Knowledge

Multi-core processor

Source đź“ť

547:
unified cache, hence any two working dual-core dies can be used, as opposed to producing four cores on a single die and requiring all four to work to produce a quad-core CPU. From an architectural point of view, ultimately, single CPU designs may make better use of the silicon surface area than multiprocessing cores, so a development commitment to this architecture may carry the risk of obsolescence. Finally, raw processing power is not the only constraint on system performance. Two processing cores sharing the same system bus and memory bandwidth limits the real-world performance advantage.
873: 5985: 47: 27: 997: 35: 664:). Consequently, such code is much more difficult to debug than single-threaded code when it breaks. There has been a perceived lack of motivation for writing consumer-level threaded applications because of the relative rarity of consumer-level demand for maximum use of computer hardware. Also, serial tasks like decoding the 767:
a coordination language and program building blocks (programming libraries or higher-order functions). Each block can have a different native implementation for each processor type. Users simply program using these abstractions and an intelligent compiler chooses the best implementation based on the context.
766:
are written in these native languages and take advantage of multi-core processing. Balancing the application workload across processors can be problematic, especially if they have different performance characteristics. There are different conceptual models to deal with the problem, for example using
679:
The telecommunications market had been one of the first that needed a new design of parallel datapath packet processing because there was a very quick adoption of these multiple-core processors for the datapath and the control plane. These MPUs are going to replace the traditional Network Processors
530:
Multi-core chips also allow higher performance at lower energy. This can be a big factor in mobile devices that operate on batteries. Since each core in a multi-core CPU is generally more energy-efficient, the chip becomes more efficient than having a single large monolithic core. This allows higher
482:
have turned to multi-core designs, sacrificing lower manufacturing-costs for higher performance in some applications and systems. Multi-core architectures are being developed, but so are the alternatives. An especially strong contender for established markets is the further integration of peripheral
380:
Several business motives drive the development of multi-core architectures. For decades, it was possible to improve performance of a CPU by shrinking the area of the integrated circuit (IC), which reduced the cost per device on the IC. Alternatively, for the same circuit area, more transistors could
546:
Integration of a multi-core chip can lower the chip production yields. They are also more difficult to manage thermally than lower-density single-core designs. Intel has partially countered this first problem by creating its quad-core designs by combining two dual-core ones on a single die with a
255:
In the consumer market, dual-core processors (that is, microprocessors with two units) started becoming commonplace on personal computers in the late 2000s. Quad-core processors were also being adopted in that era for higher-end systems before becoming standard. In the late 2010s, hexa-core (six
675:
Given the increasing emphasis on multi-core chip design, stemming from the grave thermal and power consumption problems posed by any further significant increase in processor clock speeds, the extent to which software can be multithreaded to take advantage of these new chips is likely to be the
392:
As the rate of clock speed improvements slowed, increased use of parallel computing in the form of multi-core processors has been pursued to improve overall processing performance. Multiple cores were used on the same CPU chip, which could then lead to better sales of CPU chips with two or more
887:
operates in an area of processor technology distinct from that of "mainstream" PCs. The same technological drives towards multi-core apply here too. Indeed, in many cases the application is a "natural" fit for multi-core technologies, if the task can easily be partitioned between the different
799:
In the third stage, development moves from the abstract toward the concrete. Developers revisit decisions made in the partitioning and communication phases with a view to obtaining an algorithm that will execute efficiently on some class of parallel computer. In particular, developers consider
790:
The tasks generated by a partition are intended to execute concurrently but cannot, in general, execute independently. The computation to be performed in one task will typically require data associated with another task. Data must then be transferred between tasks so as to allow computation to
527:(FSB). In terms of competing technologies for the available silicon die area, multi-core design can make use of proven CPU core library designs and produce a product with lower risk of design error than devising a new wider-core design. Also, adding more cache suffers from diminishing returns. 659:
thread waits for commands from the user (e.g. cancel the scan). In such cases, a multi-core architecture is of little benefit for the application itself due to the single thread doing all the heavy lifting and the inability to balance the work evenly across multiple cores. Programming truly
243:
problems may realize speedup factors near the number of cores, or even more if the problem is split up enough to fit within each core's cache(s), avoiding use of much slower main-system memory. Most applications, however, are not accelerated as much unless programmers invest effort in
522:
designs. Also, a dual-core processor uses slightly less power than two coupled single-core processors, principally because of the decreased power required to drive signals external to the chip. Furthermore, the cores share some circuitry, like the L2 cache and the interface to the
895:, legacy code or supporting independent developers less critical than is the case for PC or enterprise computing. As a result, it is easier for developers to adopt new technologies and as a result there is a greater variety of multi-core processing architectures and suppliers. 617:
How multiple cores are implemented and integrated significantly affects both the developer's programming skills and the consumer's expectations of apps and interactivity versus the device. A device advertised as being octa-core will only have independent cores if advertised as
251:
The parallelization of software is a significant ongoing topic of research. Cointegration of multiprocessor applications provides flexibility in network architecture design. Adaptability within parallel models is an additional feature of systems utilizing these protocols.
372:(TLP) methods, and multiple independent CPUs are commonly used to increase a system's overall TLP. A combination of increased available space (due to refined manufacturing processes) and the demand for increased TLP led to the development of multi-core CPUs. 923:
all manufacturing products with eight processors. For the system developer, a key challenge is how to exploit all the cores in these devices to achieve maximum networking performance at the system level, despite the performance limitations inherent in a
745:
Multi-core processing has also affected the ability of modern computational software development. Developers programming in newer languages might find that their modern languages do not support multi-core functionality. This then requires the use of
609:
The composition and balance of the cores in multi-core architecture show great variety. Some architectures use one core design repeated consistently ("homogeneous"), while others use a mixture of different cores, each optimized for a different,
676:
single greatest constraint on computer performance in the future. If developers are unable to design software to fully exploit the resources provided by multiple cores, then they will ultimately reach an insurmountable performance ceiling.
434:; the increasing gap between processor and memory speeds. This, in effect, pushes for cache sizes to be larger in order to mask the latency of memory. This helps only to the extent that memory bandwidth is not the bottleneck in performance. 800:
whether it is useful to combine, or agglomerate, tasks identified by the partitioning phase, so as to provide a smaller number of tasks, each of greater size. They also determine whether it is worthwhile to replicate data and computation.
808:
In the fourth and final stage of the design of parallel algorithms, the developers specify where each task is to execute. This mapping problem does not arise on uniprocessors or on shared-memory computers that provide automatic task
573:
core includes a high-performance core (called 'big') and a low-power core (called 'LITTLE'). There is also a trend towards improving energy-efficiency by focusing on performance-per-watt with advanced fine-grain or ultra fine-grain
781:
The partitioning stage of a design is intended to expose opportunities for parallel execution. Hence, the focus is on defining a large number of small tasks in order to yield what is termed a fine-grained decomposition of a
3185: 1925:
The research and development of multicore processors often compares many options, and benchmarks are developed to help such evaluations. Existing benchmarks include SPLASH-2, PARSEC, and COSMIC for heterogeneous systems.
2040:(SMP). In a partitioned architecture, each CPU boots into separate segments of physical memory and operate independently; in an SMP OS, processors work in a shared space, executing threads within the OS independently. 560:
The trend in processor development has been towards an ever-increasing number of cores, as processors with hundreds or even thousands of cores become theoretically possible. In addition, multi-core chips mixed with
452:; the trend of consuming exponentially increasing power (and thus also generating exponentially increasing heat) with each factorial increase of operating frequency. This increase can be mitigated by " 353:
have become a major design concern. These physical limitations can cause significant heat dissipation and data synchronization problems. Various other methods are used to improve CPU performance. Some
660:
multithreaded code often requires complex co-ordination of threads and can easily introduce subtle and difficult-to-find bugs due to the interweaving of processing on data shared between threads (see
2623: 2596: 495:
circuitry to operate at a much higher clock rate than what is possible if the signals have to travel off-chip. Combining equivalent CPUs on a single die significantly improves the performance of
543:(OS) support and to existing application software. Also, the ability of multi-core processors to increase application performance depends on the use of multiple threads within applications. 2469: 629:
Chuck Moore suggested computers should be like cellphones, using a variety of specialty cores to run modular software scheduled by a high-level applications programming interface.
2013:(DSPs) have used multi-core architectures for much longer than high-end general-purpose processors. A typical example of a DSP-specific implementation would be a combination of a 3175: 2335: 976:
Zynq UltraScale+ MPSoC has a quad-core ARM Cortex-A53 and dual-core ARM Cortex-R5. Software solutions such as OpenAMP are being used to help with inter-processor communication.
2021:. This allows for the design of products that require a general-purpose processor for user interfaces and a DSP for real-time data processing; this type of design is common in 833:
Vendors may license some software "per processor". This can give rise to ambiguity, because a "processor" may consist either of a single core or of a combination of cores.
932:
provide portable packet processing software designed so that the networking data plane runs in a fast path environment outside the operating system of the network device.
511:
less. These higher-quality signals allow more data to be sent in a given time period, since individual signals can be shorter and do not need to be repeated as often.
569:(or asymmetric) cores promise further performance and efficiency gains, especially in processing multimedia, recognition and networking applications. For example, a 2113: 98:(such as add, move data, and branch). However, the MCP can run instructions on separate cores at the same time, increasing overall speed for programs that support 423:
For general-purpose processors, much of the motivation for multi-core processors comes from greatly diminished gains in processor performance from increasing the
5311: 4338: 177:
have cores that do not share the same instruction set). Just as with single-processor systems, cores in multi-core systems may implement architectures such as
1880: 2058: 1874: 863:
counts an AMD X2 or an Intel dual-core CPU as a single processor but uses other metrics for other types, especially for processors with more than two cores.
389:
also increased by orders of magnitude in the decades of the late 20th century, from several megahertz in the 1980s to several gigahertz in the early 2000s.
2619: 952:
the four-core MSC8144 and six-core MSC8156 (and both have stated they are working on eight-core successors). Newer entries include the Storm-1 family from
3019: 3001: 2983: 2961: 2582: 3220:. 17th International Conference on Parallel and Distributed Processing Techniques and Applications (PDPTA-11). Las Vegas, Nevada, USA. pp. 551–557. 2393: 2162: 1052:
Epiphany, a many-core processor architecture which allows up to 4096 processors on-chip, although only a 16-core version has been commercially produced.
1055: 413:(SMP) designs using discrete CPUs, the issues regarding implementing multi-core processor architecture and supporting it with software are well known. 2382:
Patterson, David A. "Future of computer architecture." Berkeley EECS Annual Research Symposium (BEARS), College of Engineering, UC Berkeley, US. 2006.
460:
poses manufacturing, system design and deployment problems that have not been justified in the face of the diminished gains in performance due to the
3059: 3310: 2428: 366:
are suitable for many applications, but are inefficient for others that contain difficult-to-predict code. Many applications are better suited to
2239: 646:, took the opposing view. He said multi-core chips need to be homogeneous collections of general-purpose cores to keep the software model simple. 2487: 2451: 309:
refers to multiple physically separate processing-units (which often contain special circuitry to facilitate communication between each other).
4449: 3632: 3107: 636:, generally agreed. He suggested the cellphone's use of many specialty cores working in concert is a good model for future multi-core designs. 2473: 597:
Chips designed from the outset for a large number of cores (rather than having evolved from single core designs) are sometimes referred to as
5401: 4151: 3083: 129:
in a single physical package. Designers may couple cores in a multi-core device tightly or loosely. For example, cores may or may not share
5253: 3429: 2906: 2762: 2736: 4308: 3874: 3691: 2858: 953: 4662: 2712: 2688: 2331: 1597: 916: 1011: 672:
are impossible to parallelize because each result generated is used to help create the next result of the entropy decoding algorithm.
3654: 2085: 3262: 2552:
John Darlinton; Moustafa Ghanem; Yike Guo; Hing Wing To (1996). "Guided Resource Organisation in Heterogeneous Parallel Computing".
4303: 1196: 334: 4375: 1867: 727: 5382: 4657: 4128: 2882: 2361: 190: 99: 3033: 2931: 2314: 1531: 231:
algorithms used and their implementation. In particular, possible gains are limited by the fraction of the software that can
5422: 2264: 2025:. In other applications, a growing number of companies have developed multi-core DSPs with very large numbers of processors. 5649: 5072: 4196: 3459: 3303: 3147: 1007: 5672: 5082: 4223: 3237:. The 20th IEEE International Conference on High Performance Computer Architecture (HPCA-14) workshop. Orlando, FL, USA. 817:, multi-core processors are ideal because they allow many users to connect to a site simultaneously and have independent 6015: 5561: 3350: 3132: 2534: 1560:(Polaris), a 3.16 GHz, 80-core processor prototype, which the company originally stated would be released by 2011. 1089: 474:
In order to continue delivering regular performance improvements for general-purpose processors, manufacturers such as
5417: 2834: 2496:
Galaxy smartphones run on either Octa-core (2.3GHz Quad + 1.6GHz Quad) or Quad-core (2.15GHz + 1.6GHz Dual) processors
5667: 5644: 4390: 4218: 4191: 3570: 2014: 774:
acquires a central role in developing parallel applications. The basic steps in designing parallel applications are:
382: 322:
are sometimes used to describe multi-core architectures with an especially high number of cores (tens to thousands).
3282: 2289: 1600:, 256-core processor, released 2012 (256 usable VLIW cores, Network-on-Chip (NoC), 32/64-bit IEEE 754 compliant FPU) 5246: 5205: 4768: 3661: 3627: 3622: 3541: 3506: 1982: 539:
Maximizing the usage of the computing resources provided by multi-core processors requires adjustments both to the
508: 5639: 5454: 5180: 5077: 4478: 4385: 4186: 3407: 3296: 2810: 2666: 2062: 1863: 1100: 531:
performance with less energy. A challenge in this, however, is the additional overhead of writing parallel code.
174: 2786: 6010: 5746: 5660: 5609: 4206: 3925: 3360: 3015: 2997: 2975: 2957: 2304: 1977: 1715:
core and eight specialized SPUs (Synergistic Processing Unit) optimized for vector operations used in the Sony
972:, where a system uses more than one kind of processor or cores, multi-core solutions are becoming more common: 759: 2397: 1566:
dual-, quad-, 6-, 8-, 10-, 12-, 14-, 15-, 16-, 18-, 20-, 22-, 24-, 26-, 28-, 32-, 48-, and 56-core processors.
625:
The article "CPU designers debate multi-core future" by Rick Merritt, EE Times 2008, includes these comments:
5970: 5804: 5655: 5342: 4380: 4228: 4201: 4062: 3676: 3637: 3494: 2166: 735: 731: 719: 442: 355: 330: 284:(SoC). The terms are generally used only to refer to multi-core microprocessors that are manufactured on the 6020: 4817: 4579: 4055: 4016: 3671: 3666: 3600: 3412: 170: 1161:, dual-, quad-, 6-, 8-, 12-, 16-, 24-, 32-, and 64-core desktop, mobile, and embedded platform processors. 6030: 5989: 5935: 5395: 5239: 4444: 4141: 3839: 3536: 1897: 1534:, a family of dual-, quad-, 6-, 8-, 10-, 12-, 14-, 16-, and 18-core processors, and the successor of the 1389: 747: 562: 256:
cores) started entering the mainstream and since the early 2020s has overtaken quad-core in many spaces.
30:
Diagram of a generic dual-core processor with CPU-local level-1 caches and a shared, on-die level-2 cache
2420: 891:
In addition, embedded software is typically developed for a specific hardware release, making issues of
5914: 5709: 5594: 5556: 5406: 5296: 5094: 4741: 4158: 3649: 3617: 3387: 3375: 3355: 1439: 1415: 739: 695: 655:
An outdated version of an anti-virus application may create a new thread for a scan process, while its
178: 2114:"NVIDIA Announces the GeForce RTX 30 Series: Ampere For Gaming, Starting With RTX 3080 & RTX 3090" 622:, or similar styling, as opposed to being merely two sets of quad-cores each with fixed clock speeds. 420:
Using a proven processing-core design without architectural changes reduces design risk significantly.
292:; separate microprocessor dies in the same package are generally referred to by another name, such as 5930: 5909: 5854: 5741: 5731: 5704: 5566: 5185: 5148: 5138: 3526: 3271: 2491: 2037: 1993: 941: 925: 818: 723: 715: 583: 519: 410: 209: 3256: 711: 514:
Assuming that the die can physically fit into the package, multi-core CPU designs require much less
227:
The improvement in performance gained by the use of a multi-core processor depends very much on the
6025: 5884: 5510: 5449: 5362: 5200: 4607: 4543: 4520: 4370: 4332: 4168: 4118: 4113: 3590: 3484: 3392: 2645:"6WINDGATE Software: Network Optimization Software – SDN Software – Control Plane Software | 6WIND" 2566: 2010: 1887: 1822: 1791: 1433: 1427: 1421: 1303: 1281: 751: 722:
can be used on multi-core platforms. Intel introduced a new abstraction for C++ parallelism called
656: 368: 345:
While manufacturing technology improves, reducing the size of individual gates, physical limits of
289: 277: 213: 107: 2509: 5945: 5940: 5799: 5390: 5153: 4936: 4830: 4794: 4711: 4695: 4537: 4326: 4285: 4273: 4136: 4050: 3971: 3736: 3397: 3340: 1557: 1296: 1079: 1023: 969: 908: 611: 579: 566: 273: 240: 162: 75: 20: 1907: 5684: 5616: 5520: 5412: 5367: 4959: 4931: 4841: 4806: 4555: 4549: 4531: 4265: 4259: 4163: 4067: 3958: 3897: 3759: 3402: 2740: 2561: 1483: 1095: 363: 1019: 5776: 5736: 5689: 5679: 5474: 5337: 5276: 5133: 5042: 4788: 4500: 4318: 4077: 4045: 4003: 3915: 3716: 3531: 3521: 3511: 3501: 3471: 3454: 3319: 2188:
Duran, A (2011). "Ompss: a proposal for programming heterogeneous multi-core architectures".
1966: 1961: 1708: 1489: 763: 591: 515: 182: 5716: 5604: 5599: 5589: 5576: 5372: 5163: 5099: 4407: 4297: 4244: 3776: 3489: 3345: 3327: 1659:
HAL series tightly coupled 16-256 cores, L1 shared memory, hardware synchronized processor.
1290: 1204: 892: 850: 771: 691: 2092: 1666:
KC256, a 257-core microcontroller with a PowerPC core and 256 8-bit "processing elements".
1498:, the first dual-core (and, later, quad-core) processor for the budget/entry-level market. 8: 5879: 5834: 5634: 5500: 5210: 5195: 5015: 4866: 4848: 4812: 4800: 4454: 4401: 4178: 4094: 3976: 3831: 3726: 3585: 1656: 956:
with 40 and 80 general purpose ALUs per chip, all programmable in C as a SIMD engine and
854: 326: 821:
of execution. This allows for Web servers and application servers that have much better
298:. This article uses the terms "multi-core" and "dual-core" for CPUs manufactured on the 216:(GPU). Core count goes up to even dozens, and for specialized chips over 10,000, and in 5904: 5753: 5726: 5551: 5515: 5505: 5464: 5306: 5286: 5281: 5262: 5067: 5059: 4911: 4886: 4690: 4565: 4089: 4030: 3910: 3642: 3370: 3218:
Predicting CPU Availability of a Multi-core Processor Executing Concurrent Java Threads
1901: 1640: 1207:
processor cores, intended for high-performance embedded and entertainment applications.
904: 884: 860: 314: 232: 103: 71: 5950: 5626: 5584: 5479: 5020: 4987: 4903: 4835: 4736: 4726: 4716: 4647: 4642: 4637: 4560: 4489: 4395: 4355: 3988: 3938: 3888: 3864: 3746: 3686: 3681: 3563: 3479: 2310: 1786: 1778: 1628: 1385: 1278: 1266:
CSX700, 192-core processor, released in 2008 (32/64-bit floating point; Integer ALU).
1252: 945: 424: 294: 205: 119: 2357: 2215: 5960: 5759: 5694: 5541: 5357: 5352: 5347: 5316: 5190: 5123: 5109: 4964: 4871: 4825: 4632: 4627: 4622: 4617: 4612: 4602: 4472: 4439: 4350: 4345: 4254: 4106: 4101: 4084: 4072: 4011: 3575: 3553: 3439: 3417: 3335: 3238: 3235:
A New Composite CPU/Memory Model for Predicting Efficiency of Multi-core Processing
3221: 2197: 2033: 1722: 1584: 1193: 872: 791:
proceed. This information flow is specified in the communication phase of a design.
665: 575: 540: 397:
has produced a 48-core processor for research in cloud computing; each core has an
350: 281: 186: 142: 3232: 3215: 2935: 1066: 5824: 5764: 5699: 5546: 5536: 5469: 5459: 5301: 5291: 5104: 5089: 5037: 4941: 4916: 4753: 4746: 4597: 4592: 4587: 4526: 4434: 4424: 4146: 3981: 3933: 3696: 3580: 3548: 3449: 3444: 3365: 3176:"Meet KiloCore, a 1,000-core processor so efficient it could run on a AA battery" 2551: 2240:"Intel taking its six-core processors mainstream in 2018 with Coffee Lake family" 1951: 1674: 1644: 1274: 912: 504: 492: 236: 201: 196:
Multi-core processors are widely used across many application domains, including
158: 154: 134: 126: 95: 91: 1238:
BCM2836, BCM2837, BCM2710 and BCM2711 quad-core ARM SoC (designed for different
1131:, single-, dual-, quad-, 6-, 8-, 12-, and 16-core server/workstation processors. 1058: 5955: 5771: 5428: 5321: 5215: 5049: 5032: 5025: 4921: 4778: 4515: 4429: 4360: 3943: 3905: 3854: 3849: 3844: 3558: 3382: 2018: 1988: 1774: 1492:, single-core, dual-core, and quad-core processors for smartphones and tablets. 1452: 1403: 1174: 980: 880:
on a plug-in card with processor, memory, power supply, and external interfaces
570: 524: 496: 166: 67: 3242: 2201: 2138:"Sunway TaihuLight - Sunway MPP, Sunway SW26010 260C 1.45GHz, Sunway | TOP500" 1569: 6004: 5844: 5721: 5010: 4926: 3966: 3948: 3741: 3434: 3276: 1936: 1751: 1745: 1739: 1733: 1716: 661: 639: 507:
between different CPUs travel shorter distances, and therefore those signals
346: 217: 138: 3869: 2592: 1167:, quad-, 8-, 12-, 16-, 24-, 32-, and 64-core server and embedded processors. 960:
with 300 processors on a single die, focused on communication applications.
224:
up to 20 million processing elements total in addition to host processors).
5444: 5220: 5158: 4974: 4951: 4763: 4484: 3422: 3199: 2644: 2587: 2036:
are able to use a dual-CPU multiprocessor: partitioned multiprocessing and
2022: 1916:, Kilocore, a 1000 core 1.78 GHz processor on a 32 nm IBM process 1458: 1379: 1239: 1216: 1200: 1110: 1106: 500: 150: 115: 51: 5965: 5005: 4969: 4680: 4652: 4510: 4365: 3288: 1554:, single, dual-core, and quad-core processors for the entry-level market. 1539: 1513: 1375: 814: 669: 360: 245: 146: 106:
techniques. Manufacturers typically integrate the cores onto a single IC
3233:
Khondker S. Hasan; John Antonio; Sridhar Radhakrishnan (February 2014).
3225: 2538: 2137: 4891: 4881: 4876: 4858: 4758: 4731: 3993: 3826: 3796: 3516: 3034:"Intel shows off Xeon Platinum CPU with up to 56 cores and 112 threads" 1891: 1857: 1535: 1507: 1471: 1261: 1152: 1134: 842: 822: 453: 386: 39: 2658: 46: 5839: 5814: 5231: 4982: 4979: 4721: 3791: 3769: 1835: 1300: 1248: 1140: 1116: 1103:, dual-, triple-, and quad-core of Accelerated Processor Units (APU). 949: 838: 699: 681: 381:
be used in the design, which increased functionality, especially for
130: 3216:
Khondker S. Hasan; Nicolas G. Grounds; John K. Antonio (July 2011).
1474:, single, dual-core, quad-core, 8-, 12-, and 16-core processors for 26: 5889: 5869: 5794: 4997: 3816: 3180: 2583:"Windows Server 2016 moving to per core, not per socket, licensing" 2513: 1974:(Open Computing Language) – a framework for heterogeneous execution 1956: 1913: 1847: 1763: 1757: 1680: 1663: 1650: 1501: 1447: 1409: 1393: 1187: 1049: 957: 920: 758:, which perform math computations faster than newer languages like 707: 694:
techniques can benefit from multiple cores directly. Some existing
685: 598: 228: 197: 3285:, published on Feb 19, 2010 (more than one dead link in the slide) 2265:"Six-core CPUs are now more popular than quad-core chips on Steam" 220:(i.e. clusters of chips) the count can go over 10 million (and in 5894: 5874: 5849: 5484: 3806: 3764: 2332:"Intel Shows 48-core x86 Processor as Single-chip Cloud Computer" 1813: 1712: 1704: 1551: 1545: 1527: 1523: 1519: 1495: 1475: 1399: 1369: 1333: 1318: 1314: 1310: 1146: 1128: 846: 755: 633: 221: 1287: 456:" the processor by using smaller traces for the same logic. The 5864: 5859: 3821: 3786: 3751: 3108:"Intel® Xeon Phi™ 72x5 Processor Family Product Specifications" 1971: 1807: 1802: 1686: 1670: 1623: 1609: 1592: 1479: 1363: 1357: 1351: 1345: 1339: 1329: 1170: 1122: 1085: 973: 703: 643: 587: 491:
The proximity of multiple CPU cores on the same die allows the
161:. Homogeneous multi-core systems include only identical cores; 235:
simultaneously on multiple cores; this effect is described by
4279: 3811: 3781: 3084:"Intel® Xeon Phi™ x100 Product Family Product Specifications" 2979: 1946: 1653:
PC200 series 200–300 cores per device for DSP & wireless.
1632: 1466: 1256: 1210: 1178: 1158: 1075: 1072: 1062: 929: 475: 394: 2472:(Press release). MediaTek. November 20, 2013. Archived from 2452:"These 5 Myths About the Octa-Core Phones Are Actually True" 1271:
Cradle Technologies CT3400 and CT3600, both multi-core DSPs.
5899: 5829: 5819: 5143: 4291: 4211: 3801: 2907:"Intel® Pentium® Processor D Series Product Specifications" 2763:"Intel® Celeron® Processor J Series Product Specifications" 2622:. OMT-CO Operations Management Technology Consulting GmbH. 1941: 1727: 1696: 1563: 1442:, an eight-core z/Architecture processor, released in 2021. 1436:, a twelve-core z/Architecture processor, released in 2019. 1424:, an eight-core z/Architecture processor, released in 2015. 1164: 165:
multi-core systems have cores that are not identical (e.g.
34: 1711:
processor, a nine-core processor with one general purpose
948:
has the three-core TMS320C6488 and four-core TMS320C5441,
5809: 5786: 3731: 3721: 2859:"Intel® Core™ X-series Processors Product Specifications" 2470:"MediaTek Launches MT6592 True Octa-Core Mobile Platform" 1853: 1700: 1412:, a quad-core z/Architecture processor, released in 2010. 1324: 479: 398: 118:. As of 2024, the microprocessors used in almost all new 2713:"Intel® Atom™ Processor Z Series Product Specifications" 2689:"Intel® Atom™ Processor C Series Product Specifications" 1430:, a ten-core z/Architecture processor, released in 2017. 1418:, a six-core z/Architecture processor, released in 2012. 1354:, a 4, 6 and 8-core PowerPC processor, released in 2010. 3133:"40-core processor with Forth-based IDE tools unveiled" 1392:-capable, PowerPC microprocessor used in the Microsoft 1149:, single-, dual-, and quad-core entry level processors. 1143:, dual-, triple-, quad-, and 6-core desktop processors. 1683:"SiCortex node" has six MIPS64 cores on a single chip. 1548:, single, dual-core, quad-core, and 8-core processors. 1372:, a 15 or 30-core PowerPC processor, released in 2021. 1366:, a 12 or 24-core PowerPC processor, released in 2017. 1251:
Xtensa LX6, available in a dual-core configuration in
445:
to keep a high-performance single-core processor busy.
1378:
MP, a dual-core PowerPC processor, used in the Apple
845:
licensing system. However, for some software such as
2358:"Intel unveils 48-core cloud computing silicon chip" 19:"Dual Core" redirects here. Not to be confused with 3200:"COSMIC:Statistical Multiprocessor Benchmark Suite" 1618:
XLS, an eight-core, quad-threaded MIPS64 processor.
1615:
XLR, an eight-core, quad-threaded MIPS64 processor.
1516:, 2 dual-core dies packaged in a multi-chip module. 1119:, dual-, triple-, and quad-core desktop processors. 409:Since computer manufacturers have long implemented 2883:"Intel® Itanium® Processor Product Specifications" 2394:"Q & A: Do multicores save energy? Not really" 2107: 2105: 1766:, a sixteen-core, 128-concurrent-thread processor. 1754:, a sixteen-core, 128-concurrent-thread processor. 1348:, a dual-core PowerPC processor, released in 2007. 1342:, a dual-core PowerPC processor, released in 2004. 1199:is a fully synthesizable multi-core container for 16:Microprocessor with more than one processing unit 6002: 3060:"2nd Gen Intel® Xeon® Scalable Processors Brief" 2659:"Sempron™ 3850 APU with Radeon™ R3 Series | AMD" 2290:"The 2,048-core PEZY-SC2 sets a Green500 record" 1760:, an eight-core, 64-concurrent-thread processor. 1748:, an eight-core, 64-concurrent-thread processor. 1572:57-, 60-, 61-, 64-, 68-, and 72-core processors. 1360:, a 12-core PowerPC processor, released in 2013. 837:Initially, for some of its enterprise software, 2574: 2102: 1213:ModemX, up to 128 cores, wireless applications. 907:have become mainstream, with companies such as 3283:Architecting solutions for the Manycore future 1227:Vega 3, a 54-core processor, released in 2008. 1224:Vega 2, a 48-core processor, released in 2006. 1221:Vega 1, a 24-core processor, released in 2005. 857:, Microsoft has shifted to per-core licensing. 601:designs, emphasising qualitative differences. 441:; the increasing difficulty of finding enough 82:to emphasize their multiplicity (for example, 5247: 3304: 2958:"Intel releases 15-core Xeon E7 v2 processor" 2620:"The Licensing Of Oracle Technology Products" 632:Atsushi Hasegawa, a senior chief engineer at 169:have heterogeneous cores that share the same 1583:SEAforth24, a 24-core processor designed by 935: 305:In contrast to multi-core systems, the term 302:integrated circuit, unless otherwise noted. 4309:Computer performance by orders of magnitude 2262: 1137:, dual-, triple-, and quad-core processors. 1125:, quad-, 6-, and 8-core desktop processors. 5254: 5240: 3318: 3311: 3297: 3272:"Multicore Is Bad News for Supercomputers" 2737:"Intel Preps Dual-Core Celeron Processors" 2421:"Intel: Why a 1,000-core chip is feasible" 1635:cores; plus other more specialized cores). 1155:, single- and dual-core laptop processors. 928:(SMP) operating system. Companies such as 503:) operations. Put simply, this means that 443:parallelism in a single instruction stream 2955: 2565: 1794:, a five-core multimedia video processor. 1736:and UltraSPARC IV+, dual-core processors. 1113:single- and dual-core desktop processors. 750:to access code written in languages like 642:, founder and chief executive of startup 276:(CPU), but are sometimes also applied to 141:inter-core communication methods. Common 114:(CMP), or onto multiple dies in a single 2510:"CPU designers debate multi-core future" 2449: 1299:QorIQ series processors, up to 8 cores, 1190:BF561, a symmetrical dual-core processor 1022:by adding descriptive text and removing 963: 871: 867: 427:. This is due to three primary factors: 375: 335:semiconductor intellectual property core 45: 33: 25: 3145: 2929: 2507: 2391: 2163:"What makes parallel programming hard?" 2160: 1868:Asynchronous array of simple processors 6003: 5261: 3173: 2956:Kowaliski, Cyril (February 18, 2014). 2580: 2329: 2028: 565:, memory-on-chip, and special-purpose 5235: 3292: 2554:Journal of High Performance Computing 2364:from the original on December 6, 2012 2302: 2287: 2187: 2056: 1742:, an eight-core, 32-thread processor. 898: 726:. Other research efforts include the 4280:Floating-point operations per second 3146:Hammond, Lance; et al. (1999). 3131:Cole, Bernard (September 24, 2008). 3130: 2930:Zazaian, Mike (September 26, 2006). 2599:from the original on 4 December 2015 2338:from the original on January 5, 2016 2086:"Multicore Processors – A Necessity" 1797:TMS320TMS320C66, 2-, 4-, 8-core DSP. 1580:SEAforth 40C18, a 40-core processor. 990: 986: 404: 272:most commonly refer to some sort of 3188:from the original on June 23, 2016. 3016:"Intel Xeon Processor E3 v2 Family" 2998:"Intel Xeon Processor E7 v2 Family" 2976:"Intel Xeon Processor E7 v3 Family" 2535:"Multicore Packet Processing Forum" 2083: 1777:, a 260-core processor used in the 650: 333:. Each "core" can be considered a " 145:used to interconnect cores include 13: 3209: 2508:Merritt, Rick (February 6, 2008). 2431:from the original on 6 August 2015 2059:"Definition: multi-core processor" 2057:Rouse, Margaret (March 27, 2007). 1090:massively parallel processor array 125:A multi-core processor implements 14: 6042: 3250: 2739:. 11 October 2007. Archived from 2581:Bright, Peter (4 December 2015). 2450:Kudikala, Chakri (Aug 27, 2016). 2418: 2330:Shrout, Ryan (December 2, 2009). 2111: 1457:Danube, a dual-core, MIPS-based, 383:complex instruction set computing 5984: 5983: 5206:Semiconductor device fabrication 3022:from the original on 2015-07-07. 3004:from the original on 2015-07-07. 2986:from the original on 2015-07-07. 2964:from the original on 2014-10-11. 2488:"What is an Octa-core processor" 2006: 1983:Partitioned global address space 995: 534: 175:AMD Accelerated Processing Units 90:). Each core reads and executes 5455:Analysis of parallel algorithms 5181:History of general-purpose CPUs 3408:Nondeterministic Turing machine 3192: 3167: 3139: 3124: 3100: 3076: 3057: 3051: 3026: 3008: 2990: 2968: 2949: 2923: 2899: 2875: 2851: 2827: 2803: 2779: 2755: 2729: 2705: 2681: 2669:from the original on 4 May 2019 2651: 2637: 2626:from the original on 2014-03-21 2611: 2545: 2527: 2501: 2480: 2462: 2443: 2412: 2392:Suleman, Aater (May 19, 2011). 2385: 2376: 2350: 2323: 2296: 2281: 2161:Suleman, Aater (May 20, 2011). 1864:University of California, Davis 1293:, a 100-core DSP/GPP processor. 680:that were based on proprietary 604: 518:(PCB) space than do multi-chip 74:(IC) with two or more separate 3361:Deterministic finite automaton 3174:Chacos, Brad (June 20, 2016). 2835:"Products formerly Kentsfield" 2288:Schor, David (November 2017). 2256: 2232: 2208: 2181: 2154: 2130: 2077: 2050: 1978:Parallel random access machine 1730:5200, two-core VLIW processor. 1608:XLP, a 32-core, quad-threaded 340: 259: 239:. In the best case, so-called 1: 5402:Simultaneous and heterogenous 4152:Simultaneous and heterogenous 3263:"Embedded moves to multicore" 2165:. FutureChips. Archived from 2044: 1920: 1816:, a 72-core 64-bit processor. 1810:, a 64-core 32-bit processor. 1482:, embedded applications, and 1235:SiByte SB1250, SB1255, SB1455 1043: 486: 356:instruction-level parallelism 5990:Category: Parallel computing 4836:Integrated memory controller 4818:Translation lookaside buffer 4017:Memory dependence prediction 3460:Random-access stored program 3413:Probabilistic Turing machine 2303:Vajda, András (2011-06-10). 2061:. TechTarget. Archived from 1406:processor, released in 2008. 1336:processor, released in 2001. 828: 7: 4292:Synaptic updates per second 3257:"What Is a Processor Core?" 2306:Programming Many-Core Chips 2190:Parallel Processing Letters 1929: 1898:University of Texas, Austin 1841: 1490:Atom SoC (system on a chip) 979:Mobile devices may use the 696:parallel programming models 563:simultaneous multithreading 550: 10: 6047: 5297:High-performance computing 4696:Heterogeneous architecture 3618:Orthogonal instruction set 3388:Alternating Turing machine 3376:Quantum cellular automaton 2811:"Products formerly Conroe" 2263:Alan Dexter (2022-04-05). 813:On the other hand, on the 18: 6016:Digital signal processing 5979: 5931:Automatic parallelization 5923: 5785: 5625: 5575: 5567:Application checkpointing 5529: 5493: 5437: 5381: 5330: 5269: 5186:Microprocessor chronology 5173: 5149:Dynamic frequency scaling 5122: 5058: 4996: 4950: 4902: 4857: 4777: 4704: 4673: 4578: 4499: 4463: 4417: 4317: 4304:Cache performance metrics 4243: 4177: 4127: 4038: 4029: 4002: 3957: 3924: 3896: 3887: 3707: 3610: 3599: 3470: 3326: 3267:Embedded Computing Design 3243:10.13140/RG.2.1.3051.9207 2932:"Intel: 80 Cores by 2011" 2787:"Products formerly Yonah" 2490:. Samsung. Archived from 2360:. BBC. December 3, 2009. 2216:"Definition of dual core" 2202:10.1142/S0129626411000151 2038:symmetric multiprocessing 2011:Digital signal processors 1910:, Sweden, ePUMA processor 942:digital signal processing 936:Digital signal processing 926:symmetric multiprocessing 555: 483:functions into the chip. 411:symmetric multiprocessing 337:" as well as a CPU core. 329:cores placed on a single 278:digital signal processors 210:digital signal processing 133:, and they may implement 42:E6750 dual-core processor 5201:Hardware security module 4544:Digital signal processor 4521:Graphics processing unit 4333:Graphics processing unit 2000: 1888:University of Washington 1850:, 4-core Hydra processor 1823:Software Defined Silicon 1641:Parallax Propeller P8X32 1510:, a dual-core processor. 1504:, a dual-core processor. 944:the same trend applies: 762:. Intel's MKL and AMD's 369:thread-level parallelism 94:, specifically ordinary 76:central processing units 5946:Embarrassingly parallel 5941:Deterministic algorithm 5154:Dynamic voltage scaling 4937:Memory address register 4831:Branch target predictor 4795:Address generation unit 4538:Physics processing unit 4327:Central processing unit 4286:Transactions per second 4274:Instructions per second 4197:Array processing (SIMT) 3341:Stored-program computer 2309:. Springer. p. 3. 1829: 1558:Teraflops Research Chip 1484:mobile internet devices 1297:Freescale Semiconductor 1247:Cadence Design Systems 1080:physics processing unit 1024:less pertinent examples 970:heterogeneous computing 909:Freescale Semiconductor 903:As of 2010, multi-core 841:continued to use a per- 274:central processing unit 241:embarrassingly parallel 21:Dual Core (hip hop duo) 5661:Associative processing 5617:Non-blocking algorithm 5423:Clustered multi-thread 4960:Hardwired control unit 4842:Memory management unit 4807:Memory management unit 4556:Secure cryptoprocessor 4550:Tensor Processing Unit 4532:Vision processing unit 4266:Cycles per instruction 4260:Instructions per cycle 4207:Associative processing 3898:Instruction pipelining 3320:Processor technologies 3149:The Stanford Hydra CMP 1879:167-core 1.2 GHz 1605:NetLogic Microsystems 1067:fault-tolerant version 1065:that also exists in a 954:Stream Processors, Inc 881: 648: 592:portable media players 385:(CISC) architectures. 359:(ILP) methods such as 325:Some systems use many 55: 43: 31: 6011:Computer architecture 5777:Hardware acceleration 5690:Superscalar processor 5680:Dataflow architecture 5277:Distributed computing 5043:Sum-addressed decoder 4789:Arithmetic logic unit 3916:Classic RISC pipeline 3870:Epiphany architecture 3717:Motorola 68000 series 2494:on January 17, 2022. 1962:Multicore Association 1873:36-core 610 MHz 964:Heterogeneous systems 875: 868:Embedded applications 728:Codeplay Sieve System 627: 516:printed circuit board 376:Commercial incentives 49: 37: 29: 5656:Pipelined processing 5605:Explicit parallelism 5600:Implicit parallelism 5590:Dataflow programming 5164:Performance per watt 4742:replacement policies 4408:Package on a package 4298:Performance per watt 4202:Pipelined processing 3972:Tomasulo's algorithm 3777:Clipper architecture 3633:Application-specific 3346:Finite-state machine 2476:on October 29, 2020. 2400:on December 16, 2012 1908:Linköping University 1691:U74 includes 4 cores 1205:ARM Cortex-A9 MPCore 893:software portability 692:Parallel programming 393:cores. For example, 320:massively multi-core 92:program instructions 60:multi-core processor 5880:Parallel Extensions 5685:Pipelined processor 5196:Digital electronics 4849:Instruction decoder 4801:Floating-point unit 4455:Soft microprocessor 4402:System in a package 3977:Reservation station 3507:Transport-triggered 1631:(10496 CUDA cores, 1088:Am2045, a 336-core 1020:improve the article 855:Windows Server 2016 847:BizTalk Server 2013 748:numerical libraries 668:algorithms used in 425:operating frequency 327:soft microprocessor 288:integrated circuit 112:chip multiprocessor 54:dual-core processor 6031:Parallel computing 5754:Massively parallel 5732:distributed shared 5552:Cache invalidation 5516:Instruction window 5307:Manycore processor 5287:Massively parallel 5282:Parallel computing 5263:Parallel computing 5068:Integrated circuit 4912:Processor register 4566:Baseband processor 3911:Operand forwarding 3371:Cellular automaton 2743:on 4 November 2007 1669:Raspberry Pi Ltd. 1277:Octeon, a 32-core 905:network processors 899:Network processors 885:Embedded computing 882: 861:Oracle Corporation 153:, two-dimensional 143:network topologies 120:personal computers 104:parallel computing 72:integrated circuit 56: 44: 32: 5998: 5997: 5951:Parallel slowdown 5585:Stream processing 5475:Karp–Flatt metric 5229: 5228: 5118: 5117: 4737:Instruction cache 4727:Scratchpad memory 4574: 4573: 4561:Network processor 4490:Network on a chip 4445:Ultra-low-voltage 4396:Multi-chip module 4239: 4238: 4025: 4024: 4012:Branch prediction 3989:Register renaming 3883: 3882: 3865:VISC architecture 3687:Quantum computing 3682:VISC architecture 3564:Secondary storage 3480:Microarchitecture 3440:Register machines 2316:978-1-4419-9739-5 2118:www.anandtech.com 2065:on August 5, 2010 2034:operating systems 1825:quad-core XS1-G4. 1787:Texas Instruments 1779:Sunway TaihuLight 1388:, a triple-core, 1253:Espressif Systems 1041: 1040: 987:Hardware examples 946:Texas Instruments 584:frequency scaling 405:Technical factors 295:multi-chip module 6038: 6021:Flynn's taxonomy 5987: 5986: 5961:Software lockout 5760:Computer cluster 5695:Vector processor 5650:Array processing 5635:Flynn's taxonomy 5542:Memory coherence 5317:Computer network 5256: 5249: 5242: 5233: 5232: 5191:Processor design 5083:Power management 4965:Instruction unit 4826:Branch predictor 4775: 4774: 4473:System on a chip 4415: 4414: 4255:Transistor count 4179:Flynn's taxonomy 4036: 4035: 3894: 3893: 3697:Addressing modes 3608: 3607: 3554:Memory hierarchy 3418:Hypercomputation 3336:Abstract machine 3313: 3306: 3299: 3290: 3289: 3246: 3229: 3204: 3203: 3196: 3190: 3189: 3171: 3165: 3164: 3162: 3160: 3154: 3143: 3137: 3136: 3128: 3122: 3121: 3119: 3118: 3104: 3098: 3097: 3095: 3094: 3080: 3074: 3073: 3071: 3070: 3055: 3049: 3048: 3046: 3045: 3030: 3024: 3023: 3012: 3006: 3005: 2994: 2988: 2987: 2972: 2966: 2965: 2953: 2947: 2946: 2944: 2943: 2934:. Archived from 2927: 2921: 2920: 2918: 2917: 2903: 2897: 2896: 2894: 2893: 2879: 2873: 2872: 2870: 2869: 2855: 2849: 2848: 2846: 2845: 2831: 2825: 2824: 2822: 2821: 2807: 2801: 2800: 2798: 2797: 2783: 2777: 2776: 2774: 2773: 2759: 2753: 2752: 2750: 2748: 2733: 2727: 2726: 2724: 2723: 2709: 2703: 2702: 2700: 2699: 2685: 2679: 2678: 2676: 2674: 2655: 2649: 2648: 2641: 2635: 2634: 2632: 2631: 2615: 2609: 2608: 2606: 2604: 2578: 2572: 2571: 2569: 2549: 2543: 2542: 2537:. Archived from 2531: 2525: 2524: 2522: 2520: 2505: 2499: 2498: 2484: 2478: 2477: 2466: 2460: 2459: 2447: 2441: 2440: 2438: 2436: 2416: 2410: 2409: 2407: 2405: 2396:. Archived from 2389: 2383: 2380: 2374: 2373: 2371: 2369: 2354: 2348: 2347: 2345: 2343: 2327: 2321: 2320: 2300: 2294: 2293: 2285: 2279: 2278: 2276: 2275: 2260: 2254: 2253: 2251: 2250: 2236: 2230: 2229: 2227: 2226: 2212: 2206: 2205: 2185: 2179: 2178: 2176: 2174: 2158: 2152: 2151: 2149: 2148: 2134: 2128: 2127: 2125: 2124: 2109: 2100: 2099: 2097: 2091:. Archived from 2090: 2084:Schauer, Bryan. 2081: 2075: 2074: 2072: 2070: 2054: 2031: 2009: 1723:Sun Microsystems 1643:, an eight-core 1585:Charles H. Moore 1309:Hewlett-Packard 1291:hx3100 Processor 1056:Aeroflex Gaisler 1036: 1033: 1027: 999: 998: 991: 666:entropy encoding 651:Software effects 576:power management 541:operating system 351:microelectronics 282:system on a chip 122:are multi-core. 96:CPU instructions 6046: 6045: 6041: 6040: 6039: 6037: 6036: 6035: 6026:Microprocessors 6001: 6000: 5999: 5994: 5975: 5919: 5825:Coarray Fortran 5781: 5765:Beowulf cluster 5621: 5571: 5562:Synchronization 5547:Cache coherence 5537:Multiprocessing 5525: 5489: 5470:Cost efficiency 5465:Gustafson's law 5433: 5377: 5326: 5302:Multiprocessing 5292:Cloud computing 5265: 5260: 5230: 5225: 5211:Tick–tock model 5169: 5125: 5114: 5054: 5038:Address decoder 4992: 4946: 4942:Program counter 4917:Status register 4898: 4853: 4813:Load–store unit 4780: 4773: 4700: 4669: 4570: 4527:Image processor 4502: 4495: 4465: 4459: 4435:Microcontroller 4425:Embedded system 4413: 4313: 4246: 4235: 4173: 4123: 4021: 3998: 3982:Re-order buffer 3953: 3934:Data dependency 3920: 3879: 3709: 3703: 3602: 3601:Instruction set 3595: 3581:Multiprocessing 3549:Cache hierarchy 3542:Register/memory 3466: 3366:Queue automaton 3322: 3317: 3253: 3212: 3210:Further reading 3207: 3198: 3197: 3193: 3172: 3168: 3158: 3156: 3152: 3144: 3140: 3129: 3125: 3116: 3114: 3106: 3105: 3101: 3092: 3090: 3082: 3081: 3077: 3068: 3066: 3058:PDF, Download. 3056: 3052: 3043: 3041: 3032: 3031: 3027: 3014: 3013: 3009: 2996: 2995: 2991: 2974: 2973: 2969: 2954: 2950: 2941: 2939: 2928: 2924: 2915: 2913: 2905: 2904: 2900: 2891: 2889: 2881: 2880: 2876: 2867: 2865: 2857: 2856: 2852: 2843: 2841: 2833: 2832: 2828: 2819: 2817: 2809: 2808: 2804: 2795: 2793: 2785: 2784: 2780: 2771: 2769: 2761: 2760: 2756: 2746: 2744: 2735: 2734: 2730: 2721: 2719: 2711: 2710: 2706: 2697: 2695: 2687: 2686: 2682: 2672: 2670: 2657: 2656: 2652: 2643: 2642: 2638: 2629: 2627: 2618: 2616: 2612: 2602: 2600: 2579: 2575: 2550: 2546: 2533: 2532: 2528: 2518: 2516: 2506: 2502: 2486: 2485: 2481: 2468: 2467: 2463: 2448: 2444: 2434: 2432: 2417: 2413: 2403: 2401: 2390: 2386: 2381: 2377: 2367: 2365: 2356: 2355: 2351: 2341: 2339: 2328: 2324: 2317: 2301: 2297: 2286: 2282: 2273: 2271: 2261: 2257: 2248: 2246: 2238: 2237: 2233: 2224: 2222: 2214: 2213: 2209: 2186: 2182: 2172: 2170: 2169:on May 29, 2011 2159: 2155: 2146: 2144: 2136: 2135: 2131: 2122: 2120: 2110: 2103: 2095: 2088: 2082: 2078: 2068: 2066: 2055: 2051: 2047: 2003: 1998: 1952:Hyper-threading 1932: 1923: 1844: 1832: 1677:microcontroller 1645:microcontroller 1275:Cavium Networks 1186:Analog Devices 1078:, a multi-core 1061:, a multi-core 1046: 1037: 1031: 1028: 1017: 1000: 996: 989: 966: 938: 913:Cavium Networks 901: 878:embedded system 870: 851:SQL Server 2014 831: 653: 607: 567:"heterogeneous" 558: 553: 537: 493:cache coherency 489: 407: 378: 343: 262: 233:run in parallel 198:general-purpose 171:instruction set 135:message passing 127:multiprocessing 78:(CPUs), called 52:Athlon X2 6400+ 24: 17: 12: 11: 5: 6044: 6034: 6033: 6028: 6023: 6018: 6013: 5996: 5995: 5993: 5992: 5980: 5977: 5976: 5974: 5973: 5968: 5963: 5958: 5956:Race condition 5953: 5948: 5943: 5938: 5933: 5927: 5925: 5921: 5920: 5918: 5917: 5912: 5907: 5902: 5897: 5892: 5887: 5882: 5877: 5872: 5867: 5862: 5857: 5852: 5847: 5842: 5837: 5832: 5827: 5822: 5817: 5812: 5807: 5802: 5797: 5791: 5789: 5783: 5782: 5780: 5779: 5774: 5769: 5768: 5767: 5757: 5751: 5750: 5749: 5744: 5739: 5734: 5729: 5724: 5714: 5713: 5712: 5707: 5700:Multiprocessor 5697: 5692: 5687: 5682: 5677: 5676: 5675: 5670: 5665: 5664: 5663: 5658: 5653: 5642: 5631: 5629: 5623: 5622: 5620: 5619: 5614: 5613: 5612: 5607: 5602: 5592: 5587: 5581: 5579: 5573: 5572: 5570: 5569: 5564: 5559: 5554: 5549: 5544: 5539: 5533: 5531: 5527: 5526: 5524: 5523: 5518: 5513: 5508: 5503: 5497: 5495: 5491: 5490: 5488: 5487: 5482: 5477: 5472: 5467: 5462: 5457: 5452: 5447: 5441: 5439: 5435: 5434: 5432: 5431: 5429:Hardware scout 5426: 5420: 5415: 5410: 5404: 5399: 5393: 5387: 5385: 5383:Multithreading 5379: 5378: 5376: 5375: 5370: 5365: 5360: 5355: 5350: 5345: 5340: 5334: 5332: 5328: 5327: 5325: 5324: 5322:Systolic array 5319: 5314: 5309: 5304: 5299: 5294: 5289: 5284: 5279: 5273: 5271: 5267: 5266: 5259: 5258: 5251: 5244: 5236: 5227: 5226: 5224: 5223: 5218: 5216:Pin grid array 5213: 5208: 5203: 5198: 5193: 5188: 5183: 5177: 5175: 5171: 5170: 5168: 5167: 5161: 5156: 5151: 5146: 5141: 5136: 5130: 5128: 5120: 5119: 5116: 5115: 5113: 5112: 5107: 5102: 5097: 5092: 5087: 5086: 5085: 5080: 5075: 5064: 5062: 5056: 5055: 5053: 5052: 5050:Barrel shifter 5047: 5046: 5045: 5040: 5033:Binary decoder 5030: 5029: 5028: 5018: 5013: 5008: 5002: 5000: 4994: 4993: 4991: 4990: 4985: 4977: 4972: 4967: 4962: 4956: 4954: 4948: 4947: 4945: 4944: 4939: 4934: 4929: 4924: 4922:Stack register 4919: 4914: 4908: 4906: 4900: 4899: 4897: 4896: 4895: 4894: 4889: 4879: 4874: 4869: 4863: 4861: 4855: 4854: 4852: 4851: 4846: 4845: 4844: 4833: 4828: 4823: 4822: 4821: 4815: 4804: 4798: 4792: 4785: 4783: 4772: 4771: 4766: 4761: 4756: 4751: 4750: 4749: 4744: 4739: 4734: 4729: 4724: 4714: 4708: 4706: 4702: 4701: 4699: 4698: 4693: 4688: 4683: 4677: 4675: 4671: 4670: 4668: 4667: 4666: 4665: 4655: 4650: 4645: 4640: 4635: 4630: 4625: 4620: 4615: 4610: 4605: 4600: 4595: 4590: 4584: 4582: 4576: 4575: 4572: 4571: 4569: 4568: 4563: 4558: 4553: 4547: 4541: 4535: 4529: 4524: 4518: 4516:AI accelerator 4513: 4507: 4505: 4497: 4496: 4494: 4493: 4487: 4482: 4479:Multiprocessor 4476: 4469: 4467: 4461: 4460: 4458: 4457: 4452: 4447: 4442: 4437: 4432: 4430:Microprocessor 4427: 4421: 4419: 4418:By application 4412: 4411: 4405: 4399: 4393: 4388: 4383: 4378: 4373: 4368: 4363: 4361:Tile processor 4358: 4353: 4348: 4343: 4342: 4341: 4330: 4323: 4321: 4315: 4314: 4312: 4311: 4306: 4301: 4295: 4289: 4283: 4277: 4271: 4270: 4269: 4257: 4251: 4249: 4241: 4240: 4237: 4236: 4234: 4233: 4232: 4231: 4221: 4216: 4215: 4214: 4209: 4204: 4199: 4189: 4183: 4181: 4175: 4174: 4172: 4171: 4166: 4161: 4156: 4155: 4154: 4149: 4147:Hyperthreading 4139: 4133: 4131: 4129:Multithreading 4125: 4124: 4122: 4121: 4116: 4111: 4110: 4109: 4099: 4098: 4097: 4092: 4082: 4081: 4080: 4075: 4065: 4060: 4059: 4058: 4053: 4042: 4040: 4033: 4027: 4026: 4023: 4022: 4020: 4019: 4014: 4008: 4006: 4000: 3999: 3997: 3996: 3991: 3986: 3985: 3984: 3979: 3969: 3963: 3961: 3955: 3954: 3952: 3951: 3946: 3941: 3936: 3930: 3928: 3922: 3921: 3919: 3918: 3913: 3908: 3906:Pipeline stall 3902: 3900: 3891: 3885: 3884: 3881: 3880: 3878: 3877: 3872: 3867: 3862: 3859: 3858: 3857: 3855:z/Architecture 3852: 3847: 3842: 3834: 3829: 3824: 3819: 3814: 3809: 3804: 3799: 3794: 3789: 3784: 3779: 3774: 3773: 3772: 3767: 3762: 3754: 3749: 3744: 3739: 3734: 3729: 3724: 3719: 3713: 3711: 3705: 3704: 3702: 3701: 3700: 3699: 3689: 3684: 3679: 3674: 3669: 3664: 3659: 3658: 3657: 3647: 3646: 3645: 3635: 3630: 3625: 3620: 3614: 3612: 3605: 3597: 3596: 3594: 3593: 3588: 3583: 3578: 3573: 3568: 3567: 3566: 3561: 3559:Virtual memory 3551: 3546: 3545: 3544: 3539: 3534: 3529: 3519: 3514: 3509: 3504: 3499: 3498: 3497: 3487: 3482: 3476: 3474: 3468: 3467: 3465: 3464: 3463: 3462: 3457: 3452: 3447: 3437: 3432: 3427: 3426: 3425: 3420: 3415: 3410: 3405: 3400: 3395: 3390: 3383:Turing machine 3380: 3379: 3378: 3373: 3368: 3363: 3358: 3353: 3343: 3338: 3332: 3330: 3324: 3323: 3316: 3315: 3308: 3301: 3293: 3287: 3286: 3280: 3269: 3260: 3252: 3251:External links 3249: 3248: 3247: 3230: 3211: 3208: 3206: 3205: 3191: 3166: 3138: 3123: 3099: 3075: 3050: 3040:. 2 April 2019 3025: 3007: 2989: 2967: 2948: 2922: 2898: 2874: 2850: 2826: 2802: 2778: 2754: 2728: 2704: 2680: 2650: 2636: 2610: 2573: 2567:10.1.1.37.4309 2544: 2541:on 2009-12-21. 2526: 2500: 2479: 2461: 2442: 2411: 2384: 2375: 2349: 2322: 2315: 2295: 2280: 2255: 2231: 2207: 2196:(2): 173–193. 2180: 2153: 2142:www.top500.org 2129: 2101: 2098:on 2011-11-25. 2076: 2048: 2046: 2043: 2042: 2041: 2026: 2017:CPU and a DSP 2002: 1999: 1997: 1996: 1991: 1989:Race condition 1986: 1980: 1975: 1969: 1964: 1959: 1954: 1949: 1944: 1939: 1933: 1931: 1928: 1922: 1919: 1918: 1917: 1911: 1905: 1895: 1885: 1884: 1883: 1877: 1861: 1851: 1843: 1840: 1839: 1838: 1831: 1828: 1827: 1826: 1819: 1818: 1817: 1811: 1800: 1799: 1798: 1795: 1784: 1783: 1782: 1775:Sunway SW26010 1769: 1768: 1767: 1761: 1755: 1749: 1743: 1737: 1731: 1720: 1694: 1693: 1692: 1684: 1678: 1675:ARM Cortex-M0+ 1667: 1660: 1654: 1648: 1638: 1637: 1636: 1621: 1620: 1619: 1616: 1613: 1603: 1602: 1601: 1590: 1589: 1588: 1581: 1575: 1574: 1573: 1567: 1561: 1555: 1549: 1543: 1517: 1511: 1505: 1499: 1493: 1487: 1464: 1463: 1462: 1455: 1445: 1444: 1443: 1437: 1431: 1425: 1419: 1413: 1407: 1404:z/Architecture 1402:, a quad-core 1397: 1383: 1373: 1367: 1361: 1355: 1349: 1343: 1337: 1332:, a dual-core 1322: 1307: 1294: 1288:Coherent Logix 1285: 1272: 1269: 1268: 1267: 1259: 1245: 1244: 1243: 1236: 1230: 1229: 1228: 1225: 1222: 1214: 1208: 1191: 1184: 1183: 1182: 1168: 1162: 1156: 1150: 1144: 1138: 1132: 1126: 1120: 1114: 1104: 1093: 1083: 1070: 1053: 1045: 1042: 1039: 1038: 1003: 1001: 994: 988: 985: 983:architecture. 981:ARM big.LITTLE 965: 962: 937: 934: 900: 897: 869: 866: 865: 864: 858: 830: 827: 811: 810: 806: 802: 801: 797: 793: 792: 788: 784: 783: 779: 652: 649: 620:True Octa-core 606: 603: 590:computers and 557: 554: 552: 549: 536: 533: 525:front-side bus 499:(alternative: 488: 485: 472: 471: 470: 469: 446: 435: 421: 416:Additionally: 406: 403: 401:architecture. 377: 374: 342: 339: 261: 258: 218:supercomputers 191:multithreading 100:multithreading 68:microprocessor 15: 9: 6: 4: 3: 2: 6043: 6032: 6029: 6027: 6024: 6022: 6019: 6017: 6014: 6012: 6009: 6008: 6006: 5991: 5982: 5981: 5978: 5972: 5969: 5967: 5964: 5962: 5959: 5957: 5954: 5952: 5949: 5947: 5944: 5942: 5939: 5937: 5934: 5932: 5929: 5928: 5926: 5922: 5916: 5913: 5911: 5908: 5906: 5903: 5901: 5898: 5896: 5893: 5891: 5888: 5886: 5883: 5881: 5878: 5876: 5873: 5871: 5868: 5866: 5863: 5861: 5858: 5856: 5853: 5851: 5848: 5846: 5845:Global Arrays 5843: 5841: 5838: 5836: 5833: 5831: 5828: 5826: 5823: 5821: 5818: 5816: 5813: 5811: 5808: 5806: 5803: 5801: 5798: 5796: 5793: 5792: 5790: 5788: 5784: 5778: 5775: 5773: 5772:Grid computer 5770: 5766: 5763: 5762: 5761: 5758: 5755: 5752: 5748: 5745: 5743: 5740: 5738: 5735: 5733: 5730: 5728: 5725: 5723: 5720: 5719: 5718: 5715: 5711: 5708: 5706: 5703: 5702: 5701: 5698: 5696: 5693: 5691: 5688: 5686: 5683: 5681: 5678: 5674: 5671: 5669: 5666: 5662: 5659: 5657: 5654: 5651: 5648: 5647: 5646: 5643: 5641: 5638: 5637: 5636: 5633: 5632: 5630: 5628: 5624: 5618: 5615: 5611: 5608: 5606: 5603: 5601: 5598: 5597: 5596: 5593: 5591: 5588: 5586: 5583: 5582: 5580: 5578: 5574: 5568: 5565: 5563: 5560: 5558: 5555: 5553: 5550: 5548: 5545: 5543: 5540: 5538: 5535: 5534: 5532: 5528: 5522: 5519: 5517: 5514: 5512: 5509: 5507: 5504: 5502: 5499: 5498: 5496: 5492: 5486: 5483: 5481: 5478: 5476: 5473: 5471: 5468: 5466: 5463: 5461: 5458: 5456: 5453: 5451: 5448: 5446: 5443: 5442: 5440: 5436: 5430: 5427: 5424: 5421: 5419: 5416: 5414: 5411: 5408: 5405: 5403: 5400: 5397: 5394: 5392: 5389: 5388: 5386: 5384: 5380: 5374: 5371: 5369: 5366: 5364: 5361: 5359: 5356: 5354: 5351: 5349: 5346: 5344: 5341: 5339: 5336: 5335: 5333: 5329: 5323: 5320: 5318: 5315: 5313: 5310: 5308: 5305: 5303: 5300: 5298: 5295: 5293: 5290: 5288: 5285: 5283: 5280: 5278: 5275: 5274: 5272: 5268: 5264: 5257: 5252: 5250: 5245: 5243: 5238: 5237: 5234: 5222: 5219: 5217: 5214: 5212: 5209: 5207: 5204: 5202: 5199: 5197: 5194: 5192: 5189: 5187: 5184: 5182: 5179: 5178: 5176: 5172: 5165: 5162: 5160: 5157: 5155: 5152: 5150: 5147: 5145: 5142: 5140: 5137: 5135: 5132: 5131: 5129: 5127: 5121: 5111: 5108: 5106: 5103: 5101: 5098: 5096: 5093: 5091: 5088: 5084: 5081: 5079: 5076: 5074: 5071: 5070: 5069: 5066: 5065: 5063: 5061: 5057: 5051: 5048: 5044: 5041: 5039: 5036: 5035: 5034: 5031: 5027: 5024: 5023: 5022: 5019: 5017: 5014: 5012: 5011:Demultiplexer 5009: 5007: 5004: 5003: 5001: 4999: 4995: 4989: 4986: 4984: 4981: 4978: 4976: 4973: 4971: 4968: 4966: 4963: 4961: 4958: 4957: 4955: 4953: 4949: 4943: 4940: 4938: 4935: 4933: 4932:Memory buffer 4930: 4928: 4927:Register file 4925: 4923: 4920: 4918: 4915: 4913: 4910: 4909: 4907: 4905: 4901: 4893: 4890: 4888: 4885: 4884: 4883: 4880: 4878: 4875: 4873: 4870: 4868: 4867:Combinational 4865: 4864: 4862: 4860: 4856: 4850: 4847: 4843: 4840: 4839: 4837: 4834: 4832: 4829: 4827: 4824: 4819: 4816: 4814: 4811: 4810: 4808: 4805: 4802: 4799: 4796: 4793: 4790: 4787: 4786: 4784: 4782: 4776: 4770: 4767: 4765: 4762: 4760: 4757: 4755: 4752: 4748: 4745: 4743: 4740: 4738: 4735: 4733: 4730: 4728: 4725: 4723: 4720: 4719: 4718: 4715: 4713: 4710: 4709: 4707: 4703: 4697: 4694: 4692: 4689: 4687: 4684: 4682: 4679: 4678: 4676: 4672: 4664: 4661: 4660: 4659: 4656: 4654: 4651: 4649: 4646: 4644: 4641: 4639: 4636: 4634: 4631: 4629: 4626: 4624: 4621: 4619: 4616: 4614: 4611: 4609: 4606: 4604: 4601: 4599: 4596: 4594: 4591: 4589: 4586: 4585: 4583: 4581: 4577: 4567: 4564: 4562: 4559: 4557: 4554: 4551: 4548: 4545: 4542: 4539: 4536: 4533: 4530: 4528: 4525: 4522: 4519: 4517: 4514: 4512: 4509: 4508: 4506: 4504: 4498: 4491: 4488: 4486: 4483: 4480: 4477: 4474: 4471: 4470: 4468: 4462: 4456: 4453: 4451: 4448: 4446: 4443: 4441: 4438: 4436: 4433: 4431: 4428: 4426: 4423: 4422: 4420: 4416: 4409: 4406: 4403: 4400: 4397: 4394: 4392: 4389: 4387: 4384: 4382: 4379: 4377: 4374: 4372: 4369: 4367: 4364: 4362: 4359: 4357: 4354: 4352: 4349: 4347: 4344: 4340: 4337: 4336: 4334: 4331: 4328: 4325: 4324: 4322: 4320: 4316: 4310: 4307: 4305: 4302: 4299: 4296: 4293: 4290: 4287: 4284: 4281: 4278: 4275: 4272: 4267: 4264: 4263: 4261: 4258: 4256: 4253: 4252: 4250: 4248: 4242: 4230: 4227: 4226: 4225: 4222: 4220: 4217: 4213: 4210: 4208: 4205: 4203: 4200: 4198: 4195: 4194: 4193: 4190: 4188: 4185: 4184: 4182: 4180: 4176: 4170: 4167: 4165: 4162: 4160: 4157: 4153: 4150: 4148: 4145: 4144: 4143: 4140: 4138: 4135: 4134: 4132: 4130: 4126: 4120: 4117: 4115: 4112: 4108: 4105: 4104: 4103: 4100: 4096: 4093: 4091: 4088: 4087: 4086: 4083: 4079: 4076: 4074: 4071: 4070: 4069: 4066: 4064: 4061: 4057: 4054: 4052: 4049: 4048: 4047: 4044: 4043: 4041: 4037: 4034: 4032: 4028: 4018: 4015: 4013: 4010: 4009: 4007: 4005: 4001: 3995: 3992: 3990: 3987: 3983: 3980: 3978: 3975: 3974: 3973: 3970: 3968: 3967:Scoreboarding 3965: 3964: 3962: 3960: 3956: 3950: 3949:False sharing 3947: 3945: 3942: 3940: 3937: 3935: 3932: 3931: 3929: 3927: 3923: 3917: 3914: 3912: 3909: 3907: 3904: 3903: 3901: 3899: 3895: 3892: 3890: 3886: 3876: 3873: 3871: 3868: 3866: 3863: 3860: 3856: 3853: 3851: 3848: 3846: 3843: 3841: 3838: 3837: 3835: 3833: 3830: 3828: 3825: 3823: 3820: 3818: 3815: 3813: 3810: 3808: 3805: 3803: 3800: 3798: 3795: 3793: 3790: 3788: 3785: 3783: 3780: 3778: 3775: 3771: 3768: 3766: 3763: 3761: 3758: 3757: 3755: 3753: 3750: 3748: 3745: 3743: 3742:Stanford MIPS 3740: 3738: 3735: 3733: 3730: 3728: 3725: 3723: 3720: 3718: 3715: 3714: 3712: 3706: 3698: 3695: 3694: 3693: 3690: 3688: 3685: 3683: 3680: 3678: 3675: 3673: 3670: 3668: 3665: 3663: 3660: 3656: 3653: 3652: 3651: 3648: 3644: 3641: 3640: 3639: 3636: 3634: 3631: 3629: 3626: 3624: 3621: 3619: 3616: 3615: 3613: 3609: 3606: 3604: 3603:architectures 3598: 3592: 3589: 3587: 3584: 3582: 3579: 3577: 3574: 3572: 3571:Heterogeneous 3569: 3565: 3562: 3560: 3557: 3556: 3555: 3552: 3550: 3547: 3543: 3540: 3538: 3535: 3533: 3530: 3528: 3525: 3524: 3523: 3522:Memory access 3520: 3518: 3515: 3513: 3510: 3508: 3505: 3503: 3500: 3496: 3493: 3492: 3491: 3488: 3486: 3483: 3481: 3478: 3477: 3475: 3473: 3469: 3461: 3458: 3456: 3455:Random-access 3453: 3451: 3448: 3446: 3443: 3442: 3441: 3438: 3436: 3435:Stack machine 3433: 3431: 3428: 3424: 3421: 3419: 3416: 3414: 3411: 3409: 3406: 3404: 3401: 3399: 3396: 3394: 3391: 3389: 3386: 3385: 3384: 3381: 3377: 3374: 3372: 3369: 3367: 3364: 3362: 3359: 3357: 3354: 3352: 3351:with datapath 3349: 3348: 3347: 3344: 3342: 3339: 3337: 3334: 3333: 3331: 3329: 3325: 3321: 3314: 3309: 3307: 3302: 3300: 3295: 3294: 3291: 3284: 3281: 3279: 3278: 3277:IEEE Spectrum 3273: 3270: 3268: 3264: 3261: 3258: 3255: 3254: 3244: 3240: 3236: 3231: 3227: 3223: 3219: 3214: 3213: 3201: 3195: 3187: 3183: 3182: 3177: 3170: 3151: 3150: 3142: 3134: 3127: 3113: 3112:ark.intel.com 3109: 3103: 3089: 3088:ark.intel.com 3085: 3079: 3065: 3061: 3054: 3039: 3035: 3029: 3021: 3017: 3011: 3003: 2999: 2993: 2985: 2981: 2977: 2971: 2963: 2959: 2952: 2938:on 2006-11-09 2937: 2933: 2926: 2912: 2911:ark.intel.com 2908: 2902: 2888: 2887:ark.intel.com 2884: 2878: 2864: 2863:ark.intel.com 2860: 2854: 2840: 2839:ark.intel.com 2836: 2830: 2816: 2815:ark.intel.com 2812: 2806: 2792: 2791:ark.intel.com 2788: 2782: 2768: 2767:ark.intel.com 2764: 2758: 2742: 2738: 2732: 2718: 2717:ark.intel.com 2714: 2708: 2694: 2693:ark.intel.com 2690: 2684: 2668: 2664: 2660: 2654: 2646: 2640: 2625: 2621: 2614: 2598: 2594: 2590: 2589: 2584: 2577: 2568: 2563: 2559: 2555: 2548: 2540: 2536: 2530: 2515: 2511: 2504: 2497: 2493: 2489: 2483: 2475: 2471: 2465: 2457: 2453: 2446: 2430: 2426: 2422: 2419:Clark, Jack. 2415: 2399: 2395: 2388: 2379: 2363: 2359: 2353: 2337: 2333: 2326: 2318: 2312: 2308: 2307: 2299: 2291: 2284: 2270: 2266: 2259: 2245: 2241: 2235: 2221: 2217: 2211: 2203: 2199: 2195: 2191: 2184: 2168: 2164: 2157: 2143: 2139: 2133: 2119: 2115: 2112:Smith, Ryan. 2108: 2106: 2094: 2087: 2080: 2064: 2060: 2053: 2049: 2039: 2035: 2032:Two types of 2030: 2027: 2024: 2023:mobile phones 2020: 2016: 2012: 2008: 2005: 2004: 1995: 1992: 1990: 1987: 1984: 1981: 1979: 1976: 1973: 1970: 1968: 1965: 1963: 1960: 1958: 1955: 1953: 1950: 1948: 1945: 1943: 1940: 1938: 1937:CPU shielding 1935: 1934: 1927: 1915: 1912: 1909: 1906: 1903: 1899: 1896: 1893: 1889: 1886: 1882: 1878: 1876: 1872: 1871: 1869: 1865: 1862: 1859: 1855: 1852: 1849: 1846: 1845: 1837: 1834: 1833: 1824: 1820: 1815: 1812: 1809: 1806: 1805: 1804: 1801: 1796: 1793: 1792:TMS320C80 MVP 1790: 1789: 1788: 1785: 1780: 1776: 1773: 1772: 1770: 1765: 1762: 1759: 1756: 1753: 1752:UltraSPARC T3 1750: 1747: 1746:UltraSPARC T2 1744: 1741: 1740:UltraSPARC T1 1738: 1735: 1734:UltraSPARC IV 1732: 1729: 1726: 1725: 1724: 1721: 1718: 1717:PlayStation 3 1714: 1710: 1706: 1702: 1698: 1695: 1690: 1689: 1688: 1685: 1682: 1679: 1676: 1672: 1668: 1665: 1661: 1658: 1655: 1652: 1649: 1646: 1642: 1639: 1634: 1630: 1627: 1626: 1625: 1622: 1617: 1614: 1611: 1607: 1606: 1604: 1599: 1596: 1595: 1594: 1591: 1586: 1582: 1579: 1578: 1576: 1571: 1568: 1565: 1562: 1559: 1556: 1553: 1550: 1547: 1544: 1541: 1537: 1533: 1529: 1525: 1521: 1518: 1515: 1512: 1509: 1506: 1503: 1500: 1497: 1494: 1491: 1488: 1485: 1481: 1477: 1473: 1470: 1469: 1468: 1465: 1460: 1456: 1454: 1451: 1450: 1449: 1446: 1441: 1438: 1435: 1432: 1429: 1426: 1423: 1420: 1417: 1414: 1411: 1408: 1405: 1401: 1398: 1396:game console. 1395: 1391: 1387: 1384: 1381: 1377: 1374: 1371: 1368: 1365: 1362: 1359: 1356: 1353: 1350: 1347: 1344: 1341: 1338: 1335: 1331: 1328: 1327: 1326: 1323: 1320: 1316: 1312: 1308: 1305: 1302: 1298: 1295: 1292: 1289: 1286: 1283: 1280: 1276: 1273: 1270: 1265: 1264: 1263: 1260: 1258: 1254: 1250: 1246: 1241: 1237: 1234: 1233: 1231: 1226: 1223: 1220: 1219: 1218: 1215: 1212: 1209: 1206: 1202: 1198: 1195: 1192: 1189: 1185: 1180: 1176: 1172: 1169: 1166: 1163: 1160: 1157: 1154: 1151: 1148: 1145: 1142: 1139: 1136: 1133: 1130: 1127: 1124: 1121: 1118: 1115: 1112: 1108: 1105: 1102: 1099: 1098: 1097: 1094: 1091: 1087: 1084: 1081: 1077: 1074: 1071: 1068: 1064: 1060: 1057: 1054: 1051: 1048: 1047: 1035: 1025: 1021: 1015: 1013: 1009: 1004:This article 1002: 993: 992: 984: 982: 977: 975: 971: 961: 959: 955: 951: 947: 943: 933: 931: 927: 922: 918: 914: 910: 906: 896: 894: 889: 886: 879: 874: 862: 859: 856: 852: 848: 844: 840: 836: 835: 834: 826: 824: 820: 816: 807: 804: 803: 798: 796:Agglomeration 795: 794: 789: 787:Communication 786: 785: 780: 777: 776: 775: 773: 768: 765: 761: 757: 753: 749: 743: 741: 737: 733: 729: 725: 721: 717: 713: 709: 705: 701: 697: 693: 689: 687: 683: 677: 673: 671: 667: 663: 662:thread-safety 658: 647: 645: 641: 640:Anant Agarwal 637: 635: 630: 626: 623: 621: 615: 613: 612:heterogeneous 602: 600: 595: 593: 589: 585: 581: 577: 572: 568: 564: 548: 544: 542: 535:Disadvantages 532: 528: 526: 521: 517: 512: 510: 506: 502: 498: 494: 484: 481: 477: 467: 463: 459: 455: 451: 447: 444: 440: 436: 433: 429: 428: 426: 422: 419: 418: 417: 414: 412: 402: 400: 396: 390: 388: 384: 373: 371: 370: 365: 362: 358: 357: 352: 348: 347:semiconductor 338: 336: 332: 328: 323: 321: 317: 316: 310: 308: 303: 301: 297: 296: 291: 287: 283: 279: 275: 271: 267: 257: 253: 249: 247: 242: 238: 234: 230: 225: 223: 219: 215: 211: 207: 203: 199: 194: 192: 188: 184: 180: 176: 172: 168: 164: 163:heterogeneous 160: 156: 152: 148: 144: 140: 139:shared-memory 136: 132: 128: 123: 121: 117: 113: 110:, known as a 109: 105: 101: 97: 93: 89: 85: 81: 77: 73: 69: 65: 61: 53: 48: 41: 36: 28: 22: 5530:Coordination 5460:Amdahl's law 5396:Simultaneous 5221:Chip carrier 5159:Clock gating 5078:Mixed-signal 4975:Write buffer 4952:Control unit 4764:Clock signal 4685: 4503:accelerators 4485:Cypress PSoC 4142:Simultaneous 3959:Out-of-order 3591:Neuromorphic 3472:Architecture 3430:Belt machine 3423:Zeno machine 3356:Hierarchical 3275: 3266: 3234: 3226:10657.1/2440 3217: 3194: 3179: 3169: 3157:. Retrieved 3148: 3141: 3126: 3115:. Retrieved 3111: 3102: 3091:. Retrieved 3087: 3078: 3067:. Retrieved 3063: 3053: 3042:. Retrieved 3037: 3028: 3010: 2992: 2970: 2951: 2940:. Retrieved 2936:the original 2925: 2914:. Retrieved 2910: 2901: 2890:. Retrieved 2886: 2877: 2866:. Retrieved 2862: 2853: 2842:. Retrieved 2838: 2829: 2818:. Retrieved 2814: 2805: 2794:. Retrieved 2790: 2781: 2770:. Retrieved 2766: 2757: 2745:. Retrieved 2741:the original 2731: 2720:. Retrieved 2716: 2707: 2696:. Retrieved 2692: 2683: 2671:. Retrieved 2662: 2653: 2639: 2628:. Retrieved 2613: 2601:. Retrieved 2588:Ars Technica 2586: 2576: 2560:(1): 13–23. 2557: 2553: 2547: 2539:the original 2529: 2517:. Retrieved 2503: 2495: 2492:the original 2482: 2474:the original 2464: 2455: 2445: 2433:. Retrieved 2424: 2414: 2402:. Retrieved 2398:the original 2387: 2378: 2366:. Retrieved 2352: 2340:. Retrieved 2325: 2305: 2298: 2283: 2272:. Retrieved 2268: 2258: 2247:. Retrieved 2243: 2234: 2223:. Retrieved 2219: 2210: 2193: 2189: 2183: 2171:. Retrieved 2167:the original 2156: 2145:. Retrieved 2141: 2132: 2121:. Retrieved 2117: 2093:the original 2079: 2067:. Retrieved 2063:the original 2052: 2029: 2007: 1967:Multitasking 1924: 1459:home gateway 1380:Power Mac G5 1317:, dual core 1240:Raspberry Pi 1217:Azul Systems 1201:ARM11 MPCore 1111:Athlon 64 X2 1107:Athlon 64 FX 1029: 1018:Please help 1006:may contain 1005: 978: 967: 939: 902: 890: 888:processors. 883: 877: 832: 812: 778:Partitioning 769: 744: 738:, and IBM's 714:, Skandium, 690: 678: 674: 670:video codecs 654: 638: 631: 628: 624: 619: 616: 608: 605:Architecture 596: 578:and dynamic 559: 545: 538: 529: 513: 501:Bus snooping 490: 473: 465: 461: 457: 449: 438: 431: 415: 408: 391: 379: 367: 354: 344: 324: 319: 313: 311: 306: 304: 299: 293: 285: 269: 265: 263: 254: 250: 237:Amdahl's law 226: 195: 124: 116:chip package 111: 87: 83: 79: 70:on a single 63: 59: 57: 5966:Scalability 5727:distributed 5610:Concurrency 5577:Programming 5418:Cooperative 5407:Speculative 5343:Instruction 5006:Multiplexer 4970:Data buffer 4681:Single-core 4653:bit slicing 4511:Coprocessor 4366:Coprocessor 4247:performance 4169:Cooperative 4159:Speculative 4119:Distributed 4078:Superscalar 4063:Instruction 4031:Parallelism 4004:Speculative 3836:System/3x0 3708:Instruction 3485:Von Neumann 3398:Post–Turing 3155:. Hot Chips 2747:12 November 2519:October 21, 2292:. WikiChip. 1577:IntellaSys 1540:Core 2 Quad 1514:Core 2 Quad 1376:PowerPC 970 1321:processors. 815:server side 809:scheduling. 772:concurrency 497:cache snoop 462:memory wall 432:memory wall 387:Clock rates 361:superscalar 341:Development 260:Terminology 246:refactoring 212:(DSP), and 183:superscalar 6005:Categories 5971:Starvation 5710:asymmetric 5445:PRAM model 5413:Preemptive 5126:management 5021:Multiplier 4882:Logic gate 4872:Sequential 4779:Functional 4759:Clock rate 4732:Data cache 4705:Components 4686:Multi-core 4674:Core count 4164:Preemptive 4068:Pipelining 4051:Bit-serial 3994:Wide-issue 3939:Structural 3861:Tilera ISA 3827:MicroBlaze 3797:ETRAX CRIS 3692:Comparison 3537:Load–store 3517:Endianness 3259:—MakeUseOf 3117:2019-05-04 3093:2019-05-04 3069:2019-05-04 3044:2019-05-04 2942:2006-09-28 2916:2019-05-04 2892:2019-05-04 2868:2019-05-04 2844:2019-05-04 2820:2019-05-04 2796:2019-05-04 2772:2019-05-04 2722:2019-05-04 2698:2019-05-04 2630:2014-03-04 2603:5 December 2593:CondĂ© Nast 2274:2024-05-22 2249:2023-10-27 2225:2023-10-27 2147:2020-09-15 2123:2020-09-15 2045:References 1921:Benchmarks 1892:Wavescalar 1856:, 16-core 1612:processor. 1536:Core 2 Duo 1508:Core 2 Duo 1461:processor. 1262:ClearSpeed 1175:FireStream 1044:Commercial 1012:irrelevant 823:throughput 571:big.LITTLE 487:Advantages 458:power wall 450:power wall 364:pipelining 312:The terms 280:(DSP) and 266:multi-core 264:The terms 167:big.LITTLE 40:Core 2 Duo 5705:symmetric 5450:PEM model 5060:Circuitry 4980:Microcode 4904:Registers 4747:coherence 4722:CPU cache 4580:Word size 4245:Processor 3889:Execution 3792:DEC Alpha 3770:Power ISA 3586:Cognitive 3393:Universal 3018:. Intel. 3000:. Intel. 2617:Compare: 2562:CiteSeerX 1904:processor 1894:processor 1860:processor 1836:OpenSPARC 1673:, a dual 1657:Plurality 1301:Power ISA 1249:Tensilica 1232:Broadcom 1141:Phenom II 1123:FX-Series 1117:Athlon II 1032:July 2016 1008:excessive 950:Freescale 839:Microsoft 829:Licensing 770:Managing 730:, Cray's 700:Cilk Plus 682:microcode 454:shrinking 315:many-core 307:multi-CPU 270:dual-core 102:or other 88:quad-core 84:dual-core 38:An Intel 5936:Deadlock 5924:Problems 5890:pthreads 5870:OpenHMPP 5795:Ateji PX 5756:computer 5627:Hardware 5494:Elements 5480:Slowdown 5391:Temporal 5373:Pipeline 4998:Datapath 4691:Manycore 4663:variable 4501:Hardware 4137:Temporal 3817:OpenRISC 3512:Cellular 3502:Dataflow 3495:modified 3186:Archived 3181:PC World 3038:TechSpot 3020:Archived 3002:Archived 2984:Archived 2962:Archived 2667:Archived 2624:Archived 2597:Archived 2514:EE Times 2435:6 August 2429:Archived 2404:March 6, 2368:March 6, 2362:Archived 2336:Archived 2269:PC Gamer 2173:March 6, 2069:March 6, 1957:Manycore 1930:See also 1914:UC Davis 1848:Stanford 1842:Academic 1764:SPARC T5 1758:SPARC T4 1681:SiCortex 1664:Kilocore 1662:Rapport 1651:picoChip 1629:RTX 3090 1598:MPPA-256 1570:Xeon Phi 1538:and the 1502:Core Duo 1476:netbooks 1448:Infineon 1394:Xbox 360 1188:Blackfin 1101:A-Series 1050:Adapteva 1014:examples 958:Picochip 921:Broadcom 917:Wintegra 782:problem. 736:Fortress 734:, Sun's 712:FastFlow 708:OpenHMPP 698:such as 686:picocode 614:" role. 599:manycore 551:Hardware 466:ILP wall 439:ILP wall 229:software 222:one case 214:graphics 202:embedded 173:, while 159:crossbar 5895:RaftLib 5875:OpenACC 5850:GPUOpen 5840:C++ AMP 5815:Charm++ 5557:Barrier 5501:Process 5485:Speedup 5270:General 5174:Related 5105:Quantum 5095:Digital 5090:Boolean 4988:Counter 4887:Quantum 4648:512-bit 4643:256-bit 4638:128-bit 4481:(MPSoC) 4466:on chip 4464:Systems 4282:(FLOPS) 4095:Process 3944:Control 3926:Hazards 3812:Itanium 3807:Unicore 3765:PowerPC 3490:Harvard 3450:Pointer 3445:Counter 3403:Quantum 3159:27 June 2456:Giz Bot 2342:May 17, 1870:(AsAP) 1814:TILE-Gx 1771:Sunway 1713:PowerPC 1705:Toshiba 1552:Pentium 1546:Itanium 1532:Core i9 1528:Core i7 1524:Core i5 1520:Core i3 1496:Celeron 1486:(MIDs). 1480:nettops 1370:Power10 1334:PowerPC 1319:PA-RISC 1315:PA-8900 1311:PA-8800 1242:models) 1147:Sempron 1129:Opteron 819:threads 805:Mapping 756:Fortran 634:Renesas 580:voltage 509:degrade 505:signals 349:-based 206:network 66:) is a 50:An AMD 5988:  5865:OpenCL 5860:OpenMP 5805:Chapel 5722:shared 5717:Memory 5652:(SIMT) 5595:Models 5506:Thread 5438:Theory 5409:(SpMT) 5363:Memory 5348:Thread 5331:Levels 5110:Switch 5100:Analog 4838:(IMC) 4809:(MMU) 4658:others 4633:64-bit 4628:48-bit 4623:32-bit 4618:24-bit 4613:16-bit 4608:15-bit 4603:12-bit 4440:Mobile 4356:Stream 4351:Barrel 4346:Vector 4335:(GPU) 4294:(SUPS) 4262:(IPC) 4114:Memory 4107:Vector 4090:Thread 4073:Scalar 3875:Others 3822:RISC-V 3787:SuperH 3756:Power 3752:MIPS-X 3727:PDP-11 3576:Fabric 3328:Models 2564:  2313:  1994:Thread 1985:(PGAS) 1972:OpenCL 1808:TILE64 1803:Tilera 1687:SiFive 1671:RP2040 1624:Nvidia 1610:MIPS64 1593:Kalray 1364:POWER9 1358:POWER8 1352:POWER7 1346:POWER6 1340:POWER5 1330:POWER4 1197:MPCore 1171:Radeon 1153:Turion 1135:Phenom 1092:(MPPA) 1086:Ambric 974:Xilinx 853:, and 843:socket 732:Chapel 720:Erlang 718:, and 704:OpenMP 644:Tilera 588:laptop 586:(i.e. 556:Trends 187:vector 157:, and 131:caches 5835:Dryad 5800:Boost 5521:Array 5511:Fiber 5425:(CMT) 5398:(SMT) 5312:GPGPU 5166:(PPW) 5124:Power 5016:Adder 4892:Array 4859:Logic 4820:(TLB) 4803:(FPU) 4797:(AGU) 4791:(ALU) 4781:units 4717:Cache 4598:8-bit 4593:4-bit 4588:1-bit 4552:(TPU) 4546:(DSP) 4540:(PPU) 4534:(VPU) 4523:(GPU) 4492:(NoC) 4475:(SoC) 4410:(PoP) 4404:(SiP) 4398:(MCM) 4339:GPGPU 4329:(CPU) 4319:Types 4300:(PPW) 4288:(TPS) 4276:(IPS) 4268:(CPI) 4039:Level 3850:S/390 3845:S/370 3840:S/360 3782:SPARC 3760:POWER 3643:TRIPS 3611:Types 3153:(PDF) 3064:Intel 2980:Intel 2673:5 May 2425:ZDNet 2244:ZDNET 2220:PCMAG 2096:(PDF) 2089:(PDF) 2001:Notes 1947:GPGPU 1902:TRIPS 1881:AsAP2 1821:XMOS 1633:GPGPU 1467:Intel 1453:AURIX 1440:Telum 1416:zEC12 1386:Xenon 1257:ESP32 1211:ASOCS 1179:GPGPU 1159:Ryzen 1076:PhysX 1073:Ageia 1063:SPARC 1059:LEON3 930:6WIND 476:Intel 395:Intel 189:, or 80:cores 5900:ROCm 5830:CUDA 5820:Cilk 5787:APIs 5747:COMA 5742:NUMA 5673:MIMD 5668:MISD 5645:SIMD 5640:SISD 5368:Loop 5358:Data 5353:Task 5144:ACPI 4877:Glue 4769:FIFO 4712:Core 4450:ASIP 4391:CPLD 4386:FPOA 4381:FPGA 4376:ASIC 4229:SPMD 4224:MIMD 4219:MISD 4212:SWAR 4192:SIMD 4187:SISD 4102:Data 4085:Task 4056:Word 3802:M32R 3747:MIPS 3710:sets 3677:ZISC 3672:NISC 3667:OISC 3662:MISC 3655:EPIC 3650:VLIW 3638:EDGE 3628:RISC 3623:CISC 3532:HUMA 3527:NUMA 3161:2023 2749:2007 2675:2019 2605:2015 2521:2023 2437:2015 2406:2013 2370:2013 2344:2015 2311:ISBN 2175:2013 2071:2013 2015:RISC 1942:CUDA 1875:AsAP 1830:Free 1728:MAJC 1709:Cell 1697:Sony 1564:Xeon 1530:and 1472:Atom 1410:z196 1313:and 1279:MIPS 1203:and 1177:GPU/ 1173:and 1165:Epyc 1109:and 919:and 764:ACML 754:and 582:and 478:and 464:and 448:The 437:The 430:The 331:FPGA 318:and 300:same 286:same 268:and 179:VLIW 155:mesh 151:ring 5915:ZPL 5910:TBB 5905:UPC 5885:PVM 5855:MPI 5810:HPX 5737:UMA 5338:Bit 5139:APM 5134:PMU 5026:CPU 4983:ROM 4754:Bus 4371:PAL 4046:Bit 3832:LMC 3737:ARM 3732:x86 3722:VAX 3239:doi 3222:hdl 2663:AMD 2198:doi 2019:MPU 1858:RAW 1854:MIT 1707:'s 1701:IBM 1434:z15 1428:z14 1422:z13 1400:z10 1390:SMT 1325:IBM 1304:MPU 1282:MPU 1255:'s 1194:ARM 1096:AMD 1010:or 968:In 940:In 876:An 740:X10 724:TBB 716:MPI 684:or 657:GUI 594:). 520:SMP 480:AMD 399:x86 290:die 147:bus 137:or 108:die 86:or 64:MCP 6007:: 5073:3D 3184:. 3178:. 3110:. 3086:. 3062:. 3036:. 2982:. 2978:. 2960:. 2909:. 2885:. 2861:. 2837:. 2813:. 2789:. 2765:. 2715:. 2691:. 2665:. 2661:. 2595:. 2591:. 2585:. 2556:. 2512:. 2454:. 2427:. 2423:. 2334:. 2267:. 2242:. 2218:. 2194:21 2192:. 2140:. 2116:. 2104:^ 1900:, 1890:, 1866:, 1526:, 1522:, 1478:, 915:, 911:, 849:, 825:. 760:C# 742:. 710:, 706:, 702:, 688:. 248:. 208:, 204:, 200:, 193:. 185:, 181:, 149:, 58:A 5255:e 5248:t 5241:v 3312:e 3305:t 3298:v 3274:— 3265:— 3245:. 3241:: 3228:. 3224:: 3202:. 3163:. 3135:. 3120:. 3096:. 3072:. 3047:. 2945:. 2919:. 2895:. 2871:. 2847:. 2823:. 2799:. 2775:. 2751:. 2725:. 2701:. 2677:. 2647:. 2633:. 2607:. 2570:. 2558:4 2523:. 2458:. 2439:. 2408:. 2372:. 2346:. 2319:. 2277:. 2252:. 2228:. 2204:. 2200:: 2177:. 2150:. 2126:. 2073:. 1781:. 1719:. 1703:/ 1699:/ 1647:. 1587:. 1542:. 1382:. 1306:. 1284:. 1181:. 1082:. 1069:. 1034:) 1030:( 1026:. 1016:. 752:C 610:" 468:. 62:( 23:.

Index

Dual Core (hip hop duo)


Core 2 Duo

Athlon X2 6400+
microprocessor
integrated circuit
central processing units
program instructions
CPU instructions
multithreading
parallel computing
die
chip package
personal computers
multiprocessing
caches
message passing
shared-memory
network topologies
bus
ring
mesh
crossbar
heterogeneous
big.LITTLE
instruction set
AMD Accelerated Processing Units
VLIW

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑