Chappell, William leads the IDEA laboratory at Purdue University (2005).
6630: 6116: 6060:"High-Impedance Electromagnetic Surfaces with a Forbidden Frequency Band" 5451: 4947: 4576: 4572: 4481: 4211: 4089: 3863: 3766: 2489:
are the permittivity and the permeability tensors, respectively, whereas
2279: 2177: 2140: 2052: 1650: 1083: 935: 765: 427: 326: 227: 159: 147: 82: 10034: 9270: 6903: 6600: 6465: 6181: 6026: 5812: 5543: 3119:
It can be seen that a negative index will occur for one polarization if
2662:{\displaystyle \kappa ={\tfrac {1}{3}}\operatorname {tr} (\kappa )I+N+J} 10311: 10196: 9897:"Scalable and Reconfigurable Electromagnetic Metamaterials and Devices" 8587: 8422: 8195: 8169:
Bormashenko, Edward; Legchenkova, Irina; Frenkel, Mark (January 2020).
8136: 7898: 7881: 7856: 7138: 7079: 7054: 6757: 5427: 5353: 5094: 5077: 4454: 4380: 4144: 4073: 3966: 3933: 3929: 3785: 3681: 2396:{\displaystyle \mathbf {D} =\varepsilon \mathbf {E} +\xi \mathbf {H} ,} 2254: 2169: 2048: 1291: 1269: 800: 373: 284: 198:
Metamaterial research is interdisciplinary and involves such fields as
94: 9713: 9600: 9173:"Metamaterial cloak could render buildings 'invisible' to earthquakes" 9100: 9046:
MarÃ; de Cos, Elena; Alvarez Lopez, Yuri; Las-Heras, Fernando (2010).
8479: 7813: 7130: 6981: 6190: 6147: 6088: 6057: 5963: 5785: 5256: 5213: 4674: 4488:
component is negligible and the coupling coefficient is generally the
4297:, celestial mechanics), but often are not used in these applications. 4055:
conditions that must be satisfied in any nonlinear optical structure.
1719:) direction. Electromagnetic waves cannot propagate in materials with 10341: 10159: 8721:. Office of News & Communications Duke University. Archived from 8378:"A Study of Using Metamaterials as Antenna Substrate to Enhance Gain" 7920: 7388: 5956:
Diffusionics: Diffusion Process Controlled by Diffusion Metamaterials
5404: 4819: 4604: 4447: 4306: 4238: 4064: 3978: 3757: 3752: 3586: 1277: 1265: 1123: 1098: 910: 432: 171: 101:, and arrangement give them their "smart" properties of manipulating 9220:"Wrinkled metamaterials for controlling light and sound propagation" 6495: 5664: 5639: 2089:
is positive. Many plasmas exhibit this characteristic. For example,
2062:
To date, only metamaterials exhibit a negative index of refraction.
10258: 10243: 10164: 9380: 8805: 7796: 7696: 7201: 6009: 5909: 5640:"Photonic crystals: Imaging by flat lens using negative refraction" 4823:
Metamaterials and Plasmonics: Fundamentals, Modelling, Applications
4440: 4344: 3982: 3736: 3641: 3621: 3607: 3109:{\displaystyle n=\pm {\sqrt {\varepsilon _{r}\mu _{r}}}\pm \kappa } 2963:
materials or resonators in which the effective chirality parameter
2271: 2094: 1273: 875: 870: 490: 90: 73: 9948: 7923:"Large-scale perfused tissues via synthetic 3D soft microfluidics" 7533: 7480: 6964: 6792: 6253: 6231: 5196: 10134: 9749: 7151: 7101: 6949: 4820:
Zouhdi, SaĂŻd; Ari Sihvola; Alexey P. Vinogradov (December 2008).
4586: 4068: 4010: 4006: 4002: 3490: 2442:{\displaystyle \mathbf {B} =\zeta \mathbf {E} +\mu \mathbf {H} ,} 2204: 2059:, the reverse of the behavior of conventional optical materials. 1347: 845: 265: 9045: 8340: 7518: 7052: 6578: 4646:
Shelby, R. A.; Smith D.R.; Shultz S.; Nemat-Nasser S.C. (2001).
4512:
and superlens are foundations of the metamaterial theory. Other
1981:
to phase velocity. However, for waves (energy) to propagate, a –
127:
Potential applications of metamaterials are diverse and include
10023: 7839:. In Kuzmiak, VladimĂ­r; Markos, Peter; Szoplik, Tomasz (eds.). 5425: 5180: 4468:, which describes electron motion in terms of a driven-damped, 4428: 4009:. Materials four orders of magnitude stiffer than conventional 3941: 3631: 1786: 930: 437: 298:
Negative-index materials were first described theoretically by
257: 207: 155: 10001:. Networks of Excellence Key for the future of EU research: 19 9752:"Sub-wavelength grating for enhanced ring resonator biosensor" 7367:
Page, John (2011). "Metamaterials: Neither solid nor liquid".
7055:"Giant nonlinear optical activity in a plasmonic metamaterial" 4959:. Vol. 45. Princeton University Press. pp. 191–202. 4210:, which are produced from the interaction of light with metal- 2776:{\displaystyle \operatorname {tr} (\kappa )\neq 0,N\neq 0,J=0} 9298:"Optical meta-waveguides for integrated photonics and beyond" 8745:"Metamaterial Electromagnetic Cloak at Microwave Frequencies" 8168: 7617:"Harvard's bizarre "metafluid" packs programmable properties" 6777: 6720: 6506: 6346: 5756: 4424: 3986: 3945: 3921: 3535: 2226:
EBGs are designed to prevent the propagation of an allocated
2211:
PC are distinguished from sub-wavelength structures, such as
113: 86: 65: 8742: 7571: 6697:
Photonic Crystals and Light Localization in the 21st Century
6548: 6294: 6290: 6288: 5524: 4766: 4694: 4241:
materials and production techniques must be industrialized.
8044: 7286:
Photonics and Nanostructures: Fundamentals and Applications
6227: 6225: 5486:"Acoustic metamaterials for sound focusing and confinement" 5075: 3974: 2278:. Media that exhibit magnetoelectric coupling and that are 1782: 42: 9920: 8924: 4826:. New York: Springer-Verlag. pp. 3–10, Chap. 3, 106. 4039:
Metamaterials may be fabricated that include some form of
3951:
Control of sound waves is mostly accomplished through the
2900:{\displaystyle \operatorname {tr} (\kappa )=0,N=0,J\neq 0} 2838:{\displaystyle \operatorname {tr} (\kappa )=0,N\neq 0,J=0} 9923:"DoD Awards $ 260 Million in University Research Funding" 9002: 8959: 8828:"Engineers see progress in creating 'invisibility cloak'" 8289: 8018:. Taylor & Francis, Inc. pp. 29–1, 25–14, 22–1. 7681: 6838: 6635:"Metamaterials Generate Novel Electromagnetic Properties" 6285: 4815: 4813: 4811: 4809: 4807: 4805: 4803: 4801: 4799: 4797: 4169:
Photonic metamaterial interact with optical frequencies (
3937: 3671: 1236:, its features must be much smaller than the wavelength. 108:
Appropriately designed metamaterials can affect waves of
9491: 8110:
Bormashenko, Edward; Legchenkova, Irina (January 2020).
7735:
Kern, Christian; Kadic, Muamer; Wegener, Martin (2017).
6222: 5234: 5176: 5174: 5172: 3180:. In this case, it is not necessary that either or both 7247: 6832: 5953: 5318: 5316: 5314: 5312: 5310: 5108: 4103:
magnetic field but is actually parallel to the latest.
9621: 8109: 6848:
IEEE Journal of Selected Topics in Quantum Electronics
5638:
Parimi, P. V.; Lu, W. T.; Vodo, P; Sridhar, S (2003).
4794: 4762: 4760: 3920:
Acoustic metamaterials control, direct and manipulate
2618: 1442: 248:
Explorations of artificial materials for manipulating
9195:"Invisibility cloak could hide buildings from quakes" 8719:"First Demonstration of a Working Invisibility Cloak" 7985: 7282: 6689: 6687: 6134:(June 37): 2 of 9 (originally page 38 of pp. 37–45). 5169: 4845: 4843: 4758: 4756: 4754: 4752: 4750: 4748: 4746: 4744: 4742: 4740: 4226:
make possible the effect of negative mass (density).
4173:). The sub-wavelength period distinguishes them from 4147:
and submillimeter wavelengths between the 3 mm (
4001:, microlattices can be created using forms much like 3317: 3213: 3186: 3145: 3125: 3066: 3043: 3016: 2989: 2969: 2851: 2789: 2727: 2707: 2675: 2610: 2590: 2535: 2515: 2495: 2475: 2455: 2408: 2362: 2325:
of measurements. In this sense they are invariant or
2159:
and refraction index n, are a function of frequency.
1995: 1892: 1865: 1838: 1811: 1752: 1725: 1690: 1663: 1614: 1581: 1554: 1544:. By convention the positive square root is used for 1523: 1496: 1408: 1378: 37:
array configuration, which was constructed of copper
7640:
Briane, Marc; Milton, Graeme W. (28 November 2008).
7465: 7331: 6396:
IEEE Transactions on Microwave Theory and Techniques
6115: 6109: 6068:
IEEE Transactions on Microwave Theory and Techniques
5816:
IEEE Transactions on Microwave Theory and Techniques
5307: 5289:. Telecommunications Theory (3): 4–5. Archived from 4333:
Metamaterials are a potential basis for a practical
2132:. The results of such a reflection are known as the 2021:{\displaystyle kc=\omega {\sqrt {\mu \varepsilon }}} 1960:
is negative, incident and refracted rays are on the
9989: 8500: 7994:. Vol. I & II. Wiley-VCH Verlag. p. 1 7834: 7104:"Specular optical activity of achiral metasurfaces" 7053:Ren, M.; Plum, E.; Xu, J.; Zheludev, N. I. (2012). 7005:"Metamaterials: Optical Activity without Chirality" 6552:
Metamaterials: physics and engineering explorations
6542: 6347:Eleftheriades, George V.; Keith G. Balmain (2005). 6234:"Metamaterial with negative index due to chirality" 5637: 5479: 5477: 5374: 5372: 4773:
Metamaterials: Physics and Engineering Explorations
4626:
Metamaterials: Physics and Engineering Explorations
1294:scale and manipulate light at optical frequencies. 9894: 9113: 8283: 8227: 7835:Abdeddaim, R.; Lecoq, P.; Enoch, S. (2019-04-30). 7102:Plum, E.; Fedotov, V. A.; Zheludev, N. I. (2016). 7002: 6684: 4885: 4861:. The research group of D.R. Smith. Archived from 4840: 4737: 4431:. These dipoles modify light velocity by a factor 3352: 3226: 3199: 3173:{\displaystyle {\sqrt {\varepsilon _{r}\mu _{r}}}} 3172: 3131: 3108: 3049: 3029: 3002: 2975: 2899: 2837: 2775: 2713: 2693: 2661: 2596: 2576: 2521: 2501: 2481: 2461: 2441: 2395: 2020: 1905: 1878: 1851: 1824: 1765: 1738: 1703: 1676: 1637: 1600: 1567: 1536: 1509: 1482: 1421: 1391: 1280:characteristics. Many microwave metamaterials use 8603: 8558: 8369: 7837:"Metamaterials: Opportunities in medical imaging" 5849: 4780:. pp. xv, 3–30, 37, 143–50, 215–34, 240–56. 2260: 2081:Epsilon negative media (ENG) display a negative Δ 1773:of opposite sign as the refractive index becomes 10485: 9983: 9940: 9186: 8264: 7781: 7734: 6693: 6381: 5474: 5369: 5287:2003 Technical Progress Report (NITA â€“ ITS) 4345:Radar cross-section (RCS-)reducing metamaterials 4151:band) and 0.03 mm (long-wavelength edge of 396: 310:could be made anti-parallel to the direction of 8666: 8334: 8267:"Metamaterials found to work for visible light" 6166: 6058:Sievenpiper, Dan; et al. (November 1999). 5139:"A novel metamaterial gain-waveguide nanolaser" 2230:of frequencies, for certain arrival angles and 85:of the phenomena they influence. Their precise 72:, meaning "matter" or "material") is a type of 9295: 9164: 8425:IEEE Antennas and Wireless Propagation Letters 8112:"Negative Effective Mass in Plasmonic Systems" 7241: 6714: 6549:Engheta, Nader; Richard W. Ziolkowski (2006). 5604: 5602: 5600: 5598: 5596: 5594: 5592: 5590: 5588: 5586: 2577:{\displaystyle \xi =-\zeta ^{T}=-i\kappa ^{T}} 1548:. However, some engineered metamaterials have 170:. Metamaterials offer the potential to create 10050: 9854:IEEE Transactions on Antennas and Propagation 9806: 9078: 9005:IEEE Transactions on Antennas and Propagation 8962:IEEE Transactions on Antennas and Propagation 8927:IEEE Transactions on Antennas and Propagation 8343:IEEE Transactions on Antennas and Propagation 3901: 2959:3D-chiral metamaterials are constructed from 2223:like one atom, albeit of a much larger size. 1711:are positive (negative), waves travel in the 1205: 302:in 1967. He proved that such materials could 162:and lenses for high-gain antennas, improving 9975:: CS1 maint: multiple names: authors list ( 9554: 9426: 8918: 8408:: CS1 maint: multiple names: authors list ( 8095:: CS1 maint: multiple names: authors list ( 8005: 7992:Encyclopedia of Laser Physics and Technology 7979: 7639: 7154:Journal of Optics A: Pure and Applied Optics 6572: 5976:: CS1 maint: multiple names: authors list ( 5939:: CS1 maint: multiple names: authors list ( 5730:Kock, W.E. (1948). "Metallic Delay Lenses". 4398: 2694:{\displaystyle \operatorname {tr} (\kappa )} 2104:Mu-negative media (MNG) display a positive Δ 1342: 9990:de Baas, A. F.; J. L. VallĂ©s (2007-02-11). 9686: 9239: 8996: 8660: 8457: 7649:Archive for Rational Mechanics and Analysis 6516:Journal of the Optical Society of America B 5990: 5806: 5695:Kock, W. E. (1946). "Metal-Lens Antennas". 5694: 5583: 5228: 5036: 5034: 3353:{\displaystyle J=-D{\frac {d\varphi }{dx}}} 2317:flux densities. These parameters are Δ, ÎŒ, 260:properties. Karl Ferdinand Lindman studied 174:. Such a lens can allow imaging below the 10466: 10057: 10043: 9888: 9800: 9559:; Lončar, Marko; Yu, Nanfang (July 2017). 8953: 8844: 8612:"Negative Refraction Makes a Perfect Lens" 7446: 7276: 6659: 6211:Voznesenskaya, A. and Kabanova, D. (2012) 5757:Caloz, C.; Chang, C.-C.; Itoh, T. (2001). 5729: 5322: 4508:Three conceptions- negative-index medium, 4135:frequencies, usually defined as 0.1 to 10 3908: 3894: 2332:The intrinsic magnetoelectric parameters, 1212: 1198: 416: 10064: 9992:"Success stories in the Materials domain" 9914: 9836: 9775: 9712: 9663: 9452: 9379: 9337: 9269: 9139: 9063: 8858: 8768: 8635: 8586: 8576: 8393: 8204: 8194: 8145: 8135: 7962: 7897: 7843:. Vol. 11025. SPIE. pp. 29–35. 7795: 7695: 7532: 7479: 7440: 7298: 7200: 7078: 6963: 6902: 6791: 6342: 6340: 6338: 6336: 6334: 6252: 6180: 6034: 6008: 5908: 5663: 5560: 5542: 5509: 5352: 5195: 5093: 4940: 4907: 4855:"What are Electromagnetic Metamaterials?" 4720: 4522: 2248: 1298:and frequency-selective surfaces such as 256:, who in 1898 researched substances with 45:× 3.94 in × 3.94 in). 9895:MURI metamaterials, UC Berkeley (2009). 9851: 9107: 8011: 7337: 6665: 6507:Takayama, O.; Lavrinenko, A. V. (2019). 6443: 6169:Microwave and Optical Technology Letters 5843: 5040: 5031: 4539:Defense Advanced Research Project Agency 3037:. This is because the refractive index 1791: 1638:{\displaystyle \varepsilon _{r}\mu _{r}} 1346: 1224:An electromagnetic metamaterial affects 160:high-frequency battlefield communication 29: 9845: 9170: 7879: 6639:UC Berkeley Atomic Physics Seminar 290F 6375: 6051: 5608: 4881: 4879: 4460:Several (mathematical) material models 961:Electromagnetism and special relativity 64:, meaning "beyond" or "after", and the 14: 10486: 10322:Differential technological development 9956:Metamaterials research and development 9291: 9289: 9192: 8609: 7614: 7409: 6841:"Bianisotropic photonic metamaterials" 6629: 6331: 6121:"Reversing Light: Negative Refraction" 5378: 5277: 5271: 4946: 4583:developed between the 1940s and 1970s. 2932:chirality-related polarization effects 2093:such as gold or silver are ENG in the 2074:) or negative relative permeability (ÎŒ 1918:have numerous interesting properties: 349:Δ < 0). Natural materials (such as 183:'invisibility' was demonstrated using 81:, at scales that are smaller than the 10038: 9052:Progress in Electromagnetics Research 8510:Journal of Physics D: Applied Physics 8382:Progress in Electromagnetics Research 8258: 8221: 7422: 7344:Theory and Phenomena of Metamaterials 6839:Kriegler, C. E.; et al. (2010). 6623: 6558:. Wiley & Sons. pp. 211–21. 6556:(added this reference on 2009-12-14.) 5889: 5887: 5750: 5723: 5688: 4849: 4770:; Richard W. Ziolkowski (June 2006). 4639: 4418: 4403:Metamaterials can be integrated with 4360: 4255:Metamaterial antennas are a class of 4083: 1953:) still describes refraction, but as 1232:accurately described by an effective 981:Maxwell equations in curved spacetime 168:shielding structures from earthquakes 9494:"Subwavelength integrated photonics" 8047:Journal of Physics: Condensed Matter 7366: 7360: 5278:Cotton, Micheal G. (December 2003). 5136: 4876: 4131:Terahertz metamaterials interact at 4106: 10411:Future-oriented technology analysis 9286: 7431:"Projection Microstereolithography" 5609:Slyusar, V.I. (October 6–9, 2009). 5432:Japanese Journal of Applied Physics 4688: 4349:Metamaterials have applications in 4322: 1268:, the features are on the order of 142:applications, sensor detection and 24: 10170:High-temperature superconductivity 8801:"Experts test cloaking technology" 8561:"Broadband Metamaterial Absorbers" 6694:Soukoulis, C. M., ed. (May 2001). 6509:"Optics with hyperbolic materials" 5884: 5744:10.1002/j.1538-7305.1948.tb01331.x 5612:Metamaterials on antenna solutions 4579:that came into use with the radar 4374: 4115: 3999:projection micro-stereolithography 2065: 1472: 1460: 318:in naturally occurring materials. 25: 10510: 10016: 9302:Light: Science & Applications 8905:Merritt, Richard (January 2009) " 8743:Schurig, D.; et al. (2006). 7615:Irving, Michael (April 9, 2024). 6496:https://doi.org/10.1364/OE.387065 5991:Rybin, M.V.; et al. (2015). 4575:analogues of naturally occurring 4518:Computing photonic band structure 4453:. The ring as a whole acts as an 4446:while the open section acts as a 3275:control of acoustic, elastic and 1248:, which underlies the physics of 216:microwave and antenna engineering 10465: 10282:Self-reconfiguring modular robot 10022: 9743: 9680: 9615: 9548: 9485: 9420: 9354: 9233: 9212: 9171:Johnson, R. Colin (2009-07-23). 9072: 9039: 7447:Fesenmaier, Kimm (23 May 2014). 7428: 6672:research in various technologies 5954:Yang, F.B.; Huang, J.P. (2024). 4500:can be easily obtained from the 4439:atom, while the ring acts as an 4206:Plasmonic metamaterials exploit 3200:{\displaystyle \varepsilon _{r}} 3003:{\displaystyle \varepsilon _{r}} 2432: 2421: 2410: 2386: 2375: 2364: 2128:plane can be rotated, forming a 1879:{\displaystyle \varepsilon _{r}} 1825:{\displaystyle \varepsilon _{r}} 1739:{\displaystyle \varepsilon _{r}} 1677:{\displaystyle \varepsilon _{r}} 1568:{\displaystyle \varepsilon _{r}} 1510:{\displaystyle \varepsilon _{r}} 1392:{\displaystyle \varepsilon _{r}} 272:in the early twentieth century. 8899: 8838: 8820: 8793: 8736: 8711: 8552: 8494: 8451: 8416: 8265:Costas Soukoulis (2007-01-04). 8162: 8103: 8038: 7914: 7880:Zadpoor, Amir A. (2019-12-17). 7873: 7828: 7775: 7728: 7675: 7633: 7608: 7565: 7512: 7459: 7410:Szondy, David (June 22, 2014). 7403: 7317:10.1016/j.photonics.2005.09.008 7180: 7145: 7095: 7046: 6996: 6943: 6882: 6771: 6500: 6488: 6437: 6205: 6160: 5984: 5947: 5631: 5622: 5569: 5518: 5419: 5163:10.1016/j.optlastec.2021.107202 5130: 5102: 5063:10.1070/PU1968v010n04ABEH003699 4859:Novel Electromagnetic Materials 4548: 4385:nondestructive material testing 4281:. This is a useful feature for 4229: 3973:structure. Also materials have 10175:High-temperature superfluidity 9262:10.1103/PhysRevLett.112.034301 8530:10.1088/0022-3727/49/36/365101 7986:Paschotta, RĂŒdiger (2008–18). 7761:10.1103/PhysRevLett.118.016601 7270:10.1088/1464-4258/11/11/114003 7219:10.1103/PhysRevLett.115.057401 7032:10.1103/physrevlett.102.113902 6317:10.1103/PhysRevLett.102.023901 6119:; David R. Smith (June 2004). 5379:Guerra, John M. (1995-06-26). 5112:Smart Materials and Structures 5069: 3264: 2864: 2858: 2802: 2796: 2740: 2734: 2688: 2682: 2641: 2635: 2261:Bi-isotropic and bianisotropic 1334:artificial magnetic conductors 13: 1: 10438:Technology in science fiction 9368:Laser & Photonics Reviews 8312:10.1103/PhysRevLett.89.213902 8015:Applications of Metamaterials 7174:10.1088/1464-4258/11/7/074009 6921:10.1103/PhysRevLett.97.167401 5438:(Part 1, No. 3B): 1866–1875. 5143:Optics & Laser Technology 4632: 4464:in DNGs. One of these is the 3992: 2783:), (ii) pseudochiral media ( 2162: 2136:(not to be confused with the 1601:{\displaystyle \mu _{r}<0} 986:Relativistic electromagnetism 397:Electromagnetic metamaterials 287:were studied for lightweight 9193:Barras, Colin (2009-06-26). 6219:, Volume 5, Number 12, p. 5. 5927:10.1103/RevModPhys.96.015002 5854:. Vol. 2. p. 412. 4973:10.1080/00107510410001667434 4300: 4195: 4120: 4028: 3245: 2462:{\displaystyle \varepsilon } 2176:in wavevector space forms a 122:negative-index metamaterials 7: 8637:10.1103/PhysRevLett.85.3966 5137:Awad, Ehab (October 2021). 4722:10.1103/PhysRevLett.84.4184 4557: 4266: 4244: 4158: 3286: 1357:Negative-index metamaterial 35:Negative-index metamaterial 10: 10515: 10443:Technology readiness level 10379:Technological unemployment 9322:10.1038/s41377-021-00655-x 8912:February 20, 2009, at the 8877:10.1103/PhysRevE.72.016623 8565:Advanced Optical Materials 8244:10.1109/JPROC.2015.2394292 8012:Capolino, Filippo (2009). 7947:10.1038/s41467-022-35619-1 7551:10.1103/PhysRevA.84.063826 7498:10.1103/PhysRevA.81.043839 7338:Capolino, Filippo (2009). 6868:10.1109/JSTQE.2009.2020809 6750:10.1103/PhysRevB.65.144440 6646:(Seminar – lecture series) 6271:10.1103/PhysRevB.79.035407 5709:10.1109/JRPROC.1946.232264 5511:10.1088/1367-2630/9/11/399 5280:"Applied Electromagnetics" 4423:All materials are made of 4364: 4326: 4304: 4270: 4248: 4220:surface plasmon polaritons 4218:or surface waves known as 4199: 4184: 4180: 4162: 4124: 4087: 4032: 4019: 3290: 3269: 3249: 2188: 2184: 1781:materials such as metals ( 1354: 711:LiĂ©nard–Wiechert potential 281:AT&T Bell Laboratories 241: 237: 10461: 10426:Technological singularity 10386:Technological convergence 10304: 10257: 10202:Multi-function structures 10125: 10079: 10072: 9518:10.1038/s41586-018-0421-7 8445:10.1109/LAWP.2023.3284650 7714:10.1103/PhysRevX.5.021030 7661:10.1007/s00205-008-0200-y 5562:10.1088/1367-2630/7/1/220 4399:Guided mode manipulations 4383:resolution. Uses include 4279:electromagnetic radiation 4094:In 2009, Marc Briane and 4076:, it can act as either a 4058: 3981:. Together, these form a 3977:and intrinsic degrees of 2910: 2195:Electronic band structure 2134:magneto-optic Kerr effect 1859:. The real parts of both 1343:Negative refractive index 1254:strong spatial dispersion 976:Mathematical descriptions 686:Electromagnetic radiation 676:Electromagnetic induction 616:Magnetic vector potential 611:Magnetic scalar potential 379:negative refractive index 195:are also research areas. 144:infrastructure monitoring 110:electromagnetic radiation 10217:Molecular nanotechnology 10180:Linear acetylenic carbon 9874:10.1109/tap.2012.2194637 9557:Agarwal, Anuradha Murthy 9222:. KurzweilAI. 2014-01-28 9025:10.1109/TAP.2017.2734069 8982:10.1109/TAP.2018.2878641 8939:10.1109/TAP.2019.2940494 8067:10.1088/1361-648X/aa8bdd 7988:"Photonic Metamaterials" 7346:. Taylor & Francis. 6417:10.1109/TMTT.2003.821274 5860:10.1109/APS.2002.1016111 5837:10.1109/TMTT.2002.805197 5124:10.1088/1361-665X/acfddf 4535:Office of Naval Research 4355:radar-absorbent material 3412:Clausius–Duhem (entropy) 3362:Fick's laws of diffusion 3281:mechanical metamaterials 3279:." They are also called 3227:{\displaystyle \mu _{r}} 3030:{\displaystyle \mu _{r}} 2845:), (iii) omega media ( 2348:assumed to be zero, and 1906:{\displaystyle \mu _{r}} 1852:{\displaystyle \mu _{r}} 1766:{\displaystyle \mu _{r}} 1704:{\displaystyle \mu _{r}} 1537:{\displaystyle \mu _{r}} 1422:{\displaystyle \mu _{r}} 1310:exhibit similarities to 244:History of metamaterials 185:gradient-index materials 10391:Technological evolution 10364:Exploratory engineering 9242:Physical Review Letters 9141:10.1126/science.1210713 9081:Applied Physics Letters 8770:10.1126/science.1133628 8689:10.1126/science.1108759 8616:Physical Review Letters 8363:10.1109/TAP.2003.817556 8292:Physical Review Letters 8231:Proceedings of the IEEE 7784:Applied Physics Letters 7741:Physical Review Letters 7111:Applied Physics Letters 6952:Applied Physics Letters 6891:Physical Review Letters 6528:10.1364/JOSAB.36.000F38 6297:Physical Review Letters 5958:. Singapore: Springer. 5385:Applied Physics Letters 5325:Physica Status Solidi B 4918:10.1126/science.1058847 4701:Physical Review Letters 4655:Applied Physics Letters 4527: 4476:model applies when the 4202:Plasmonic metamaterials 4035:Nonlinear metamaterials 3570:Navier–Stokes equations 3508:Material failure theory 3132:{\displaystyle \kappa } 2976:{\displaystyle \kappa } 2714:{\displaystyle \kappa } 2597:{\displaystyle \kappa } 1985:must be paired with a – 1323:Plasmonic metamaterials 526:Electrostatic induction 521:Electrostatic discharge 391:diffusion metamaterials 10401:Technology forecasting 10396:Technological paradigm 10369:Proactionary principle 9648:10.1126/sciadv.1700007 9398:10.1002/lpor.201600213 8610:Pendry, J. B. (2000). 8578:10.1002/adom.201800995 7449:"Miniature Truss Work" 6353:. Wiley. p. 340. 5531:New Journal of Physics 5490:New Journal of Physics 5345:10.1002/pssb.200674505 5235:Rainsford, Tamath J.; 4619:Metamaterials Handbook 4581:microwave technologies 4569:Artificial dielectrics 4523:Institutional networks 4510:non-reflecting crystal 4165:Photonic metamaterials 4127:Terahertz metamaterial 3354: 3293:Acoustic metamaterials 3228: 3201: 3174: 3133: 3110: 3051: 3031: 3004: 2977: 2901: 2839: 2777: 2715: 2695: 2663: 2598: 2578: 2523: 2522:{\displaystyle \zeta } 2503: 2483: 2463: 2443: 2397: 2249:Double positive medium 2022: 1907: 1880: 1853: 1826: 1802: 1767: 1740: 1705: 1678: 1639: 1608:. Because the product 1602: 1569: 1538: 1511: 1484: 1423: 1393: 1352: 1317:visible light spectrum 1290:are structured on the 1288:Photonic metamaterials 956:Electromagnetic tensor 385:was realized in 2006. 314:. This is contrary to 200:electrical engineering 46: 10327:Disruptive innovation 10190:Metamaterial cloaking 10066:Emerging technologies 9925:. DoD. Archived from 9585:10.1038/nnano.2017.50 9565:Nature Nanotechnology 7927:Nature Communications 7059:Nature Communications 5997:Nature Communications 5578:U.S. patent 9,081,202 4409:electromagnetic waves 4367:Seismic metamaterials 4329:Metamaterial cloaking 4295:metamaterial cloaking 4291:transformation optics 4273:Metamaterial absorber 4251:Metamaterial antennas 4216:electromagnetic waves 4187:Tunable metamaterials 4067:spheres suspended in 4049:electromagnetic field 3565:Bernoulli's principle 3558:Archimedes' principle 3355: 3229: 3202: 3175: 3134: 3111: 3052: 3032: 3005: 2978: 2902: 2840: 2778: 2716: 2696: 2664: 2599: 2579: 2524: 2504: 2484: 2464: 2444: 2398: 2301:field strengths, and 2213:tunable metamaterials 2189:Further information: 2023: 1970:points the other way. 1908: 1881: 1854: 1827: 1800: 1768: 1741: 1706: 1679: 1640: 1603: 1570: 1539: 1512: 1485: 1424: 1394: 1350: 1282:split-ring resonators 1226:electromagnetic waves 949:Covariant formulation 741:Synchrotron radiation 681:Electromagnetic pulse 671:Electromagnetic field 370:split-ring resonators 306:. He showed that the 254:Jagadish Chandra Bose 250:electromagnetic waves 193:seismic metamaterials 39:split-ring resonators 33: 10374:Technological change 10317:Collingridge dilemma 10031:at Wikimedia Commons 9838:10.1029/2007RS003647 9777:10.1364/OE.24.015672 9454:10.1364/OE.27.016425 9065:10.2528/PIER10060402 8395:10.2528/PIER04070701 7886:Biomaterials Science 7594:10.1364/OL.40.001500 6810:10.1364/OL.34.000019 5452:10.1143/jjap.41.1866 3657:Cohesion (chemistry) 3479:Infinitesimal strain 3315: 3211: 3184: 3143: 3123: 3064: 3041: 3014: 2987: 2967: 2849: 2787: 2725: 2705: 2673: 2608: 2588: 2533: 2513: 2502:{\displaystyle \xi } 2493: 2482:{\displaystyle \mu } 2473: 2453: 2406: 2360: 2118:magneto-optic effect 1993: 1890: 1863: 1836: 1809: 1750: 1723: 1688: 1661: 1612: 1579: 1552: 1521: 1494: 1440: 1406: 1376: 1300:diffraction gratings 1230:homogeneous material 991:Stress–energy tensor 916:Reluctance (complex) 661:Displacement current 178:that is the minimum 150:management, Lasers, 10431:Technology scouting 10406:Accelerating change 10277:Powered exoskeleton 10234:Programmable matter 10112:Smart manufacturing 10107:Molecular assembler 10087:3D microfabrication 9866:2012ITAP...60.2727L 9829:2007RaSc...42.6S21S 9768:2016OExpr..2415672F 9762:(14): 15672–15686. 9705:2021OExpr..2939406H 9699:(24): 39406–39418. 9640:2017SciA....3E0007G 9577:2017NatNa..12..675L 9510:2018Natur.560..565C 9445:2019OExpr..2716425M 9439:(12): 16425–16439. 9390:2016LPRv...10.1039H 9314:2021LSA....10..235M 9254:2014PhRvL.112c4301R 9132:2011Sci...334..333Y 9093:2014ApPhL.104v1110L 9017:2017ITAP...65.5406M 8974:2019ITAP...67..298M 8869:2005PhRvE..72a6623A 8761:2006Sci...314..977S 8681:2005Sci...308..534F 8628:2000PhRvL..85.3966P 8522:2016JPhD...49J5101Y 8472:2014NanoL..14.3510L 8437:2023IAWPL..22.2290N 8355:2003ITAP...51.2619S 8304:2002PhRvL..89u3902E 8187:2020Mate...13.3512B 8128:2020Mate...13.1890B 8059:2017JPCM...29T3001T 7939:2023NatCo..14..193G 7882:"Meta-biomaterials" 7849:2019SPIE11025E..0EA 7806:2015ApPhL.107m2103K 7753:2017PhRvL.118a6601K 7706:2015PhRvX...5b1030K 7586:2015OptL...40.1500C 7543:2011PhRvA..84f3826V 7490:2010PhRvA..81d3839C 7381:2011NatMa..10..565P 7309:2005PhNan...3..107T 7262:2009JOptA..11k4003W 7211:2015PhRvL.115e7401R 7166:2009JOptA..11g4009P 7123:2016ApPhL.108n1905P 7071:2012NatCo...3..833R 7024:2009PhRvL.102k3902P 6974:2009ApPhL..94m1901P 6913:2006PhRvL..97p7401F 6860:2010IJSTQ..16..367K 6802:2009OptL...34...19R 6742:2002PhRvB..65n4440M 6601:10.1038/nature07247 6593:2008Natur.455..376V 6466:10.1038/nature14477 6458:2015Natur.522..192H 6409:2004ITMTT..52..199A 6359:2005nmfp.book.....E 6309:2009PhRvL.102b3901Z 6263:2009PhRvB..79c5407P 6140:2004PhT....57f..37P 6081:1999ITMTT..47.2059S 6027:10.1038/ncomms10102 6019:2015NatCo...610102R 5919:2024RvMP...96a5002Y 5829:2002ITMTT..50.2702E 5778:2001JAP....90.5483C 5656:2003Natur.426..404P 5553:2005NJPh....7..220Z 5502:2007NJPh....9..399G 5444:2002JaJAP..41.1866G 5397:1995ApPhL..66.3555G 5337:2007PSSBR.244.1192A 5249:2005SPIE.5649..826R 5206:2009ApPhL..94f1903B 5155:2021OptLT.14207202A 5055:1968SvPhU..10..509V 4965:2004ConPh..45..191P 4953:Negative Refraction 4900:2001Sci...292...77S 4713:2000PhRvL..84.4184S 4667:2001ApPhL..78..489S 4470:harmonic oscillator 4389:medical diagnostics 4224:plasma oscillations 4141:Terahertz radiation 3575:Poiseuille equation 3306:Continuum mechanics 3300:Part of a series on 2949:extrinsic chirality 2199:Coupled oscillation 2181:resonance effects. 2174:dispersion relation 1968:Cherenkov radiation 1361:Negative refraction 1266:microwave radiation 906:Magnetomotive force 791:Electromotive force 761:Alternating current 696:Jefimenko equations 656:Cyclotron radiation 347:dielectric function 275:In the late 1940s, 212:solid state physics 118:index of refraction 10448:Technology roadmap 10150:Conductive polymer 8196:10.3390/ma13163512 8137:10.3390/ma13081890 7899:10.1039/C9BM01247H 7857:10.1117/12.2523340 7250:J. Opt. Soc. Am. A 7080:10.1038/ncomms1805 5732:Bell Syst. Tech. J 5095:10.3390/app8060941 4462:frequency response 4419:Theoretical models 4405:optical waveguides 4361:Seismic protection 4351:stealth technology 4339:proof of principle 4287:solar photovoltaic 4084:Hall metamaterials 3781:Magnetorheological 3776:Electrorheological 3513:Fracture mechanics 3350: 3259:frequency response 3224: 3197: 3170: 3129: 3106: 3047: 3027: 3000: 2973: 2940:circular dichroism 2897: 2835: 2773: 2711: 2691: 2659: 2627: 2594: 2574: 2519: 2499: 2479: 2459: 2439: 2393: 2018: 1973:The time-averaged 1903: 1876: 1849: 1822: 1803: 1763: 1736: 1701: 1674: 1635: 1598: 1565: 1534: 1507: 1480: 1419: 1389: 1353: 1304:dielectric mirrors 754:Electrical network 591:Gauss magnetic law 556:Static electricity 516:Electric potential 383:invisibility cloak 289:microwave antennas 164:ultrasonic sensors 79:repeating patterns 47: 10481: 10480: 10300: 10299: 10249:Synthetic diamond 10145:Artificial muscle 10127:Materials science 10027:Media related to 9958:. Metamorphose VI 9714:10.1364/OE.443186 9504:(7720): 565–572. 9101:10.1063/1.4881935 9011:(10): 5406–5417. 8480:10.1021/nl501090w 8025:978-1-4200-5423-1 7866:978-1-5106-2716-1 7841:Metamaterials XII 7814:10.1063/1.4932046 7684:Physical Review X 7353:978-1-4200-5425-5 7131:10.1063/1.4944775 6982:10.1063/1.3109780 6736:(14): 144440–41. 6730:Physical Review B 6707:978-0-7923-6948-6 6565:978-0-471-76102-0 6452:(7555): 192–196. 6382:AlĂč, Andrea and; 6368:978-0-471-60146-3 6241:Physical Review B 6191:10.1002/mop.20127 6148:10.1063/1.1784272 6089:10.1109/22.798001 5869:978-0-7803-7330-3 5786:10.1063/1.1408261 5391:(26): 3555–3557. 5257:10.1117/12.607746 5214:10.1063/1.3068491 5190:(61903): 061903. 5184:Appl. Phys. Lett. 4982:978-0-691-12347-9 4833:978-1-4020-9406-4 4787:978-0-471-76102-0 4684:on June 18, 2010. 4675:10.1063/1.1343489 4484:applies when the 4407:to tailor guided 4393:sound suppression 4317:diffraction limit 4175:photonic band gap 4107:Meta-biomaterials 3969:propagation in a 3918: 3917: 3793: 3792: 3727: 3726: 3496:Contact mechanics 3419: 3418: 3348: 3168: 3098: 3050:{\displaystyle n} 2942:. The concept of 2626: 2323:coordinate system 2239:transmission line 2172:. The material's 2158: 2154: 2111: 2107: 2099:visible spectrums 2088: 2084: 2077: 2073: 2016: 1798: 1478: 1296:Photonic crystals 1250:photonic crystals 1222: 1221: 921:Reluctance (real) 891:Gyrator–capacitor 836:Resonant cavities 726:Maxwell equations 224:material sciences 176:diffraction limit 16:(Redirected from 10506: 10494:Electromagnetism 10469: 10468: 10416:Horizon scanning 10332:Ephemeralization 10292:Uncrewed vehicle 10212:Carbon nanotubes 10077: 10076: 10059: 10052: 10045: 10036: 10035: 10026: 10010: 10009: 10007: 10006: 9996: 9987: 9981: 9980: 9974: 9966: 9964: 9963: 9953: 9944: 9938: 9937: 9935: 9934: 9929:on March 2, 2010 9918: 9912: 9911: 9909: 9908: 9899:. Archived from 9892: 9886: 9885: 9849: 9843: 9842: 9840: 9804: 9798: 9797: 9779: 9747: 9741: 9740: 9738: 9737: 9716: 9684: 9678: 9677: 9667: 9628:Science Advances 9619: 9613: 9612: 9552: 9546: 9545: 9489: 9483: 9482: 9456: 9424: 9418: 9417: 9383: 9374:(6): 1039–1046. 9358: 9352: 9351: 9341: 9293: 9284: 9283: 9273: 9237: 9231: 9230: 9228: 9227: 9216: 9210: 9209: 9207: 9206: 9190: 9184: 9183: 9181: 9180: 9168: 9162: 9161: 9143: 9111: 9105: 9104: 9076: 9070: 9069: 9067: 9043: 9037: 9036: 9000: 8994: 8993: 8957: 8951: 8950: 8922: 8916: 8903: 8897: 8896: 8862: 8860:cond-mat/0502336 8842: 8836: 8835: 8824: 8818: 8817: 8815: 8814: 8797: 8791: 8790: 8772: 8755:(5801): 977–80. 8740: 8734: 8733: 8731: 8730: 8725:on July 19, 2009 8715: 8709: 8708: 8675:(5721): 534–37. 8664: 8658: 8657: 8639: 8607: 8601: 8600: 8590: 8580: 8556: 8550: 8549: 8507: 8498: 8492: 8491: 8455: 8449: 8448: 8431:(9): 2290–2294. 8420: 8414: 8413: 8407: 8399: 8397: 8373: 8367: 8366: 8338: 8332: 8331: 8287: 8281: 8280: 8278: 8277: 8262: 8256: 8255: 8225: 8219: 8218: 8208: 8198: 8166: 8160: 8159: 8149: 8139: 8107: 8101: 8100: 8094: 8086: 8042: 8036: 8035: 8033: 8032: 8009: 8003: 8002: 8000: 7999: 7983: 7977: 7976: 7966: 7918: 7912: 7911: 7901: 7877: 7871: 7870: 7832: 7826: 7825: 7799: 7779: 7773: 7772: 7732: 7726: 7725: 7699: 7679: 7673: 7672: 7646: 7637: 7631: 7630: 7628: 7627: 7612: 7606: 7605: 7569: 7563: 7562: 7536: 7516: 7510: 7509: 7483: 7463: 7457: 7456: 7444: 7438: 7437: 7435: 7429:Fang, Nicholas. 7426: 7420: 7419: 7407: 7401: 7400: 7389:10.1038/nmat3084 7369:Nature Materials 7364: 7358: 7357: 7335: 7329: 7328: 7302: 7300:cond-mat/0509287 7280: 7274: 7273: 7245: 7239: 7238: 7204: 7184: 7178: 7177: 7149: 7143: 7142: 7108: 7099: 7093: 7092: 7082: 7050: 7044: 7043: 7009: 7000: 6994: 6993: 6967: 6947: 6941: 6940: 6906: 6886: 6880: 6879: 6845: 6836: 6830: 6829: 6795: 6775: 6769: 6768: 6767:on 20 July 2011. 6766: 6760:. Archived from 6727: 6718: 6712: 6711: 6691: 6682: 6681: 6679: 6678: 6663: 6657: 6656: 6654: 6653: 6647: 6641:. Archived from 6627: 6621: 6620: 6587:(7211): 376–79. 6576: 6570: 6569: 6557: 6546: 6540: 6539: 6513: 6504: 6498: 6492: 6486: 6485: 6441: 6435: 6434: 6432: 6431: 6392: 6386:(January 2004). 6379: 6373: 6372: 6344: 6329: 6328: 6292: 6283: 6282: 6256: 6238: 6229: 6220: 6209: 6203: 6202: 6184: 6164: 6158: 6157: 6155: 6154: 6125: 6113: 6107: 6106: 6104: 6103: 6098:on July 19, 2011 6097: 6091:. Archived from 6064: 6055: 6049: 6048: 6038: 6012: 5988: 5982: 5981: 5975: 5967: 5951: 5945: 5944: 5938: 5930: 5912: 5891: 5882: 5881: 5847: 5841: 5840: 5810: 5804: 5803: 5801: 5800: 5794: 5788:. Archived from 5763: 5754: 5748: 5747: 5727: 5721: 5720: 5692: 5686: 5685: 5667: 5635: 5629: 5626: 5620: 5619: 5617: 5606: 5581: 5580: 5573: 5567: 5566: 5564: 5546: 5522: 5516: 5515: 5513: 5481: 5472: 5471: 5423: 5417: 5416: 5405:10.1063/1.113814 5376: 5367: 5366: 5356: 5320: 5305: 5304: 5302: 5301: 5295: 5284: 5275: 5269: 5268: 5232: 5226: 5225: 5199: 5178: 5167: 5166: 5134: 5128: 5127: 5106: 5100: 5099: 5097: 5082:Applied Sciences 5073: 5067: 5066: 5038: 5029: 5028: 5022: 5018: 5016: 5008: 5006: 5005: 4999: 4993:. Archived from 4958: 4944: 4938: 4937: 4911: 4883: 4874: 4873: 4871: 4870: 4865:on July 20, 2009 4847: 4838: 4837: 4817: 4792: 4791: 4778:Wiley & Sons 4764: 4735: 4734: 4724: 4692: 4686: 4685: 4683: 4677:. Archived from 4652: 4643: 4514:first principles 4490:plasma frequency 4474:Debye relaxation 4323:Cloaking devices 4208:surface plasmons 4045:nonlinear optics 3910: 3903: 3896: 3742: 3741: 3707:Gay-Lussac's law 3697:Combined gas law 3647:Capillary action 3532: 3531: 3375: 3374: 3359: 3357: 3356: 3351: 3349: 3347: 3339: 3331: 3297: 3296: 3233: 3231: 3230: 3225: 3223: 3222: 3206: 3204: 3203: 3198: 3196: 3195: 3179: 3177: 3176: 3171: 3169: 3167: 3166: 3157: 3156: 3147: 3138: 3136: 3135: 3130: 3115: 3113: 3112: 3107: 3099: 3097: 3096: 3087: 3086: 3077: 3056: 3054: 3053: 3048: 3036: 3034: 3033: 3028: 3026: 3025: 3009: 3007: 3006: 3001: 2999: 2998: 2982: 2980: 2979: 2974: 2936:optical activity 2906: 2904: 2903: 2898: 2844: 2842: 2841: 2836: 2782: 2780: 2779: 2774: 2720: 2718: 2717: 2712: 2701:is the trace of 2700: 2698: 2697: 2692: 2668: 2666: 2665: 2660: 2628: 2619: 2603: 2601: 2600: 2595: 2583: 2581: 2580: 2575: 2573: 2572: 2554: 2553: 2528: 2526: 2525: 2520: 2508: 2506: 2505: 2500: 2488: 2486: 2485: 2480: 2468: 2466: 2465: 2460: 2448: 2446: 2445: 2440: 2435: 2424: 2413: 2402: 2400: 2399: 2394: 2389: 2378: 2367: 2203:Electromagnetic 2191:Photonic crystal 2156: 2152: 2109: 2105: 2086: 2082: 2075: 2071: 2027: 2025: 2024: 2019: 2017: 2009: 1912: 1910: 1909: 1904: 1902: 1901: 1885: 1883: 1882: 1877: 1875: 1874: 1858: 1856: 1855: 1850: 1848: 1847: 1831: 1829: 1828: 1823: 1821: 1820: 1799: 1772: 1770: 1769: 1764: 1762: 1761: 1745: 1743: 1742: 1737: 1735: 1734: 1710: 1708: 1707: 1702: 1700: 1699: 1683: 1681: 1680: 1675: 1673: 1672: 1644: 1642: 1641: 1636: 1634: 1633: 1624: 1623: 1607: 1605: 1604: 1599: 1591: 1590: 1574: 1572: 1571: 1566: 1564: 1563: 1543: 1541: 1540: 1535: 1533: 1532: 1516: 1514: 1513: 1508: 1506: 1505: 1489: 1487: 1486: 1481: 1479: 1477: 1476: 1475: 1465: 1464: 1463: 1453: 1431:refractive index 1428: 1426: 1425: 1420: 1418: 1417: 1398: 1396: 1395: 1390: 1388: 1387: 1327:surface plasmons 1308:optical coatings 1258:phase transition 1246:Bragg scattering 1234:refractive index 1214: 1207: 1200: 881:Electric machine 864:Magnetic circuit 826:Parallel circuit 816:Network analysis 781:Electric current 716:London equations 561:Triboelectricity 551:Potential energy 420: 410:Electromagnetism 401: 400: 316:wave propagation 262:wave interaction 204:electromagnetics 129:sports equipment 21: 10514: 10513: 10509: 10508: 10507: 10505: 10504: 10503: 10484: 10483: 10482: 10477: 10457: 10296: 10253: 10155:Femtotechnology 10140:Amorphous metal 10121: 10068: 10063: 10019: 10014: 10013: 10004: 10002: 9994: 9988: 9984: 9968: 9967: 9961: 9959: 9951: 9945: 9941: 9932: 9930: 9919: 9915: 9906: 9904: 9893: 9889: 9850: 9846: 9809:Yaghjian, A. D. 9805: 9801: 9748: 9744: 9735: 9733: 9685: 9681: 9634:(7): e1700007. 9620: 9616: 9553: 9549: 9490: 9486: 9425: 9421: 9359: 9355: 9294: 9287: 9238: 9234: 9225: 9223: 9218: 9217: 9213: 9204: 9202: 9191: 9187: 9178: 9176: 9169: 9165: 9126:(6054): 333–7. 9112: 9108: 9077: 9073: 9044: 9040: 9001: 8997: 8958: 8954: 8923: 8919: 8914:Wayback Machine 8904: 8900: 8843: 8839: 8826: 8825: 8821: 8812: 8810: 8799: 8798: 8794: 8741: 8737: 8728: 8726: 8717: 8716: 8712: 8665: 8661: 8622:(18): 3966–69. 8608: 8604: 8557: 8553: 8505: 8499: 8495: 8456: 8452: 8421: 8417: 8401: 8400: 8374: 8370: 8349:(10): 2619–25. 8339: 8335: 8288: 8284: 8275: 8273: 8271:Ames Laboratory 8263: 8259: 8226: 8222: 8167: 8163: 8108: 8104: 8088: 8087: 8043: 8039: 8030: 8028: 8026: 8010: 8006: 7997: 7995: 7984: 7980: 7919: 7915: 7878: 7874: 7867: 7833: 7829: 7780: 7776: 7733: 7729: 7680: 7676: 7644: 7638: 7634: 7625: 7623: 7613: 7609: 7570: 7566: 7517: 7513: 7464: 7460: 7445: 7441: 7433: 7427: 7423: 7408: 7404: 7365: 7361: 7354: 7336: 7332: 7293:(2–3): 107–15. 7281: 7277: 7246: 7242: 7189:Phys. Rev. Lett 7185: 7181: 7150: 7146: 7106: 7100: 7096: 7051: 7047: 7012:Phys. Rev. Lett 7007: 7001: 6997: 6948: 6944: 6904:physics/0604234 6887: 6883: 6843: 6837: 6833: 6776: 6772: 6764: 6725: 6719: 6715: 6708: 6692: 6685: 6676: 6674: 6668:"Metamaterials" 6664: 6660: 6651: 6649: 6645: 6628: 6624: 6577: 6573: 6566: 6555: 6547: 6543: 6511: 6505: 6501: 6493: 6489: 6442: 6438: 6429: 6427: 6390: 6380: 6376: 6369: 6345: 6332: 6293: 6286: 6236: 6230: 6223: 6210: 6206: 6182:physics/0311029 6165: 6161: 6152: 6150: 6123: 6117:Pendry, John B. 6114: 6110: 6101: 6099: 6095: 6075:(11): 2059–74. 6062: 6056: 6052: 5989: 5985: 5969: 5968: 5952: 5948: 5932: 5931: 5892: 5885: 5870: 5848: 5844: 5823:(12): 2702–12. 5811: 5807: 5798: 5796: 5792: 5761: 5755: 5751: 5728: 5724: 5693: 5689: 5665:10.1038/426404a 5636: 5632: 5627: 5623: 5615: 5607: 5584: 5576: 5574: 5570: 5544:physics/0412128 5523: 5519: 5482: 5475: 5424: 5420: 5377: 5370: 5321: 5308: 5299: 5297: 5293: 5282: 5276: 5272: 5233: 5229: 5179: 5170: 5135: 5131: 5107: 5103: 5074: 5070: 5043:Physics-Uspekhi 5039: 5032: 5020: 5019: 5010: 5009: 5003: 5001: 4997: 4983: 4956: 4948:Pendry, John B. 4945: 4941: 4909:10.1.1.119.1617 4894:(5514): 77–79. 4884: 4877: 4868: 4866: 4851:Smith, David R. 4848: 4841: 4834: 4818: 4795: 4788: 4765: 4738: 4707:(18): 4184–87. 4693: 4689: 4681: 4650: 4644: 4640: 4635: 4560: 4551: 4530: 4525: 4486:restoring force 4421: 4401: 4377: 4375:Sound filtering 4369: 4363: 4347: 4335:cloaking device 4331: 4325: 4309: 4303: 4275: 4269: 4253: 4247: 4232: 4204: 4198: 4189: 4183: 4167: 4161: 4129: 4123: 4118: 4116:Frequency bands 4109: 4092: 4086: 4061: 4037: 4031: 4022: 3995: 3924:in the form of 3914: 3885: 3884: 3883: 3803: 3795: 3794: 3748:Viscoelasticity 3739: 3729: 3728: 3716: 3666: 3662:Surface tension 3626: 3529: 3527:Fluid mechanics 3519: 3518: 3517: 3431: 3429:Solid mechanics 3421: 3420: 3372: 3364: 3340: 3332: 3330: 3316: 3313: 3312: 3295: 3289: 3272: 3267: 3254: 3248: 3218: 3214: 3212: 3209: 3208: 3191: 3187: 3185: 3182: 3181: 3162: 3158: 3152: 3148: 3146: 3144: 3141: 3140: 3124: 3121: 3120: 3092: 3088: 3082: 3078: 3076: 3065: 3062: 3061: 3042: 3039: 3038: 3021: 3017: 3015: 3012: 3011: 2994: 2990: 2988: 2985: 2984: 2968: 2965: 2964: 2913: 2850: 2847: 2846: 2788: 2785: 2784: 2726: 2723: 2722: 2706: 2703: 2702: 2674: 2671: 2670: 2617: 2609: 2606: 2605: 2589: 2586: 2585: 2568: 2564: 2549: 2545: 2534: 2531: 2530: 2514: 2511: 2510: 2494: 2491: 2490: 2474: 2471: 2470: 2454: 2451: 2450: 2431: 2420: 2409: 2407: 2404: 2403: 2385: 2374: 2363: 2361: 2358: 2357: 2263: 2251: 2201: 2187: 2165: 2145:optical isomers 2130:Faraday rotator 2068: 2066:Single negative 2008: 1994: 1991: 1990: 1975:Poynting vector 1959: 1952: 1945: 1938: 1931: 1897: 1893: 1891: 1888: 1887: 1870: 1866: 1864: 1861: 1860: 1843: 1839: 1837: 1834: 1833: 1816: 1812: 1810: 1807: 1806: 1792: 1757: 1753: 1751: 1748: 1747: 1730: 1726: 1724: 1721: 1720: 1695: 1691: 1689: 1686: 1685: 1668: 1664: 1662: 1659: 1658: 1629: 1625: 1619: 1615: 1613: 1610: 1609: 1586: 1582: 1580: 1577: 1576: 1559: 1555: 1553: 1550: 1549: 1528: 1524: 1522: 1519: 1518: 1501: 1497: 1495: 1492: 1491: 1471: 1470: 1466: 1459: 1458: 1454: 1452: 1441: 1438: 1437: 1413: 1409: 1407: 1404: 1403: 1383: 1379: 1377: 1374: 1373: 1363: 1355:Main articles: 1345: 1218: 1189: 1188: 1004: 996: 995: 951: 941: 940: 896:Induction motor 866: 856: 855: 771:Current density 756: 746: 745: 736:Poynting vector 646: 644:Electrodynamics 636: 635: 631:Right-hand rule 596:Magnetic dipole 586:Biot–Savart law 576: 566: 565: 501:Electric dipole 496:Electric charge 471: 399: 331:right-hand rule 312:Poynting vector 300:Victor Veselago 293:radar absorbers 277:Winston E. Kock 246: 240: 220:optoelectronics 136:medical devices 132:optical filters 103:electromagnetic 28: 23: 22: 15: 12: 11: 5: 10512: 10502: 10501: 10496: 10479: 10478: 10476: 10475: 10462: 10459: 10458: 10456: 10455: 10450: 10445: 10440: 10435: 10434: 10433: 10428: 10423: 10418: 10413: 10408: 10398: 10393: 10388: 10383: 10382: 10381: 10371: 10366: 10361: 10360: 10359: 10354: 10349: 10344: 10334: 10329: 10324: 10319: 10314: 10308: 10306: 10302: 10301: 10298: 10297: 10295: 10294: 10289: 10287:Swarm robotics 10284: 10279: 10274: 10269: 10263: 10261: 10255: 10254: 10252: 10251: 10246: 10241: 10236: 10231: 10229:Picotechnology 10226: 10225: 10224: 10219: 10214: 10207:Nanotechnology 10204: 10199: 10194: 10193: 10192: 10182: 10177: 10172: 10167: 10162: 10157: 10152: 10147: 10142: 10137: 10131: 10129: 10123: 10122: 10120: 10119: 10114: 10109: 10104: 10099: 10094: 10089: 10083: 10081: 10074: 10070: 10069: 10062: 10061: 10054: 10047: 10039: 10033: 10032: 10018: 10017:External links 10015: 10012: 10011: 9982: 9949:"Metamorphose" 9939: 9913: 9887: 9860:(6): 2727–39. 9844: 9807:Shore, R. A.; 9799: 9756:Optics Express 9742: 9693:Optics Express 9679: 9614: 9571:(7): 675–683. 9547: 9484: 9433:Optics Express 9419: 9353: 9285: 9232: 9211: 9185: 9163: 9106: 9087:(22): 221110. 9071: 9038: 8995: 8968:(1): 298–308. 8952: 8917: 8898: 8837: 8819: 8792: 8735: 8710: 8659: 8602: 8571:(3): 1800995. 8551: 8516:(36): 365101. 8493: 8466:(6): 3510–14. 8450: 8415: 8368: 8333: 8298:(21): 213902. 8282: 8257: 8238:(7): 1034–56. 8220: 8161: 8102: 8053:(46): 463001. 8037: 8024: 8004: 7978: 7913: 7872: 7865: 7827: 7790:(13): 132103. 7774: 7727: 7674: 7655:(3): 715–736. 7632: 7607: 7564: 7511: 7458: 7439: 7421: 7402: 7359: 7352: 7330: 7275: 7256:(11): 114003. 7240: 7179: 7144: 7117:(14): 141905. 7094: 7045: 7018:(11): 113902. 6995: 6958:(13): 131901. 6942: 6897:(16): 167401. 6881: 6831: 6780:Optics Letters 6770: 6713: 6706: 6683: 6658: 6633:(2009-04-11). 6622: 6571: 6564: 6541: 6522:(8): F38–F48. 6499: 6487: 6436: 6403:(1): 199–210. 6374: 6367: 6330: 6284: 6221: 6204: 6159: 6108: 6050: 5983: 5946: 5897:Rev. Mod. Phys 5883: 5868: 5842: 5805: 5749: 5722: 5703:(11): 828–36. 5687: 5630: 5621: 5582: 5568: 5517: 5473: 5418: 5368: 5331:(4): 1192–96. 5306: 5270: 5227: 5168: 5129: 5118:(11): 113001. 5101: 5068: 5049:(4): 509–514. 5030: 5021:|journal= 4981: 4939: 4875: 4853:(2006-06-10). 4839: 4832: 4793: 4786: 4768:Engheta, Nader 4736: 4687: 4637: 4636: 4634: 4631: 4630: 4629: 4622: 4615: 4607: 4602: 4584: 4566: 4559: 4556: 4550: 4547: 4529: 4526: 4524: 4521: 4502:Mie scattering 4498:polarizability 4420: 4417: 4413:meta-waveguide 4400: 4397: 4376: 4373: 4365:Main article: 4362: 4359: 4346: 4343: 4327:Main article: 4324: 4321: 4305:Main article: 4302: 4299: 4283:photodetection 4271:Main article: 4268: 4265: 4261:radiated power 4249:Main article: 4246: 4243: 4231: 4228: 4200:Main article: 4197: 4194: 4185:Main article: 4182: 4179: 4163:Main article: 4160: 4157: 4125:Main article: 4122: 4119: 4117: 4114: 4108: 4105: 4088:Main article: 4085: 4082: 4060: 4057: 4053:phase matching 4033:Main article: 4030: 4027: 4021: 4018: 3994: 3991: 3916: 3915: 3913: 3912: 3905: 3898: 3890: 3887: 3886: 3882: 3881: 3876: 3871: 3866: 3861: 3856: 3851: 3846: 3841: 3836: 3831: 3826: 3821: 3816: 3811: 3805: 3804: 3801: 3800: 3797: 3796: 3791: 3790: 3789: 3788: 3783: 3778: 3770: 3769: 3763: 3762: 3761: 3760: 3755: 3750: 3740: 3735: 3734: 3731: 3730: 3725: 3724: 3718: 3717: 3715: 3714: 3709: 3704: 3699: 3694: 3689: 3684: 3678: 3675: 3674: 3668: 3667: 3665: 3664: 3659: 3654: 3652:Chromatography 3649: 3644: 3638: 3635: 3634: 3628: 3627: 3625: 3624: 3605: 3604: 3603: 3584: 3572: 3567: 3555: 3542: 3539: 3538: 3530: 3525: 3524: 3521: 3520: 3516: 3515: 3510: 3505: 3504: 3503: 3493: 3488: 3483: 3482: 3481: 3476: 3466: 3461: 3456: 3451: 3450: 3449: 3439: 3433: 3432: 3427: 3426: 3423: 3422: 3417: 3416: 3415: 3414: 3406: 3405: 3401: 3400: 3399: 3398: 3393: 3388: 3380: 3379: 3373: 3370: 3369: 3366: 3365: 3360: 3346: 3343: 3338: 3335: 3329: 3326: 3323: 3320: 3309: 3308: 3302: 3301: 3291:Main article: 3288: 3285: 3271: 3268: 3266: 3263: 3250:Main article: 3247: 3244: 3221: 3217: 3194: 3190: 3165: 3161: 3155: 3151: 3128: 3117: 3116: 3105: 3102: 3095: 3091: 3085: 3081: 3075: 3072: 3069: 3046: 3024: 3020: 2997: 2993: 2972: 2912: 2909: 2896: 2893: 2890: 2887: 2884: 2881: 2878: 2875: 2872: 2869: 2866: 2863: 2860: 2857: 2854: 2834: 2831: 2828: 2825: 2822: 2819: 2816: 2813: 2810: 2807: 2804: 2801: 2798: 2795: 2792: 2772: 2769: 2766: 2763: 2760: 2757: 2754: 2751: 2748: 2745: 2742: 2739: 2736: 2733: 2730: 2710: 2690: 2687: 2684: 2681: 2678: 2658: 2655: 2652: 2649: 2646: 2643: 2640: 2637: 2634: 2631: 2625: 2622: 2616: 2613: 2593: 2571: 2567: 2563: 2560: 2557: 2552: 2548: 2544: 2541: 2538: 2518: 2498: 2478: 2458: 2438: 2434: 2430: 2427: 2423: 2419: 2416: 2412: 2392: 2388: 2384: 2381: 2377: 2373: 2370: 2366: 2268:electric field 2262: 2259: 2250: 2247: 2186: 2183: 2164: 2161: 2122:Faraday effect 2114:magnetic field 2108:and negative ÎŒ 2067: 2064: 2057:left-hand rule 2030: 2029: 2015: 2012: 2007: 2004: 2001: 1998: 1971: 1965: 1957: 1950: 1943: 1936: 1929: 1900: 1896: 1873: 1869: 1846: 1842: 1819: 1815: 1760: 1756: 1733: 1729: 1698: 1694: 1671: 1667: 1632: 1628: 1622: 1618: 1597: 1594: 1589: 1585: 1562: 1558: 1531: 1527: 1504: 1500: 1474: 1469: 1462: 1457: 1451: 1448: 1445: 1416: 1412: 1386: 1382: 1344: 1341: 1220: 1219: 1217: 1216: 1209: 1202: 1194: 1191: 1190: 1187: 1186: 1181: 1176: 1171: 1166: 1161: 1156: 1151: 1146: 1141: 1136: 1131: 1126: 1121: 1116: 1111: 1106: 1101: 1096: 1091: 1086: 1081: 1076: 1071: 1066: 1061: 1056: 1051: 1046: 1041: 1036: 1031: 1026: 1021: 1016: 1011: 1005: 1002: 1001: 998: 997: 994: 993: 988: 983: 978: 973: 971:Four-potential 968: 963: 958: 952: 947: 946: 943: 942: 939: 938: 933: 928: 923: 918: 913: 908: 903: 898: 893: 888: 886:Electric motor 883: 878: 873: 867: 862: 861: 858: 857: 854: 853: 848: 843: 841:Series circuit 838: 833: 828: 823: 818: 813: 811:Kirchhoff laws 808: 803: 798: 793: 788: 783: 778: 776:Direct current 773: 768: 763: 757: 752: 751: 748: 747: 744: 743: 738: 733: 731:Maxwell tensor 728: 723: 718: 713: 708: 703: 701:Larmor formula 698: 693: 688: 683: 678: 673: 668: 663: 658: 653: 651:Bremsstrahlung 647: 642: 641: 638: 637: 634: 633: 628: 623: 618: 613: 608: 603: 601:Magnetic field 598: 593: 588: 583: 577: 574:Magnetostatics 572: 571: 568: 567: 564: 563: 558: 553: 548: 543: 538: 533: 528: 523: 518: 513: 508: 506:Electric field 503: 498: 493: 488: 483: 478: 476:Charge density 472: 469:Electrostatics 467: 466: 463: 462: 461: 460: 455: 450: 445: 440: 435: 430: 422: 421: 413: 412: 406: 405: 404:Articles about 398: 395: 362:David R. Smith 351:ferroelectrics 339:phase velocity 337:) against its 335:group velocity 308:phase velocity 304:transmit light 268:as artificial 264:with metallic 242:Main article: 239: 236: 26: 9: 6: 4: 3: 2: 10511: 10500: 10499:Metamaterials 10497: 10495: 10492: 10491: 10489: 10474: 10473: 10464: 10463: 10460: 10454: 10453:Transhumanism 10451: 10449: 10446: 10444: 10441: 10439: 10436: 10432: 10429: 10427: 10424: 10422: 10419: 10417: 10414: 10412: 10409: 10407: 10404: 10403: 10402: 10399: 10397: 10394: 10392: 10389: 10387: 10384: 10380: 10377: 10376: 10375: 10372: 10370: 10367: 10365: 10362: 10358: 10355: 10353: 10350: 10348: 10345: 10343: 10340: 10339: 10338: 10335: 10333: 10330: 10328: 10325: 10323: 10320: 10318: 10315: 10313: 10310: 10309: 10307: 10303: 10293: 10290: 10288: 10285: 10283: 10280: 10278: 10275: 10273: 10270: 10268: 10265: 10264: 10262: 10260: 10256: 10250: 10247: 10245: 10242: 10240: 10237: 10235: 10232: 10230: 10227: 10223: 10222:Nanomaterials 10220: 10218: 10215: 10213: 10210: 10209: 10208: 10205: 10203: 10200: 10198: 10195: 10191: 10188: 10187: 10186: 10185:Metamaterials 10183: 10181: 10178: 10176: 10173: 10171: 10168: 10166: 10163: 10161: 10158: 10156: 10153: 10151: 10148: 10146: 10143: 10141: 10138: 10136: 10133: 10132: 10130: 10128: 10124: 10118: 10115: 10113: 10110: 10108: 10105: 10103: 10100: 10098: 10097:3D publishing 10095: 10093: 10090: 10088: 10085: 10084: 10082: 10080:Manufacturing 10078: 10075: 10071: 10067: 10060: 10055: 10053: 10048: 10046: 10041: 10040: 10037: 10030: 10029:Metamaterials 10025: 10021: 10020: 10000: 9993: 9986: 9978: 9972: 9957: 9950: 9943: 9928: 9924: 9917: 9903:on 2009-12-03 9902: 9898: 9891: 9883: 9879: 9875: 9871: 9867: 9863: 9859: 9855: 9848: 9839: 9834: 9830: 9826: 9823:(6): RS6S21. 9822: 9818: 9817:Radio Science 9814: 9810: 9803: 9795: 9791: 9787: 9783: 9778: 9773: 9769: 9765: 9761: 9757: 9753: 9746: 9732: 9728: 9724: 9720: 9715: 9710: 9706: 9702: 9698: 9694: 9690: 9683: 9675: 9671: 9666: 9661: 9657: 9653: 9649: 9645: 9641: 9637: 9633: 9629: 9625: 9618: 9610: 9606: 9602: 9598: 9594: 9590: 9586: 9582: 9578: 9574: 9570: 9566: 9562: 9558: 9551: 9543: 9539: 9535: 9531: 9527: 9523: 9519: 9515: 9511: 9507: 9503: 9499: 9495: 9488: 9480: 9476: 9472: 9468: 9464: 9460: 9455: 9450: 9446: 9442: 9438: 9434: 9430: 9423: 9415: 9411: 9407: 9403: 9399: 9395: 9391: 9387: 9382: 9377: 9373: 9369: 9365: 9357: 9349: 9345: 9340: 9335: 9331: 9327: 9323: 9319: 9315: 9311: 9307: 9303: 9299: 9292: 9290: 9281: 9277: 9272: 9267: 9263: 9259: 9255: 9251: 9248:(3): 034301. 9247: 9243: 9236: 9221: 9215: 9200: 9199:New Scientist 9196: 9189: 9175:. EETimes.com 9174: 9167: 9159: 9155: 9151: 9147: 9142: 9137: 9133: 9129: 9125: 9121: 9117: 9110: 9102: 9098: 9094: 9090: 9086: 9082: 9075: 9066: 9061: 9057: 9053: 9049: 9042: 9034: 9030: 9026: 9022: 9018: 9014: 9010: 9006: 8999: 8991: 8987: 8983: 8979: 8975: 8971: 8967: 8963: 8956: 8948: 8944: 8940: 8936: 8932: 8928: 8921: 8915: 8911: 8908: 8902: 8894: 8890: 8886: 8882: 8878: 8874: 8870: 8866: 8861: 8856: 8853:(1): 016623. 8852: 8848: 8841: 8833: 8829: 8823: 8808: 8807: 8802: 8796: 8788: 8784: 8780: 8776: 8771: 8766: 8762: 8758: 8754: 8750: 8746: 8739: 8724: 8720: 8714: 8706: 8702: 8698: 8694: 8690: 8686: 8682: 8678: 8674: 8670: 8663: 8655: 8651: 8647: 8643: 8638: 8633: 8629: 8625: 8621: 8617: 8613: 8606: 8598: 8594: 8589: 8584: 8579: 8574: 8570: 8566: 8562: 8555: 8547: 8543: 8539: 8535: 8531: 8527: 8523: 8519: 8515: 8511: 8504: 8497: 8489: 8485: 8481: 8477: 8473: 8469: 8465: 8461: 8454: 8446: 8442: 8438: 8434: 8430: 8426: 8419: 8411: 8405: 8396: 8391: 8387: 8383: 8379: 8372: 8364: 8360: 8356: 8352: 8348: 8344: 8337: 8329: 8325: 8321: 8317: 8313: 8309: 8305: 8301: 8297: 8293: 8286: 8272: 8268: 8261: 8253: 8249: 8245: 8241: 8237: 8233: 8232: 8224: 8216: 8212: 8207: 8202: 8197: 8192: 8188: 8184: 8180: 8176: 8172: 8165: 8157: 8153: 8148: 8143: 8138: 8133: 8129: 8125: 8121: 8117: 8113: 8106: 8098: 8092: 8084: 8080: 8076: 8072: 8068: 8064: 8060: 8056: 8052: 8048: 8041: 8027: 8021: 8017: 8016: 8008: 7993: 7989: 7982: 7974: 7970: 7965: 7960: 7956: 7952: 7948: 7944: 7940: 7936: 7932: 7928: 7924: 7917: 7909: 7905: 7900: 7895: 7891: 7887: 7883: 7876: 7868: 7862: 7858: 7854: 7850: 7846: 7842: 7838: 7831: 7823: 7819: 7815: 7811: 7807: 7803: 7798: 7793: 7789: 7785: 7778: 7770: 7766: 7762: 7758: 7754: 7750: 7747:(1): 016601. 7746: 7742: 7738: 7731: 7723: 7719: 7715: 7711: 7707: 7703: 7698: 7693: 7690:(2): 021030. 7689: 7685: 7678: 7670: 7666: 7662: 7658: 7654: 7650: 7643: 7636: 7622: 7618: 7611: 7603: 7599: 7595: 7591: 7587: 7583: 7580:(7): 1500–3. 7579: 7575: 7568: 7560: 7556: 7552: 7548: 7544: 7540: 7535: 7530: 7527:(6): 063826. 7526: 7522: 7515: 7507: 7503: 7499: 7495: 7491: 7487: 7482: 7477: 7474:(4): 043839. 7473: 7469: 7462: 7454: 7450: 7443: 7432: 7425: 7417: 7413: 7406: 7398: 7394: 7390: 7386: 7382: 7378: 7375:(8): 565–66. 7374: 7370: 7363: 7355: 7349: 7345: 7341: 7334: 7326: 7322: 7318: 7314: 7310: 7306: 7301: 7296: 7292: 7288: 7287: 7279: 7271: 7267: 7263: 7259: 7255: 7251: 7244: 7236: 7232: 7228: 7224: 7220: 7216: 7212: 7208: 7203: 7198: 7195:(5): 057401. 7194: 7190: 7183: 7175: 7171: 7167: 7163: 7160:(7): 074009. 7159: 7155: 7148: 7140: 7136: 7132: 7128: 7124: 7120: 7116: 7112: 7105: 7098: 7090: 7086: 7081: 7076: 7072: 7068: 7064: 7060: 7056: 7049: 7041: 7037: 7033: 7029: 7025: 7021: 7017: 7013: 7006: 6999: 6991: 6987: 6983: 6979: 6975: 6971: 6966: 6961: 6957: 6953: 6946: 6938: 6934: 6930: 6926: 6922: 6918: 6914: 6910: 6905: 6900: 6896: 6892: 6885: 6877: 6873: 6869: 6865: 6861: 6857: 6853: 6849: 6842: 6835: 6827: 6823: 6819: 6815: 6811: 6807: 6803: 6799: 6794: 6789: 6785: 6781: 6774: 6763: 6759: 6755: 6751: 6747: 6743: 6739: 6735: 6731: 6724: 6717: 6709: 6703: 6699: 6698: 6690: 6688: 6673: 6669: 6662: 6648:on 2010-06-27 6644: 6640: 6636: 6632: 6626: 6618: 6614: 6610: 6606: 6602: 6598: 6594: 6590: 6586: 6582: 6575: 6567: 6561: 6554: 6553: 6545: 6537: 6533: 6529: 6525: 6521: 6517: 6510: 6503: 6497: 6491: 6483: 6479: 6475: 6471: 6467: 6463: 6459: 6455: 6451: 6447: 6440: 6426: 6422: 6418: 6414: 6410: 6406: 6402: 6398: 6397: 6389: 6385: 6384:Nader Engheta 6378: 6370: 6364: 6360: 6356: 6352: 6351: 6343: 6341: 6339: 6337: 6335: 6326: 6322: 6318: 6314: 6310: 6306: 6303:(2): 023901. 6302: 6298: 6291: 6289: 6280: 6276: 6272: 6268: 6264: 6260: 6255: 6250: 6247:(3): 035407. 6246: 6242: 6235: 6228: 6226: 6218: 6214: 6208: 6200: 6196: 6192: 6188: 6183: 6178: 6175:(4): 315–16. 6174: 6170: 6163: 6149: 6145: 6141: 6137: 6133: 6129: 6128:Physics Today 6122: 6118: 6112: 6094: 6090: 6086: 6082: 6078: 6074: 6070: 6069: 6061: 6054: 6046: 6042: 6037: 6032: 6028: 6024: 6020: 6016: 6011: 6006: 6002: 5998: 5994: 5987: 5979: 5973: 5965: 5961: 5957: 5950: 5942: 5936: 5928: 5924: 5920: 5916: 5911: 5906: 5903:(1): 015002. 5902: 5898: 5890: 5888: 5879: 5875: 5871: 5865: 5861: 5857: 5853: 5846: 5838: 5834: 5830: 5826: 5822: 5818: 5817: 5809: 5795:on 2021-09-16 5791: 5787: 5783: 5779: 5775: 5771: 5767: 5766:J. Appl. Phys 5760: 5753: 5745: 5741: 5737: 5733: 5726: 5718: 5714: 5710: 5706: 5702: 5698: 5691: 5683: 5679: 5675: 5671: 5666: 5661: 5657: 5653: 5650:(6965): 404. 5649: 5645: 5641: 5634: 5625: 5614: 5613: 5605: 5603: 5601: 5599: 5597: 5595: 5593: 5591: 5589: 5587: 5579: 5572: 5563: 5558: 5554: 5550: 5545: 5540: 5536: 5532: 5528: 5521: 5512: 5507: 5503: 5499: 5495: 5491: 5487: 5480: 5478: 5469: 5465: 5461: 5457: 5453: 5449: 5445: 5441: 5437: 5433: 5429: 5422: 5414: 5410: 5406: 5402: 5398: 5394: 5390: 5386: 5382: 5375: 5373: 5364: 5360: 5355: 5350: 5346: 5342: 5338: 5334: 5330: 5326: 5319: 5317: 5315: 5313: 5311: 5296:on 2008-09-16 5292: 5288: 5281: 5274: 5266: 5262: 5258: 5254: 5250: 5246: 5242: 5238: 5231: 5223: 5219: 5215: 5211: 5207: 5203: 5198: 5193: 5189: 5186: 5185: 5177: 5175: 5173: 5164: 5160: 5156: 5152: 5148: 5144: 5140: 5133: 5125: 5121: 5117: 5113: 5105: 5096: 5091: 5087: 5083: 5079: 5072: 5064: 5060: 5056: 5052: 5048: 5044: 5037: 5035: 5026: 5014: 5000:on 2016-10-20 4996: 4992: 4988: 4984: 4978: 4974: 4970: 4966: 4962: 4955: 4954: 4949: 4943: 4935: 4931: 4927: 4923: 4919: 4915: 4910: 4905: 4901: 4897: 4893: 4889: 4882: 4880: 4864: 4860: 4856: 4852: 4846: 4844: 4835: 4829: 4825: 4824: 4816: 4814: 4812: 4810: 4808: 4806: 4804: 4802: 4800: 4798: 4789: 4783: 4779: 4775: 4774: 4769: 4763: 4761: 4759: 4757: 4755: 4753: 4751: 4749: 4747: 4745: 4743: 4741: 4732: 4728: 4723: 4718: 4714: 4710: 4706: 4702: 4698: 4691: 4680: 4676: 4672: 4668: 4664: 4660: 4656: 4649: 4642: 4638: 4628: 4627: 4623: 4621: 4620: 4616: 4614: 4612: 4611:Metamaterials 4608: 4606: 4603: 4600: 4596: 4592: 4588: 4585: 4582: 4578: 4574: 4570: 4567: 4565: 4562: 4561: 4555: 4546: 4542: 4540: 4536: 4520: 4519: 4515: 4511: 4506: 4503: 4499: 4493: 4491: 4487: 4483: 4479: 4475: 4471: 4467: 4466:Lorentz model 4463: 4458: 4456: 4452: 4449: 4445: 4442: 4438: 4437:ferroelectric 4434: 4430: 4426: 4416: 4414: 4410: 4406: 4396: 4394: 4390: 4386: 4382: 4372: 4368: 4358: 4356: 4352: 4342: 4340: 4336: 4330: 4320: 4318: 4314: 4308: 4298: 4296: 4292: 4288: 4284: 4280: 4274: 4264: 4262: 4258: 4252: 4242: 4240: 4235: 4227: 4225: 4221: 4217: 4213: 4209: 4203: 4193: 4188: 4178: 4176: 4172: 4166: 4156: 4154: 4150: 4146: 4142: 4138: 4134: 4128: 4113: 4104: 4100: 4097: 4096:Graeme Milton 4091: 4081: 4079: 4075: 4070: 4066: 4056: 4054: 4050: 4046: 4042: 4036: 4026: 4017: 4014: 4012: 4008: 4004: 4000: 3990: 3988: 3984: 3980: 3976: 3972: 3968: 3964: 3961: 3957: 3954: 3949: 3947: 3943: 3939: 3935: 3931: 3927: 3923: 3911: 3906: 3904: 3899: 3897: 3892: 3891: 3889: 3888: 3880: 3877: 3875: 3872: 3870: 3867: 3865: 3862: 3860: 3857: 3855: 3852: 3850: 3847: 3845: 3842: 3840: 3837: 3835: 3832: 3830: 3827: 3825: 3822: 3820: 3817: 3815: 3812: 3810: 3807: 3806: 3799: 3798: 3787: 3784: 3782: 3779: 3777: 3774: 3773: 3772: 3771: 3768: 3765: 3764: 3759: 3756: 3754: 3751: 3749: 3746: 3745: 3744: 3743: 3738: 3733: 3732: 3723: 3720: 3719: 3713: 3710: 3708: 3705: 3703: 3700: 3698: 3695: 3693: 3692:Charles's law 3690: 3688: 3685: 3683: 3680: 3679: 3677: 3676: 3673: 3670: 3669: 3663: 3660: 3658: 3655: 3653: 3650: 3648: 3645: 3643: 3640: 3639: 3637: 3636: 3633: 3630: 3629: 3623: 3620: 3616: 3613: 3609: 3606: 3601: 3600:non-Newtonian 3598: 3594: 3590: 3589: 3588: 3585: 3583: 3580: 3576: 3573: 3571: 3568: 3566: 3563: 3559: 3556: 3554: 3551: 3547: 3544: 3543: 3541: 3540: 3537: 3534: 3533: 3528: 3523: 3522: 3514: 3511: 3509: 3506: 3502: 3499: 3498: 3497: 3494: 3492: 3489: 3487: 3486:Compatibility 3484: 3480: 3477: 3475: 3474:Finite strain 3472: 3471: 3470: 3467: 3465: 3462: 3460: 3457: 3455: 3452: 3448: 3445: 3444: 3443: 3440: 3438: 3435: 3434: 3430: 3425: 3424: 3413: 3410: 3409: 3408: 3407: 3403: 3402: 3397: 3394: 3392: 3389: 3387: 3384: 3383: 3382: 3381: 3378:Conservations 3377: 3376: 3368: 3367: 3363: 3344: 3341: 3336: 3333: 3327: 3324: 3321: 3318: 3311: 3310: 3307: 3304: 3303: 3299: 3298: 3294: 3284: 3282: 3278: 3277:seismic waves 3262: 3260: 3253: 3243: 3241: 3237: 3219: 3215: 3192: 3188: 3163: 3159: 3153: 3149: 3126: 3103: 3100: 3093: 3089: 3083: 3079: 3073: 3070: 3067: 3060: 3059: 3058: 3044: 3022: 3018: 2995: 2991: 2970: 2962: 2957: 2954: 2950: 2945: 2941: 2937: 2933: 2929: 2924: 2922: 2918: 2908: 2894: 2891: 2888: 2885: 2882: 2879: 2876: 2873: 2870: 2867: 2861: 2855: 2852: 2832: 2829: 2826: 2823: 2820: 2817: 2814: 2811: 2808: 2805: 2799: 2793: 2790: 2770: 2767: 2764: 2761: 2758: 2755: 2752: 2749: 2746: 2743: 2737: 2731: 2728: 2708: 2685: 2679: 2676: 2656: 2653: 2650: 2647: 2644: 2638: 2632: 2629: 2623: 2620: 2614: 2611: 2591: 2569: 2565: 2561: 2558: 2555: 2550: 2546: 2542: 2539: 2536: 2516: 2496: 2476: 2456: 2436: 2428: 2425: 2417: 2414: 2390: 2382: 2379: 2371: 2368: 2354: 2351: 2347: 2343: 2340:, affect the 2339: 2335: 2330: 2328: 2324: 2320: 2316: 2314: 2308: 2306: 2300: 2298: 2292: 2290: 2283: 2281: 2277: 2273: 2269: 2258: 2256: 2246: 2244: 2240: 2235: 2233: 2232:polarizations 2229: 2224: 2220: 2216: 2214: 2209: 2206: 2200: 2196: 2192: 2182: 2179: 2175: 2171: 2160: 2148: 2146: 2142: 2139: 2135: 2131: 2127: 2123: 2119: 2116:, enabling a 2115: 2102: 2100: 2096: 2092: 2079: 2063: 2060: 2058: 2054: 2050: 2045: 2043: 2039: 2035: 2013: 2010: 2005: 2002: 1999: 1996: 1988: 1984: 1980: 1976: 1972: 1969: 1966: 1963: 1956: 1949: 1942: 1935: 1928: 1924: 1921: 1920: 1919: 1917: 1898: 1894: 1871: 1867: 1844: 1840: 1817: 1813: 1790: 1788: 1784: 1780: 1776: 1758: 1754: 1731: 1727: 1718: 1714: 1696: 1692: 1669: 1665: 1656: 1652: 1648: 1645:is positive, 1630: 1626: 1620: 1616: 1595: 1592: 1587: 1583: 1560: 1556: 1547: 1529: 1525: 1502: 1498: 1467: 1455: 1449: 1446: 1443: 1435: 1432: 1414: 1410: 1402: 1384: 1380: 1372: 1367: 1362: 1358: 1349: 1340: 1337: 1335: 1330: 1328: 1324: 1320: 1318: 1313: 1312:subwavelength 1309: 1305: 1301: 1297: 1293: 1289: 1285: 1283: 1279: 1275: 1271: 1267: 1262: 1259: 1255: 1251: 1247: 1243: 1237: 1235: 1231: 1227: 1215: 1210: 1208: 1203: 1201: 1196: 1195: 1193: 1192: 1185: 1182: 1180: 1177: 1175: 1172: 1170: 1167: 1165: 1162: 1160: 1157: 1155: 1152: 1150: 1147: 1145: 1142: 1140: 1137: 1135: 1132: 1130: 1127: 1125: 1122: 1120: 1117: 1115: 1112: 1110: 1107: 1105: 1102: 1100: 1097: 1095: 1092: 1090: 1087: 1085: 1082: 1080: 1077: 1075: 1072: 1070: 1067: 1065: 1062: 1060: 1057: 1055: 1052: 1050: 1047: 1045: 1042: 1040: 1037: 1035: 1032: 1030: 1027: 1025: 1022: 1020: 1017: 1015: 1012: 1010: 1007: 1006: 1000: 999: 992: 989: 987: 984: 982: 979: 977: 974: 972: 969: 967: 964: 962: 959: 957: 954: 953: 950: 945: 944: 937: 934: 932: 929: 927: 924: 922: 919: 917: 914: 912: 909: 907: 904: 902: 899: 897: 894: 892: 889: 887: 884: 882: 879: 877: 874: 872: 869: 868: 865: 860: 859: 852: 849: 847: 844: 842: 839: 837: 834: 832: 829: 827: 824: 822: 819: 817: 814: 812: 809: 807: 806:Joule heating 804: 802: 799: 797: 794: 792: 789: 787: 784: 782: 779: 777: 774: 772: 769: 767: 764: 762: 759: 758: 755: 750: 749: 742: 739: 737: 734: 732: 729: 727: 724: 722: 721:Lorentz force 719: 717: 714: 712: 709: 707: 704: 702: 699: 697: 694: 692: 689: 687: 684: 682: 679: 677: 674: 672: 669: 667: 664: 662: 659: 657: 654: 652: 649: 648: 645: 640: 639: 632: 629: 627: 624: 622: 621:Magnetization 619: 617: 614: 612: 609: 607: 606:Magnetic flux 604: 602: 599: 597: 594: 592: 589: 587: 584: 582: 579: 578: 575: 570: 569: 562: 559: 557: 554: 552: 549: 547: 544: 542: 539: 537: 534: 532: 529: 527: 524: 522: 519: 517: 514: 512: 511:Electric flux 509: 507: 504: 502: 499: 497: 494: 492: 489: 487: 484: 482: 479: 477: 474: 473: 470: 465: 464: 459: 456: 454: 451: 449: 448:Computational 446: 444: 441: 439: 436: 434: 431: 429: 426: 425: 424: 423: 419: 415: 414: 411: 408: 407: 403: 402: 394: 392: 386: 384: 380: 375: 371: 367: 363: 358: 356: 352: 348: 344: 340: 336: 332: 328: 323: 319: 317: 313: 309: 305: 301: 296: 294: 290: 286: 282: 278: 273: 271: 267: 263: 259: 255: 251: 245: 235: 234:engineering. 233: 232:semiconductor 229: 225: 221: 217: 213: 209: 205: 201: 196: 194: 190: 186: 181: 177: 173: 169: 165: 161: 157: 153: 152:crowd control 149: 145: 141: 137: 133: 130: 125: 123: 119: 115: 111: 106: 104: 100: 96: 92: 88: 84: 80: 75: 71: 67: 63: 60: 56: 52: 44: 40: 36: 32: 19: 18:Metamaterials 10470: 10357:Robot ethics 10272:Nanorobotics 10239:Quantum dots 10184: 10003:. Retrieved 9999:Metamorphose 9998: 9985: 9960:. Retrieved 9955: 9942: 9931:. Retrieved 9927:the original 9916: 9905:. Retrieved 9901:the original 9890: 9857: 9853: 9847: 9820: 9816: 9802: 9759: 9755: 9745: 9734:. Retrieved 9696: 9692: 9682: 9631: 9627: 9617: 9568: 9564: 9550: 9501: 9497: 9487: 9436: 9432: 9422: 9371: 9367: 9356: 9305: 9301: 9271:1721.1/85082 9245: 9241: 9235: 9224:. Retrieved 9214: 9203:. Retrieved 9198: 9188: 9177:. Retrieved 9166: 9123: 9119: 9109: 9084: 9080: 9074: 9055: 9051: 9041: 9008: 9004: 8998: 8965: 8961: 8955: 8930: 8926: 8920: 8901: 8850: 8847:Phys. Rev. E 8846: 8840: 8831: 8822: 8811:. Retrieved 8809:. 2006-10-19 8804: 8795: 8752: 8748: 8738: 8727:. Retrieved 8723:the original 8713: 8672: 8668: 8662: 8619: 8615: 8605: 8568: 8564: 8554: 8513: 8509: 8496: 8463: 8460:Nano Letters 8459: 8453: 8428: 8424: 8418: 8404:cite journal 8385: 8381: 8371: 8346: 8342: 8336: 8295: 8291: 8285: 8274:. Retrieved 8260: 8235: 8229: 8223: 8181:(16): 3512. 8178: 8174: 8164: 8119: 8115: 8105: 8091:cite journal 8050: 8046: 8040: 8029:. Retrieved 8014: 8007: 7996:. Retrieved 7991: 7981: 7930: 7926: 7916: 7892:(1): 18–38. 7889: 7885: 7875: 7840: 7830: 7787: 7783: 7777: 7744: 7740: 7730: 7687: 7683: 7677: 7652: 7648: 7635: 7624:. Retrieved 7620: 7610: 7577: 7573: 7567: 7524: 7521:Phys. Rev. A 7520: 7514: 7471: 7468:Phys. Rev. A 7467: 7461: 7452: 7442: 7424: 7415: 7405: 7372: 7368: 7362: 7343: 7340:"Chapter 32" 7333: 7290: 7284: 7278: 7253: 7249: 7243: 7192: 7188: 7182: 7157: 7153: 7147: 7114: 7110: 7097: 7062: 7058: 7048: 7015: 7011: 6998: 6955: 6951: 6945: 6894: 6890: 6884: 6851: 6847: 6834: 6786:(1): 19–21. 6783: 6779: 6773: 6762:the original 6733: 6729: 6716: 6696: 6675:. Retrieved 6671: 6661: 6650:. Retrieved 6643:the original 6638: 6625: 6584: 6580: 6574: 6551: 6544: 6519: 6515: 6502: 6490: 6449: 6445: 6439: 6428:. Retrieved 6400: 6394: 6377: 6349: 6300: 6296: 6244: 6240: 6216: 6207: 6172: 6168: 6162: 6151:. Retrieved 6131: 6127: 6111: 6100:. Retrieved 6093:the original 6072: 6066: 6053: 6000: 5996: 5986: 5955: 5949: 5935:cite journal 5900: 5896: 5851: 5845: 5820: 5814: 5808: 5797:. Retrieved 5790:the original 5769: 5765: 5752: 5735: 5731: 5725: 5700: 5696: 5690: 5647: 5643: 5633: 5624: 5611: 5571: 5534: 5530: 5520: 5493: 5489: 5435: 5431: 5421: 5388: 5384: 5328: 5324: 5298:. Retrieved 5291:the original 5286: 5273: 5240: 5230: 5187: 5182: 5146: 5142: 5132: 5115: 5111: 5104: 5085: 5081: 5071: 5046: 5042: 5002:. Retrieved 4995:the original 4952: 4942: 4891: 4887: 4867:. Retrieved 4863:the original 4858: 4822: 4772: 4704: 4700: 4690: 4679:the original 4658: 4654: 4641: 4624: 4617: 4610: 4598: 4594: 4590: 4552: 4549:Metamorphose 4543: 4531: 4507: 4494: 4478:acceleration 4459: 4450: 4443: 4432: 4427:, which are 4422: 4402: 4378: 4370: 4348: 4332: 4312: 4310: 4276: 4254: 4236: 4233: 4230:Applications 4205: 4190: 4177:structures. 4171:mid-infrared 4168: 4153:far-infrared 4130: 4110: 4101: 4093: 4062: 4038: 4023: 4015: 3996: 3962: 3960:mass density 3955: 3953:bulk modulus 3950: 3919: 3767:Smart fluids 3712:Graham's law 3618: 3611: 3596: 3582:Pascal's law 3578: 3561: 3549: 3404:Inequalities 3273: 3255: 3239: 3235: 3118: 2958: 2952: 2944:2D chirality 2925: 2921:right-handed 2920: 2916: 2914: 2355: 2349: 2345: 2337: 2333: 2331: 2318: 2312: 2304: 2296: 2288: 2284: 2276:bi-isotropic 2264: 2252: 2236: 2225: 2221: 2217: 2210: 2202: 2166: 2149: 2126:polarization 2103: 2091:noble metals 2080: 2069: 2061: 2046: 2041: 2037: 2033: 2031: 1986: 1982: 1979:antiparallel 1961: 1954: 1947: 1940: 1933: 1926: 1915: 1804: 1716: 1712: 1657:. When both 1654: 1646: 1545: 1436:is given by 1433: 1401:permeability 1371:permittivity 1368: 1364: 1338: 1331: 1321: 1286: 1263: 1242:permeability 1238: 1223: 966:Four-current 901:Linear motor 786:Electrolysis 666:Eddy current 626:Permeability 546:Polarization 541:Permittivity 387: 366:periodically 359: 343:permittivity 324: 320: 297: 291:. Microwave 274: 270:chiral media 247: 206:, classical 197: 172:super-lenses 126: 107: 77:arranged in 69: 61: 51:metamaterial 50: 48: 10421:Moore's law 10352:Neuroethics 10347:Cyberethics 10117:Utility fog 10102:Claytronics 10092:3D printing 9201:. p. 1 9058:: 147–159. 8588:1885/213159 8122:(8): 1890. 7139:10220/40854 6854:(2): 1–15. 6758:11441/59428 5496:(11): 399. 5354:11693/49278 4577:dielectrics 4573:macroscopic 4564:Metasurface 4482:Drude model 4212:dielectrics 4090:Hall effect 3786:Ferrofluids 3687:Boyle's law 3459:Hooke's law 3437:Deformation 3265:Other types 2280:anisotropic 2255:dielectrics 2178:hyperboloid 2141:Kerr effect 2053:wave vector 2049:plane waves 1923:Snell's law 1270:millimeters 936:Transformer 766:Capacitance 691:Faraday law 486:Coulomb law 428:Electricity 327:John Pendry 285:dielectrics 228:nanoscience 166:, and even 148:solar power 99:orientation 83:wavelengths 10488:Categories 10312:Automation 10197:Metal foam 10005:2009-12-13 9962:2009-12-13 9933:2009-12-08 9907:2009-12-08 9736:2023-02-22 9381:1606.03750 9308:(1): 235. 9226:2014-04-15 9205:2009-10-20 9179:2009-09-09 8832:purdue.edu 8813:2008-08-05 8729:2009-05-05 8388:: 295–28. 8276:2009-11-07 8031:2009-10-01 7998:2009-10-01 7933:(1): 193. 7797:1507.04128 7697:1503.06118 7626:2024-04-12 7202:1503.00490 6677:2009-11-23 6652:2009-12-14 6631:Pendry, JB 6430:2010-01-03 6153:2009-09-27 6102:2009-11-11 6010:1507.08901 5964:9819704863 5910:2309.04711 5799:2009-05-17 5772:(11): 11. 5537:(1): 220. 5300:2009-09-14 5241:Proc. SPIE 5149:: 107202. 5088:(6): 941. 5004:2009-08-26 4869:2009-08-19 4661:(4): 489. 4633:References 4593:material f 4455:LC circuit 4381:ultrasound 4145:millimeter 4074:cornstarch 3993:Structural 3967:sound wave 3934:ultrasonic 3930:infrasonic 3839:Gay-Lussac 3802:Scientists 3702:Fick's law 3682:Atmosphere 3501:frictional 3454:Plasticity 3442:Elasticity 3238:and Zhang 2311:magnetic ( 2303:electric ( 2295:magnetic ( 2287:electric ( 2170:anisotropy 2163:Hyperbolic 1278:capacitive 1003:Scientists 851:Waveguides 831:Resistance 801:Inductance 581:AmpĂšre law 374:microstrip 355:Swiss roll 180:resolution 53:(from the 10342:Bioethics 10160:Fullerene 9786:1094-4087 9723:1094-4087 9656:2375-2548 9593:1748-3395 9526:1476-4687 9479:189958968 9463:1094-4087 9414:126025926 9406:1863-8880 9330:2047-7538 8947:212649480 8597:2195-1071 8546:123927835 8538:0022-3727 8175:Materials 8116:Materials 7955:2041-1723 7908:2047-4849 7822:119261088 7621:New Atlas 7574:Opt. Lett 7534:1107.2354 7506:119182809 7481:1002.3321 7325:118914130 6990:118558819 6965:0812.0696 6937:119436346 6793:0809.2207 6536:149698994 6482:205243865 6279:119259753 6254:0806.0823 6003:: 10102. 5972:cite book 5878:108405740 5738:: 58–82. 5468:119544019 5460:0021-4922 5413:0003-6951 5237:D. Abbott 5197:0812.0912 5023:ignored ( 5013:cite book 4991:218544892 4904:CiteSeerX 4613:(journal) 4605:Magnonics 4448:capacitor 4313:superlens 4307:Superlens 4301:Superlens 4239:isotropic 4196:Plasmonic 4133:terahertz 4121:Terahertz 4078:Newtonian 4065:elastomer 4041:nonlinear 4029:Nonlinear 3979:stiffness 3936:waves in 3879:Truesdell 3809:Bernoulli 3758:Rheometer 3753:Rheometry 3593:Newtonian 3587:Viscosity 3337:φ 3325:− 3246:FSS based 3242:in 2009. 3216:μ 3189:ε 3160:μ 3150:ε 3127:κ 3104:κ 3101:± 3090:μ 3080:ε 3074:± 3019:μ 2992:ε 2971:κ 2928:3D-chiral 2892:≠ 2862:κ 2856:⁡ 2818:≠ 2800:κ 2794:⁡ 2756:≠ 2744:≠ 2738:κ 2732:⁡ 2709:κ 2686:κ 2680:⁡ 2639:κ 2633:⁡ 2612:κ 2592:κ 2566:κ 2559:− 2547:ζ 2543:− 2537:ξ 2517:ζ 2497:ξ 2477:μ 2457:ε 2429:μ 2418:ζ 2383:ξ 2372:ε 2228:bandwidth 2138:nonlinear 2055:follow a 2014:ε 2011:μ 2006:ω 1895:μ 1868:ε 1841:μ 1814:ε 1779:plasmonic 1775:imaginary 1755:μ 1728:ε 1693:μ 1666:ε 1627:μ 1617:ε 1584:μ 1557:ε 1526:μ 1499:ε 1468:μ 1456:ε 1450:± 1411:μ 1381:ε 1292:nanometer 1274:inductive 1159:Steinmetz 1089:Kirchhoff 1074:Jefimenko 1069:Hopkinson 1054:Helmholtz 1049:Heaviside 911:Permeance 796:Impedance 536:Insulator 531:Gauss law 481:Conductor 458:Phenomena 453:Textbooks 433:Magnetism 360:In 2000, 325:In 2000, 140:aerospace 138:, remote 10267:Domotics 10259:Robotics 10244:Silicene 10165:Graphene 9971:cite web 9882:21023639 9811:(2007). 9794:27410840 9731:34809306 9674:28776027 9609:28416817 9542:52117964 9534:30158604 9471:31252868 9348:34811345 9280:24484141 9158:10156200 9150:21885733 9033:20724998 8990:58670543 8933:(3): 1. 8910:Archived 8885:16090123 8806:BBC News 8779:17053110 8697:15845849 8654:25803316 8646:11041972 8488:24837991 8328:37505778 8320:12443413 8252:25179597 8215:32784869 8156:32316640 8075:29053474 7973:36635264 7769:28106428 7722:55414502 7602:25831369 7559:55294978 7397:21778996 7235:11708854 7227:26274441 7089:22588295 7040:19392202 6929:17155432 6876:13854440 6826:18596552 6818:19109626 6609:18690249 6474:26062510 6325:19257274 6045:26626302 5717:51658054 5697:IRE Proc 5674:14647372 5265:14374107 5222:17568906 4950:(2004). 4926:11292865 4731:10990641 4558:See also 4537:and the 4441:inductor 4267:Absorber 4257:antennas 4245:Antennas 4159:Photonic 4155:light). 3983:resonant 3737:Rheology 3642:Adhesion 3622:Pressure 3608:Buoyancy 3553:Dynamics 3391:Momentum 3287:Acoustic 2934:such as 2669:, where 2584:, where 2272:magnetic 2243:antennas 2095:infrared 1789:, ...). 1717:backward 1325:utilize 1184:Wiechert 1139:Poynting 1029:Einstein 876:DC motor 871:AC motor 706:Lenz law 491:Electret 189:Acoustic 146:, smart 91:geometry 74:material 10135:Aerogel 9862:Bibcode 9825:Bibcode 9764:Bibcode 9701:Bibcode 9665:5517110 9636:Bibcode 9601:1412777 9573:Bibcode 9506:Bibcode 9441:Bibcode 9386:Bibcode 9339:8608813 9310:Bibcode 9250:Bibcode 9128:Bibcode 9120:Science 9089:Bibcode 9013:Bibcode 8970:Bibcode 8893:6004609 8865:Bibcode 8787:8387554 8757:Bibcode 8749:Science 8705:1085807 8677:Bibcode 8669:Science 8624:Bibcode 8518:Bibcode 8468:Bibcode 8433:Bibcode 8351:Bibcode 8300:Bibcode 8269:. DOE / 8206:7476018 8183:Bibcode 8147:7215794 8124:Bibcode 8083:1528860 8055:Bibcode 7964:9837048 7935:Bibcode 7845:Bibcode 7802:Bibcode 7749:Bibcode 7702:Bibcode 7669:9367952 7582:Bibcode 7539:Bibcode 7486:Bibcode 7453:Caltech 7377:Bibcode 7305:Bibcode 7258:Bibcode 7207:Bibcode 7162:Bibcode 7119:Bibcode 7067:Bibcode 7065:: 833. 7020:Bibcode 6970:Bibcode 6909:Bibcode 6856:Bibcode 6798:Bibcode 6738:Bibcode 6617:4314138 6589:Bibcode 6454:Bibcode 6405:Bibcode 6355:Bibcode 6305:Bibcode 6259:Bibcode 6199:6072651 6136:Bibcode 6077:Bibcode 6036:4686770 6015:Bibcode 5915:Bibcode 5825:Bibcode 5774:Bibcode 5682:4411307 5652:Bibcode 5549:Bibcode 5498:Bibcode 5440:Bibcode 5393:Bibcode 5363:5348103 5333:Bibcode 5245:Bibcode 5202:Bibcode 5151:Bibcode 5051:Bibcode 4961:Bibcode 4934:9321456 4896:Bibcode 4888:Science 4709:Bibcode 4663:Bibcode 4587:METATOY 4429:dipoles 4222:. Bulk 4181:Tunable 4069:silicon 4020:Thermal 4011:aerogel 4007:girders 4003:trusses 3971:lattice 3942:liquids 3824:Charles 3632:Liquids 3546:Statics 3491:Bending 3270:Elastic 2270:causes 2205:bandgap 2185:Bandgap 2085:while ÎŒ 1713:forward 1169:Thomson 1144:Ritchie 1134:Poisson 1119:Neumann 1114:Maxwell 1109:Lorentz 1104:LiĂ©nard 1034:Faraday 1019:Coulomb 846:Voltage 821:Ohm law 443:History 266:helices 238:History 156:radomes 70:materia 10337:Ethics 10305:Topics 10073:Fields 9880:  9792:  9784:  9729:  9721:  9672:  9662:  9654:  9607:  9599:  9591:  9540:  9532:  9524:  9498:Nature 9477:  9469:  9461:  9412:  9404:  9346:  9336:  9328:  9278:  9156:  9148:  9031:  8988:  8945:  8891:  8883:  8785:  8777:  8703:  8695:  8652:  8644:  8595:  8544:  8536:  8486:  8326:  8318:  8250:  8213:  8203:  8154:  8144:  8081:  8073:  8022:  7971:  7961:  7953:  7906:  7863:  7820:  7767:  7720:  7667:  7600:  7557:  7504:  7416:Gizmag 7395:  7350:  7323:  7233:  7225:  7087:  7038:  6988:  6935:  6927:  6874:  6824:  6816:  6704:  6615:  6607:  6581:Nature 6562:  6534:  6480:  6472:  6446:Nature 6425:234001 6423:  6365:  6323:  6277:  6197:  6043:  6033:  5962:  5876:  5866:  5715:  5680:  5672:  5644:Nature 5466:  5458:  5411:  5361:  5263:  5220:  4989:  4979:  4932:  4924:  4906:  4830:  4784:  4729:  4472:. The 4337:. The 4059:Liquid 3987:pulses 3946:solids 3874:Stokes 3869:Pascal 3859:Navier 3854:Newton 3844:Graham 3819:Cauchy 3722:Plasma 3617:  3615:Mixing 3610:  3595:  3577:  3560:  3548:  3536:Fluids 3469:Strain 3464:Stress 3447:linear 3396:Energy 3240:et al. 3236:et al. 2961:chiral 2953:et al. 2911:Chiral 2449:where 2327:scalar 2197:, and 2124:: the 1787:silver 1154:Singer 1149:Savart 1129:Ørsted 1094:Larmor 1084:Kelvin 1039:Fizeau 1009:AmpĂšre 931:Stator 438:Optics 258:chiral 208:optics 9995:(PDF) 9878:S2CID 9538:S2CID 9475:S2CID 9410:S2CID 9376:arXiv 9154:S2CID 9029:S2CID 8986:S2CID 8943:S2CID 8889:S2CID 8855:arXiv 8783:S2CID 8701:S2CID 8650:S2CID 8542:S2CID 8506:(PDF) 8324:S2CID 8248:S2CID 8079:S2CID 7818:S2CID 7792:arXiv 7718:S2CID 7692:arXiv 7665:S2CID 7645:(PDF) 7555:S2CID 7529:arXiv 7502:S2CID 7476:arXiv 7434:(PDF) 7321:S2CID 7295:arXiv 7231:S2CID 7197:arXiv 7107:(PDF) 7008:(PDF) 6986:S2CID 6960:arXiv 6933:S2CID 6899:arXiv 6872:S2CID 6844:(PDF) 6822:S2CID 6788:arXiv 6765:(PDF) 6726:(PDF) 6613:S2CID 6532:S2CID 6512:(PDF) 6478:S2CID 6421:S2CID 6391:(PDF) 6275:S2CID 6249:arXiv 6237:(PDF) 6195:S2CID 6177:arXiv 6124:(PDF) 6096:(PDF) 6063:(PDF) 6005:arXiv 5905:arXiv 5874:S2CID 5793:(PDF) 5762:(PDF) 5713:S2CID 5678:S2CID 5616:(PDF) 5539:arXiv 5464:S2CID 5359:S2CID 5294:(PDF) 5283:(PDF) 5261:S2CID 5218:S2CID 5192:arXiv 4998:(PDF) 4987:S2CID 4957:(PDF) 4930:S2CID 4682:(PDF) 4651:(PDF) 4425:atoms 3938:gases 3926:sonic 3922:sound 3849:Hooke 3829:Euler 3814:Boyle 3672:Gases 3139:> 2917:left- 2509:and 2342:phase 1179:Weber 1174:Volta 1164:Tesla 1079:Joule 1064:Hertz 1059:Henry 1044:Gauss 926:Rotor 279:from 114:sound 87:shape 68:word 66:Latin 57:word 55:Greek 10472:List 9977:link 9790:PMID 9782:ISSN 9727:PMID 9719:ISSN 9670:PMID 9652:ISSN 9605:PMID 9597:OSTI 9589:ISSN 9530:PMID 9522:ISSN 9467:PMID 9459:ISSN 9402:ISSN 9344:PMID 9326:ISSN 9276:PMID 9146:PMID 8881:PMID 8775:PMID 8693:PMID 8642:PMID 8593:ISSN 8534:ISSN 8484:PMID 8410:link 8316:PMID 8211:PMID 8152:PMID 8097:link 8071:PMID 8020:ISBN 7969:PMID 7951:ISSN 7904:ISSN 7861:ISBN 7765:PMID 7598:PMID 7393:PMID 7348:ISBN 7223:PMID 7085:PMID 7036:PMID 6925:PMID 6814:PMID 6702:ISBN 6605:PMID 6560:ISBN 6470:PMID 6363:ISBN 6321:PMID 6041:PMID 5978:link 5960:ASIN 5941:link 5864:ISBN 5670:PMID 5456:ISSN 5409:ISSN 5025:help 4977:ISBN 4922:PMID 4828:ISBN 4782:ISBN 4727:PMID 4597:r ra 4591:Meta 4528:MURI 4391:and 4285:and 4005:and 3975:mass 3944:and 3864:Noll 3834:Fick 3386:Mass 3371:Laws 3207:and 3010:and 2938:and 2919:and 2469:and 2336:and 2309:and 2293:and 2097:and 2047:For 2040:and 1962:same 1886:and 1832:and 1783:gold 1746:and 1684:and 1651:real 1593:< 1575:and 1517:and 1429:and 1359:and 1306:and 1276:and 1264:For 1099:Lenz 1024:Davy 1014:Biot 230:and 191:and 95:size 62:meta 59:ÎŒÎ”Ï„ÎŹ 9870:doi 9833:doi 9772:doi 9709:doi 9660:PMC 9644:doi 9581:doi 9514:doi 9502:560 9449:doi 9394:doi 9334:PMC 9318:doi 9266:hdl 9258:doi 9246:112 9136:doi 9124:334 9097:doi 9085:104 9060:doi 9056:107 9021:doi 8978:doi 8935:doi 8873:doi 8765:doi 8753:314 8685:doi 8673:308 8632:doi 8583:hdl 8573:doi 8526:doi 8476:doi 8441:doi 8390:doi 8359:doi 8308:doi 8240:doi 8236:103 8201:PMC 8191:doi 8142:PMC 8132:doi 8063:doi 7959:PMC 7943:doi 7894:doi 7853:doi 7810:doi 7788:107 7757:doi 7745:118 7710:doi 7657:doi 7653:193 7590:doi 7547:doi 7494:doi 7385:doi 7313:doi 7266:doi 7215:doi 7193:115 7170:doi 7135:hdl 7127:doi 7115:108 7075:doi 7028:doi 7016:102 6978:doi 6917:doi 6864:doi 6852:999 6806:doi 6754:hdl 6746:doi 6597:doi 6585:455 6524:doi 6462:doi 6450:522 6413:doi 6313:doi 6301:102 6267:doi 6187:doi 6144:doi 6085:doi 6031:PMC 6023:doi 5923:doi 5856:doi 5833:doi 5782:doi 5740:doi 5705:doi 5660:doi 5648:426 5557:doi 5506:doi 5448:doi 5401:doi 5349:hdl 5341:doi 5329:244 5253:doi 5210:doi 5159:doi 5147:142 5120:doi 5090:doi 5059:doi 4969:doi 4914:doi 4892:292 4717:doi 4671:doi 4444:L, 4149:EHF 4137:THz 3989:). 3932:or 2907:). 2155:, ÎŒ 1977:is 1946:sin 1932:sin 1649:is 1124:Ohm 112:or 10490:: 9997:. 9973:}} 9969:{{ 9954:. 9876:. 9868:. 9858:60 9856:. 9831:. 9821:42 9819:. 9815:. 9788:. 9780:. 9770:. 9760:24 9758:. 9754:. 9725:. 9717:. 9707:. 9697:29 9695:. 9691:. 9668:. 9658:. 9650:. 9642:. 9630:. 9626:. 9603:. 9595:. 9587:. 9579:. 9569:12 9567:. 9563:. 9536:. 9528:. 9520:. 9512:. 9500:. 9496:. 9473:. 9465:. 9457:. 9447:. 9437:27 9435:. 9431:. 9408:. 9400:. 9392:. 9384:. 9372:10 9370:. 9366:. 9342:. 9332:. 9324:. 9316:. 9306:10 9304:. 9300:. 9288:^ 9274:. 9264:. 9256:. 9244:. 9197:. 9152:. 9144:. 9134:. 9122:. 9118:. 9095:. 9083:. 9054:. 9050:. 9027:. 9019:. 9009:65 9007:. 8984:. 8976:. 8966:67 8964:. 8941:. 8931:67 8929:. 8887:. 8879:. 8871:. 8863:. 8851:72 8849:. 8830:. 8803:. 8781:. 8773:. 8763:. 8751:. 8747:. 8699:. 8691:. 8683:. 8671:. 8648:. 8640:. 8630:. 8620:85 8618:. 8614:. 8591:. 8581:. 8567:. 8563:. 8540:. 8532:. 8524:. 8514:49 8512:. 8508:. 8482:. 8474:. 8464:14 8462:. 8439:. 8429:22 8427:. 8406:}} 8402:{{ 8386:51 8384:. 8380:. 8357:. 8347:51 8345:. 8322:. 8314:. 8306:. 8296:89 8294:. 8246:. 8234:. 8209:. 8199:. 8189:. 8179:13 8177:. 8173:. 8150:. 8140:. 8130:. 8120:13 8118:. 8114:. 8093:}} 8089:{{ 8077:. 8069:. 8061:. 8051:29 8049:. 7990:. 7967:. 7957:. 7949:. 7941:. 7931:14 7929:. 7925:. 7902:. 7888:. 7884:. 7859:. 7851:. 7816:. 7808:. 7800:. 7786:. 7763:. 7755:. 7743:. 7739:. 7716:. 7708:. 7700:. 7686:. 7663:. 7651:. 7647:. 7619:. 7596:. 7588:. 7578:40 7576:. 7553:. 7545:. 7537:. 7525:84 7523:. 7500:. 7492:. 7484:. 7472:81 7470:. 7451:. 7414:. 7391:. 7383:. 7373:10 7371:. 7342:. 7319:. 7311:. 7303:. 7289:. 7264:. 7254:11 7252:. 7229:. 7221:. 7213:. 7205:. 7191:. 7168:. 7158:11 7156:. 7133:. 7125:. 7113:. 7109:. 7083:. 7073:. 7061:. 7057:. 7034:. 7026:. 7014:. 7010:. 6984:. 6976:. 6968:. 6956:94 6954:. 6931:. 6923:. 6915:. 6907:. 6895:97 6893:. 6870:. 6862:. 6850:. 6846:. 6820:. 6812:. 6804:. 6796:. 6784:34 6782:. 6752:. 6744:. 6734:65 6732:. 6728:. 6686:^ 6670:. 6637:. 6611:. 6603:. 6595:. 6583:. 6530:. 6520:36 6518:. 6514:. 6476:. 6468:. 6460:. 6448:. 6419:. 6411:. 6401:52 6399:. 6393:. 6361:. 6333:^ 6319:. 6311:. 6299:. 6287:^ 6273:. 6265:. 6257:. 6245:79 6243:. 6239:. 6224:^ 6215:, 6193:. 6185:. 6173:41 6171:. 6142:. 6132:57 6130:. 6126:. 6083:. 6073:47 6071:. 6065:. 6039:. 6029:. 6021:. 6013:. 5999:. 5995:. 5974:}} 5970:{{ 5937:}} 5933:{{ 5921:. 5913:. 5901:96 5899:. 5886:^ 5872:. 5862:. 5831:. 5821:50 5819:. 5780:. 5770:90 5768:. 5764:. 5736:27 5734:. 5711:. 5701:34 5699:. 5676:. 5668:. 5658:. 5646:. 5642:. 5585:^ 5555:. 5547:. 5533:. 5529:. 5504:. 5492:. 5488:. 5476:^ 5462:. 5454:. 5446:. 5436:41 5434:. 5430:. 5407:. 5399:. 5389:66 5387:. 5383:. 5371:^ 5357:. 5347:. 5339:. 5327:. 5309:^ 5285:. 5259:. 5251:. 5216:. 5208:. 5200:. 5188:94 5171:^ 5157:. 5145:. 5141:. 5116:32 5114:. 5084:. 5080:. 5057:. 5047:10 5045:. 5033:^ 5017:: 5015:}} 5011:{{ 4985:. 4975:. 4967:. 4928:. 4920:. 4912:. 4902:. 4890:. 4878:^ 4857:. 4842:^ 4796:^ 4776:. 4739:^ 4725:. 4715:. 4705:84 4703:. 4699:. 4669:. 4659:78 4657:. 4653:. 4541:. 4387:, 4311:A 4139:. 3958:, 3940:, 3928:, 3283:. 3261:. 2853:tr 2791:tr 2729:tr 2677:tr 2630:tr 2329:. 2245:. 2193:, 2147:. 2106:r 2101:. 2044:. 2036:, 1939:= 1785:, 1399:, 1302:, 1284:. 368:, 357:. 226:, 222:, 218:, 214:, 210:, 202:, 187:. 158:, 154:, 134:, 124:. 97:, 93:, 89:, 49:A 43:in 10058:e 10051:t 10044:v 10008:. 9979:) 9965:. 9936:. 9910:. 9884:. 9872:: 9864:: 9841:. 9835:: 9827:: 9796:. 9774:: 9766:: 9739:. 9711:: 9703:: 9676:. 9646:: 9638:: 9632:3 9611:. 9583:: 9575:: 9544:. 9516:: 9508:: 9481:. 9451:: 9443:: 9416:. 9396:: 9388:: 9378:: 9350:. 9320:: 9312:: 9282:. 9268:: 9260:: 9252:: 9229:. 9208:. 9182:. 9160:. 9138:: 9130:: 9103:. 9099:: 9091:: 9068:. 9062:: 9035:. 9023:: 9015:: 8992:. 8980:: 8972:: 8949:. 8937:: 8895:. 8875:: 8867:: 8857:: 8834:. 8816:. 8789:. 8767:: 8759:: 8732:. 8707:. 8687:: 8679:: 8656:. 8634:: 8626:: 8599:. 8585:: 8575:: 8569:7 8548:. 8528:: 8520:: 8490:. 8478:: 8470:: 8447:. 8443:: 8435:: 8412:) 8398:. 8392:: 8365:. 8361:: 8353:: 8330:. 8310:: 8302:: 8279:. 8254:. 8242:: 8217:. 8193:: 8185:: 8158:. 8134:: 8126:: 8099:) 8085:. 8065:: 8057:: 8034:. 8001:. 7975:. 7945:: 7937:: 7910:. 7896:: 7890:8 7869:. 7855:: 7847:: 7824:. 7812:: 7804:: 7794:: 7771:. 7759:: 7751:: 7724:. 7712:: 7704:: 7694:: 7688:5 7671:. 7659:: 7629:. 7604:. 7592:: 7584:: 7561:. 7549:: 7541:: 7531:: 7508:. 7496:: 7488:: 7478:: 7455:. 7418:. 7399:. 7387:: 7379:: 7356:. 7327:. 7315:: 7307:: 7297:: 7291:3 7272:. 7268:: 7260:: 7237:. 7217:: 7209:: 7199:: 7176:. 7172:: 7164:: 7141:. 7137:: 7129:: 7121:: 7091:. 7077:: 7069:: 7063:3 7042:. 7030:: 7022:: 6992:. 6980:: 6972:: 6962:: 6939:. 6919:: 6911:: 6901:: 6878:. 6866:: 6858:: 6828:. 6808:: 6800:: 6790:: 6756:: 6748:: 6740:: 6710:. 6680:. 6655:. 6619:. 6599:: 6591:: 6568:. 6538:. 6526:: 6484:. 6464:: 6456:: 6433:. 6415:: 6407:: 6371:. 6357:: 6327:. 6315:: 6307:: 6281:. 6269:: 6261:: 6251:: 6201:. 6189:: 6179:: 6156:. 6146:: 6138:: 6105:. 6087:: 6079:: 6047:. 6025:: 6017:: 6007:: 6001:6 5980:) 5966:. 5943:) 5929:. 5925:: 5917:: 5907:: 5880:. 5858:: 5839:. 5835:: 5827:: 5802:. 5784:: 5776:: 5746:. 5742:: 5719:. 5707:: 5684:. 5662:: 5654:: 5565:. 5559:: 5551:: 5541:: 5535:7 5514:. 5508:: 5500:: 5494:9 5470:. 5450:: 5442:: 5415:. 5403:: 5395:: 5365:. 5351:: 5343:: 5335:: 5303:. 5267:. 5255:: 5247:: 5224:. 5212:: 5204:: 5194:: 5165:. 5161:: 5153:: 5126:. 5122:: 5098:. 5092:: 5086:8 5065:. 5061:: 5053:: 5027:) 5007:. 4971:: 4963:: 4936:. 4916:: 4898:: 4872:. 4836:. 4790:. 4733:. 4719:: 4711:: 4673:: 4665:: 4599:y 4595:o 4589:( 4571:— 4451:C 4433:n 4411:( 4293:( 3963:ρ 3956:ÎČ 3909:e 3902:t 3895:v 3619:· 3612:· 3602:) 3597:· 3591:( 3579:· 3562:· 3550:· 3345:x 3342:d 3334:d 3328:D 3322:= 3319:J 3220:r 3193:r 3164:r 3154:r 3094:r 3084:r 3071:= 3068:n 3045:n 3023:r 2996:r 2895:0 2889:J 2886:, 2883:0 2880:= 2877:N 2874:, 2871:0 2868:= 2865:) 2859:( 2833:0 2830:= 2827:J 2824:, 2821:0 2815:N 2812:, 2809:0 2806:= 2803:) 2797:( 2771:0 2768:= 2765:J 2762:, 2759:0 2753:N 2750:, 2747:0 2741:) 2735:( 2689:) 2683:( 2657:J 2654:+ 2651:N 2648:+ 2645:I 2642:) 2636:( 2624:3 2621:1 2615:= 2570:T 2562:i 2556:= 2551:T 2540:= 2437:, 2433:H 2426:+ 2422:E 2415:= 2411:B 2391:, 2387:H 2380:+ 2376:E 2369:= 2365:D 2350:Îș 2346:χ 2338:χ 2334:Îș 2319:Îș 2315:) 2313:B 2307:) 2305:D 2299:) 2297:H 2291:) 2289:E 2157:r 2153:r 2151:Δ 2110:r 2087:r 2083:r 2076:r 2072:r 2042:k 2038:H 2034:E 2028:. 2003:= 2000:c 1997:k 1987:Δ 1983:ÎŒ 1958:2 1955:n 1951:2 1948:Ξ 1944:2 1941:n 1937:1 1934:Ξ 1930:1 1927:n 1925:( 1916:n 1899:r 1872:r 1845:r 1818:r 1759:r 1732:r 1715:( 1697:r 1670:r 1655:n 1647:n 1631:r 1621:r 1596:0 1588:r 1561:r 1546:n 1530:r 1503:r 1473:r 1461:r 1447:= 1444:n 1434:n 1415:r 1385:r 1213:e 1206:t 1199:v 345:( 20:)

Index

Metamaterials

Negative-index metamaterial
split-ring resonators
in
Greek
ÎŒÎ”Ï„ÎŹ
Latin
material
repeating patterns
wavelengths
shape
geometry
size
orientation
electromagnetic
electromagnetic radiation
sound
index of refraction
negative-index metamaterials
sports equipment
optical filters
medical devices
aerospace
infrastructure monitoring
solar power
crowd control
radomes
high-frequency battlefield communication
ultrasonic sensors

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑