Knowledge

Orbital maneuver

Source 📝

1376: 514: 992: 1063: 47: 716: 606: 2544: 1430: 902: 1308:
constantly under high thrust until it reaches its target. In this high-thrust case, the trajectory approaches a straight line. If it is required that the spacecraft rendezvous with the target, rather than performing a flyby, then the spacecraft must flip its orientation halfway through the journey, and decelerate the rest of the way.
1315:
This trajectory requires that the spacecraft maintain a high acceleration for long durations. For interplanetary transfers, days, weeks or months of constant thrusting may be required. As a result, there are no currently available spacecraft propulsion systems capable of using this trajectory. It has
1307:
trajectories involve the spacecraft firing its engine in a prolonged constant burn. In the limiting case where the vehicle acceleration is high compared to the local gravitational acceleration, the spacecraft points straight toward the target (accounting for target motion), and remains accelerating
1261:
In general, inclination changes can require a great deal of delta-v to perform, and most mission planners try to avoid them whenever possible to conserve fuel. This is typically achieved by launching a spacecraft directly into the desired inclination, or as close to it as possible so as to minimize
878:
Since the Oberth maneuver happens in a very limited time (while still at low altitude), to generate a high impulse the engine necessarily needs to achieve high thrust (impulse is by definition the time multiplied by thrust). Thus the Oberth effect is far less useful for low-thrust engines, such as
738:
The off-set of the velocity vector after the end of real burn from the velocity vector at the same time resulting from the theoretical impulsive maneuver is only caused by the difference in gravitational force along the two paths (red and black in figure 1) which in general is small.
1311:
In the constant-thrust trajectory, the vehicle's acceleration increases during thrusting period, since the fuel use means the vehicle mass decreases. If, instead of constant thrust, the vehicle has constant acceleration, the engine thrust must decrease during the trajectory.
734:
In the physical world no truly instantaneous change in velocity is possible as this would require an "infinite force" applied during an "infinitely short time" but as a mathematical model it in most cases describes the effect of a maneuver on the orbit very well.
1153:
While they require one more engine burn than a Hohmann transfer and generally requires a greater travel time, some bi-elliptic transfers require a lower amount of total delta-v than a Hohmann transfer when the ratio of final to initial
886:
Historically, a lack of understanding of this effect led investigators to conclude that interplanetary travel would require completely impractical amounts of propellant, as without it, enormous amounts of energy are needed.
832:
has more usable energy (due to its kinetic energy on top of its chemical potential energy) and it turns out that the vehicle is able to employ this kinetic energy to generate more mechanical power. It is named after
1294:
is the lowest. In some cases, it may require less total delta v to raise the spacecraft into a higher orbit, change the orbit plane at the higher apogee, and then lower the spacecraft to its original altitude.
742:
In the planning phase of space missions designers will first approximate their intended orbital changes using impulsive maneuvers that greatly reduces the complexity of finding the correct orbital transitions.
1612:
Sternfeld A., Sur les trajectoires permettant d'approcher d'un corps attractif central à partir d'une orbite keplérienne donnée. - Comptes rendus de l'Académie des sciences (Paris), vol. 198, pp. 711 -
583: 1140: 731:(magnitude and/or direction) as illustrated in figure 1. It is the limit case of a burn to generate a particular amount of delta-v, as the burn time tends to zero. 940:) of the gravitating body as it pulls on the spacecraft. The technique was first proposed as a mid-course maneuver in 1961, and used by interplanetary probes from 1292: 1250:. This maneuver is also known as an orbital plane change as the plane of the orbit is tipped. This maneuver requires a change in the orbital velocity vector ( 975:(TEI). These are generally larger than small trajectory correction maneuvers. Insertion, injection and sometimes initiation are used to describe entry into a 1516: 925:
or other celestial body to alter the trajectory of a spacecraft, typically in order to save propellant, time, and expense. Gravity assistance can be used to
1327:, and others. These types of engines have very high specific impulse (fuel efficiency) but currently are only available with fairly low absolute thrust. 1258:(i.e. the point where the initial and desired orbits intersect, the line of orbital nodes is defined by the intersection of the two orbital planes). 963:
maneuvers leave a spacecraft in a destination orbit. In contrast, orbit injection maneuvers occur when a spacecraft enters a transfer orbit, e.g.
773:, high fidelity models of the trajectories are required to meet the mission goals. Calculating a "finite" burn requires a detailed model of the 905:
The trajectories that enabled NASA's twin Voyager spacecraft to tour the four gas giant planets and achieve velocity to escape our solar system
1415: 1316:
been suggested that some forms of nuclear (fission or fusion based) or antimatter powered rockets would be capable of this trajectory.
756: 1304: 442: 2421: 1698: 1203:. The drawback of such trajectories is that they take much longer to complete than higher energy (more fuel) transfers such as 1150:
at the radius of the final desired orbit, where a third delta-v is performed, injecting the spacecraft into the desired orbit.
678: 1681: 1641: 650: 2481: 214: 1629:
Capture Dynamics and Chaotic Motions in Celestial Mechanics: With Applications to the Construction of Low Energy Transfers
1549: 863:
where the application of an impulse, typically from the use of a rocket engine, close to a gravitational body (where the
592:. With a good approximation of the delta-v budget designers can estimate the propellant required for planned maneuvers. 283: 828:
when travelling at high speed generates much more useful energy than one at low speed. Oberth effect occurs because the
657: 1597: 697: 627: 525:
The Tsiolkovsky rocket equation, or ideal rocket equation, can be useful for analysis of maneuvers by vehicles using
635: 2476: 2356: 1775: 1449: 1218: 664: 2441: 2195: 17: 2514: 2153: 2144: 1881: 1406:
and approach to a very close distance (e.g. within visual contact). Rendezvous requires a precise match of the
631: 104: 479:. For spacecraft far from Earth (for example those in orbits around the Sun) an orbital maneuver is called a 1111:. From the initial orbit, a delta-v is applied boosting the spacecraft into the first transfer orbit with an 646: 1572: 2461: 1931: 1443: 562: 1498: 1146:. At this point, a second delta-v is applied sending the spacecraft into the second elliptical orbit with 2406: 508: 435: 368: 2573: 2386: 2213: 1669: 1633: 1234: 980: 1744: 2524: 1484: 2509: 2034: 766:, where the word "finite" is used to mean "non-zero", or practically, again: over a longer period. 616: 363: 278: 533:) by expelling part of its mass at high speed. The rocket itself moves due to the conservation of 2519: 1827: 1411: 1211: 620: 234: 1221:. Following these pathways allows for long distances to be traversed for little expenditure of 2568: 2381: 1983: 1903: 1891: 1204: 1101: 1000: 428: 151: 1673: 1662: 1418:, procedures which bring the spacecraft into physical contact and create a link between them. 671: 2504: 2446: 2416: 2204: 2081: 2049: 2019: 1978: 1963: 1842: 1459: 1200: 1081: 972: 964: 468: 336: 171: 79: 2529: 2351: 2135: 2024: 1993: 1921: 1896: 1871: 1832: 1813: 1768: 1324: 1118: 1071: 1024:
The orbital maneuver to perform the Hohmann transfer uses two engine impulses which move a
968: 588:
The delta-v for all the expected maneuvers are estimated for a mission are summarized in a
209: 166: 156: 84: 1319:
More practically, this type of maneuver is used in low thrust maneuvers, for example with
8: 2391: 2186: 1926: 1464: 1454: 1276: 1174: 251: 89: 719:
Figure 1: Approximation of a finite thrust maneuver with an impulsive change in velocity
2064: 1953: 1851: 1724: 1435: 727:
is the mathematical model of a maneuver as an instantaneous change in the spacecraft's
324: 199: 1375: 917:
maneuver, gravitational slingshot or swing-by is the use of the relative movement and
2431: 2329: 2259: 2014: 1968: 1886: 1677: 1637: 1593: 1006: 864: 786: 239: 176: 55: 1702: 1217:
Low energy transfers follow special pathways in space, sometimes referred to as the
2411: 2107: 2069: 1943: 1913: 1866: 1527: 1370: 1018: 937: 790: 770: 358: 123: 67: 875:) than the same impulse applied further from the body for the same initial orbit. 2451: 2044: 1948: 1938: 1837: 1761: 1657: 1623: 1587: 1155: 960: 948: 872: 838: 755:. 'Non-impulsive' refers to the momentum changing slowly over a long time, as in 414: 319: 229: 204: 1045: 2547: 2499: 2491: 2486: 2371: 2366: 2297: 2277: 2268: 1861: 1847: 1823: 1818: 1793: 1108: 1029: 1014: 914: 896: 868: 834: 782: 589: 550: 487: 386: 302: 296: 219: 144: 138: 133: 1627: 1550:"Section I. The Environment of Space - Chapter 4. Interplanetary Trajectories" 1410:
of the two spacecraft, allowing them to remain at a constant distance through
513: 2562: 2401: 2396: 2315: 1958: 1876: 1748: 1557: 1407: 1399: 1347: 1341: 1255: 1162: 910: 825: 811: 391: 224: 181: 1725:
Trajectories with Constant Tangential Thrust in Central Gravitational Fields
1531: 2466: 2376: 2250: 2233: 2091: 1988: 1856: 1358: 1158:
is 11.94 or greater, depending on the intermediate semi-major axis chosen.
1143: 1077: 930: 880: 817: 109: 99: 94: 1262:
any inclination change required over the duration of the spacecraft life.
2471: 2306: 2076: 2056: 1973: 1664:
Fly Me to the Moon: An Insider's Guide to the New Science of Space Travel
1535: 1320: 1243: 1161:
The idea of the bi-elliptical transfer trajectory was first published by
1050: 991: 456: 273: 2039: 1753: 1395: 1184: 1089: 1062: 1044:). Hohmann was influenced in part by the German science fiction author 1025: 942: 926: 829: 774: 751:
Applying a low thrust over a longer period of time is referred to as a
518: 476: 353: 309: 268: 46: 2456: 1808: 1147: 845: 715: 605: 1383: 1379: 1266: 1112: 794: 728: 534: 555:
The applied change in velocity of each maneuver is referred to as
2361: 1251: 1222: 1097: 1033: 918: 842: 556: 546: 1199:
system and also in other systems, such as traveling between the
486:
When a spacecraft is not conducting a maneuver, especially in a
1353:
is the adjustment of the time-position of spacecraft along its
1270: 1028:
onto and off the transfer orbit. This maneuver was named after
922: 901: 849: 530: 526: 1036:
scientist who published a description of it in his 1925 book
2166: 1785: 1403: 1354: 1247: 1192: 1188: 1093: 472: 74: 867:
is low, and the speed is high) can give much more change in
1731:, NASA Lewis Research Center, 1960 (accessed 26 March 2014) 1357:, usually described as adjusting the orbiting spacecraft's 1196: 778: 777:
and its thrusters. The most important of details include:
521:
versus final velocity calculated from the rocket equation
1265:
Maximum efficiency of inclination change is achieved at
1187:, is a route in space which allows spacecraft to change 1096:
to another and may, in certain situations, require less
1745:
Handbook Automated Rendezvous and Docking of Spacecraft
1514: 529:
propulsion. A rocket applies acceleration to itself (a
1279: 1121: 789:, thruster positions, thrust vectors, thrust curves, 565: 1576:(Washington: NASA Technical Translation F-44, 1960). 1425: 1394:
is a sequence of orbital maneuvers during which two
1066:
Bi-elliptic transfer from blue to red circular orbit
1013:
is an elliptical orbit used to transfer between two
769:
For a few space missions, such as those including a
1661: 1286: 1134: 577: 1214:trajectories, or ballistic capture trajectories. 1191:using very little fuel. These routes work in the 2560: 1556:. NASA Jet Propulsion Laboratory. Archived from 936:The "assist" is provided by the motion (orbital 1364: 952:probes' notable fly-bys of Jupiter and Saturn. 1589:Fundamentals of Astrodynamics and Applications 1515:Oberth, Herman; Oldenbourg Verlag, R. (1970). 1107:The bi-elliptic transfer consists of two half 1769: 1298: 1242:is an orbital maneuver aimed at changing the 1228: 852:, who apparently first described the effect. 436: 1699:"Basics of Space Flight: Orbital Mechanics" 933:and/or re-direct the path of a spacecraft. 634:. Unsourced material may be challenged and 2543: 1776: 1762: 757:electrically powered spacecraft propulsion 443: 429: 1330: 1283: 983:maneuver used for Apollo lunar landings. 698:Learn how and when to remove this message 574: 1783: 1690: 1656: 1622: 1374: 1061: 990: 900: 746: 714: 512: 1585: 1057: 14: 2561: 2422:Transposition, docking, and extraction 1616: 1510: 1508: 1210:Low energy transfer are also known as 1168: 710: 1757: 1414:. Rendezvous is commonly followed by 1042:The Accessibility of Celestial Bodies 578:{\displaystyle \Delta \mathbf {v} \,} 1696: 1650: 1573:The Attainability of Heavenly Bodies 1088:is an orbital maneuver that moves a 1038:Die Erreichbarkeit der Himmelskörper 1017:of different altitudes, in the same 632:adding citations to reliable sources 599: 1505: 986: 24: 955: 759:, rather than by a short impulse. 566: 502: 25: 2585: 2482:Kepler's laws of planetary motion 1738: 890: 215:Kepler's laws of planetary motion 2542: 2477:Interplanetary Transport Network 2357:Collision avoidance (spacecraft) 1450:Collision avoidance (spacecraft) 1428: 1335: 1219:Interplanetary Transport Network 805: 604: 570: 45: 2442:Astronomical coordinate systems 2196:Longitude of the ascending node 1717: 1586:Vallado, David Anthony (2001). 1534:. NASA-TT-F-622. Archived from 855:The Oberth effect is used in a 797:offsets, and fuel consumption. 2515:Retrograde and prograde motion 1606: 1579: 1564: 1542: 1491: 1477: 13: 1: 1524:NASA Technical Reports Server 1470: 871:and final speed (i.e. higher 595: 27:A movement during spaceflight 2462:Equatorial coordinate system 1444:Clohessy-Wiltshire equations 1365:Space rendezvous and docking 7: 1421: 946:onwards, including the two 509:Tsiolkovsky rocket equation 369:Tsiolkovsky rocket equation 10: 2590: 2214:Longitude of the periapsis 1670:Princeton University Press 1634:Princeton University Press 1398:, one of which is often a 1368: 1339: 1299:Constant-thrust trajectory 1273:), where orbital velocity 1240:Orbital inclination change 1235:orbital inclination change 1232: 1229:Orbital inclination change 1172: 1069: 998: 981:Powered Descent Initiation 894: 809: 800: 544: 540: 506: 497: 338:Engineering and efficiency 157:Bi-elliptic transfer orbit 2538: 2525:Specific angular momentum 2430: 2342: 2286: 2222: 2175: 2115: 2106: 2002: 1912: 1801: 1792: 1592:. Springer. p. 317. 481:deep-space maneuver (DSM) 848:and a founder of modern 364:Propellant mass fraction 263:Gravitational influences 2520:Specific orbital energy 1412:orbital station-keeping 1212:weak stability boundary 1205:Hohmann transfer orbits 235:Specific orbital energy 1932:Geostationary transfer 1554:Basics of Space Flight 1387: 1331:Rendezvous and docking 1288: 1246:of an orbiting body's 1136: 1067: 1011:Hohmann transfer orbit 1001:Hohmann transfer orbit 996: 995:Hohmann Transfer Orbit 906: 824:is where the use of a 753:non-impulsive maneuver 720: 579: 522: 471:systems to change the 463:(otherwise known as a 152:Hohmann transfer orbit 2505:Orbital state vectors 2447:Characteristic energy 2417:Trans-lunar injection 2205:Argument of periapsis 1882:Prograde / Retrograde 1843:Hyperbolic trajectory 1729:Technical Report R-63 1517:"Ways to spaceflight" 1499:"The Rocket Equation" 1460:Spacecraft propulsion 1446:for co-orbit analysis 1402:, arrive at the same 1378: 1325:Hall-effect thrusters 1305:constant-acceleration 1289: 1201:satellites of Jupiter 1137: 1135:{\displaystyle r_{b}} 1082:aerospace engineering 1065: 994: 973:trans-Earth injection 965:trans-lunar injection 904: 747:Low thrust propulsion 718: 628:improve this section 580: 516: 348:Preflight engineering 80:Argument of periapsis 2352:Bi-elliptic transfer 1872:Parabolic trajectory 1697:Braeunig, Robert A. 1303:Constant-thrust and 1277: 1119: 1086:bi-elliptic transfer 1072:Bi-elliptic transfer 1058:Bi-elliptic transfer 969:trans-Mars injection 563: 490:, it is said to be 404:Propulsive maneuvers 2392:Low-energy transfer 1705:on February 4, 2012 1465:Orbital spaceflight 1455:Flyby (spaceflight) 1416:docking or berthing 1287:{\displaystyle v\,} 1181:low energy transfer 1175:low energy transfer 1169:Low energy transfer 711:Impulsive maneuvers 381:Efficiency measures 284:Sphere of influence 253:Celestial mechanics 35:Part of a series on 2387:Inclination change 2035:Distant retrograde 1436:Spaceflight portal 1408:orbital velocities 1388: 1382:photographed from 1284: 1132: 1068: 1048:and his 1897 book 997: 907: 725:impulsive maneuver 721: 647:"Orbital maneuver" 575: 523: 200:Dynamical friction 2574:Orbital maneuvers 2556: 2555: 2530:Two-line elements 2338: 2337: 2260:Eccentric anomaly 2102: 2101: 1969:Orbit of the Moon 1828:Highly elliptical 1683:978-0-691-12822-1 1643:978-0-691-09480-9 1560:on April 3, 2023. 1007:orbital mechanics 865:gravity potential 787:moment of inertia 708: 707: 700: 682: 453: 452: 303:Lagrangian points 240:Vis-viva equation 210:Kepler's equation 57:Orbital mechanics 16:(Redirected from 2581: 2546: 2545: 2487:Lagrangian point 2382:Hohmann transfer 2327: 2313: 2304: 2295: 2275: 2266: 2257: 2248: 2244: 2240: 2231: 2211: 2202: 2193: 2184: 2164: 2160: 2151: 2142: 2133: 2113: 2112: 2082:Heliosynchronous 2031:Lagrange points 1984:Transatmospheric 1799: 1798: 1778: 1771: 1764: 1755: 1754: 1732: 1721: 1715: 1714: 1712: 1710: 1701:. Archived from 1694: 1688: 1687: 1667: 1658:Belbruno, Edward 1654: 1648: 1647: 1624:Belbruno, Edward 1620: 1614: 1610: 1604: 1603: 1583: 1577: 1570:Walter Hohmann, 1568: 1562: 1561: 1546: 1540: 1539: 1532:2060/19720008133 1521: 1512: 1503: 1502: 1495: 1489: 1488: 1481: 1438: 1433: 1432: 1431: 1392:space rendezvous 1386:in December 1965 1371:Space rendezvous 1293: 1291: 1290: 1285: 1183:, or low energy 1141: 1139: 1138: 1133: 1131: 1130: 1102:Hohmann transfer 987:Hohmann transfer 938:angular momentum 839:Austro-Hungarian 791:specific impulse 771:space rendezvous 762:Another term is 703: 696: 692: 689: 683: 681: 640: 608: 600: 584: 582: 581: 576: 573: 467:) is the use of 461:orbital maneuver 445: 438: 431: 410:Orbital maneuver 359:Payload fraction 339: 320:Lissajous orbits 254: 225:Orbital velocity 172:Hyperbolic orbit 68:Orbital elements 58: 49: 32: 31: 21: 2589: 2588: 2584: 2583: 2582: 2580: 2579: 2578: 2559: 2558: 2557: 2552: 2534: 2452:Escape velocity 2433: 2426: 2407:Rocket equation 2334: 2326: 2320: 2311: 2302: 2293: 2282: 2273: 2264: 2255: 2246: 2242: 2238: 2229: 2218: 2209: 2200: 2191: 2182: 2171: 2162: 2158: 2154:Semi-minor axis 2149: 2145:Semi-major axis 2140: 2131: 2125: 2098: 2020:Areosynchronous 2004: 1998: 1979:Sun-synchronous 1964:Near-equatorial 1908: 1788: 1782: 1741: 1736: 1735: 1723:W. E. Moeckel, 1722: 1718: 1708: 1706: 1695: 1691: 1684: 1655: 1651: 1644: 1636:. p. 224. 1621: 1617: 1611: 1607: 1600: 1584: 1580: 1569: 1565: 1548: 1547: 1543: 1538:on May 9, 2010. 1526:. p. 200. 1519: 1513: 1506: 1497: 1496: 1492: 1483: 1482: 1478: 1473: 1434: 1429: 1427: 1424: 1373: 1367: 1344: 1338: 1333: 1301: 1278: 1275: 1274: 1237: 1231: 1177: 1171: 1156:semi-major axis 1126: 1122: 1120: 1117: 1116: 1109:elliptic orbits 1074: 1060: 1015:circular orbits 1003: 989: 961:Orbit insertion 958: 956:Transfer orbits 899: 893: 873:specific energy 861:Oberth maneuver 814: 808: 803: 749: 713: 704: 693: 687: 684: 641: 639: 625: 609: 598: 569: 564: 561: 560: 553: 545:Main articles: 543: 511: 505: 503:Rocket equation 500: 449: 420: 419: 415:Orbit insertion 405: 397: 396: 382: 374: 373: 349: 341: 337: 330: 329: 325:Lyapunov orbits 316: 315: 299: 289: 288: 264: 256: 252: 245: 244: 230:Surface gravity 205:Escape velocity 195: 187: 186: 167:Parabolic orbit 163: 162: 129: 127: 124:two-body orbits 115: 114: 105:Semi-major axis 70: 60: 56: 28: 23: 22: 18:Orbit injection 15: 12: 11: 5: 2587: 2577: 2576: 2571: 2554: 2553: 2551: 2550: 2548:List of orbits 2539: 2536: 2535: 2533: 2532: 2527: 2522: 2517: 2512: 2507: 2502: 2500:Orbit equation 2497: 2489: 2484: 2479: 2474: 2469: 2464: 2459: 2454: 2449: 2444: 2438: 2436: 2428: 2427: 2425: 2424: 2419: 2414: 2409: 2404: 2399: 2394: 2389: 2384: 2379: 2374: 2372:Gravity assist 2369: 2367:Delta-v budget 2364: 2359: 2354: 2348: 2346: 2340: 2339: 2336: 2335: 2333: 2332: 2324: 2318: 2309: 2300: 2298:Orbital period 2290: 2288: 2284: 2283: 2281: 2280: 2278:True longitude 2271: 2269:Mean longitude 2262: 2253: 2236: 2226: 2224: 2220: 2219: 2217: 2216: 2207: 2198: 2189: 2179: 2177: 2173: 2172: 2170: 2169: 2156: 2147: 2138: 2128: 2126: 2124: 2123: 2120: 2116: 2110: 2104: 2103: 2100: 2099: 2097: 2096: 2095: 2094: 2086: 2085: 2084: 2079: 2074: 2073: 2072: 2059: 2054: 2053: 2052: 2047: 2042: 2037: 2029: 2028: 2027: 2025:Areostationary 2022: 2017: 2008: 2006: 2000: 1999: 1997: 1996: 1994:Very low Earth 1991: 1986: 1981: 1976: 1971: 1966: 1961: 1956: 1951: 1946: 1941: 1936: 1935: 1934: 1929: 1922:Geosynchronous 1918: 1916: 1910: 1909: 1907: 1906: 1904:Transfer orbit 1901: 1900: 1899: 1894: 1884: 1879: 1874: 1869: 1864: 1862:Lagrange point 1859: 1854: 1845: 1840: 1835: 1830: 1821: 1816: 1811: 1805: 1803: 1796: 1790: 1789: 1784:Gravitational 1781: 1780: 1773: 1766: 1758: 1752: 1751: 1740: 1739:External links 1737: 1734: 1733: 1716: 1689: 1682: 1649: 1642: 1615: 1605: 1598: 1578: 1563: 1541: 1504: 1490: 1475: 1474: 1472: 1469: 1468: 1467: 1462: 1457: 1452: 1447: 1440: 1439: 1423: 1420: 1369:Main article: 1366: 1363: 1340:Main article: 1337: 1334: 1332: 1329: 1300: 1297: 1282: 1233:Main article: 1230: 1227: 1173:Main article: 1170: 1167: 1142:away from the 1129: 1125: 1115:at some point 1070:Main article: 1059: 1056: 1030:Walter Hohmann 999:Main article: 988: 985: 957: 954: 915:gravity assist 897:Gravity assist 895:Main article: 892: 891:Gravity assist 889: 869:kinetic energy 835:Hermann Oberth 810:Main article: 807: 804: 802: 799: 783:center of mass 748: 745: 712: 709: 706: 705: 613:This section 612: 610: 603: 597: 594: 590:delta-v budget 572: 568: 551:delta-v budget 542: 539: 507:Main article: 504: 501: 499: 496: 488:transfer orbit 451: 450: 448: 447: 440: 433: 425: 422: 421: 418: 417: 412: 406: 403: 402: 399: 398: 395: 394: 389: 387:Gravity assist 383: 380: 379: 376: 375: 372: 371: 366: 361: 356: 350: 347: 346: 343: 342: 335: 332: 331: 328: 327: 322: 314: 313: 305: 301: 300: 295: 294: 291: 290: 287: 286: 281: 276: 271: 265: 262: 261: 258: 257: 250: 247: 246: 243: 242: 237: 232: 227: 222: 220:Orbital period 217: 212: 207: 202: 196: 193: 192: 189: 188: 185: 184: 182:Decaying orbit 179: 174: 169: 161: 160: 154: 147: 145:Transfer orbit 143: 142: 141: 139:Elliptic orbit 136: 134:Circular orbit 130: 121: 120: 117: 116: 113: 112: 107: 102: 97: 92: 87: 82: 77: 71: 66: 65: 62: 61: 54: 51: 50: 42: 41: 37: 36: 26: 9: 6: 4: 3: 2: 2586: 2575: 2572: 2570: 2569:Astrodynamics 2567: 2566: 2564: 2549: 2541: 2540: 2537: 2531: 2528: 2526: 2523: 2521: 2518: 2516: 2513: 2511: 2508: 2506: 2503: 2501: 2498: 2496: 2495:-body problem 2494: 2490: 2488: 2485: 2483: 2480: 2478: 2475: 2473: 2470: 2468: 2465: 2463: 2460: 2458: 2455: 2453: 2450: 2448: 2445: 2443: 2440: 2439: 2437: 2435: 2429: 2423: 2420: 2418: 2415: 2413: 2410: 2408: 2405: 2403: 2400: 2398: 2397:Oberth effect 2395: 2393: 2390: 2388: 2385: 2383: 2380: 2378: 2375: 2373: 2370: 2368: 2365: 2363: 2360: 2358: 2355: 2353: 2350: 2349: 2347: 2345: 2341: 2331: 2323: 2319: 2317: 2316:Orbital speed 2310: 2308: 2301: 2299: 2292: 2291: 2289: 2285: 2279: 2272: 2270: 2263: 2261: 2254: 2252: 2237: 2235: 2228: 2227: 2225: 2221: 2215: 2208: 2206: 2199: 2197: 2190: 2188: 2181: 2180: 2178: 2174: 2168: 2157: 2155: 2148: 2146: 2139: 2137: 2130: 2129: 2127: 2121: 2118: 2117: 2114: 2111: 2109: 2105: 2093: 2090: 2089: 2087: 2083: 2080: 2078: 2075: 2071: 2070:Earth's orbit 2068: 2067: 2066: 2063: 2062: 2060: 2058: 2055: 2051: 2048: 2046: 2043: 2041: 2038: 2036: 2033: 2032: 2030: 2026: 2023: 2021: 2018: 2016: 2013: 2012: 2010: 2009: 2007: 2001: 1995: 1992: 1990: 1987: 1985: 1982: 1980: 1977: 1975: 1972: 1970: 1967: 1965: 1962: 1960: 1957: 1955: 1952: 1950: 1947: 1945: 1942: 1940: 1937: 1933: 1930: 1928: 1927:Geostationary 1925: 1924: 1923: 1920: 1919: 1917: 1915: 1911: 1905: 1902: 1898: 1895: 1893: 1890: 1889: 1888: 1885: 1883: 1880: 1878: 1875: 1873: 1870: 1868: 1865: 1863: 1860: 1858: 1855: 1853: 1849: 1846: 1844: 1841: 1839: 1836: 1834: 1831: 1829: 1825: 1822: 1820: 1817: 1815: 1812: 1810: 1807: 1806: 1804: 1800: 1797: 1795: 1791: 1787: 1779: 1774: 1772: 1767: 1765: 1760: 1759: 1756: 1750: 1749:Wigbert Fehse 1746: 1743: 1742: 1730: 1726: 1720: 1704: 1700: 1693: 1685: 1679: 1675: 1671: 1666: 1665: 1659: 1653: 1645: 1639: 1635: 1631: 1630: 1625: 1619: 1609: 1601: 1599:0-7923-6903-3 1595: 1591: 1590: 1582: 1575: 1574: 1567: 1559: 1555: 1551: 1545: 1537: 1533: 1529: 1525: 1518: 1511: 1509: 1500: 1494: 1486: 1480: 1476: 1466: 1463: 1461: 1458: 1456: 1453: 1451: 1448: 1445: 1442: 1441: 1437: 1426: 1419: 1417: 1413: 1409: 1405: 1401: 1400:space station 1397: 1393: 1385: 1381: 1377: 1372: 1362: 1360: 1356: 1352: 1351:orbit phasing 1349: 1348:astrodynamics 1343: 1342:Orbit phasing 1336:Orbit phasing 1328: 1326: 1322: 1317: 1313: 1309: 1306: 1296: 1280: 1272: 1268: 1263: 1259: 1257: 1256:orbital nodes 1253: 1249: 1245: 1241: 1236: 1226: 1224: 1220: 1215: 1213: 1208: 1206: 1202: 1198: 1194: 1190: 1186: 1182: 1176: 1166: 1164: 1163:Ary Sternfeld 1159: 1157: 1151: 1149: 1145: 1127: 1123: 1114: 1110: 1105: 1103: 1099: 1095: 1091: 1087: 1083: 1079: 1073: 1064: 1055: 1053: 1052: 1047: 1043: 1039: 1035: 1031: 1027: 1022: 1020: 1016: 1012: 1008: 1002: 993: 984: 982: 978: 977:descent orbit 974: 970: 966: 962: 953: 951: 950: 945: 944: 939: 934: 932: 928: 924: 920: 916: 912: 911:astrodynamics 903: 898: 888: 884: 882: 881:ion thrusters 876: 874: 870: 866: 862: 858: 857:powered flyby 853: 851: 847: 844: 840: 836: 831: 827: 826:rocket engine 823: 822:Oberth effect 819: 813: 812:Oberth effect 806:Oberth effect 798: 796: 792: 788: 784: 780: 776: 772: 767: 765: 760: 758: 754: 744: 740: 736: 732: 730: 726: 717: 702: 699: 691: 688:February 2024 680: 677: 673: 670: 666: 663: 659: 656: 652: 649: –  648: 644: 643:Find sources: 637: 633: 629: 623: 622: 618: 611: 607: 602: 601: 593: 591: 586: 558: 552: 548: 538: 536: 532: 528: 520: 515: 510: 495: 493: 489: 484: 482: 478: 474: 470: 466: 462: 458: 446: 441: 439: 434: 432: 427: 426: 424: 423: 416: 413: 411: 408: 407: 401: 400: 393: 392:Oberth effect 390: 388: 385: 384: 378: 377: 370: 367: 365: 362: 360: 357: 355: 352: 351: 345: 344: 340: 334: 333: 326: 323: 321: 318: 317: 311: 307: 306: 304: 298: 297:N-body orbits 293: 292: 285: 282: 280: 279:Perturbations 277: 275: 272: 270: 267: 266: 260: 259: 255: 249: 248: 241: 238: 236: 233: 231: 228: 226: 223: 221: 218: 216: 213: 211: 208: 206: 203: 201: 198: 197: 191: 190: 183: 180: 178: 175: 173: 170: 168: 165: 164: 158: 155: 153: 149: 148: 146: 140: 137: 135: 132: 131: 125: 119: 118: 111: 108: 106: 103: 101: 100:Orbital nodes 98: 96: 93: 91: 88: 86: 83: 81: 78: 76: 73: 72: 69: 64: 63: 59: 53: 52: 48: 44: 43: 40:Astrodynamics 39: 38: 34: 33: 30: 19: 2510:Perturbation 2492: 2467:Ground track 2377:Gravity turn 2343: 2328:   2321: 2314:   2305:   2296:   2276:   2267:   2258:   2251:True anomaly 2249:   2234:Mean anomaly 2232:   2212:   2203:   2194:   2185:   2165:   2152:   2143:   2136:Eccentricity 2134:   2092:Lunar cycler 2065:Heliocentric 2005:other points 1954:Medium Earth 1852:Non-inclined 1728: 1719: 1707:. Retrieved 1703:the original 1692: 1663: 1652: 1628: 1618: 1608: 1588: 1581: 1571: 1566: 1558:the original 1553: 1544: 1536:the original 1523: 1493: 1485:"Navigation" 1479: 1391: 1389: 1359:true anomaly 1350: 1345: 1318: 1314: 1310: 1302: 1264: 1260: 1239: 1238: 1216: 1209: 1180: 1178: 1160: 1152: 1144:central body 1106: 1085: 1078:astronautics 1075: 1049: 1046:Kurd Laßwitz 1041: 1037: 1023: 1010: 1004: 976: 959: 947: 941: 935: 908: 885: 877: 860: 856: 854: 821: 818:astronautics 815: 768: 763: 761: 752: 750: 741: 737: 733: 724: 722: 694: 685: 675: 668: 661: 654: 642: 626:Please help 614: 587: 554: 524: 491: 485: 480: 464: 460: 454: 409: 177:Radial orbit 128:eccentricity 110:True anomaly 95:Mean anomaly 85:Eccentricity 29: 2472:Hill sphere 2307:Mean motion 2187:Inclination 2176:Orientation 2077:Mars cycler 2015:Areocentric 1887:Synchronous 1672:. pp.  1321:ion engines 1244:inclination 1051:Two Planets 979:, e.g. the 764:finite burn 519:mass ratios 457:spaceflight 310:Halo orbits 274:Hill sphere 90:Inclination 2563:Categories 2412:Rendezvous 2108:Parameters 1944:High Earth 1914:Geocentric 1867:Osculating 1824:Elliptical 1471:References 1396:spacecraft 1185:trajectory 1104:maneuver. 1090:spacecraft 1026:spacecraft 971:(TMI) and 943:Mariner 10 931:decelerate 927:accelerate 830:propellant 775:spacecraft 658:newspapers 596:Propulsion 477:spacecraft 469:propulsion 354:Mass ratio 269:Barycenter 2457:Ephemeris 2434:mechanics 2344:Maneuvers 2287:Variation 2050:Libration 2045:Lissajous 1949:Low Earth 1939:Graveyard 1838:Horseshoe 1709:March 22, 1254:) at the 1165:in 1934. 1148:periapsis 1092:from one 846:physicist 793:, thrust 615:does not 567:Δ 194:Equations 122:Types of 2223:Position 1848:Inclined 1819:Circular 1660:(2007). 1626:(2004). 1422:See also 1384:Gemini 6 1380:Gemini 7 1267:apoapsis 1113:apoapsis 850:rocketry 795:centroid 729:velocity 535:momentum 492:coasting 2432:Orbital 2402:Phasing 2362:Delta-v 2167:Apsides 2161:,  1959:Molniya 1877:Parking 1814:Capture 1802:General 1487:. NASA. 1252:delta v 1223:delta-v 1100:than a 1098:delta-v 967:(TLI), 949:Voyager 919:gravity 841:-born, 801:Assists 672:scholar 636:removed 621:sources 557:delta-v 547:Delta-v 541:Delta-v 517:Rocket 498:General 2088:Other 1989:Tundra 1857:Kepler 1833:Escape 1786:orbits 1680:  1640:  1596:  1501:. MIT. 1271:apogee 1269:, (or 1189:orbits 1084:, the 1034:German 1032:, the 1009:, the 923:planet 843:German 837:, the 820:, the 674:  667:  660:  653:  645:  531:thrust 527:rocket 2330:Epoch 2119:Shape 2057:Lunar 2011:Mars 2003:About 1974:Polar 1794:Types 1520:(PDF) 1404:orbit 1355:orbit 1248:orbit 1193:Earth 1094:orbit 1019:plane 921:of a 679:JSTOR 665:books 475:of a 473:orbit 459:, an 75:Apsis 2122:Size 2061:Sun 2040:Halo 1892:semi 1711:2012 1678:ISBN 1638:ISBN 1613:713. 1594:ISBN 1197:Moon 1080:and 779:mass 651:news 619:any 617:cite 549:and 465:burn 1897:sub 1809:Box 1747:by 1674:176 1528:hdl 1346:In 1076:In 1005:In 913:a 909:In 859:or 816:In 723:An 630:by 585:). 455:In 126:by 2565:: 2245:, 2241:, 1850:/ 1826:/ 1727:, 1676:. 1668:. 1632:. 1552:. 1522:. 1507:^ 1390:A 1361:. 1323:, 1225:. 1207:. 1179:A 1054:. 1021:. 929:, 883:. 785:, 781:, 537:. 494:. 483:. 2493:n 2325:0 2322:t 2312:v 2303:n 2294:T 2274:l 2265:L 2256:E 2247:f 2243:θ 2239:ν 2230:M 2210:ϖ 2201:ω 2192:Ω 2183:i 2163:q 2159:Q 2150:b 2141:a 2132:e 1777:e 1770:t 1763:v 1713:. 1686:. 1646:. 1602:. 1530:: 1281:v 1195:- 1128:b 1124:r 1040:( 701:) 695:( 690:) 686:( 676:· 669:· 662:· 655:· 638:. 624:. 571:v 559:( 444:e 437:t 430:v 312:) 308:( 159:) 150:( 20:)

Index

Orbit injection

Orbital mechanics
Orbital elements
Apsis
Argument of periapsis
Eccentricity
Inclination
Mean anomaly
Orbital nodes
Semi-major axis
True anomaly
two-body orbits
Circular orbit
Elliptic orbit
Transfer orbit
Hohmann transfer orbit
Bi-elliptic transfer orbit
Parabolic orbit
Hyperbolic orbit
Radial orbit
Decaying orbit
Dynamical friction
Escape velocity
Kepler's equation
Kepler's laws of planetary motion
Orbital period
Orbital velocity
Surface gravity
Specific orbital energy

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.