Knowledge

Molecular tagging velocimetry

Source đź“ť

166:. If the molecule relaxes through phosphorescence, lasting long enough to see line displacement, this can be used to track the written line and no additional visualisation step is needed. If during tagging the molecule did not reach a phosphorescing state, or relaxed before the molecule was "read", a second step is needed. The tagged molecule is then excited using a second laser beam, employing a 218:
and PIV to work. The field of MTV is fairly young; the first demonstration of implementation emerged within the 1980s and the number of schemes developed and investigated for use in air is still fairly small. These schemes differ in the molecule that is created, whether seeding the flow with foreign
227:
The most thorough fluid mechanics studies in gas have been performed using the RELIEF scheme and the APART scheme. Both techniques can be used in ambient air without the need for additional seeding. In RELIEF, excited oxygen is used as a tracer. The method takes advantage of quantum mechanical
43:
is initiated, resulting in the creation of a new chemical species or in changing the internal energy state of an existing one, so that the molecules struck by the laser beam can be distinguished from the rest of the fluid. Such molecules are said to be "tagged".
242:(HTV). It is based on photo-dissociation of water vapor followed by visualization of the resulting OH radical using LIF. HTV has been successfully demonstrated in many test conditions ranging from room air temperature flows to Mach 2 flows within a cavity. 287:
The third variant of MTV was first deployed in liquids in 1995 under the name "photoactivated nonintrusive tracking of molecular motion" (PHANTOMM). The PHANTOMM technique initially relied on a fluorescein-based
170:
such that it specifically excites the tagged molecule. The molecule will fluoresce and this fluorescence is captured by means of a camera. This manner of visualisation is called laser induced fluorescence (LIF).
735: 17: 47:
This line of tagged molecules is now transported by the fluid flow. To obtain velocity information, images at two instances in time are obtained and analyzed (often by
145: 115: 269:
MTV based on direct phosphorescence is the easiest technique to implement because a single laser is needed to produce a luminescent excited molecular state. The
215: 660:
C.P. Gendrich; M.M. Koochesfahani; D.G. Nocera (1997). "Molecular tagging velocimetry and other novel applications of a new phosphorescent supramolecule".
174:
Optical techniques are frequently used in modern fluid velocimetry but most are opto-mechanical in nature. Opto-mechanical techniques do not rely on
774: 35:, a technique for determining the velocity of currents in fluids such as air and water. In its simplest form, a single "write" 807: 650: 385: 561:"Flow tagging velocimetry in incompressible flow using photo-activated nonintrusive tracking of molecular motion (PHANTOMM)" 292:
excited by a blue laser. More recently, a rhodamine-based caged dye was successfully used with pulsed UV and green lasers.
186:(LDV). Within the field of all-optical techniques we can distinguish analogous techniques but using molecular tracers. In 785:
A. T. Popovich; R. L. Hummel (1967). "A new method for non-disturbing turbulent flow measurement very close to a wall".
736:"The RELIEF flow tagging technique and its application in engine testing facilities and for helium–air mixing studies" 280:
The second technique called MTV by absorbance relies on the reversible alteration of the fluorescence properties of a
481:"Laser photochromic dye activation technique for the measurement of liquid free surface velocity on curved surfaces" 698: 284:
dye. The scheme showed good results in alcohol and oils, but not in water in which typical dyes are not soluble.
235:. Since NO is a stable molecule, patterns written with it can, in principle, be followed almost indefinitely. 228:
properties that prohibit relaxation of the molecule so that the excited oxygen has a relatively long lifetime.
198:. In molecular tagging techniques, like in PIV, velocimetry is based on visualizing the tracer displacements. 882: 239: 480: 867: 609:
Development of long distance 2D micro-molecular tagging velocimetry (ÎĽMTV) to measure wall shear stress
311: 306: 179: 178:
alone for flow measurements but require macro-size seeding. The best known and often used examples are
72: 365: 331:
Koochesfahani, Manoochehr (1999). "Molecular Tagging Velocimetry (MTV) - Progress and applications".
183: 364:
Koochesfahani, M.M.; Nocera, D.G. (2007). Tropea, Cameron; Yarin, Alexander L; Foss, John F (eds.).
341: 190:
schemes, light quasi-elastically scatters off molecules and the velocity of the molecules convey a
403:"Molecular tagging velocimetry and other novel applications of a new phosphorescent supramolecule" 206:
MTV techniques have proven to allow measurements of velocities in inhospitable environments, like
877: 289: 263: 336: 238:
Another well-developed and widely documented technique that yields extremely high accuracy is
120: 90: 51:
of the image intensities) to determine the displacement. If the flow is three-dimensional or
872: 822: 750: 710: 669: 572: 531: 492: 414: 148: 402: 8: 301: 156: 826: 754: 714: 673: 576: 535: 496: 418: 838: 766: 685: 588: 560: 430: 504: 842: 798: 770: 762: 699:"Velocity visualization in gas flows using laser-induced phosphorescence of biacetyl" 689: 646: 592: 465: 434: 381: 830: 794: 758: 718: 677: 613: 607: 580: 539: 500: 461: 422: 373: 346: 195: 40: 846: 450:"A new method for non-disturbing turbulent flow measurements very close to a wall" 270: 251: 152: 68: 63:
There are three optical ways via which these tagged molecules can be visualized:
637: 39:
beam is shot once through the sample space. Along its path an optically induced
449: 187: 805: 639:
Writing lines in turbulent air using Air Photolysis and Recombination Tracking
544: 519: 377: 861: 726: 281: 255: 191: 163: 520:"Measurement of liquid sheet using laser tagging method by photochromic dye" 274: 259: 232: 210:, flames, high-pressure vessels, where it is difficult for techniques like 84: 64: 834: 681: 659: 426: 696: 48: 32: 733: 617: 559:
Lempert, W.R.; Ronney, P.; Magee, K.; Gee, K.R.; Haugland, R.P. (1995).
350: 584: 211: 207: 167: 722: 250:
In liquids, three MTV approaches have been classified: MTV by direct
175: 52: 219:
molecules is necessary and what wavelength of light is being used.
76: 151:), thus making "direct" fluorescence impractical for tagging. In 80: 55:
the line will not only be displaced, it will also be deformed.
808:"Hydroxyl tagging velocimetry (HTV) in experimental air flows" 79:
relax to a lower state and their excess energy is released as
806:
L.A. Ribarov; J.A. Wehrmeyer; R.W. Pitz; R.A. Yetter (2002).
162:
In some "writing" schemes, the tagged molecule ends up in an
36: 20:
Schematic setup of a molecular tagging velocimetry experiment
400: 16: 784: 401:
Gendrich, C.P.; Koochesfahani, M.M.; Nocera, D.G. (1997).
697:
B. Hiller; R. A. Booman; C. Hassa; R. K. Hanson (1984).
734:
R.B. Miles; J. Grinstead; R.H. Kohl; G. Diskin (2000).
558: 273:
signal is generally weaker and harder to detect than
123: 93: 363: 254:(using a phosphorescent dye), absorbance (using a 139: 109: 859: 645:. Eindhoven: Technische Universiteit Eindhoven. 324: 605: 478: 155:the decay is slower, because the transition is 447: 330: 606:Fort, C.; AndrĂ©, M.A.; Bardet, P.M. (2020). 517: 231:APART is based on the "photosynthesis" of 543: 340: 87:this energy decay occurs rapidly (within 635: 612:. AIAA Scitech 2020 Forum. Orlando, FL. 15: 370:Handbook of Experimental Fluid Dynamics 860: 448:Popovich, A.T.; Hummel, R.L. (1967). 13: 743:Measurement Science and Technology 628: 479:Homescu, D.; Desevaux, P. (2004). 14: 894: 703:Review of Scientific Instruments 518:Rosli, N.B.; Amagai, K. (2014). 485:Optics and Lasers in Engineering 366:"Molecular tagging velocimetry" 599: 552: 511: 472: 441: 394: 357: 333:30th Fluid Dynamics Conference 157:quantum-mechanically forbidden 58: 1: 505:10.1016/S0143-8166(03)00064-2 317: 245: 31:) is a specific form of flow 25:Molecular tagging velocimetry 799:10.1016/0009-2509(67)80100-3 787:Chemical Engineering Science 466:10.1016/0009-2509(67)80100-3 454:Chemical Engineering Science 240:hydroxyl tagging velocimetry 7: 295: 222: 10: 899: 763:10.1088/0957-0233/11/9/304 312:Particle image velocimetry 307:Laser-induced fluorescence 201: 180:particle image velocimetry 75:(LIF). In all three cases 73:laser-induced fluorescence 545:10.1007/s00348-014-1843-0 378:10.1007/978-3-540-30299-5 184:laser Doppler velocimetry 636:Elenbaas, Thijs (2005). 194:to the frequency of the 258:dye), and photoproduct 140:{\displaystyle 10^{-9}} 110:{\displaystyle 10^{-7}} 141: 111: 21: 835:10.1007/s003400100777 682:10.1007/s003480050123 662:Experiments in Fluids 565:Experiments in Fluids 524:Experiments in Fluids 427:10.1007/s003480050123 407:Experiments in Fluids 142: 112: 19: 216:hot-wire velocimetry 149:atmospheric pressure 121: 91: 883:Transport phenomena 827:2002ApPhB..74..175R 755:2000MeScT..11.1272M 715:1984RScI...55.1964H 674:1997ExFl...23..361G 618:10.2514/6.2020-1274 577:1995ExFl...18..249L 536:2014ExFl...55.1843R 497:2004OptLE..41..879H 419:1997ExFl...23..361G 351:10.2514/6.1999-3786 302:Hot-wire anemometry 262:(typically using a 868:Laser applications 585:10.1007/BF00195095 137: 107: 22: 815:Applied Physics B 723:10.1063/1.1137687 709:(12): 1964–1967. 652:978-90-386-2401-3 387:978-3-540-25141-5 890: 853: 851: 845:. Archived from 812: 802: 781: 779: 773:. Archived from 749:(9): 1272–1281. 740: 730: 725:. Archived from 693: 656: 644: 622: 621: 603: 597: 596: 556: 550: 549: 547: 515: 509: 508: 476: 470: 469: 445: 439: 438: 398: 392: 391: 361: 355: 354: 344: 328: 146: 144: 143: 138: 136: 135: 116: 114: 113: 108: 106: 105: 41:chemical process 898: 897: 893: 892: 891: 889: 888: 887: 858: 857: 856: 849: 810: 777: 738: 653: 642: 631: 629:Further reading 626: 625: 604: 600: 557: 553: 516: 512: 477: 473: 446: 442: 399: 395: 388: 362: 358: 342:10.1.1.456.1991 329: 325: 320: 298: 271:phosphorescence 252:phosphorescence 248: 225: 204: 196:scattered light 153:phosphorescence 128: 124: 122: 119: 118: 98: 94: 92: 89: 88: 69:phosphorescence 61: 12: 11: 5: 896: 886: 885: 880: 878:Fluid dynamics 875: 870: 855: 854: 852:on 2003-11-27. 821:(2): 175–183. 803: 782: 780:on 2003-11-23. 731: 729:on 2013-02-23. 694: 668:(5): 361–372. 657: 651: 632: 630: 627: 624: 623: 598: 571:(4): 249–257. 551: 510: 491:(6): 879–888. 471: 440: 413:(5): 361–372. 393: 386: 356: 322: 321: 319: 316: 315: 314: 309: 304: 297: 294: 247: 244: 224: 221: 203: 200: 134: 131: 127: 104: 101: 97: 60: 57: 9: 6: 4: 3: 2: 895: 884: 881: 879: 876: 874: 871: 869: 866: 865: 863: 848: 844: 840: 836: 832: 828: 824: 820: 816: 809: 804: 800: 796: 792: 788: 783: 776: 772: 768: 764: 760: 756: 752: 748: 744: 737: 732: 728: 724: 720: 716: 712: 708: 704: 700: 695: 691: 687: 683: 679: 675: 671: 667: 663: 658: 654: 648: 641: 640: 634: 633: 619: 615: 611: 610: 602: 594: 590: 586: 582: 578: 574: 570: 566: 562: 555: 546: 541: 537: 533: 529: 525: 521: 514: 506: 502: 498: 494: 490: 486: 482: 475: 467: 463: 459: 455: 451: 444: 436: 432: 428: 424: 420: 416: 412: 408: 404: 397: 389: 383: 379: 375: 371: 367: 360: 352: 348: 343: 338: 334: 327: 323: 313: 310: 308: 305: 303: 300: 299: 293: 291: 285: 283: 278: 276: 272: 267: 265: 261: 257: 253: 243: 241: 236: 234: 229: 220: 217: 213: 209: 199: 197: 193: 192:Doppler shift 189: 185: 181: 177: 172: 169: 165: 164:excited state 160: 158: 154: 150: 132: 129: 125: 102: 99: 95: 86: 82: 78: 74: 70: 66: 56: 54: 50: 45: 42: 38: 34: 30: 26: 18: 847:the original 818: 814: 790: 786: 775:the original 746: 742: 727:the original 706: 702: 665: 661: 638: 608: 601: 568: 564: 554: 530:(12): 1843. 527: 523: 513: 488: 484: 474: 460:(1): 21–25. 457: 453: 443: 410: 406: 396: 369: 359: 332: 326: 286: 282:photochromic 279: 275:fluorescence 268: 260:fluorescence 256:photochromic 249: 237: 233:nitric oxide 230: 226: 205: 173: 161: 85:fluorescence 65:fluorescence 62: 46: 28: 24: 23: 873:Measurement 208:jet engines 59:Description 49:correlation 33:velocimetry 862:Categories 318:References 246:In liquids 182:(PIV) and 168:wavelength 843:122057285 793:: 21–25. 771:250788781 690:121306156 593:122228370 435:121306156 337:CiteSeerX 290:caged dye 264:caged dye 176:photonics 130:− 100:− 77:molecules 53:turbulent 296:See also 223:In gases 823:Bibcode 751:Bibcode 711:Bibcode 670:Bibcode 573:Bibcode 532:Bibcode 493:Bibcode 415:Bibcode 202:Schemes 188:Doppler 81:photons 841:  769:  688:  649:  591:  433:  384:  339:  850:(PDF) 839:S2CID 811:(PDF) 778:(PDF) 767:S2CID 739:(PDF) 686:S2CID 643:(PDF) 589:S2CID 431:S2CID 212:Pitot 147:s at 117:s to 83:. In 37:laser 647:ISBN 382:ISBN 71:and 831:doi 795:doi 759:doi 719:doi 678:doi 614:doi 581:doi 540:doi 501:doi 462:doi 423:doi 374:doi 347:doi 266:). 29:MTV 864:: 837:. 829:. 819:74 817:. 813:. 791:22 789:. 765:. 757:. 747:11 745:. 741:. 717:. 707:55 705:. 701:. 684:. 676:. 666:23 664:. 587:. 579:. 569:18 567:. 563:. 538:. 528:55 526:. 522:. 499:. 489:41 487:. 483:. 458:22 456:. 452:. 429:. 421:. 411:23 409:. 405:. 380:. 372:. 368:. 345:. 335:. 277:. 214:, 159:. 126:10 96:10 67:, 833:: 825:: 801:. 797:: 761:: 753:: 721:: 713:: 692:. 680:: 672:: 655:. 620:. 616:: 595:. 583:: 575:: 548:. 542:: 534:: 507:. 503:: 495:: 468:. 464:: 437:. 425:: 417:: 390:. 376:: 353:. 349:: 133:9 103:7 27:(

Index


velocimetry
laser
chemical process
correlation
turbulent
fluorescence
phosphorescence
laser-induced fluorescence
molecules
photons
fluorescence
atmospheric pressure
phosphorescence
quantum-mechanically forbidden
excited state
wavelength
photonics
particle image velocimetry
laser Doppler velocimetry
Doppler
Doppler shift
scattered light
jet engines
Pitot
hot-wire velocimetry
nitric oxide
hydroxyl tagging velocimetry
phosphorescence
photochromic

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑