Knowledge

Phases of ice

Source 📝

3097:. The temperatures of these moons range from 90 to 160 K, warm enough that amorphous ice is expected to crystallize on relatively short timescales. However, it was found that Europa has primarily amorphous ice, Ganymede has both amorphous and crystalline ice, and Callisto is primarily crystalline. This is thought to be the result of competing forces: the thermal crystallization of amorphous ice versus the conversion of crystalline to amorphous ice by the flux of charged particles from Jupiter. Closer to Jupiter than the other three moons, Europa receives the highest level of radiation and thus through irradiation has the most amorphous ice. Callisto is the farthest from Jupiter, receiving the lowest radiation flux and therefore maintaining its crystalline ice. Ganymede, which lies between the two, exhibits amorphous ice at high latitudes and crystalline ice at the lower latitudes. This is thought to be the result of the moon's intrinsic magnetic field, which would funnel the charged particles to higher latitudes and protect the lower latitudes from irradiation. Ganymede's interior probably includes a liquid water ocean with tens to hundreds of kilometers of ice V at its base. 2195:. The low temperature required to achieve this transition is correlated with the relatively low energy difference between the two structures. Hints of hydrogen-ordering in ice had been observed as early as 1964, when Dengel et al. attributed a peak in thermo-stimulated depolarization (TSD) current to the existence of a proton-ordered ferroelectric phase. However, they could not conclusively prove that a phase transition had taken place, and Onsager pointed out that the peak could also arise from the movement of defects and lattice imperfections. Onsager suggested that experimentalists look for a dramatic change in heat capacity by performing a careful calorimetric experiment. A phase transition to ice XI was first identified experimentally in 1972 by Shuji Kawada and others. 2253:, meaning that it has an intrinsic polarization. To qualify as a ferroelectric it must also exhibit polarization switching under an electric field, which has not been conclusively demonstrated but which is implicitly assumed to be possible. Cubic ice also has a ferrolectric phase and in this case the ferroelectric properties of the ice have been experimentally demonstrated on monolayer thin films. In a similar experiment, ferroelectric layers of hexagonal ice were grown on a platinum (111) surface. The material had a polarization that had a decay length of 30 monolayers suggesting that thin layers of ice XI can be grown on substrates at low temperature without the use of dopants. One-dimensional nano-confined ferroelectric ice XI was created in 2010. 299: 331: 2650:
prepared by the protocol reported previously contains both ice XV and ice beta-XV domains; (ii) upon heating, Raman spectra of ice beta-XV showed loss of H-order. In contrast, Salzmann's group again argued for the plausibility of a 'deep-glassy state' scenario based on neutron diffraction and neutron inelastic scattering experiments. Based on their experimental results, ice VI and deep-glassy ice VI share very similar features based on both elastic (diffraction) scattering and inelastic scattering experiments, and are different from the properties of ice XV.
2488: 3060:
Centaur, and Jupiter Family comets at heliocentric distances beyond ~6 AU. These objects are too cold for the sublimation of water ice, which drives comet activity closer to the Sun, to have much of an effect. Thermodynamic models show that the surface temperatures of those comets are near the amorphous/crystalline ice transition temperature of ~130 K, supporting this as a likely source of the activity. The runaway crystallization of amorphous ice can produce the energy needed to power outbursts such as those observed for Centaur Comet
6349: 6299: 3782: 2600:. The temperature in the diamond cells rose thousands of degrees, and the pressure increased to over a million times that of Earth's atmosphere. The experiment concluded that the current in the conductive water was indeed carried by ions rather than electrons and thus pointed to the water being superionic. More recent experiments from the same LLNL team used x-ray crystallography on laser-shocked water droplets to determine that the oxygen ions enter a face-centered-cubic phase, which was dubbed ice XVIII and reported in the journal 2885:, and so it may form on Earth. However, the transformation is very slow. According to one report, in Antarctic conditions it is estimated to take at least 100,000 years to form without the assistance of catalysts. Ice XI was sought and found in Antarctic ice that was about 100 years old in 1998. A further study in 2004 was not able to reproduce this finding, however, after studying Antarctic ice which was around 3000 years old. The 1998 Antarctic study also claimed that the transformation temperature (ice XI => ice I 2398:(or clathrates), they lack the cagelike structure generally found in clathrate hydrates, and are more properly referred to as filled ices. The filled ice is then placed in a vacuum, and the temperature gradually increased until the hydrogen frees itself from the crystal structure. If kept at a temperature range between 110 and 120 K (−163 and −153 °C; −262 and −244 °F), after about two hours, the structure will have emptied itself of any detectable hydrogen molecules. The resulting form is 2142:
hydrogen-ordering, orientational glass transition, and mechanical distortions. reported the DSC thermograms of HCl-doped ice IV finding an endothermic feature at about 120 K. Ten years later, Rosu-Finsen and Salzmann (2021) reported more detailed DSC data where the endothermic feature becomes larger as the sample is quench-recovered at higher pressure. They proposed three scenarios to explain the experimental results: weak hydrogen-ordering, orientational glass transition, and mechanical distortions.
2468: 2070:
below −70 °C without it changing into ice II. Conversely, however, any superheating of ice II was not possible in regards to retaining the same form. Bridgman found that the equilibrium curve between ice II and ice IV was much the same as with ice III, having the same stability properties and small volume change. The curve between ice II and ice V was extremely different, however, with the curve's bubble being essentially a straight line and the volume difference being almost always
2164: 2155:
ice VII has the largest stability field of all of the molecular phases of ice. The cubic oxygen sub-lattices that form the backbone of the ice VII structure persist to pressures of at least 128 GPa; this pressure is substantially higher than that at which water loses its molecular character entirely, forming ice X. In high pressure ices, protonic diffusion (movement of protons around the oxygen lattice) dominates molecular diffusion, an effect which has been measured directly.
390: 67: 2032: 2768: 12401: 454: 1034: 3109:" cracks on the surface and more amorphous ice between these regions. The crystalline ice near the tiger stripes could be explained by higher temperatures caused by geological activity that is the suspected cause of the cracks. The amorphous ice might be explained by flash freezing from cryovolcanism, rapid condensation of molecules from water geysers, or irradiation of high-energy particles from Saturn. Similarly, one of the inner layers of 12423: 144: 2172: 2756: 2889:) is −36 °C (237 K), which is far higher than the temperature of the expected triple point mentioned above (72 K, ~0 Pa). Ice XI was also found in experiments using pure water at very low temperature (~10 K) and low pressure – conditions thought to be present in the upper atmosphere. Recently, small domains of ice XI were found to form in pure water; its phase transition back to ice I 3175:. The possible roles of ice XI in interstellar space and planet formation have been the subject of several research papers. Until observational confirmation of ice XI in outer space is made, the presence of ice XI in space remains controversial owing to the aforementioned criticism raised by Iitaka. The infrared absorption spectra of ice XI was studied in 2009 in preparation for searches for ice XI in space. 12412: 2355: 25: 156: 2839:, a rare ring that occurs near 28 degrees from the Sun or the Moon. However, many atmospheric samples which were previously described as cubic ice were later shown to be stacking disordered ice with trigonal symmetry, and it has been dubbed the ″most faceted ice phase in a literal and a more general sense.″ The first true samples of cubic ice were only reported in 2020. 203:
the large hexagonal rings leave almost enough room for another water molecule to exist inside. This gives naturally occurring ice its rare property of being less dense than its liquid form. The tetrahedral-angled hydrogen-bonded hexagonal rings are also the mechanism that causes liquid water to be densest at 4 °C. Close to 0 °C, tiny hexagonal ice I
2997:
low temperatures where other indicators (such as the 3.1 and 12 μm bands) fail. This is useful studying ice in the interstellar medium and circumstellar disks. However, observing these features is difficult because the atmosphere is opaque at these wavelengths, requiring the use of space-based infrared observatories.
2948:). The latter process can occur within ice XVII. In physisorption, there is no chemical reaction, and the chemical bond between the two atoms within a hydrogen molecule remains intact. Because of this, the number of adsorption–desorption cycles ice XVII can withstand is "theoretically infinite". 2649:
Distinguishing between the two scenarios (new hydrogen-ordered phase vs. deep-glassy disordered ice VI) became an open question and the debate between the two groups has continued. Thoeny et al. (Loerting's group) collected another series of Raman spectra of ice beta-XV, and reported that (i) ice XV
2106:
1981 research by Engelhardt and Kamb elucidated crystal structure of ice IV through a low-temperature single-crystal X-ray diffraction, describing it as a rhombohedral unit cell with a space group of R-3c. This research mentioned that the structure of ice IV could be derived from the structure of ice
3116:
Medium-density amorphous ice may be present on Europa, as the experimental conditions of its formation are expected to occur there as well. It is possible that the MDA ice's unique property of releasing a large amount of heat energy after being released from compression could be responsible for 'ice
3050:
For the primordial solar nebula, there is much uncertainty as to the crystallinity of water ice during the circumstellar disk and planet formation phases. If the original amorphous ice survived the molecular cloud collapse, then it should have been preserved at heliocentric distances beyond Saturn's
3010:
exist. These low temperatures are readily achieved in astrophysical environments such as molecular clouds, circumstellar disks, and the surfaces of objects in the outer Solar System. In the laboratory, amorphous ice transforms into crystalline ice if it is heated above 130 K, although the exact
2069:
between the two. The curve showed that the structural change from ice III to ice II was more likely to happen if the medium had previously been in the structural conformation of ice II. However, if a sample of ice III that had never been in the ice II state was obtained, it could be supercooled even
2048:
in 1900 during his experiments with ice under high pressure and low temperatures. Having produced ice III, Tammann then tried condensing the ice at a temperature between −70 and −80 °C (203 and 193 K; −94 and −112 °F) under 200 MPa (2,000 atm) of pressure. Tammann noted that
421:
in the crystal lattice. The latent heat of melting is much smaller, partly because liquid water near 0 °C also contains a significant number of hydrogen bonds. By contrast, the structure of ice II is hydrogen-ordered, which helps to explain the entropy change of 3.22 J/mol when the crystal
202:
This tetrahedral bonding angle of the water molecule essentially accounts for the unusually low density of the crystal lattice – it is beneficial for the lattice to be arranged with tetrahedral angles even though there is an energy penalty in the increased volume of the crystal lattice. As a result,
3164:
Small domains of ice XI could exist in the atmospheres of Jupiter and Saturn as well. The fact that small domains of ice XI can exist at temperatures up to 111 K has some scientists speculating that it may be fairly common in interstellar space, with small 'nucleation seeds' spreading through
3072:
With radiation equilibrium temperatures of 40–50 K, the objects in the Kuiper Belt are expected to have amorphous water ice. While water ice has been observed on several objects, the extreme faintness of these objects makes it difficult to determine the structure of the ices. The signatures of
2741:
powder neutron diffraction experiments of ice XIX. In a change from their previous reports, they accepted the idea of the new phase (ice XIX) as they observed similar features to the previous two reports. However, they refined their diffraction profiles based on a disordered structural model (Pbcn)
2717:
Gasser et al. also collected powder neutron diffractograms of quench-recovered ices VI, XV, and XIX and found similar crystallographic features to those reported by Yamane et al., concluding that P-4 and Pcc2 are the plausible space group candidates. Both Yamane et al.'s and Gasser et al.'s results
2154:
theoretically transforms into proton-ordered ice XI on geologic timescales, in practice it is necessary to add small amounts of KOH catalyst.) It forms (ordered) ice VIII below 273 K up to ~8 GPa. Above this pressure, the VII–VIII transition temperature drops rapidly, reaching 0 K at ~60 GPa. Thus,
2141:
The ordered counterpart of ice IV has never been reported yet. 2011 research by Salzmann's group reported more detailed DSC data where the endothermic feature becomes larger as the sample is quench-recovered at higher pressure. They proposed three scenarios to explain the experimental results: weak
2123:
Several organic nucleating reagents had been proposed to selectively crystallize ice IV from liquid water, but even with such reagents, the crystallization of ice IV from liquid water was very difficult and seemed to be a random event. In 2001, Salzmann and his coworkers reported a whole new method
547:
of water molecules in an ice lattice. To compute its residual entropy, we need to count the number of configurations that the lattice can assume. The oxygen atoms are fixed at the lattice points, but the hydrogen atoms are located on the lattice edges. The problem is to pick one end of each lattice
2996:
At longer IR wavelengths, amorphous and crystalline ice have characteristically different absorption bands at 44 and 62 μm in that the crystalline ice has significant absorption at 62 μm while amorphous ice does not. In addition, these bands can be used as a temperature indicator at very
3059:
The possibility of the presence of amorphous water ice in comets and the release of energy during the phase transition to a crystalline state was first proposed as a mechanism for comet outbursts. Evidence of amorphous ice in comets is found in the high levels of activity observed in long-period,
3046:
isn't expected to rise above 120 K, indicating that the majority of the ice should remain in an amorphous state. However, if the temperature rises high enough to sublimate the ice, then it can re-condense into a crystalline form since the water flux rate is so low. This is expected to be the
3029:
and David F. Blake demonstrated in 1994 that a form of high-density amorphous ice is also created during vapor deposition of water on low-temperature (< 30 K) surfaces such as interstellar grains. The water molecules do not fully align to create the open cage structure of low-density
2115:
F II, whose hydrogen-bonded network is similar to ice IV. As the compression of ice Ih results in the formation of high-density amorphous ice (HDA), not ice IV, they claimed that the compression-induced conversion of ice I into ice IV is important, naming it "Engelhardt–Kamb collapse" (EKC). They
2815:
floats on water, which is highly unusual when compared to other materials. The solid phase of materials is usually more closely and neatly packed and has a higher density than the liquid phase. When lakes freeze, they do so only at the surface, while the bottom of the lake remains near 4 °C
2632:
In 2019, Alexander Rosu-Finsen and Christoph Salzman argued that there was no need to consider this to be a new phase of ice, and proposed a "deep-glassy" state scenario. According to their DSC data, the size of the endothermic feature depends not only on quench-recovery pressure but also on the
940:
The same answer can be found in another way. First orient each water molecule randomly in each of the 6 possible configurations, then check that each lattice edge contains exactly one hydrogen atom. Assuming that the lattice edges are independent, then the probability that a single edge contains
474:
inherent to the lattice and determined by the number of possible configurations of hydrogen positions that can be formed while still maintaining the requirement for each oxygen atom to have only two hydrogens in closest proximity, and each H-bond joining two oxygen atoms having only one hydrogen
3014:
An additional factor in determining the structure of water ice is deposition rate. Even if it is cold enough to form amorphous ice, crystalline ice will form if the flux of water vapor onto the substrate is less than a temperature-dependent critical flux. This effect is important to consider in
2317:
Based on powder neutron diffraction, the crystal structure of ice XV has been investigated in detail. Some researchers suggested that, in combination with density functional theory calculations, none of the possible perfectly ordered orientational configurations are energetically favoured. This
2064:
In later experiments by Bridgman in 1912, it was shown that the difference in volume between ice II and ice III was in the range of 0.0001 m/kg (2.8 cu in/lb). This difference hadn't been discovered by Tammann due to the small change and was why he had been unable to determine an
1041:
This estimate is 'naive', as it assumes the six out of 16 hydrogen configurations for oxygen atoms in the second set can be independently chosen, which is false. More complex methods can be employed to better approximate the exact number of possible configurations, and achieve results closer to
469:
atoms in the crystal lattice lie very nearly along the hydrogen bonds, and in such a way that each water molecule is preserved. This means that each oxygen atom in the lattice has two hydrogens adjacent to it: at about 101 pm along the 275 pm length of the bond for ice Ih. The crystal
3022:
At temperatures less than 77 K, irradiation from ultraviolet photons as well as high-energy electrons and ions can damage the structure of crystalline ice, transforming it into amorphous ice. Amorphous ice does not appear to be significantly affected by radiation at temperatures less than
2912:
and release hydrogen molecules without degrading its structure. The total amount of hydrogen that ice XVII can adsorb depends on the amount of pressure applied, but hydrogen molecules can be adsorbed by ice XVII even at pressures as low as a few millibars if the temperature is under
2540:, and from optical measurements of water shocked by extremely powerful lasers. The first definitive evidence for the crystal structure of the oxygen lattice in superionic water came from x-ray measurements on laser-shocked water which were reported in 2019. In 2005 Laurence Fried led a team at 2362:
In 2016, the discovery of a new form of ice was announced. Characterized as a "porous water ice metastable at atmospheric temperatures", this new form was discovered by taking a filled ice and removing the non-water components, leaving the crystal structure behind, similar to how ice XVI,
3125:
Because ice XI can theoretically form at low pressures at temperatures between 50–70 K – temperatures present in astrophysical environments of the outer solar system and within permanently shaded polar craters on the Moon and Mercury. Ice XI forms most easily around 70 K –
2850:
of water vapor in cold or vacuum conditions. Ice clouds form at and below the Earth's high latitude mesopause (~90 km) where temperatures have been observed to fall as to below 100 K. It has been suggested that homogeneous nucleation of ice particles results in low density amorphous ice.
108:
phase. Less common phases may be found in the atmosphere and underground due to more extreme pressures and temperatures. Some phases are manufactured by humans for nano scale uses due to their properties. In space, amorphous ice is the most common form as confirmed by observation. Thus, it is
2628:
patterns. In the DSC signals, there was an endothermic feature at about 110 K in addition to the endotherm corresponding to the ice XV-VI transition. Additionally, the Raman spectra, dielectric properties, and the ratio of the lattice parameters differed from those of ice XV. Based on these
2653:
In 2021, further crystallographic evidence for a new phase (ice XIX) was individually reported by three groups: Yamane et al. (Hiroyuki Kagi and Kazuki Komatsu's group from Japan), Gasser et al. (Loerting's group), and Salzmann's group. Yamane et al. collected neutron diffraction profiles
2206:
bonds. Such arrangements should change to the more ordered arrangement of hydrogen bonds found in ice XI at low temperatures, so long as localized proton hopping is sufficiently enabled; a process that becomes easier with increasing pressure. Correspondingly, ice XI is believed to have a
3005:
In general, amorphous ice can form below ~130 K. At this temperature, water molecules are unable to form the crystalline structure commonly found on Earth. Amorphous ice may also form in the coldest region of the Earth's atmosphere, the summer polar mesosphere, where
1146:
configurations. However, by explicit enumeration, there are actually 730 configurations. Now in the lattice, each oxygen atom participates in 12 hexagonal rings, so there are 2N rings in total for N oxygen atoms, or 2 rings for each oxygen atom, giving a refined result of
126:
0 °C. Subjected to higher pressures and varying temperatures, ice can form in nineteen separate known crystalline phases. With care, at least fifteen of these phases (one of the known exceptions being ice X) can be recovered at ambient pressure and low temperature in
3126:
paradoxically, it takes longer to form at lower temperatures. Extrapolating from experimental measurements, it is estimated to take ~50 years to form at 70 K and ~300 million years at 50 K. It is theorized to be present in places like the upper atmospheres of
2641:
O ice VI/XV prepared at different pressures of 1.0, 1.4 and 1.8 GPa, to show that there were no significant differences among them. They concluded that the low-temperature endotherm originated from kinetic features related to glass transitions of deep glassy states of
2097:
F resulted in the disappearance of ice II instead of the formation of a disordered ice II. According to the DFC calculation by Nakamura et al., the phase boundary between ice II and its disordered counterpart is estimated to be in the stability region of liquid water.
2119:
The disordered nature of Ice IV was confirmed by neutron powder diffraction studies by Lobban (1998) and Klotz et al. (2003). In addition, the entropy difference between ice VI (disordered phase) and ice IV is very small, according to Bridgman's measurement.
2309:
more ordered ice XV is obtained at ambient pressure. Being consistent with this, the ice VI-XV transition is reversible at ambient pressure. It was also shown that HCl-doping is selectively effective in producing ice XV while other acids and bases (HF, LiOH,
3041:
have extremely low temperatures (~10 K), falling well within the amorphous ice regime. The presence of amorphous ice in molecular clouds has been observationally confirmed. When molecular clouds collapse to form stars, the temperature of the resulting
2289:
On 14 June 2009, Christoph Salzmann and colleagues at the University of Oxford reported having experimentally reported an ordered phase of ice VI, named ice XV, and say that its properties differ significantly from those predicted. In particular, ice XV is
10620:
Omont, Alain; Forveille, Thierry; Moseley, S. Harvey; Glaccum, William J.; Harvey, Paul M.; Likkel, Lauren Jones; Loewenstein, Robert F.; Lisse, Casey M. (May 20, 1990), "Observations of 40–70 micron bands of ice in IRAS 09371 + 1212 and other stars",
2116:
suggested that the reason why we cannot obtain ice IV directly from ice Ih is that ice Ih is hydrogen-disordered; if oxygen atoms are arranged in the ice IV structure, hydrogen bonding may not be formed due to the donor-acceptor mismatch. and Raman
2742:
and argued that new Bragg reflections can be explained by distortions of ice VI, so ice XIX may still be regarded as a deep-glassy state of ice VI. The crystal structure of ice XIX including hydrogen order/disorder is still under debate as of 2022.
8380:
Salzmann, Christoph G.; Slater, Ben; Radaelli, Paolo G.; Finney, John L.; Shephard, Jacob J.; Rosillo-Lopez, Martin; Hindley, James (2016-11-22). "Detailed crystallographic analysis of the ice VI to ice XV hydrogen ordering phase transition".
2992:
water absorption lines are dependent on the ice temperature and crystal order. The peak strength of the 1.65 μm band as well as the structure of the 3.1 μm band are particularly useful in identifying the crystallinity of water ice.
2132:
is heated at a rate of 0.4 K/min and a pressure of 0.81 GPa, ice IV is crystallized at about 165 K. What governs the crystallization products is the heating rate; fast heating (over 10 K/min) results in the formation of single-phase ice XII.
2565:
lattice structure that would emerge at higher pressures. Additional experimental evidence was found by Marius Millot and colleagues in 2018 by inducing high pressure on water between diamonds and then shocking the water using a laser pulse.
461:, the oxygen atoms are arranged on the lattice points, and the hydrogen atoms are on the bonds between lattice points. Each oxygen atom has 4 neighboring ones. Note that the lattice bipartites into two subsets, here colored black and white. 274:
temperature, 77 K, in a vacuum. Cooling rates above 10 K/s are required to prevent crystallization of the droplets. At liquid nitrogen temperature, 77 K, HGW is kinetically stable and can be stored for many years.
935: 3202:
superionic phase to be kinetically favoured, but stable over a small window of parameters. On the other hand, there are also studies that suggest that other elements present inside the interiors of these planets, particularly
121:
temperatures because the pressure helps to hold the molecules together. However, the strong hydrogen bonds in water make it different: for some pressures higher than 1 atm (0.10 MPa), water freezes at a temperature
2951:
One significant advantage of using ice XVII as a hydrogen storage medium is the low cost of the only two chemicals involved: hydrogen and water. In addition, ice XVII has shown the ability to store hydrogen at an
11411:"Newly Discovered Form of Water Ice Is 'Really Strange' – Long theorized to be found in the mantles of Uranus and Neptune, the confirmation of the existence of superionic ice could lead to the development of new materials" 2261:
Although the parent phase ice VI was discovered in 1935, corresponding proton-ordered forms (ice XV) had not been observed until 2009. Theoretically, the proton ordering in ice VI was predicted several times; for example,
2219:, on raising the temperature, retains some hydrogen-ordered domains and more easily transforms back to ice XI again. A neutron powder diffraction study found that small hydrogen-ordered domains can exist up to 111 K. 2968:
clathrate hydrates, another potential storage medium. However, if ice XVII is used as a storage medium, it must be kept under a temperature of 130 K (−143 °C; −226 °F) or risk being destabilized.
5401:
Salzmann, Christoph G.; Rosu-Finsen, Alexander; Sharif, Zainab; Radaelli, Paolo G.; Finney, John L. (1 April 2021). "Detailed crystallographic analysis of the ice V to ice XIII hydrogen-ordering phase transition".
3015:
astrophysical environments where the water flux can be low. Conversely, amorphous ice can be formed at temperatures higher than expected if the water flux is high, such as flash-freezing events associated with
2584:
In 2018, the existence of superionic ice was confirmed in a laboratory setting. To create the required pressure, LLNL researchers compressed small amounts of water between pieces of diamond. At 2,500 
432:
When medium-density amorphous ice is compressed, released and then heated, it releases a large amount of heat energy, unlike other water ices which return to their normal form after getting similar treatment.
207:-like lattices form in liquid water, with greater frequency closer to 0 °C. This effect decreases the density of the water, causing it to be densest at 4 °C when the structures form infrequently. 191:. The planes alternate in an ABAB pattern, with B planes being reflections of the A planes along the same axes as the planes themselves. The distance between oxygen atoms along each bond is about 275  3104:
was mapped by the Visual and Infrared Mapping Spectrometer (VIMS) on the NASA/ESA/ASI Cassini space probe. The probe found both crystalline and amorphous ice, with a higher degree of crystallinity at the
2560:
which indicated that they had indeed created superionic water. In 2013 Hugh F. Wilson, Michael L. Wong, and Burkhard Militzer at the University of California, Berkeley published a paper predicting the
10674:
Meech, K. J.; Pittichová, J.; Bar-Nun, A.; Notesco, G.; Laufer, D.; Hainaut, O. R.; Lowry, S. C.; Yeomans, D. K.; Pitts, M. (2009). "Activity of comets at large heliocentric distances pre-perihelion".
4552:
del Rosso, Leonardo; Celli, Milva; Grazzi, Francesco; Catti, Michele; Hansen, Thomas C.; Fortes, A. Dominic; Ulivi, Lorenzo (June 2020). "Cubic ice Ic without stacking defects obtained from ice XVII".
2710:
and determined phase boundaries of ices VI/XV/XIX. They found that the sign of the slope of the boundary turns negative from positive at 1.6 GPa indicating the existence of two different phases by the
1228: 101:
ices have been observed. In modern history, phases have been discovered through scientific research with various techniques including pressurization, force application, nucleation agents, and others.
97:
as a solid. Variations in pressure and temperature give rise to different phases, which have varying properties and molecular geometries. Currently, twenty one phases, including both crystalline and
2704: 8254:
Rosu-Finsen, Alexander; Salzmann, Christoph G. (2018-06-28). "Benchmarking acid and base dopants with respect to enabling the ice V to XIII and ice VI to XV hydrogen-ordering phase transitions".
2612:
The first report regarding ice XIX was published in 2018 by Thomas Loerting's group from Austria. They quenched HCl-doped ice VI to 77 K at different pressures between 1.0 and 1.8 GPa to collect
5479:
Drost-Hansen, W. (1969-11-14). "The Structure and Properties of Water. D. Eisenberg and W. Kauzmann. Oxford University Press, New York, 1969. xiv + 300 pp., illus. Cloth, $ 10; paper, $ 4.50".
470:
lattice allows a substantial amount of disorder in the positions of the hydrogen atoms frozen into the structure as it cools to absolute zero. As a result, the crystal structure contains some
1023: 2346:-1 and showed that experimental diffraction data should be analysed using space groups that permit full hydrogen order while the Pmmn model only accepts partially ordered structures. --> 1086:
As an illustrative example of refinement, consider the following way to refine the second estimation method given above. According to it, six water molecules in a hexagonal ring would allow
830: 726: 429:
The transition entropy from ice XIV to ice XII is estimated to be 60% of Pauling entropy based on DSC measurements. The formation of ice XIV from ice XII is more favoured at high pressure.
222:
bonding angles. This structure is stable down to −268 °C (5 K; −450 °F), as evidenced by x-ray diffraction and extremely high resolution thermal expansion measurements. Ice I
250:), or by compressing ordinary ice at low temperatures. The most common form on Earth, low-density ice, is usually formed in the laboratory by a slow accumulation of water vapor molecules ( 2382:
O), using temperatures from 100 to 270 K (−173 to −3 °C; −280 to 26 °F) and pressures from 360 to 700 MPa (52,000 to 102,000 psi; 3,600 to 6,900 atm), and C
1144: 1081: 6064:
Salzmann, Christoph G.; Radaelli, Paolo G.; Hallbrucker, Andreas; Mayer, Erwin; Finney, John L. (24 March 2006). "The Preparation and Structures of Hydrogen Ordered Phases of Ice".
1789: 11004:
Spencer, John R.; Tamppari, Leslie K.; Martin, Terry Z.; Travis, Larry D. (1999). "Temperatures on Europa from Galileo Photopolarimeter-Radiometer: Nighttime Thermal Anomalies".
2816:(277 K; 39 °F) because water is densest at this temperature. This anomalous behavior of water and ice is what allows fish to survive harsh winters. The density of ice I 551:
The oxygen atoms can be divided into two sets in a checkerboard pattern, shown in the picture as black and white balls. Focus attention on the oxygen atoms in one set: there are
526: 2878:
due to the strength and rigidity of the diamond lattice, but cooled down to surface temperatures, producing the required environment of high pressure without high temperature.
2977:
In outer space, hexagonal crystalline ice (the predominant form found on Earth) is extremely rare. Known examples are typically associated with volcanic action. Water in the
603: 3875:
Wagner, Wolfgang; Saul, A.; Pruss, A. (May 1994). "International Equations for the Pressure Along the Melting and Along the Sublimation Curve of Ordinary Water Substance".
2301:
In detail, ice XV has a smaller density (larger unit-cell volume) than ice VI. This makes the VI-to-XV disorder-to-order transition much favoured at low pressures. Indeed,
1635:
The hydrogen atoms' positions are disordered. Exhibits Debye relaxation. The hydrogen bonds form two interpenetrating lattices. Tetragonal form (contested) known as Ice VII
2085:
As ice II is completely hydrogen ordered, the presence of its disordered counterpart is a great matter of interest. Shephard et al. investigated the phase boundaries of NH
6362:
Algara-Siller, G.; Lehtinen, O.; Wang, F. C.; Nair, R. R.; Kaiser, U.; Wu, H. A.; Geim, A. K.; Grigorieva, I. V. (2015-03-26). "Square ice in graphene nanocapillaries".
2226:
and XI, with ice XI showing much stronger peaks in the translational (~230 cm), librational (~630 cm) and in-phase asymmetric stretch (~3200 cm) regions.
1970:
A porous crystalline phase with helical channels. Formed by placing hydrogen-filled ice in a vacuum and increasing the temperature until the hydrogen molecules escape.
5235:; Salzmann, Christoph; Kohl, Ingrid; Mayer, Erwin; Hallbrucker, Andreas (2001). "A second distinct structural "state" of high-density amorphous ice at 77 K and 1 bar". 9780: 3011:
temperature of this conversion is dependent on the environment and ice growth conditions. The reaction is irreversible and exothermic, releasing 1.26–1.6 kJ/mol.
9749: 9250: 3030:
amorphous ice. Many water molecules end up at interstitial positions. When warmed above 30 K, the structure re-aligns and transforms into the low-density form.
631:
possible placements of the hydrogen atoms along their hydrogen bonds, of which 6 are allowed. So, naively, we would expect the total number of configurations to be
2305:
by Shephard and Salzmann revealed that reheating quench-recovered HCl-doped ice XV at ambient pressure even produces exotherms originating from transient ordering,
8545:
Komatsu, Kazuki; Machida, Shinichi; Noritake, Fumiya; Hattori, Takanori; Sano-Furukawa, Asami; Yamane, Ryo; Yamashita, Keishiro; Kagi, Hiroyuki (3 February 2020).
2706:
supercell of ice XV and proposed some leading candidates for the space group of ice XIX: P-4, Pca21, Pcc2, P21/a, and P21/c. They also measured dielectric spectra
9572:
Lübken, F.-J.; Lautenbach, J.; Höffner, J.; Rapp, M.; Zecha, M. (March 2009). "First continuous temperature measurements within polar mesosphere summer echoes".
10507: 7928:
Iedema, M. J.; Dresser, M. J.; Doering, D. L.; Rowland, J. B.; Hess, W. P.; Tsekouras, A. A.; Cowin, J. P. (1 November 1998). "Ferroelectricity in Water Ice".
46: 6229: 11050:
Hansen, Gary B.; McCord, Thomas B. (2004). "Amorphous and crystalline ice on the Galilean satellites: A balance between thermal and radiolytic processes".
8528: 7689:
Arakawa, Masashi; Kagi, Hiroyuki; Fukazawa, Hiroshi (2010). "Annealing effects on hydrogen ordering in KOD-doped ice observed using neutron diffraction".
3279:
Klotz, S.; Besson, J. M.; Hamel, G.; Nelmes, R. J.; Loveday, J. S.; Marshall, W. G. (1999). "Metastable ice VII at low temperature and ambient pressure".
847: 9802:
Fukazawa, Hiroshi; Mae, Shinji; Ikeda, Susumu; Watanabe, Okitsugu (1998). "Proton ordering in Antarctic ice observed by Raman and neutron scattering".
7299:
Pruzan, Ph.; Chervin, J. C. & Canny, B. (1993). "Stability domain of the ice VIII proton-ordered phase at very high pressure and low temperature".
2577:
structure. However, at pressures in excess of 100 GPa, and temperatures above 2000 K, it is predicted that the structure would shift to a more stable
2342:, are good indicators of the ice XV formation. Combining density functional theory calculations, they successfully constructed fully ordered model in 1991:
A form of water also known as superionic water or superionic ice in which oxygen ions develop a crystalline structure while hydrogen ions move freely.
2718:
suggested a partially hydrogen-ordered structure. Gasser et al. also found an isotope effect using DSC; the low-temperature endotherm for DCl-doped D
11312:
Iedema, M. J.; Dresser, M. J.; Doering, D. L.; Rowland, J. B.; Hess, W. P.; Tsekouras, A. A.; Cowin, J. P. (1998). "Ferroelectricity in Water Ice".
7558:
Tajima, Yoshimitsu; Matsuo, Takasuke; Suga, Hiroshi (1984). "Calorimetric study of phase transition in hexagonal ice doped with alkali hydroxides".
1898:
when above 145–147 K at positive pressures. Theoretical studies predict ice XVI to be thermodynamically stable at negative pressures (that is under
9235: 9164: 9093: 6775: 6206: 4125: 3502: 1784:
Metastable. Observed in the phase space of ice V and ice VI. A topological mix of seven- and eight-membered rings, a 4-connected net (4-coordinate
11757: 11460:
Cheng, Bingqing; Bethkenhagen, Mandy; Pickard, Chris J.; Hamel, Sebastien (2021). "Phase behaviours of superionic water at planetary conditions".
4205:
Rosu-Finsen, Alexander; Davies, Michael B.; Amon, Alfred; Wu, Han; Sella, Andrea; Michaelides, Angelos; Salzmann, Christoph G. (3 February 2023).
3551:
Velikov, V.; Borick, S; Angell, C. A. (2001). "Estimation of water-glass transition temperature based on hyperquenched glassy water experiments".
11191:
University of Liège (2007, May 16). Astronomers Detect Shadow Of Water World In Front Of Nearby Star. ScienceDaily. Retrieved Jan. 3, 2010, from
3047:
case in the circumstellar disk of IRAS 09371+1212, where signatures of crystallized ice were observed despite a low temperature of 30–70 K.
627:
oxygen atoms: in general they won't be satisfied (i.e., they will not have precisely two hydrogen atoms near them). For each of those, there are
8447:
Liu, Yuan; Huang, Yingying; Zhu, Chongqin; Li, Hui; Zhao, Jijun; Wang, Lu; Ojamäe, Lars; Francisco, Joseph S.; Zeng, Xiao Cheng (25 June 2019).
4268:
Bernal, J. D.; Fowler, R. H. (1 January 1933). "A Theory of Water and Ionic Solution, with Particular Reference to Hydrogen and Hydroxyl Ions".
2596:
to be blasted with a laser. For less than a billionth of a second, the ice was subjected to conditions similar to those within the mantle of an
9838: 9301:
Murray, Benjamin J.; Knopf, Daniel A.; Bertram, Allan K. (2005). "The formation of cubic ice under conditions relevant to Earth's atmosphere".
5146:
Mishima, O.; Calvert, L. D.; Whalley, E. (1985). "An apparently 1st-order transition between two amorphous phases of ice induced by pressure".
2266:
calculations predicted the phase transition temperature is 108 K and the most stable ordered structure is antiferroelectric in the space group
306:
Ice from a theorized superionic water may possess two crystalline structures. At pressures in excess of 50 GPa (7,300,000 psi) such
3085:
The Near-Infrared Mapping Spectrometer (NIMS) on NASA's Galileo spacecraft spectroscopically mapped the surface ice of the Jovian satellites
2513:
In 1988, predictions of the so-called superionic water state were made. In superionic water, water molecules break apart and the oxygen ions
2107:
Ic by cutting and forming some hydrogen bondings and adding subtle structural distortions. Shephard et al. compressed the ambient phase of NH
11197: 9683:
O. Tschauner; S Huang; E. Greenberg; V.B. Prakapenka; C. Ma; G.R. Rossman; A.H. Shen; D. Zhang; M. Newville; A. Lanzirotti; K. Tait (2018).
6574:
Millot, Marius; Coppari, Federica; Rygg, J. Ryan; Correa Barrios, Antonio; Hamel, Sebastien; Swift, Damian C.; Eggert, Jon H. (8 May 2019).
2851:
Amorphous ice is likely confined to the coldest parts of the clouds and stacking disordered ice I is thought to dominate elsewhere in these
2334:), whereas Rietveld refinement using the Pmmn space group only works well for poorly ordered samples. The lattice parameters, in particular 1406:
Experimental procedure generates shear force by crushing ice into powder with centimeter-wide stainless-steel balls added to its container.
7436: 2406:(ordinary ice) when brought above 130 K (−143 °C; −226 °F). The crystal structure is hexagonal in nature, and the pores are 9607:
Murray, Benjamin J.; Jensen, Eric J. (January 2010). "Homogeneous nucleation of amorphous solid water particles in the upper mesosphere".
8140:
Salzmann, Christoph G.; Radaelli, Paolo G.; Mayer, Erwin; Finney, John L. (2009). "Ice XV: A New Thermodynamically Stable Phase of Ice".
6254:
Falenty, A.; Hansen, T. C.; Kuhs, W. F. (2014). "Formation and properties of ice XVI obtained by emptying a type sII clathrate hydrate".
10306:
Moore, Marla H.; Hudson, Reggie L. (1992). "Far-infrared spectral studies of phase changes in water ice induced by proton irradiation".
195:
and is the same between any two bonded oxygen atoms in the lattice. The angle between bonds in the crystal lattice is very close to the
4391: 8201:
Shephard, Jacob J.; Salzmann, Christoph G. (2015). "The complex kinetics of the ice VI to ice XV hydrogen ordering phase transition".
5889:
La Placa, Sam J.; Hamilton, Walter C.; Kamb, Barclay; Prakash, Anand (1973-01-15). "On a nearly proton-ordered structure for ice IX".
3323: 33: 3023:
110 K, though some experiments suggest that radiation might lower the temperature at which amorphous ice begins to crystallize.
737: 318:
lattice. Some estimates suggest that at an extremely high pressure of around 1.55 TPa (225,000,000 psi), ice would develop
11246: 10266:
Hagen, W.; ielens, A.G.G.M.; Greenberg, J. M. (1981). "The Infrared Spectra of Amorphous Solid Water and Ice Between 10 and 140 K".
8661: 4426: 3985: 634: 266:(HGW) is formed by spraying a fine mist of water droplets into a liquid such as propane around 80 K, or by hyperquenching fine 226:
is also stable under applied pressures of up to about 210 megapascals (2,100 atm) where it transitions into ice III or ice II.
10567:
Jenniskens, P.; Blake, D. F.; Wilson, M. A.; Pohorille, A. (1995). "High-Density Amorphous Ice, the Frost on Interstellar Grains".
5816:
Whalley, E.; Davidson, D. W.; Heath, J. B. R. (1 December 1966). "Dielectric Properties of Ice VII. Ice VIII: A New Phase of Ice".
10099: 9468:
Malkin, Tamsin L.; Murray, Benjamin J.; Salzmann, Christoph G.; Molinero, Valeria; Pickering, Steven J.; Whale, Thomas F. (2015).
1578:
Most complicated structure of all the phases. Includes 4-membered, 5-membered, 6-membered, and 8-membered rings and a total of 28
199:
of 109.5°, which is also quite close to the angle between hydrogen atoms in the water molecule (in the gas phase), which is 105°.
8909: 5648:
Yao, Shu-Kai; Zhang, Peng; Zhang, Ying; Lu, Ying-Bo; Yang, Tian-Lin; Suna, Bai-Gong; Yuan, Zhen-Yu; Luo, Hui-Wen (21 June 2017).
5013: 4951:
Jenniskens P.; Banham S. F.; Blake D. F.; McCoustra M. R. (July 1997). "Liquid water in the domain of cubic crystalline ice Ic".
2867: 2522: 11223: 9399:
Murray, Benjamin J.; Salzmann, Christoph G.; Heymsfield, Andrew J.; Dobbie, Steven; Neely, Ryan R.; Cox, Christopher J. (2015).
7785:
Abe, K.; Shigenari, T. (2011). "Raman spectra of proton ordered phase XI of ICE I. Translational vibrations below 350 cm-1, J".
5093:
Jenniskens P.; Blake D. F.; Wilson M. A.; Pohorille A. (1995). "High-density amorphous ice, the frost on insterstellar grains".
4017:
Iglev, H.; Schmeisser, M.; Simeonidis, K.; Thaller, A.; Laubereau, A. (2006). "Ultrafast superheating and melting of bulk ice".
2541: 2049:
in this state ice II was denser than he had observed ice III to be. He also found that both types of ice can be kept at normal
2045: 1150: 11370:"Laboratory Measurements of Infrared Absorption Spectra of Hydrogen-Ordered Ice: a Step to the Exploration of Ice XI in Space" 8065:
Knight, Chris; Singer, Sherwin J. (2005-10-19). "Prediction of a Phase Transition to a Hydrogen Bond Ordered Form of Ice VI".
5047:
Mishima O.; Calvert L. D.; Whalley E. (1984). "'Melting ice' I at 77 K and 10 kbar: a new method of making amorphous solids".
2544:(LLNL) to recreate the formative conditions of superionic water. Using a technique involving smashing water molecules between 2322:
space group as a plausible space group to describe the time-space averaged structure of ice XV. Other researchers argued that
109:
theorized to be the most common phase in the universe. Various other phases could be found naturally in astronomical objects.
4409: 9772: 3743:
Conde, M.M.; Vega, C.; Tribello, G.A.; Slater, B. (2009). "The phase diagram of water at negative pressures: Virtual ices".
2835:
may occasionally present in the upper atmosphere clouds. It is believed to be responsible for the observation of Scheiner's
2820:
increases when cooled, down to about −211 °C (62 K; −348 °F); below that temperature, the ice expands again (
9741: 2669: 2569:
As of 2013, it is theorized that superionic ice can possess two crystalline structures. At pressures in excess of 50 
11781: 11771: 11616: 10425:
Murray, B. J.; Jensen, E. J. (2010). "Homogeneous nucleation of amorphous solid water particles in the upper mesosphere".
9257: 7828:
Raza, Zamaan; Alfè, Dario (28 Nov 2011). "Proton ordering in cubic ice and hexagonal ice; a potential new ice phase—XIc".
5014:"Scientists Have Created a New Type of Ice – It looks like a white powder and has nearly the same density as liquid water" 2905:
of biomolecules. The individual molecules can be preserved for imaging in a state close to what they are in liquid water.
2318:
implies that there are several energetically close configurations that coexist in ice XV. They proposed 'the orthorhombic
314:
structure. However, at pressures in excess of 100 GPa (15,000,000 psi) the structure may shift to a more stable
10177:"Photometric and spectral analysis of the distribution of crystalline and amorphous ices on Enceladus as seen by Cassini" 9837:
Fortes, A. D.; Wood, I. G.; Grigoriev, D.; Alfredsson, M.; Kipfstuhl, S.; Knight, K. S.; Smith, R. I. (1 January 2004).
8936:"Origin of the low-temperature endotherm of acid-doped ice VI: new hydrogen-ordered phase of ice or deep glassy states?" 8773: 4363:(1 December 1935). "The Structure and Entropy of Ice and of Other Crystals with Some Randomness of Atomic Arrangement". 2446:. This discovery was reported around the same time another research group announced that they were able to obtain pure D 9285: 8740: 8006:
Zhao, H.-X.; Kong, X.-J.; Li, H.; Jin, Y.-C.; Long, L.-S.; Zeng, X. C.; Huang, R.-B.; Zheng, L.-S. (14 February 2011).
7731:
Arakawa, Masashi; Kagi, Hiroyuki; Fernandez-Baca, Jaime A.; Chakoumakos, Bryan C.; Fukazawa, Hiroshi (17 August 2011).
5854:
Whalley, E.; Heath, J. B. R.; Davidson, D. W. (1 March 1968). "Ice IX: An Antiferroelectric Phase Related to Ice III".
4070:"Author Correction: Dynamics enhanced by HCl doping triggers 60% Pauling entropy release at the ice XII-XIV transition" 2917:, through the application of heat. This was an unexpected property of ice XVII, and could allow it to be used for 944: 262:
it is expected to be formed in a similar manner on a variety of cold substrates, such as dust particles. By contrast,
11776: 11655: 11634: 10709:
Tancredi, G.; Rickman, H.; Greenberg, J. M. (1994). "Thermochemistry of cometary nuclei 1: The Jupiter family case".
10484: 5306: 2613: 2302: 3395:
Rottger, K.; Endriss, A.; Ihringer, J.; Doyle, S.; Kuhs, W. F. (1994). "Lattice Constants and Thermal Expansion of H
131:
form. The types are differentiated by their crystalline structure, proton ordering, and density. There are also two
10478: 10476: 10474: 3963: 3244:
La Placa, S. J.; Hamilton, W. C.; Kamb, B.; Prakash, A. (1972). "On a nearly proton ordered structure for ice IX".
2662:
under high pressure) and found new Bragg features completely different from both ice VI and ice XV. They performed
2442:
O ice XVII powder. The result was free of structural deformities compared to standard cubic ice, or ice I
234:
While most forms of ice are crystalline, several amorphous (or "vitreous") forms of ice also exist. Such ice is an
11410: 8876: 2874:. The ice VII was presumably formed when water trapped inside the diamonds retained the high pressure of the deep 2633:
heating rate and annealing duration at 93 K. They also collected neutron diffraction profiles of quench-recovered
11724: 8507: 6221: 4520: 3795:
Militzer, Burkhard; Wilson, Hugh F. (2 November 2010). "New Phases of Water Ice Predicted at Megabar Pressures".
2711: 2588:(360,000 psi), the water became ice VII, a form that is solid at room temperature. This ice, trapped within 548:
edge for the hydrogen to bond to, in a way that still makes sure each oxygen atom is bond to two hydrogen atoms.
10471: 10343:"Molecular ices as temperature indicators for interstellar dust: the 44- and 62-μm lattice features of H2O ice" 4765:
Dowell, L. G.; Rinfret, A. P. (December 1960). "Low-Temperature Forms of Ice as Studied by X-Ray Diffraction".
2629:
observations, they proposed the existence of a second hydrogen-ordered phase of ice VI, naming it ice beta-XV.
2521:
float around freely within the oxygen lattice. The freely mobile hydrogen ions make superionic water almost as
1089: 941:
exactly one hydrogen atom is 1/2, and since there are 2N edges in total, we obtain a total configuration count
731: 10227:
Grundy, W. M.; Schmitt, B. (1998). "The temperature-dependent near-infrared absorption spectrum of hexagonal H
1045: 238:
form of water, which lacks long-range order in its molecular arrangement. Amorphous ice is produced either by
11808: 1242:
nomenclature. The majority have only been created in the laboratory at different temperatures and pressures.
558:
of them. Each has four hydrogen bonds, with two hydrogens close to it and two far away. This means there are
8854: 536:
There are various ways of approximating this number from first principles. The following is the one used by
11741: 11674: 9454: 8315:
Komatsu, K.; Noritake, F.; Machida, S.; Sano-Furukawa, A.; Hattori, T.; Yamane, R.; Kagi, H. (2016-07-04).
7963:
Su, Xingcai; Lianos, L.; Shen, Y.; Somorjai, Gabor (1998). "Surface-Induced Ferroelectric Ice on Pt(111)".
6553: 6314:"Thermodynamic Stability and Growth of Guest-Free Clathrate Hydrates: A Low-Density Crystal Phase of Water" 6137: 6038: 5956: 5634: 5523: 5465: 5387: 5364: 5341: 3061: 2066: 446: 278:
Amorphous ices have the property of suppressing long-range density fluctuations and are, therefore, nearly
243: 176: 9874: 7593:
Matsuo, Takasuke; Tajima, Yoshimitsu; Suga, Hiroshi (1986). "Calorimetric study of a phase transition in D
6426: 11094: 10776: 6789:
Shephard, J. J., Slater, B., Harvey, P., Hart, M., Bull, C. L., Bramwell, S. T., Salzmann, C. G. (2018),
1825:<118 K (−155 °C) (formation from ice XII); <140 K (−133 °C) (stability point) 487: 11747: 1981:<118 K (−155 °C) (formation from ice III);<140 K (−133 °C) (stability point) 10485:"Conditions for condensation and preservation of amorphous ice and crystallinity of astrophysical ices" 9997: 9996:
Dubochet, J.; Adrian, M.; Chang, J. .J; Homo, J. C.; Lepault, J-; McDowall, A. W.; Schultz, P. (1988).
9400: 8449:"An ultralow-density porous ice with the largest internal cavity identified in the water phase diagram" 7775:, in Physics and Chemistry of Ice, ed. W. Kuhs (Royal Society of Chemistry, Cambridge, 2007) pp 101–108 2985: 2981:
is instead dominated by amorphous ice, making it likely the most common form of water in the universe.
2821: 2533:, which is a hypothetical liquid state characterized by a disordered soup of hydrogen and oxygen ions. 2129: 283: 246:(about 136 K or −137 °C) in milliseconds (so the molecules do not have enough time to form a 11271:
Fukazawa, H.; Hoshikawa, A.; Ishii, Y.; Chakoumakos, B. C.; Fernandez-Baca, J. A. (20 November 2006).
10953:
Jewitt, David C.; Luu, Jane (2004). "Crystalline water ice on the Kuiper belt object (50000) Quaoar".
10176: 8119: 6837:"Thermodynamic Stability of Ice II and Its Hydrogen-Disordered Counterpart: Role of Zero-Point Energy" 6717: 12462: 12205: 4067: 3444: 3106: 2913:
40 K (−233.2 °C; −387.7 °F). The adsorbed hydrogen molecules can then be released, or
2836: 2263: 251: 6470:"New porous water ice metastable at atmospheric pressure obtained by emptying a hydrogen-filled ice" 6348: 6298: 6051:
C. Lobban, J.L. Finney and W.F. Kuhs, The structure of a new phase of ice, Nature 391, 268–270, 1998
3781: 561: 298: 11003: 9043: 4668: 2988:
and infrared spectrum. At near-IR wavelengths, the characteristics of the 1.65, 3.1, and 4.53 
2922: 2902: 2852: 2530: 2402:
at room pressure while under 120 K (−153 °C; −244 °F), but collapses into ice I
1448:
1 and 2 GPa (formation at 160 K (−113 °C)); ambient (at 77 K (−196.2 °C))
1423:
At 77 K (−196.2 °C): 1.6 GPa (formation from Ih); 0.5 GPa (formation from LDA)
215: 9896:
Furić, K.; Volovšek, V. (2010). "Water ice at low temperatures and pressures; new Raman results".
7730: 4401: 4145:"Thermodynamic and kinetic isotope effects on the order-disorder transition of ice XIV to ice XII" 1886:
The least dense crystalline form of water, topologically equivalent to the empty structure of sII
11960: 11711: 11193: 8613: 8008:"Transition from one-dimensional water to ferroelectric ice within a supramolecular architecture" 5765:
Grande, Zachary M.; et al. (2022). "Pressure-driven symmetry transitions in dense H2O ice".
5538: 5298: 2617: 2593: 1861:
A proton-ordered form of ice VI formed by cooling water to around 80–108 K at 1.1 GPa.
1239: 422:
structure changes to that of ice I. Also, ice XI, an orthorhombic, hydrogen-ordered form of ice I
375: 38: 7463: 1419:<30 K (−243.2 °C) (vapor deposition); 77 K (−196.2 °C) (stability point) 12014: 11706: 11438: 10524:
Kouchi, Akira; Kuroda, Toshio (1990). "Amorphization of cubic ice by ultraviolet irradiation".
7099:"The Pressure-Volume-Temperature Relations of the Liquid, and the Phase Diagram of Heavy Water" 5018: 4822: 2965: 2799:
exhibits many peculiar properties that are relevant to the existence of life and regulation of
2150:
Ice VII is the only disordered phase of ice that can be ordered by simple cooling. (While ice I
330: 9839:"No evidence for large-scale proton ordering in Antarctic ice from powder neutron diffraction" 9275: 6911:
Shephard, J. J., Ling, S., Sosso, G. C., Michaelides, A., Slater, B., Salzmann, C. G. (2017),
11519: 9229: 9158: 9087: 7733:"The existence of memory effect on hydrogen ordering in ice: The effect makes ice attractive" 7488:
Dengel, O.; Eckener, U.; Plitz, H.; Riehl, N. (1 May 1964). "Ferroelectric behavior of ice".
7034: 6769: 6200: 5292: 4119: 3496: 1712:
Has symmetrized hydrogen bonds – a hydrogen atom is found at the center of two oxygen atoms.
10929: 10722: 10503: 10395: 10382:
Seki, J.; Hasegawa, H. (1983). "The heterogeneous condensation of interstellar ice grains".
7636:
Castro Neto, A.; Pujol, P.; Fradkin, E. (2006). "Ice: A strongly correlated proton system".
6913:"Is High-Density Amorphous Ice Simply a "Derailed" State along the Ice I to Ice IV Pathway?" 6718:
Yamane R, Komatsu K, Gouchi J, Uwatoko Y, Machida S, Hattori T, Kagi H; et al. (2021).
6697: 3327: 2936:, it can also be stored within a solid substance, either via a reversible chemical process ( 2370:
To create ice XVII, the researchers first produced filled ice in a stable phase named C
135:
phases of ice under pressure, both fully hydrogen-disordered; these are Ice IV and Ice XII.
12415: 12296: 11577: 11528: 11479: 11381: 11284: 11174: 11109: 11059: 11013: 10962: 10925: 10884: 10837: 10790: 10749: 10718: 10683: 10630: 10576: 10533: 10499: 10434: 10391: 10354: 10315: 10275: 10240: 10191: 10175:
Newman, Sarah F.; Buratti, B. J.; Brown, R. H.; Jaumann, R.; Bauer, J.; Momary, T. (2008).
10137: 9954: 9905: 9850: 9811: 9696: 9655: 9616: 9581: 9526: 9415: 9365: 9310: 9191: 9120: 9000: 8788: 8694: 8628: 8568: 8460: 8400: 8328: 8273: 8220: 8159: 8019: 7972: 7892: 7837: 7794: 7744: 7698: 7655: 7610: 7567: 7532: 7523:
Kawada, Shuji (1 May 1972). "Dielectric Dispersion and Phase Transition of KOH Doped Ice".
7497: 7393: 7354: 7308: 7266: 7220: 7148: 7110: 7064: 6886: 6802: 6731: 6587: 6491: 6381: 6263: 6164: 6150: 6073: 5983: 5898: 5863: 5825: 5774: 5702: 5661: 5610: 5550: 5411: 5244: 5198: 5155: 5102: 5056: 4960: 4907: 4860: 4774: 4737: 4680: 4625: 4571: 4485: 4438: 4326: 4277: 4218: 4156: 4081: 4068:
Köster KW, Fuentes-Landete V, Raidt A, Seidl M, Gainaru C, Loerting T; et al. (2018).
4026: 3923: 3884: 3814: 3754: 3680: 3625: 3602:
Martelli, Fausto; Torquato, Salvatore; Giovambattista, Nicolas; Car, Roberto (2017-09-29).
3560: 3466: 3416: 3358: 3288: 3253: 2504: 2291: 2050: 606: 12422: 3912:"Review of the vapour pressures of ice and supercooled water for atmospheric applications" 3603: 334:
An alternative formulation of the phase diagram for certain ices and other phases of water
8: 12457: 12452: 12301: 3992: 3033: 2978: 2941: 2929: 2859: 2804: 2663: 2578: 2574: 2562: 1929: 406: 315: 311: 94: 11581: 11532: 11483: 11385: 11288: 11178: 11113: 11063: 11017: 10966: 10888: 10841: 10794: 10777:
Hosek, Matthew W. Jr.; Blaauw, Rhiannon C.; Cooke, William J.; Suggs, Robert M. (2013).
10753: 10687: 10634: 10580: 10537: 10438: 10358: 10319: 10279: 10244: 10195: 10141: 10091: 9958: 9909: 9854: 9815: 9700: 9659: 9620: 9585: 9530: 9419: 9369: 9314: 9195: 9124: 9046:"Deep-Glassy Ice VI Revealed with a Combination of Neutron Spectroscopy and Diffraction" 9004: 8792: 8698: 8632: 8572: 8464: 8404: 8332: 8277: 8224: 8163: 8023: 7976: 7896: 7841: 7798: 7748: 7702: 7659: 7614: 7571: 7536: 7501: 7435:
Fan, Xiaofeng; Bing, Dan; Zhang, Jingyun; Shen, Zexiang; Kuo, Jer-Lai (1 October 2010).
7397: 7358: 7312: 7270: 7224: 7152: 7114: 7068: 6890: 6806: 6735: 6642:
Gasser, TM; Thoeny, AV; Plaga, LJ; Köster, KW; Etter, M; Böhmer, R; et al. (2018).
6591: 6495: 6385: 6267: 6168: 6077: 5987: 5902: 5867: 5829: 5778: 5706: 5665: 5554: 5415: 5248: 5202: 5159: 5106: 5060: 4964: 4911: 4864: 4778: 4741: 4684: 4629: 4575: 4489: 4442: 4330: 4281: 4222: 4160: 4085: 4030: 3927: 3888: 3818: 3758: 3684: 3629: 3564: 3470: 3420: 3362: 3292: 3257: 2842:
Low-density ASW (LDA), also known as hyperquenched glassy water, may be responsible for
2093:
F has been reported to be a hydrogen disordering reagent. However, adding 2.5 mol% of NH
382:. In an experiment, ice at −3 °C was superheated to about 17 °C for about 250 12447: 12404: 11939: 11495: 11469: 11415: 11348: 11075: 10986: 10853: 10827: 10602: 10549: 10407: 10028: 9978: 9944: 9722: 9549: 9510: 9334: 9212: 9179: 9141: 9108: 9070: 9045: 9026: 8960: 8935: 8718: 8589: 8558: 8546: 8483: 8448: 8390: 8357: 8316: 8263: 8210: 8183: 8149: 8109: 8042: 8007: 7988: 7945: 7910: 7861: 7671: 7645: 7417: 7370: 7282: 7080: 7053:"Recrystallisation of HDA ice under pressure by in-situ neutron diffraction to 3.9 GPa" 6950: 6924: 6818: 6752: 6720:"Experimental evidence for the existence of a second partially-ordered phase of ice VI" 6719: 6668: 6643: 6619: 6512: 6481: 6469: 6405: 6371: 6287: 6188: 6097: 6006: 5971: 5798: 5593: 5260: 5214: 5171: 5128: 5072: 4933: 4798: 4750: 4725: 4649: 4595: 4561: 4316: 4250: 4182: 4102: 4069: 4050: 3941: 3838: 3804: 3722: 3649: 3615: 3584: 3533: 3304: 3199: 3043: 3007: 2843: 2621: 2589: 2537: 2526: 1887: 841: 837: 417:. The high latent heat of sublimation is principally indicative of the strength of the 11394: 11369: 11173:(49.02). Division for Planetary Sciences Meeting, American Astronomical Society: 732. 10803: 10778: 9823: 5725: 5690: 4304: 11801: 11761: 11651: 11630: 11595: 11546: 11499: 11439:"Public Affairs Office: Recreating the Bizarre State of Water Found on Giant Planets" 11329: 11219: 11135: 11079: 11029: 10978: 10648: 10606: 10411: 10340: 10287: 10020: 9970: 9866: 9726: 9714: 9554: 9491: 9381: 9326: 9281: 9217: 9146: 9075: 9030: 9018: 8965: 8884: 8804: 8748: 8722: 8710: 8644: 8594: 8522: 8488: 8424: 8416: 8362: 8344: 8297: 8289: 8236: 8175: 8090: 8082: 8047: 7992: 7914: 7853: 7810: 7675: 7622: 7579: 7509: 7409: 7286: 7236: 6942: 6856: 6757: 6673: 6623: 6611: 6603: 6517: 6397: 6337: 6279: 6180: 6089: 6011: 5914: 5802: 5790: 5730: 5576:
Bridgman, P. W. (1912). "Water, in the Liquid and Five Solid Forms, under Pressure".
5496: 5435: 5427: 5302: 5132: 4994: 4976: 4925: 4876: 4823:"Scientists created a weird new type of ice that is almost exactly as dense as water" 4790: 4706: 4653: 4641: 4599: 4587: 4501: 4497: 4454: 4405: 4342: 4254: 4242: 4234: 4174: 4107: 4042: 3945: 3830: 3770: 3726: 3714: 3706: 3641: 3576: 3484: 3374: 2625: 2438:
O) can be formed from ice XVII. This was done by heating specifically prepared D
2395: 2364: 1899: 1851:
80 K (−193.2 °C) – 108 K (−165 °C) (formation from liquid water)
267: 247: 196: 164: 10870: 10857: 10818:
Jewitt, David C.; Luu, Jane X. (2001). "Colors and Spectra of Kuiper Belt Objects".
10566: 8187: 7949: 7865: 7459: 7421: 7084: 6954: 6822: 6192: 6101: 5264: 4937: 4186: 3842: 3653: 3588: 3516:
P. W. Bridgman (1912). "Water, in the Liquid and Five Solid Forms, under Pressure".
930:{\displaystyle R\ln(3/2)=3.37\mathrm {J} \cdot \mathrm {mol} ^{-1}\mathrm {K} ^{-1}} 302:
Water phase diagram extended to negative pressures calculated with TIP4P/2005 model.
12180: 11751: 11686: 11585: 11536: 11487: 11389: 11321: 11292: 11117: 11067: 11021: 10990: 10970: 10933: 10892: 10845: 10798: 10757: 10691: 10638: 10592: 10584: 10553: 10541: 10442: 10399: 10362: 10323: 10283: 10248: 10207: 10199: 10145: 10070: 10032: 10012: 9982: 9962: 9917: 9913: 9858: 9819: 9704: 9685:"Ice-VII inclusions in diamonds: Evidence for aqueous fluid in Earth's deep mantle" 9663: 9624: 9589: 9544: 9534: 9481: 9423: 9373: 9338: 9318: 9207: 9199: 9136: 9128: 9065: 9057: 9008: 8955: 8947: 8830: 8796: 8702: 8636: 8584: 8576: 8478: 8468: 8408: 8352: 8336: 8281: 8228: 8171: 8167: 8114: 8074: 8037: 8027: 7980: 7937: 7900: 7845: 7802: 7752: 7710: 7706: 7663: 7618: 7575: 7540: 7505: 7455: 7401: 7374: 7362: 7345: 7316: 7274: 7228: 7190: 7156: 7118: 7072: 7010: 6980: 6934: 6894: 6848: 6810: 6747: 6739: 6663: 6655: 6595: 6507: 6499: 6409: 6389: 6327: 6318: 6291: 6271: 6172: 6081: 6001: 5991: 5906: 5871: 5833: 5782: 5720: 5710: 5669: 5585: 5558: 5488: 5419: 5252: 5218: 5206: 5175: 5163: 5118: 5110: 5076: 5064: 4968: 4950: 4915: 4868: 4802: 4782: 4745: 4696: 4688: 4633: 4579: 4493: 4446: 4397: 4372: 4334: 4285: 4226: 4164: 4097: 4089: 4054: 4034: 3931: 3892: 3826: 3822: 3762: 3696: 3688: 3637: 3633: 3568: 3525: 3479: 3474: 3446: 3424: 3366: 3308: 3296: 3261: 3191: 3026: 2918: 2875: 2847: 2553: 2478: 2295: 1609: 1525: 1313: 471: 90: 11025: 9109:"Structural characterization of ice XIX as the second polymorph related to ice VI" 8800: 7254: 7052: 6910: 6427:"Sandwiching water between graphene makes square ice crystals at room temperature" 5933: 4206: 3668: 11830: 11729: 11645: 11624: 10938: 10913: 10738:"The search for a cometary outbursts mechanism: a comparison of various theories" 10695: 10203: 9377: 8984: 8232: 7278: 7174: 7076: 7038: 6912: 5492: 5232: 4616:
Salzmann, Christoph G.; Murray, Benjamin J. (June 2020). "Ice goes fully cubic".
4140: 3370: 3198:
superionic phases to be stable over a wide temperature and pressure range, and a
3171: 3094: 3090: 3038: 2933: 2514: 2180: 398: 279: 271: 235: 98: 11165:
McKinnon, W. B.; Hofmeister, A.M. (August 2005). "Ice XI on Pluto and Charon?".
10911: 10673: 10446: 9668: 9643: 9628: 9593: 9061: 8640: 7984: 7927: 6938: 5786: 5092: 4473: 4427:"Lattice Statistics of Hydrogen Bonded Crystals. I. The Residual Entropy of Ice" 3667:
Martelli, Fausto; Leoni, Fabio; Sciortino, Francesco; Russo, John (2020-09-14).
12385: 12375: 12185: 11491: 10301: 10299: 10297: 9519:
Proceedings of the National Academy of Sciences of the United States of America
9203: 9177: 9132: 8685: 8580: 8547:"Ice Ic without stacking disorder by evacuating hydrogen from hydrogen hydrate" 7667: 6834: 6790: 6743: 6545: 5996: 4338: 3745: 2811:
which causes atoms to become closer in the liquid phase. Because of this, ice I
2808: 2557: 2536:
The initial evidence came from optical measurements of laser-heated water in a
2474: 1937: 11701: 10367: 10342: 10122: 10016: 9773:"What scientists found trapped in a diamond: a type of ice not known on Earth" 9682: 9442: 9427: 8706: 7028: 6836: 6814: 6599: 6129: 5952: 5748: 5562: 5356: 4849:"Structural transitions in amorphous water ice and astrophysical implications" 4637: 4583: 3857: 3445:
David T. W. Buckingham, J. J. Neumeier, S. H. Masunaga, and Yi-Kuo Yu (2018).
3428: 2893:
occurred at 72 K while under hydrostatic pressure conditions of up to 70 MPa.
346:, which is exactly 273.16 K (0.01 °C) at a pressure of 611.657  12441: 12200: 12152: 12137: 12005: 11765: 11737: 11333: 11250: 10652: 8888: 8752: 8420: 8348: 8293: 8240: 8086: 7388:
Katoh, E. (15 February 2002). "Protonic Diffusion in High-Pressure Ice VII".
7050: 6852: 6030: 5918: 5500: 5431: 5379: 5333: 4872: 4794: 4505: 4458: 4360: 4346: 4238: 3710: 3223:
One millibar is equivalent to 100 Pa (0.015 psi; 0.00099 atm).
3158: 3146: 3139: 3086: 3016: 2945: 2937: 2585: 2570: 2518: 2411: 2250: 1771:(5,400 atm) (formation from liquid water); 0.81–1.00 GPa/min (from ice I 1768: 1739: 1350: 537: 418: 371: 347: 188: 168: 78: 74: 70: 11681: 11666: 10597: 10294: 9836: 9709: 9684: 9539: 9044:
Rosu-Finsen A, Amon A, Armstrong J, Fernandez-Alonso F, Salzmann CG (2020).
8473: 8032: 7405: 7172: 6997:
Salzmann, C. G., Kohl, I., Loerting, T., Mayer, E., Hallbrucker, A. (2003),
6996: 6176: 6085: 5515: 5457: 5123: 4230: 4138: 3572: 2487: 12210: 12122: 12117: 12112: 12010: 11980: 11794: 11599: 11550: 11121: 11033: 10982: 10762: 10737: 10483:
Kouchi, A.; Yamamoto, T.; Kozasa, T.; Kuroda, T.; Greenberg, J. M. (1994).
9974: 9870: 9718: 9642:
Murray, Benjamin J.; Malkin, Tamsin L.; Salzmann, Christoph G. (May 2015).
9558: 9495: 9385: 9330: 9221: 9150: 9106: 9079: 9022: 8969: 8808: 8648: 8598: 8492: 8428: 8366: 8301: 8179: 8094: 8051: 7857: 7814: 7413: 7240: 7208: 6946: 6860: 6788: 6761: 6677: 6615: 6521: 6401: 6341: 6283: 6184: 6152: 6093: 6015: 5950: 5734: 5715: 5439: 5189:
O.Mishima (1996). "Relationship between melting and amorphization of ice".
4980: 4929: 4880: 4710: 4645: 4591: 4246: 4178: 4111: 4046: 3834: 3774: 3718: 3645: 3580: 3488: 3378: 3195: 3154: 3110: 3074: 2208: 2179:
Ice XI is the hydrogen-ordered form of the ordinary form of ice. The total
2163: 1734: 1521: 1485: 379: 343: 339: 239: 180: 10075: 10058: 10024: 3243: 1539:
190 K (−83 °C) – 210 K (−63 °C) (formation from HDA);
12380: 12286: 12170: 12142: 12132: 12127: 12065: 12050: 12035: 12020: 11944: 11908: 11071: 10832: 10212: 8834: 8825:
Marris, Emma (22 March 2005). "Giant planets may host superionic water".
7757: 7732: 7650: 7544: 7051:
Klotz, S., Hamel, G., Loveday, J. S., Nelmes, R. J., Guthrie, M. (2003),
4321: 3959: 3701: 2961: 2800: 2573:(7,300,000 psi) it is predicted that superionic ice would take on a 2503:
A remarkable characteristic of superionic ice is its ability to act as a
2431: 2394:
O molecules, formed at high pressures. Although sometimes referred to as
1933: 1467:
190 K (−83 °C) - 210 K (−63 °C) (formation from ice I
1394: 389: 259: 219: 66: 12316: 10974: 9322: 8681:"Experimental evidence for superionic water ice using shock compression" 6503: 6393: 6275: 5626: 5597: 4376: 4093: 4038: 3537: 3278: 2767: 2031: 12370: 12250: 12235: 12195: 12190: 12070: 12045: 11995: 11970: 11874: 11590: 11565: 11541: 11514: 10708: 10403: 9966: 9486: 9469: 9300: 9013: 8988: 8951: 8855:"New phase of water could dominate the interiors of Uranus and Neptune" 7849: 7232: 7178: 7136: 7098: 6998: 6659: 6576:"Nanosecond X-ray diffraction of shock-compressed superionic water ice" 5674: 5649: 4169: 4144: 2399: 2211:
with hexagonal ice and gaseous water at (~72 K, ~0 Pa). Ice I
2054: 1573: 1515: 383: 132: 128: 11325: 11220:"Astronomers Find Super-Earth Using Amateur, Off-the-Shelf Technology" 10252: 10149: 9862: 8714: 8680: 8412: 8340: 8285: 8078: 7941: 7806: 7194: 7160: 7122: 7014: 6968: 6874: 6607: 6575: 6332: 6313: 5910: 5875: 5837: 5794: 5423: 4786: 4726:"The Enhanced formation of cubic ice in aqueous organic acid droplets" 4701: 4450: 4289: 3766: 3692: 3265: 3077:, perhaps due to resurfacing events such as impacts or cryovolcanism. 3034:
Molecular clouds, circumstellar disks, and the primordial solar nebula
3000: 2940:) or by having the hydrogen molecules attach to the substance via the 2467: 1595:
130 K (−143 °C) - 355 K (82 °C) (stability range)
1033: 453: 12342: 12332: 12311: 12240: 12085: 12060: 12040: 11975: 11965: 11934: 11929: 11894: 10664:
Patashnick, et.al., Nature Vol.250, No. 5464, July 1974, pp. 313–314.
10545: 8989:"Distinguishing ice β-XV from deep glassy ice VI: Raman spectroscopy" 7366: 7320: 6984: 6898: 6468:
del Rosso, Leonardo; Celli, Milva; Ulivi, Lorenzo (7 November 2016).
5589: 5256: 5210: 5167: 5068: 4995:"Scientists made a new kind of ice that might exist on distant moons" 4972: 4692: 4390:
Petrenko, Victor F.; Whitworth, Robert W. (2002-01-17). "2. Ice Ih".
3936: 3896: 3669:"Connection between liquid and non-crystalline solid phases in water" 3529: 3179: 3150: 3101: 2780: 2759:
Photograph showing details of an ice cube under magnification. Ice I
2634: 2597: 1301: 442: 214:, the crystal structure is characterized by the oxygen atoms forming 192: 10341:
Smith, R. G.; Robinson, G.; Hyland, A. R.; Carpenter, G. L. (1994).
9931:
Yen, Fei; Chi, Zhenhua (16 Apr 2015). "Proton ordering dynamics of H
8247: 7336: 6151:
Salzmann CG, Radaelli PG, Hallbrucker A, Mayer E, Finney JL (2006).
4848: 3911: 2901:
Amorphous ice is used in some scientific experiments, especially in
2053:
in a stable condition so long as the temperature is kept at that of
12352: 12347: 12337: 12306: 12270: 12265: 12255: 12107: 12055: 12030: 11889: 11884: 11474: 11347:
Iitaka, Toshiaki (13 July 2010). "Stability of ferroelectric ice".
11297: 11272: 10897: 10872: 10849: 10643: 10588: 10327: 9949: 8563: 8395: 8314: 8268: 8215: 8058: 7962: 6999:"Raman Spectroscopic Study on Hydrogen Bonding in Recovered Ice IV" 6929: 6791:"Doping-induced disappearance of ice II from water's phase diagram" 6486: 5114: 4920: 4895: 4566: 3620: 3166: 2914: 2863: 2233:
also has a proton-ordered form. The total internal energy of ice XI
2222:
There are distinct differences in the Raman spectra between ices I
2203: 2171: 2035:
Phase diagram of water, showing the region where ice III is stable.
1914: 1579: 466: 143: 12426: 11353: 11194:"Astronomers Detect Shadow of Water World in Front of Nearby Star" 8154: 7905: 7880: 6644:"Experiments indicating a second hydrogen ordered phase of ice VI" 6376: 6153:"The preparation and structures of hydrogen ordered phases of ice" 4305:"Residual entropy of ordinary ice from multicanonical simulations" 3809: 3300: 12362: 12260: 12230: 12175: 12165: 11990: 11924: 11919: 11904: 11899: 11879: 11715: 11270: 10871:
Brown, Robert H.; Cruikshank, Dale P.; Pendleton, Yvonne (1999).
8194: 5400: 5046: 3601: 3187: 3131: 2984:
Amorphous ice can be separated from crystalline ice based on its
2871: 2755: 2737:
Several months later, Salzmann et al. published a paper based on
2545: 1376: 1285: 11049: 10305: 7441:, II, III, VI and ice VII: DFT methods with localized based set" 7335:
Hemley, R. J.; Jephcoat, A. P.; Mao, H. K.; et al. (1987),
6063: 4016: 2866:. Due to this demonstration that ice VII exists in nature, the 1042:
measured values. Nagle (1966) used a series summation to obtain
286:
analysis suggests that low and high density amorphous ices are
24: 12291: 11914: 11702:"A New State of Water Reveals a Hidden Ocean in Earth's Mantle" 10912:
Fornasier, S.; Dotto, E.; Barucci, M. A.; Barbieri, C. (2004).
10057:
Del Rosso, Leonardo; Celli, Milva; Ulivi, Lorenzo (June 2017).
8877:"New Form of Water, Both Liquid and Solid, Is 'Really Strange'" 8005: 6573: 4474:"Configurational statistics and the dielectric constant of ice" 4303:
Berg, Bernd A.; Muguruma, Chizuru; Okamoto, Yuko (2007-03-21).
3349:
Bjerrum, N (11 April 1952). "Structure and Properties of Ice".
3204: 3183: 3127: 2909: 2354: 2192: 2080: 1941: 1785: 1281: 351: 184: 10779:"Outburst Dust Production of Comet 29P/Schwassmann-Wachmann 1" 9398: 8771: 7773:
Raman scattering study of proton ordered ice XI single crystal
7252: 6835:
Nakamura, T., Matsumoto, M., Yagasaki, T., Tanaka, H. (2015),
2493:
When an electric field is applied, H ions migrate towards the
2326:-1 model is still the best (with the second best candidate of 2286:
structure were found 4 K per water molecule higher in energy.
2175:
Crystal structure of ice XI (c-axis in the vertical direction)
2044:
The properties of ice II were first described and recorded by
1451:
1.26 g/cm (77 K (−196.2 °C); ambient pressure)
605:
allowed configurations of hydrogens for this oxygen atom (see
12245: 12160: 12075: 12000: 11834: 11827: 11459: 9280:(9th ed.). New York: W. H. Freeman and Co. p. 144. 8910:"Scientists create a new form of matter—superionic water ice" 8544: 6361: 6312:
Jacobson, Liam C.; Hujo, Waldemar; Molinero, Valeria (2009).
3986:"Information for users about the proposed revision of the SI" 3604:"Large-Scale Structure and Hyperuniformity of Amorphous Ices" 3135: 2881:
Ice XI is thought to be a more stable conformation than ice I
2549: 2494: 2407: 319: 287: 255: 10817: 10619: 9509:
Kuhs, W. F.; Sippel, C.; Falenty, A.; Hansen, T. C. (2012).
9467: 8982: 8379: 7206: 6969:"The infrared spectrum of ice IV in the range 4000–400 cm−1" 4896:"Crystallization of amorphous water ice in the solar system" 2989: 2722:
O ice XIX was significantly smaller than that of HCl-doped H
2136: 155: 12080: 12025: 11985: 11367: 11311: 10523: 9644:"The crystal structure of ice under mesospheric conditions" 9571: 8139: 5888: 3991:. Bureau International des Poids et Mesures. Archived from 3666: 3394: 378:
in May 2019. Unlike most other solids, ice is difficult to
11513:
Chau, Ricky; Hamel, Sebastien; Nellis, William J. (2011).
10482: 9256:(Physics 511 paper). Iowa State University. Archived from 7207:
Salzmann, CG; Radaelli, PG; Slater, B; Finney, JL (2011),
4519:
Flatz, Christian; Hohenwarter, Stefan (18 February 2021).
2215:
that has been transformed to ice XI and then back to ice I
426:, is considered the most stable form at low temperatures. 187:
atom on each vertex, and the edges of the rings formed by
11817: 10952: 10467:. Dordrecht Kluwer Academic Publishers. pp. 139–155. 10174: 8741:"A Bizarre Form of Water May Exist All Over the Universe" 7437:"Predicting the hydrogen bond ordered structures of ice I 6966: 5231: 4551: 2964:
above 40%, higher than the theoretical maximum ratio for
1955:<118 K (−155 °C) (formation from ice III); 1872:<118 K (−155 °C) (formation from ice III); 1837: 1687:
Proton-ordered equivalent to Ice III. Antiferroelectric.
1478: 1223:{\displaystyle R\ln(1.5\times (730/729)^{2})=R\ln(1.504)} 11782:
Computerized illustrations of molecular structure of HDA
11644:
Petrenko, Victor F.; Whitworth, Robert W. (1999-08-19).
10226: 9801: 9352:
Whalley, E. (1981). "Scheiner's Halo: Evidence for Ice I
9178:
Salzmann CG, Loveday JS, Rosu-Finsen A, Bull CL (2021).
7057:
Zeitschrift für Kristallographie – Crystalline Materials
5578:
Proceedings of the American Academy of Arts and Sciences
4893: 4669:"Formation and stability of cubic ice in water droplets" 3518:
Proceedings of the American Academy of Arts and Sciences
1803:
130 K (−143 °C) (formation from liquid water)
1757:
260 K (−13 °C) (formation from liquid water);
1564:
253 K (−20 °C) (formation from liquid water);
1500:
250 K (−23 °C) (formation from liquid water);
9995: 9508: 8848: 8846: 8844: 8664:, New Scientist,01 September 2010, Magazine issue 2776. 7635: 7487: 6875:"Structure of ice IV, a metastable high-pressure phase" 6801:(6), Springer Science and Business Media LLC: 569–572, 6641: 5042: 5040: 5038: 5036: 4204: 3742: 3165:
space and converting regular ice, much like the fabled
2314:, HBr) do not significantly enhance ice XV formations. 1836:
The proton-ordered form of ice XII. Formation requires
1593:
270 K (−3 °C) (formation from liquid water);
1330:
130 and 220 K (−143 and −53 °C) (formation);
11786: 11368:
Arakawa, M.; Kagi, H.; Fukazawa, H. (1 October 2009).
8774:"Dynamic Ionization of Water under Extreme Conditions" 6872: 5650:"Computing analysis of lattice vibrations of ice VIII" 2552:
they observed frequency shifts which indicated that a
2529:. The ice appears black in color. It is distinct from 2057:, which slows the change in conformation back to ice I 1763:); 183 K (−90 °C) (formation from HDA ice) 566: 564: 10462: 10170: 10168: 10166: 10092:"Astronomers Contemplate Icy Volcanoes in Far Places" 9742:"Pockets of water may lay deep below Earth's surface" 8327:(1). Springer Science and Business Media LLC: 28920. 7209:"The polymorphism of ice: five unresolved questions." 5145: 4842: 4840: 4838: 4836: 3916:
Quarterly Journal of the Royal Meteorological Society
2699:{\displaystyle {\sqrt {2}}\times {\sqrt {2}}\times 1} 2672: 2450:
O cubic ice by first synthesizing filled ice in the C
2187:, so in principle it should naturally form when ice I 2002:<100 K (−173 °C) (formation from ice VI 1936:
and liquid water to pass through laminated sheets of
1698:
165 K (−108 °C) (formation from ice III);
1672:
165 K (−108 °C) (formation from ice III);
1153: 1092: 1048: 947: 850: 740: 637: 490: 10381: 10265: 9648:
Journal of Atmospheric and Solar-Terrestrial Physics
9641: 9609:
Journal of Atmospheric and Solar-Terrestrial Physics
9574:
Journal of Atmospheric and Solar-Terrestrial Physics
9511:"Extent and relevance of stacking disorder in "ice I 9107:
Gasser TM, Thoeny AV, Fortes AD, Loerting T (2021).
8841: 8110:"Super-Dense Frozen Water Breaks Final Ice Frontier" 8073:(44). American Chemical Society (ACS): 21040–21046. 6311: 5853: 5815: 5033: 1650:<278 K (5 °C) (formation from ice VII) 1308:, with the exception only of a small amount of ice I 11515:"Chemical processes in the deep interior of Uranus" 11430: 11095:"Coupled Orbital and Thermal Evolution of Ganymede" 10914:"Water ice on the surface of the large TNO 2004 DW" 10458: 10456: 10424: 10059:"Ice XVII as a Novel Material for Hydrogen Storage" 10056: 8933: 8253: 7688: 6467: 5689:Kamb, Barclay; Davis, Briant L. (1 December 1964). 4302: 3550: 3326:. University of Wisconsin Green Bay. Archived from 3001:
Properties of the amorphous ice in the Solar System
2363:another porous form of ice, was synthesized from a 2167:
Crystal structure of Ice XI viewed along the c-axis
1375:Likely the most common phase in the universe. More 11566:"High pressure partially ionic phase of water ice" 11320:(46). American Chemical Society (ACS): 9203–9214. 11164: 10163: 8611: 7726: 7724: 7722: 7720: 7298: 7255:"Is pressure the key to hydrogen ordering ice IV?" 7189:(22), American Chemical Society (ACS): 5587–5590, 7009:(12), American Chemical Society (ACS): 2802–2807, 5536: 4833: 2803:. For instance, its density is lower than that of 2698: 1788:packing)—the densest possible arrangement without 1417:<140 K (−133 °C) (normal formation); 1222: 1138: 1075: 1017: 929: 824: 720: 597: 520: 104:On Earth, most ice is found in the hexagonal Ice I 11858: 11643: 10347:Monthly Notices of the Royal Astronomical Society 10121:Debennetti, Pablo G.; Stanley, H. Eugene (2003). 10120: 9998:"Cryo-electron microscopy of vitrified specimens" 8655: 7334: 6923:(7), American Chemical Society (ACS): 1645–1650, 6847:(8), American Chemical Society (ACS): 1843–1848, 6355: 6253: 5951:Chaplin, Martinwork=Water Structure and Science. 4758: 4389: 3207:, may prevent the formation of superionic water. 2111:F, an isostructural material of ice, to obtain NH 1723:72 K (−201.2 °C) (formation from ice I 12439: 11273:"Existence of Ferroelectric Ice in the Universe" 11217: 10453: 10052: 10050: 10048: 10046: 10044: 10042: 8527:: CS1 maint: bot: original URL status unknown ( 8200: 7592: 7557: 7434: 7137:"Selective Nucleation of the High-Pressure Ices" 6691: 6689: 6687: 5934:"Inside the hotly contested creation of 'ice X'" 5615:science.sciencemag.org, B. Kamb, 8 October 1965. 4518: 2430:It was reported in 2020 that cubic ice based on 1957:<140 K (−133 °C) (stability point) 1874:<140 K (−133 °C) (stability point) 1759:77 K (−196.2 °C) (formation from ice I 1700:<140 K (−133 °C) (stability point) 1674:<140 K (−133 °C) (stability point) 1623:355 K (82 °C) (formation from ice VI) 1442:160 K (−113 °C) (formation from HDA); 1018:{\displaystyle 6^{N}\times (1/2)^{2N}=(3/2)^{N}} 370:of the difference between this triple point and 117:Most liquids under increased pressure freeze at 11512: 11222:. Harvard-Smithsonian Center for Astrophysics. 9408:Bulletin of the American Meteorological Society 8679:Millot, Marius; et al. (5 February 2018). 8674: 8672: 8670: 8540: 8538: 8453:Proceedings of the National Academy of Sciences 8012:Proceedings of the National Academy of Sciences 7717: 7177:, Kohl, I., Mayer, E., Hallbrucker, A. (2002), 7096: 6713: 6711: 6637: 6635: 6633: 6463: 6461: 6459: 6457: 6455: 6453: 6451: 6449: 6447: 6059: 6057: 5695:Proceedings of the National Academy of Sciences 5647: 5537:Kamb, B.; Prakash, A.; Knobler, C. (May 1967). 4846: 4816: 4814: 4812: 4611: 4609: 4547: 4545: 4543: 4541: 3877:Journal of Physical and Chemical Reference Data 3874: 2457: 1553:Typically requires a nucleating agent to form. 825:{\displaystyle S_{0}=k\ln(3/2)^{N}=nR\ln(3/2),} 11045: 11043: 10735: 10089: 9273: 8820: 8818: 8678: 6249: 6247: 6219: 5849: 5847: 4615: 3794: 3515: 2750: 2202:are surrounded by four semi-randomly directed 721:{\displaystyle 6^{N/2}(6/16)^{N/2}=(3/2)^{N}.} 11802: 11402: 11167:Bulletin of the American Astronomical Society 10039: 9895: 9401:"Trigonal Ice Crystals in Earth's Atmosphere" 9171: 9100: 9037: 8976: 8927: 8772:Goncharov, Alexander F.; et al. (2005). 8446: 8373: 7179:"Pure Ice IV from High-Density Amorphous Ice" 6684: 6569: 6567: 6565: 6563: 4764: 4666: 4200: 4198: 4196: 3962:. Bureau International des Poids et Mesures. 3858:"Verwiebe's '3-D' Ice phase diagram reworked" 2734:O is sufficient for the ordering transition. 2386:are all stable solid phases of a mixture of H 2183:of ice XI is about one sixth lower than ice I 1541:77 K (−196.2 °C) (stability point) 1502:77 K (−196.2 °C) (stability point) 1473:77 K (−196.2 °C) (stability point) 1444:77 K (−196.2 °C) (stability point) 1332:240 K (−33 °C) (conversion to Ice I 582: 569: 179:, roughly one of crinkled planes composed of 11714:from the original on 2021-12-21 – via 11160: 11158: 11156: 11086: 10873:"Water Ice on Kuiper Belt Object 1996 TO_66" 9606: 9234:: CS1 maint: multiple names: authors list ( 9163:: CS1 maint: multiple names: authors list ( 9092:: CS1 maint: multiple names: authors list ( 8667: 8535: 8308: 8064: 7784: 7200: 7134: 7026: 6774:: CS1 maint: multiple names: authors list ( 6708: 6630: 6539: 6537: 6535: 6533: 6531: 6444: 6305: 6205:: CS1 maint: multiple names: authors list ( 6144: 6054: 5478: 5394: 4809: 4606: 4538: 4267: 4132: 4124:: CS1 maint: multiple names: authors list ( 4061: 3738: 3736: 3501:: CS1 maint: multiple names: authors list ( 3440: 3438: 2410:channels with a diameter of about 6.10  2081:Search for a hydrogen-disordered counterpart 1678:200 MPa-400 MPa (stability range) 1506:300 MPa (formation from liquid water) 293: 11664: 11374:The Astrophysical Journal Supplement Series 11040: 9739: 9440: 9248: 8815: 8442: 8440: 8438: 6543: 6421: 6419: 6244: 6127: 6028: 5844: 5624: 5513: 5455: 5377: 5354: 5331: 5005: 4847:Jenniskens, Peter; Blake, David F. (1994). 2244: 1890:. Transforms into the stacking-faulty ice I 1806:500 MPa (formation from liquid water) 1599:1.1 GPa (formation from liquid water) 1567:500 MPa (formation from liquid water) 484:is equal to 3.4±0.1 J mol K 270:-sized droplets on a sample-holder kept at 81:correspond to some ice phases listed below. 11809: 11795: 11699: 11436: 11340: 11247:"Electric ice a shock to the solar system" 8765: 8510:. Archived from the original on 2022-09-11 7603:Journal of Physics and Chemistry of Solids 7560:Journal of Physics and Chemistry of Solids 7328: 7292: 6560: 6123: 6121: 6119: 6117: 6115: 6113: 6111: 4193: 2763:is the form of ice commonly seen on Earth. 11725:"The Hunt for Earth's Deep Hidden Oceans" 11589: 11540: 11473: 11393: 11352: 11296: 11153: 10937: 10896: 10831: 10802: 10761: 10642: 10596: 10366: 10211: 10074: 9948: 9708: 9667: 9548: 9538: 9485: 9211: 9140: 9069: 9012: 8959: 8734: 8732: 8605: 8588: 8562: 8482: 8472: 8394: 8356: 8267: 8214: 8153: 8041: 8031: 7904: 7756: 7649: 7253:Rosu-Finsen, A., Salzmann, C. G. (2022), 6928: 6917:The Journal of Physical Chemistry Letters 6751: 6667: 6528: 6511: 6485: 6375: 6331: 6005: 5995: 5972:"The everlasting hunt for new ice phases" 5724: 5714: 5688: 5673: 5188: 5122: 4919: 4749: 4700: 4565: 4402:10.1093/acprof:oso/9780198518945.003.0002 4320: 4168: 4101: 3935: 3808: 3733: 3700: 3619: 3478: 3435: 3390: 3388: 2745: 2137:Search for a hydrogen-ordered counterpart 1775:); 810 MPa (formation from HDA ice) 1139:{\displaystyle 6^{6}\times (1/2)^{6}=729} 11700:Hunsberger, Maren (September 21, 2018). 11622: 11244: 10114: 8662:Weird water lurking inside giant planets 8435: 7999: 7878: 7827: 7525:Journal of the Physical Society of Japan 6698:"Exotic crystals of 'ice 19' discovered" 6695: 6416: 5682: 5575: 5530: 5451: 5449: 5286: 5284: 5282: 5280: 5278: 5276: 5274: 5088: 5086: 5011: 4521:"Neue kristalline Eisform aus Innsbruck" 4365:Journal of the American Chemical Society 4139:Fuentes-Landete V; Köster KW; Böhmer R; 3145:Ice VII may comprise the ocean floor of 2807:. This is attributed to the presence of 2766: 2754: 2556:had taken place. The team also created 2517:into an evenly spaced lattice while the 2353: 2170: 2162: 2030: 1778:1.3 g·cm (at 127 K (−146 °C)) 1742:. The most stable configuration of ice I 1238:These phases are named according to the 1076:{\displaystyle R\ln(1.50685\pm 0.00015)} 1032: 452: 447:Geometrical frustration § Water ice 388: 329: 297: 154: 151:. Dashed lines represent hydrogen bonds 142: 65: 49:of all important aspects of the article. 11748:Glass transition in hyperquenched water 11092: 9351: 9274:Atkins, Peter; de Paula, Julio (2010). 8107: 7879:Bramwell, Steven T. (21 January 1999). 6108: 5760: 5758: 5641: 5507: 5327: 5325: 4471: 4359: 3348: 2868:International Mineralogical Association 2726:O ice XIX, and that doping of 0.5% of H 1436:Very high-density amorphous ice (VHDA) 1390:73.15 K (−200 °C) (freezing) 620:atoms. But now, consider the remaining 12440: 11346: 9930: 8870: 8868: 8824: 8729: 8101: 7522: 7063:(2), Walter de Gruyter GmbH: 117–122, 6232:from the original on 14 September 2009 5969: 5764: 4820: 4723: 4261: 3909: 3447:"Thermal Expansion of Single-Crystal H 3385: 3342: 3073:crystalline water ice was observed on 3067: 2870:duly classified ice VII as a distinct 2858:In 2018, ice VII was identified among 2542:Lawrence Livermore National Laboratory 2077: m/kg (1.51 cu in/lb). 2046:Gustav Heinrich Johann Apollon Tammann 2026: 1661:Proton-ordered equivalent to Ice VII. 1653:2.1 GPa (formation from ice VII) 167:of ordinary ice was first proposed by 45:Please consider expanding the lead to 11790: 11408: 8934:Rosu-Finsen, A; Salzmann, CG (2019). 8874: 8738: 7387: 5944: 5446: 5290: 5271: 5083: 4821:Pappas, Stephanie (2 February 2023). 4667:Murray, B.J.; Bertram, A. K. (2006). 4424: 3855: 3117:quakes' within the thick ice layers. 1913:Room temperature (in the presence of 1854:1.1GPa (formation from liquid water) 1626:2.2 GPa (formation from ice VI) 258:crystal surface under 120 K. In 16:States of matter for water as a solid 12411: 11563: 8852: 8499: 8108:Sanders, Laura (11 September 2009). 7771:K. Abe, Y. Ootake and T. Shigenari, 6967:Engelhardt, H., Whalley, E. (1979), 6220:Sanders, Laura (11 September 2009). 5755: 5322: 844:. So, the molar residual entropy is 436: 210:In the best-known form of ice, ice I 138: 18: 11722: 11689:(PDF in German, iktp.tu-dresden.de) 11682:London South Bank University Report 11314:The Journal of Physical Chemistry B 10513:from the original on 22 March 2020. 9937:Physical Chemistry Chemical Physics 9770: 9474:Physical Chemistry Chemical Physics 8865: 8505: 8317:"Partially ordered state of ice XV" 8067:The Journal of Physical Chemistry B 7930:The Journal of Physical Chemistry B 7830:Physical Chemistry Chemical Physics 7183:The Journal of Physical Chemistry B 7030:Neutron diffraction studies of ices 7003:The Journal of Physical Chemistry B 6841:The Journal of Physical Chemistry B 5931: 5654:Royal Society of Chemistry Advances 5237:Physical Chemistry Chemical Physics 4894:Jenniskens P.; Blake D. F. (1996). 4478:Proceedings of the Physical Society 1940:, unlike smaller molecules such as 1384:Medium-density amorphous ice (MDA) 521:{\displaystyle =R\ln(1.50\pm 0.02)} 325: 13: 11848: 11610: 11564:Wang, Yanchao (29 November 2011). 11409:Chang, Kenneth (5 February 2018). 11226:from the original on April 7, 2012 10463:Jenniskens; Blake; Kouchi (1998). 10090:Chang, Kenneth (9 December 2004). 9783:from the original on 12 March 2018 9752:from the original on March 8, 2018 8907: 8612:Demontis, P.; et al. (1988). 5691:"Ice Vii, the Densest Form of Ice" 5012:Sullivan, Will (3 February 2023). 3190:hold a layer of superionic water. 3161:) that are largely made of water. 2846:on Earth and is usually formed by 2454:phase, and then decompressing it. 2237:was predicted as similar as ice XI 1814:The proton-ordered form of ice V. 1545:810 MPa (formation from HDA) 1426:1.17 g/cm (ambient pressure) 914: 899: 896: 893: 884: 613:configurations that satisfy these 573: 393:Pressure dependence of ice melting 14: 12474: 11853: 11693: 11245:Grossman, Lisa (25 August 2011). 9180:"Structure and nature of ice XIX" 8614:"New high-pressure phases of ice" 7147:(12), AIP Publishing: 4930–4932, 6979:(10), AIP Publishing: 4050–4051, 6885:(12), AIP Publishing: 5887–5899, 6873:Engelhardt, H., Kamb, B. (1981), 5970:Hansen, Thomas C. (26 May 2021). 3966:from the original on 16 July 2012 3321: 3100:The surface ice of Saturn's moon 2896: 2775:with respect to other ice phases. 2614:differential scanning calorimetry 2303:differential scanning calorimetry 1411:High-density amorphous ice (HDA) 1037:The crystal structure of ice VIII 543:Suppose there are a given number 12421: 12410: 12400: 12399: 11772:AIP accounting discovery of VHDA 11768:of water (requires registration) 11557: 11506: 11453: 11361: 11305: 11264: 11238: 11211: 11185: 11128: 10997: 10946: 10905: 10864: 10811: 10770: 10729: 10702: 10667: 10658: 10613: 10560: 10517: 10418: 10375: 10334: 10259: 10220: 10083: 9989: 9924: 9889: 9830: 9795: 9764: 9733: 9676: 9635: 9600: 9565: 9502: 9461: 9434: 9392: 9345: 9294: 9267: 9242: 8901: 8133: 7956: 7921: 7872: 7821: 7778: 7765: 7682: 7629: 7586: 7551: 7516: 7481: 6347: 6297: 4472:Hollins, G. T. (December 1964). 3780: 3217: 3194:and free-energy methods predict 2928:Aside from storing hydrogen via 2486: 2466: 2130:high-density amorphous ice (HDA) 1828:1.2GPa (formation from ice XII) 1358:Low-density amorphous ice (LDA) 457:The Wurtzite structure. In Ice I 229: 159:The crystal structure of ice XII 23: 11218:David A. Aguilar (2009-12-16). 11200:from the original on 2017-08-21 11052:Journal of Geophysical Research 10233:Journal of Geophysical Research 10102:from the original on 9 May 2015 10005:Quarterly Reviews of Biophysics 9843:The Journal of Chemical Physics 9443:"Stacking disordered ice; Ice I 8383:The Journal of Chemical Physics 8256:The Journal of Chemical Physics 7787:The Journal of Chemical Physics 7460:10.1016/j.commatsci.2010.04.004 7448:Computational Materials Science 7428: 7381: 7246: 7166: 7128: 7109:(10), AIP Publishing: 597–605, 7103:The Journal of Chemical Physics 7090: 7044: 7020: 6990: 6973:The Journal of Chemical Physics 6960: 6904: 6879:The Journal of Chemical Physics 6866: 6828: 6782: 6319:Journal of Physical Chemistry B 6213: 6045: 6022: 5963: 5925: 5891:The Journal of Chemical Physics 5882: 5856:The Journal of Chemical Physics 5818:The Journal of Chemical Physics 5809: 5741: 5618: 5604: 5569: 5472: 5404:The Journal of Chemical Physics 5371: 5348: 5291:Hobbs, Peter V. (May 6, 2010). 5225: 5182: 5139: 4987: 4944: 4887: 4717: 4660: 4512: 4465: 4431:Journal of Mathematical Physics 4418: 4383: 4353: 4296: 4270:The Journal of Chemical Physics 4010: 3978: 3952: 3903: 3868: 3849: 3788: 3746:The Journal of Chemical Physics 3673:The Journal of Chemical Physics 3660: 3113:is believed to contain ice VI. 2525:as typical metals, making it a 2020:Formation requires HCl doping. 1928:Formation likely driven by the 1894:and further into ordinary ice I 1528:of 1.16 with respect to water. 1233: 598:{\textstyle {\tbinom {4}{2}}=6} 531: 171:in 1935. The structure of ice I 37:may be too short to adequately 11629:. Cambridge University Press. 11623:Fletcher, N. H. (2009-06-04). 10384:Astrophysics and Space Science 10123:"Supercooled and Glassy Water" 9918:10.1016/j.molstruc.2010.03.024 8262:(24). AIP Publishing: 244507. 8172:10.1103/PhysRevLett.103.105701 7711:10.1016/j.molstruc.2010.02.016 7691:Journal of Molecular Structure 6696:Metcalfe, Tom (9 March 2021). 4207:"Medium-density amorphous ice" 3827:10.1103/PhysRevLett.105.195701 3638:10.1103/PhysRevLett.119.136002 3595: 3544: 3509: 3480:10.1103/PhysRevLett.121.185505 3315: 3272: 3237: 2972: 2921:, an issue often mentioned in 1790:hydrogen bond interpenetration 1704:30-70 GPa (from ice VII) 1217: 1211: 1196: 1187: 1172: 1163: 1121: 1106: 1070: 1058: 1028: 1006: 991: 976: 961: 874: 860: 816: 802: 778: 763: 706: 691: 671: 656: 515: 503: 47:provide an accessible overview 1: 11723:Woo, Marcus (July 11, 2018). 11136:"Titan: Facts – NASA Science" 11026:10.1126/science.284.5419.1514 10623:Astrophysical Journal Letters 9824:10.1016/S0009-2614(98)00908-7 8875:Chang, Kenneth (2018-02-05). 8801:10.1103/PhysRevLett.94.125508 7392:. 29=5558 (5558): 1264–1266. 7341:O-ice to 128 GPa (1.28 Mbar)" 7033:, University College London, 5932:Kim, Shi En (24 March 2022). 3862:Chemistry Education Materials 3856:David, Carl (8 August 2016). 3230: 2908:Ice XVII can repeatedly 2666:of the profiles based on the 2473:In the absence of an applied 2374:from a mixture of hydrogen (H 2358:Crystal structure of ice XVII 2270:, while an antiferroelectric 11675:London South Bank University 10696:10.1016/j.icarus.2008.12.045 10288:10.1016/0301-0104(81)80158-9 10204:10.1016/j.icarus.2007.04.019 9470:"Stacking disorder in ice I" 9455:London South Bank University 9378:10.1126/science.211.4480.389 8853:Zyga, Lisa (25 April 2013). 8739:Sokol, Joshua (2019-05-12). 8233:10.1016/j.cplett.2015.07.064 7737:Geophysical Research Letters 7623:10.1016/0022-3697(86)90126-5 7580:10.1016/0022-3697(84)90008-8 7510:10.1016/0031-9163(64)90366-X 7279:10.1016/j.cplett.2021.139325 7077:10.1524/zkri.218.2.117.20669 6554:London South Bank University 6138:London South Bank University 6039:London South Bank University 5957:London South Bank University 5635:London South Bank University 5627:"Ice-six (Ice VI) structure" 5612:Reports: Structure of Ice VI 5524:London South Bank University 5493:10.1126/science.166.3907.861 5466:London South Bank University 5388:London South Bank University 5365:London South Bank University 5342:London South Bank University 4751:10.1088/1748-9326/3/2/025008 3371:10.1126/science.115.2989.385 3080: 2458:Ice XVIII (superionic water) 2425: 1353:crystalline variant of ice. 475:atom. This residual entropy 244:glass transition temperature 7: 11738:Discussion of amorphous ice 11671:Water Structure and Science 11626:The Chemical Physics of Ice 11395:10.1088/0067-0049/184/2/361 10804:10.1088/0004-6256/145/5/122 10447:10.1016/j.jastp.2009.10.007 9669:10.1016/j.jastp.2014.12.005 9629:10.1016/j.jastp.2009.10.007 9594:10.1016/j.jastp.2008.06.001 9451:Water Structure and Science 9062:10.1021/acs.jpclett.0c00125 8641:10.1103/PhysRevLett.60.2284 7985:10.1103/PhysRevLett.80.1533 7301:Journal of Chemical Physics 6939:10.1021/acs.jpclett.7b00492 6550:Water Structure and Science 6134:Water Structure and Science 6035:Water Structure and Science 5787:10.1103/PhysRevB.105.104109 5631:Water Structure and Science 5520:Water Structure and Science 5462:Water Structure and Science 5384:Water Structure and Science 5361:Water Structure and Science 5338:Water Structure and Science 4953:Journal of Chemical Physics 4425:Nagle, J. F. (1966-08-01). 4396:. Oxford University Press. 3246:Journal of Chemical Physics 2751:Earth's natural environment 2712:Clausius–Clapeyron relation 2349: 2191:is cooled to below 72  2009:2GPa (formation from ice VI 732:Boltzmann's entropy formula 10: 12479: 11492:10.1038/s41567-021-01334-9 10939:10.1051/0004-6361:20048004 10918:Astronomy and Astrophysics 10711:Astronomy and Astrophysics 10492:Astronomy and Astrophysics 9740:Sid Perkins (2018-03-08). 9204:10.1038/s41467-021-23399-z 9133:10.1038/s41467-021-21161-z 8581:10.1038/s41467-020-14346-5 8508:"Ice-seventeen (Ice XVII)" 7668:10.1103/PhysRevB.74.024302 7141:Journal of Applied Physics 6744:10.1038/s41467-021-21351-9 6546:"Ice-seventeen (Ice XVII)" 5997:10.1038/s41467-021-23403-6 4498:10.1088/0370-1328/84/6/318 4339:10.1103/PhysRevB.75.092202 3120: 2822:negative thermal expansion 2607: 2548:and super heating it with 2145: 1366:NA (atmospheric or lower) 440: 264:hyperquenched glassy water 147:Crystal structure of ice I 12394: 12361: 12325: 12279: 12223: 12206:Short-track speed skating 12151: 12103: 12094: 11953: 11867: 11841: 11824: 11667:"Hexagonal ice structure" 11277:The Astrophysical Journal 10877:The Astrophysical Journal 10742:Astronomische Nachrichten 10427:J. Atmos. Sol.-Terr. Phys 10017:10.1017/S0033583500004297 9428:10.1175/BAMS-D-13-00128.1 8707:10.1038/s41567-017-0017-4 7601:doped with KOD: Ice XI". 6815:10.1038/s41567-018-0094-z 6600:10.1038/s41586-019-1114-6 6222:"A Very Special Snowball" 5563:10.1107/S0365110X67001409 4638:10.1038/s41563-020-0696-6 4584:10.1038/s41563-020-0606-y 3429:10.1107/S0108768194004933 3178:It is theorized that the 3054: 2831:, a small amount of ice I 2779:Virtually all ice in the 2264:density functional theory 2256: 2158: 2101: 2039: 1300:Virtually all ice in the 374:, though this definition 294:Pressure-dependent states 252:physical vapor deposition 183:hexagonal rings, with an 112: 10820:The Astronomical Journal 10783:The Astronomical Journal 9804:Chemical Physics Letters 9251:"The Many Phases of Ice" 8203:Chemical Physics Letters 7337:"Static compression of H 7259:Chemical Physics Letters 7097:Bridgman, P. W. (1935), 6853:10.1021/acs.jpcb.5b09544 4873:10.1126/science.11539186 3210: 3169:mentioned in Vonnegut's 3062:29P/Schwassmann–Wachmann 2923:environmental technology 2903:cryo-electron microscopy 2853:polar mesospheric clouds 2245:Ferroelectric properties 2198:Water molecules in ice I 1570:1.24 g cm (at 350 MPa). 11816: 11754:(requires registration) 11527:. Article number: 203. 10930:2004A&A...422L..43F 10736:Gronkowski, P. (2007). 10723:1994A&A...286..659T 10504:1994A&A...290.1009K 10396:1983Ap&SS..94..177S 10368:10.1093/mnras/271.2.481 9710:10.1126/science.aao3030 9540:10.1073/pnas.1210331110 8474:10.1073/pnas.1900739116 8142:Physical Review Letters 8033:10.1073/pnas.1010310108 7965:Physical Review Letters 7406:10.1126/science.1067746 7265:, Elsevier BV: 139325, 6177:10.1126/science.1123896 6086:10.1126/science.1123896 5299:Oxford University Press 4231:10.1126/science.abq2105 3797:Physical Review Letters 3608:Physical Review Letters 3573:10.1126/science.1061757 3459:Physical Review Letters 3407:Between 10 and 265 K". 2594:University of Rochester 2298:as had been predicted. 2089:F-doped ices because NH 1254:Temperature thresholds 242:of liquid water to its 11122:10.1006/icar.1997.5778 10763:10.1002/asna.200510657 8983:Thoeny AV; Gasser TM; 8389:(20). AIP Publishing. 8209:. Elsevier BV: 63–66. 6130:"Ice-twelve (Ice XII)" 5716:10.1073/pnas.52.6.1433 5543:Acta Crystallographica 5410:(13). AIP Publishing. 4673:Phys. Chem. Chem. Phys 3910:Murphy, D. M. (2005). 2776: 2764: 2746:Practical implications 2700: 2359: 2176: 2168: 2036: 1984:1.2GPa (from ice VII) 1964:Near that of ice XVI. 1961:1.2GPa (from ice III) 1878:1.2GPa (from ice VII) 1266:Other characteristics 1224: 1140: 1077: 1038: 1019: 931: 826: 722: 599: 522: 462: 394: 335: 303: 160: 152: 82: 11570:Nature Communications 11520:Nature Communications 10569:Astrophysical Journal 10308:Astrophysical Journal 10076:10.3390/challe8010003 8551:Nature Communications 7135:Evans, L. F. (1967), 7027:Colin Lobban (1998), 6474:Nature Communications 6031:"Ice-eleven (ice XI)" 5976:Nature Communications 5953:"Ice-seven (Ice VII)" 5749:"Ice VII (ice-seven)" 5539:"Structure of ice. V" 5357:"Ice-three (Ice III)" 5095:Astrophysical Journal 4900:Astrophysical Journal 4724:Murray, B.J. (2008). 4525:Universität Innsbruck 3051:orbit (~12 AU). 2770: 2758: 2701: 2357: 2174: 2166: 2034: 1225: 1141: 1078: 1036: 1020: 932: 827: 723: 600: 523: 456: 392: 333: 301: 254:) onto a very smooth 158: 146: 73:pressure-temperature 69: 11619:(www.idc-online.com) 11093:Showman, A. (1997). 11072:10.1029/2003JE002149 9356:in the Atmosphere". 8835:10.1038/news050321-4 7758:10.1029/2011GL048217 7566:(11–12): 1135–1144. 7545:10.1143/JPSJ.32.1442 5019:Smithsonian Magazine 2771:Phase space of ice I 2670: 2527:superionic conductor 2051:atmospheric pressure 1257:Pressure thresholds 1151: 1090: 1046: 945: 848: 738: 635: 607:Binomial coefficient 562: 488: 12302:Iceman (occupation) 11582:2011NatCo...2..563W 11533:2011NatCo...2..203C 11484:2021NatPh..17.1228C 11386:2009ApJS..184..361A 11289:2006ApJ...652L..57F 11179:2005DPS....37.4902M 11114:1997Icar..129..367S 11064:2004JGRE..109.1012H 11018:1999Sci...284.1514S 11012:(5419): 1514–1516. 10975:10.1038/nature03111 10967:2004Natur.432..731J 10889:1999ApJ...519L.101B 10842:2001AJ....122.2099J 10795:2013AJ....145..122H 10754:2007AN....328..126G 10688:2009Icar..201..719M 10635:1990ApJ...355L..27O 10581:1995ApJ...455..389J 10538:1990Natur.344..134K 10439:2010JASTP..72...51M 10359:1994MNRAS.271..481S 10320:1992ApJ...401..353M 10280:1981CP.....56..367H 10245:1998JGR...10325809G 10196:2008Icar..193..397N 10142:2003PhT....56f..40D 9959:2015PCCP...1712458Y 9943:(19): 12458–12461. 9910:2010JMoSt.976..174F 9855:2004JChPh.12011376F 9816:1998CPL...294..554F 9701:2018Sci...359.1136T 9695:(6380): 1136–1139. 9660:2015JASTP.127...78M 9621:2010JASTP..72...51M 9586:2009JASTP..71..453L 9531:2012PNAS..10921259K 9525:(52): 21259–21264. 9420:2015BAMS...96.1519M 9370:1981Sci...211..389W 9323:10.1038/nature03403 9315:2005Natur.434..202M 9196:2021NatCo..12.3162S 9125:2021NatCo..12.1128G 9005:2019PCCP...2115452T 8999:(28): 15452–15462. 8993:Phys Chem Chem Phys 8793:2005PhRvL..94l5508G 8699:2018NatPh..14..297M 8633:1988PhRvL..60.2284D 8573:2020NatCo..11..464K 8465:2019PNAS..11612684L 8459:(26): 12684–12691. 8405:2016JChPh.145t4501S 8333:2016NatSR...628920K 8278:2018JChPh.148x4507R 8225:2015CPL...637...63S 8164:2009PhRvL.103j5701S 8024:2011PNAS..108.3481Z 7977:1998PhRvL..80.1533S 7897:1999Natur.397..212B 7881:"Ferroelectric ice" 7842:2011PCCP...1319788R 7799:2011JChPh.134j4506A 7749:2011GeoRL..3816101A 7703:2010JMoSt.972..111A 7660:2006PhRvB..74b4302C 7615:1986JPCS...47..165M 7572:1984JPCS...45.1135T 7537:1972JPSJ...32.1442K 7502:1964PhL.....9..291D 7398:2002Sci...295.1264K 7359:1987Natur.330..737H 7313:1993JChPh..99.9842P 7271:2022CPL...78939325R 7225:2011PCCP...1318468S 7213:Phys Chem Chem Phys 7153:1967JAP....38.4930E 7115:1935JChPh...3..597B 7069:2003ZK....218..117K 6891:1981JChPh..75.5887E 6807:2018NatPh..14..569S 6736:2021NatCo..12.1129Y 6592:2019Natur.569..251M 6504:10.1038/ncomms13394 6496:2016NatCo...713394D 6394:10.1038/nature14295 6386:2015Natur.519..443A 6326:(30): 10298–10307. 6276:10.1038/nature14014 6268:2014Natur.516..231F 6169:2006Sci...311.1758S 6078:2006Sci...311.1758S 6072:(5768): 1758–1761. 5988:2021NatCo..12.3161H 5903:1973JChPh..58..567L 5868:1968JChPh..48.2362W 5830:1966JChPh..45.3976W 5779:2022PhRvB.105j4109G 5707:1964PNAS...52.1433K 5666:2017RSCAd...731789Y 5660:(51): 31789–31794. 5555:1967AcCry..22..706K 5416:2021JChPh.154m4504S 5380:"Ice-four (Ice IV)" 5249:2001PCCP....3.5355L 5203:1996Natur.384..546M 5160:1985Natur.314...76M 5107:1995ApJ...455..389J 5061:1984Natur.310..393M 4965:1997JChPh.107.1232J 4912:1996ApJ...473.1104J 4865:1994Sci...265..753J 4779:1960Natur.188.1144D 4773:(4757): 1144–1148. 4742:2008ERL.....3b5008M 4685:2006PCCP....8..186M 4630:2020NatMa..19..586S 4576:2020NatMa..19..663D 4490:1964PPS....84.1001H 4443:1966JMP.....7.1484N 4377:10.1021/ja01315a102 4331:2007PhRvB..75i2202B 4282:1933JChPh...1..515B 4223:2023Sci...379..474R 4161:2018PCCP...2021607F 4155:(33): 21607–21616. 4149:Phys Chem Chem Phys 4094:10.1038/ncomms16189 4086:2018NatCo...916189K 4039:10.1038/nature04415 4031:2006Natur.439..183I 3928:2005QJRMS.131.1539M 3889:1994JPCRD..23..515W 3819:2010PhRvL.105s5701M 3759:2009JChPh.131c4510C 3685:2020JChPh.153j4503M 3630:2017PhRvL.119m6002M 3565:2001Sci...294.2335V 3471:2018PhRvL.121r5505B 3421:1994AcCrB..50..644R 3363:1952Sci...115..385B 3293:1999Natur.398..681K 3258:1973JChPh..58..567L 3068:Kuiper Belt objects 2979:interstellar medium 2942:van der Waals force 2664:Rietveld refinement 2618:dielectric spectrum 2616:(DSC) thermograms, 2592:, was taken to the 2590:diamond anvil cells 2579:face-centered cubic 2575:body-centered cubic 2563:face-centered cubic 2027:History of research 1930:van der Waals force 1520:Very high relative 1379:than normal water. 734:, we conclude that 609:). Thus, there are 407:heat of sublimation 342:can coexist at the 316:face-centered cubic 312:body-centered cubic 11854:Crystalline phases 11591:10.1038/ncomms1566 11542:10.1038/ncomms1198 11416:The New York Times 10404:10.1007/BF00651770 10096:The New York Times 9967:10.1039/C5CP01529D 9771:Netburn, Deborah. 9487:10.1039/c4cp02893g 9277:Physical chemistry 9263:on 7 October 2009. 9014:10.1039/c9cp02147g 8952:10.1039/c8sc03647k 8881:The New York Times 8321:Scientific Reports 7850:10.1039/c1cp22506e 7233:10.1039/c1cp21712g 6660:10.1039/c8sc00135a 5675:10.1039/C7RA05563C 5516:"Ice-five (Ice V)" 5458:"Ice-five (Ice V)" 5334:"Ice-two (Ice II)" 5301:. pp. 61–70. 5001:. 4 February 2023. 4170:10.1039/c8cp03786h 3998:on 21 January 2018 3922:(608): 1539–1565. 3330:on 16 October 2016 3200:body-centred cubic 3151:extrasolar planets 3044:circumstellar disk 3008:noctilucent clouds 2844:noctilucent clouds 2777: 2765: 2696: 2538:diamond anvil cell 2396:clathrate hydrates 2360: 2177: 2169: 2124:to prepare ice IV 2037: 1888:clathrate hydrates 1582:in the unit cell. 1343:Similar to Ice Ih 1251:Year of discovery 1220: 1136: 1073: 1039: 1015: 927: 842:molar gas constant 838:Boltzmann constant 822: 718: 595: 587: 518: 463: 395: 336: 304: 216:hexagonal symmetry 161: 153: 83: 12435: 12434: 12416:Wikimedia Commons 12219: 12218: 11665:Chaplin, Martin. 11468:(11): 1228–1232. 11326:10.1021/jp982549e 10532:(6262): 134–135. 10465:Solar System Ices 10253:10.1029/98je00738 10150:10.1063/1.1595053 9898:J. Mol. Structure 9863:10.1063/1.1765099 9777:Los Angeles Times 9441:Chaplin, Martin. 9364:(4480): 389–390. 9309:(7030): 202–205. 9249:Norman Anderson. 8627:(22): 2284–2287. 8506:Chaplin, Martin. 8413:10.1063/1.4967167 8341:10.1038/srep28920 8286:10.1063/1.5022159 8079:10.1021/jp0540609 7942:10.1021/jp982549e 7936:(46): 9203–9214. 7891:(6716): 212–213. 7807:10.1063/1.3551620 7638:Physical Review B 7353:(6150): 737–740, 7307:(12): 9842–9846. 7195:10.1021/jp014391v 7173:Salzmann, C. G., 7161:10.1063/1.1709255 7123:10.1063/1.1749561 7015:10.1021/jp021534k 6654:(18): 4224–4234. 6586:(7755): 251–255. 6544:Chaplin, Martin. 6370:(7544): 443–445. 6333:10.1021/jp903439a 6262:(7530): 231–233. 6163:(5768): 1758–61. 6128:Chaplin, Martin. 6029:Chaplin, Martin. 5911:10.1063/1.1679238 5876:10.1063/1.1669438 5838:10.1063/1.1727447 5824:(11): 3976–3982. 5625:Chaplin, Martin. 5514:Chaplin, Martin. 5456:Chaplin, Martin. 5424:10.1063/5.0045443 5378:Chaplin, Martin. 5355:Chaplin, Martin. 5332:Chaplin, Martin. 5243:(24): 5355–5357. 5197:(6609): 546–549. 5055:(5976): 393–395. 4787:10.1038/1881144a0 4451:10.1063/1.1705058 4411:978-0-19-851894-5 4371:(12): 2680–2684. 4309:Physical Review B 4290:10.1063/1.1749327 4217:(6631): 474–478. 4025:(7073): 183–186. 3767:10.1063/1.3182727 3753:(34510): 034510. 3693:10.1063/5.0018923 3357:(2989): 385–390. 3287:(6729): 681–684. 3266:10.1063/1.1679238 2862:found in natural 2688: 2678: 2637:chloride-doped, D 2626:X-ray diffraction 2481:in the O lattice. 2365:clathrate hydrate 2292:antiferroelectric 2067:equilibrium curve 2024: 2023: 1695:2022 (contested) 1340:NA (atmospheric) 1291:NA (atmospheric) 580: 437:Hydrogen disorder 405:, and its latent 197:tetrahedral angle 165:crystal structure 139:Crystal structure 89:are all possible 64: 63: 12470: 12463:Hydrogen storage 12425: 12414: 12413: 12403: 12402: 12101: 12100: 11811: 11804: 11797: 11788: 11787: 11734: 11719: 11687:Physik des Eises 11678: 11661: 11640: 11604: 11603: 11593: 11561: 11555: 11554: 11544: 11510: 11504: 11503: 11477: 11457: 11451: 11450: 11448: 11446: 11437:Charlie Osolin. 11434: 11428: 11427: 11425: 11423: 11406: 11400: 11399: 11397: 11365: 11359: 11358: 11356: 11344: 11338: 11337: 11309: 11303: 11302: 11300: 11268: 11262: 11261: 11259: 11257: 11242: 11236: 11235: 11233: 11231: 11215: 11209: 11208: 11206: 11205: 11189: 11183: 11182: 11162: 11151: 11150: 11148: 11146: 11140:science.nasa.gov 11132: 11126: 11125: 11099: 11090: 11084: 11083: 11047: 11038: 11037: 11001: 10995: 10994: 10950: 10944: 10943: 10941: 10909: 10903: 10902: 10900: 10868: 10862: 10861: 10835: 10833:astro-ph/0107277 10826:(4): 2099–2114. 10815: 10809: 10808: 10806: 10774: 10768: 10767: 10765: 10733: 10727: 10726: 10706: 10700: 10699: 10671: 10665: 10662: 10656: 10655: 10646: 10617: 10611: 10610: 10600: 10598:2060/19980018148 10564: 10558: 10557: 10546:10.1038/344134a0 10521: 10515: 10514: 10512: 10489: 10480: 10469: 10468: 10460: 10451: 10450: 10422: 10416: 10415: 10379: 10373: 10372: 10370: 10338: 10332: 10331: 10303: 10292: 10291: 10268:Chemical Physics 10263: 10257: 10256: 10224: 10218: 10217: 10215: 10181: 10172: 10161: 10160: 10158: 10156: 10127: 10118: 10112: 10111: 10109: 10107: 10087: 10081: 10080: 10078: 10054: 10037: 10036: 10002: 9993: 9987: 9986: 9952: 9928: 9922: 9921: 9904:(1–3): 174–180. 9893: 9887: 9886: 9884: 9882: 9873:. Archived from 9834: 9828: 9827: 9799: 9793: 9792: 9790: 9788: 9768: 9762: 9761: 9759: 9757: 9737: 9731: 9730: 9712: 9680: 9674: 9673: 9671: 9639: 9633: 9632: 9604: 9598: 9597: 9580:(3–4): 453–463. 9569: 9563: 9562: 9552: 9542: 9506: 9500: 9499: 9489: 9465: 9459: 9458: 9438: 9432: 9431: 9414:(9): 1519–1531. 9405: 9396: 9390: 9389: 9349: 9343: 9342: 9298: 9292: 9291: 9271: 9265: 9264: 9262: 9255: 9246: 9240: 9239: 9233: 9225: 9215: 9175: 9169: 9168: 9162: 9154: 9144: 9104: 9098: 9097: 9091: 9083: 9073: 9056:(3): 1106–1111. 9050:J Phys Chem Lett 9041: 9035: 9034: 9016: 8980: 8974: 8973: 8963: 8931: 8925: 8924: 8922: 8920: 8905: 8899: 8898: 8896: 8895: 8872: 8863: 8862: 8850: 8839: 8838: 8822: 8813: 8812: 8778: 8769: 8763: 8762: 8760: 8759: 8736: 8727: 8726: 8676: 8665: 8659: 8653: 8652: 8618: 8609: 8603: 8602: 8592: 8566: 8542: 8533: 8532: 8526: 8518: 8516: 8515: 8503: 8497: 8496: 8486: 8476: 8444: 8433: 8432: 8398: 8377: 8371: 8370: 8360: 8312: 8306: 8305: 8271: 8251: 8245: 8244: 8218: 8198: 8192: 8191: 8157: 8137: 8131: 8130: 8128: 8126: 8105: 8099: 8098: 8062: 8056: 8055: 8045: 8035: 8018:(9): 3481–3486. 8003: 7997: 7996: 7971:(7): 1533–1536. 7960: 7954: 7953: 7925: 7919: 7918: 7908: 7876: 7870: 7869: 7836:(44): 19788–95. 7825: 7819: 7818: 7782: 7776: 7769: 7763: 7762: 7760: 7728: 7715: 7714: 7697:(1–3): 111–114. 7686: 7680: 7679: 7653: 7651:cond-mat/0511092 7633: 7627: 7626: 7590: 7584: 7583: 7555: 7549: 7548: 7520: 7514: 7513: 7485: 7479: 7478: 7476: 7474: 7468: 7462:. Archived from 7454:(4): S170–S175. 7445: 7432: 7426: 7425: 7385: 7379: 7377: 7367:10.1038/330737a0 7332: 7326: 7324: 7321:10.1063/1.465467 7296: 7290: 7289: 7250: 7244: 7243: 7219:(41): 18468–80, 7204: 7198: 7197: 7170: 7164: 7163: 7132: 7126: 7125: 7094: 7088: 7087: 7048: 7042: 7041: 7024: 7018: 7017: 6994: 6988: 6987: 6985:10.1063/1.438173 6964: 6958: 6957: 6932: 6908: 6902: 6901: 6899:10.1063/1.442040 6870: 6864: 6863: 6832: 6826: 6825: 6786: 6780: 6779: 6773: 6765: 6755: 6715: 6706: 6705: 6693: 6682: 6681: 6671: 6639: 6628: 6627: 6571: 6558: 6557: 6541: 6526: 6525: 6515: 6489: 6465: 6442: 6441: 6439: 6438: 6423: 6414: 6413: 6379: 6359: 6353: 6352: 6351: 6345: 6335: 6309: 6303: 6302: 6301: 6295: 6251: 6242: 6241: 6239: 6237: 6217: 6211: 6210: 6204: 6196: 6148: 6142: 6141: 6125: 6106: 6105: 6061: 6052: 6049: 6043: 6042: 6026: 6020: 6019: 6009: 5999: 5967: 5961: 5960: 5948: 5942: 5941: 5929: 5923: 5922: 5886: 5880: 5879: 5862:(5): 2362–2370. 5851: 5842: 5841: 5813: 5807: 5806: 5762: 5753: 5752: 5745: 5739: 5738: 5728: 5718: 5701:(6): 1433–1439. 5686: 5680: 5679: 5677: 5645: 5639: 5638: 5622: 5616: 5608: 5602: 5601: 5590:10.2307/20022754 5573: 5567: 5566: 5534: 5528: 5527: 5511: 5505: 5504: 5476: 5470: 5469: 5453: 5444: 5443: 5398: 5392: 5391: 5375: 5369: 5368: 5352: 5346: 5345: 5329: 5320: 5319: 5317: 5315: 5288: 5269: 5268: 5257:10.1039/b108676f 5233:Loerting, Thomas 5229: 5223: 5222: 5211:10.1038/384546a0 5186: 5180: 5179: 5168:10.1038/314076a0 5143: 5137: 5136: 5126: 5124:2060/19980018148 5090: 5081: 5080: 5069:10.1038/310393a0 5044: 5031: 5030: 5028: 5026: 5009: 5003: 5002: 4991: 4985: 4984: 4973:10.1063/1.474468 4948: 4942: 4941: 4923: 4891: 4885: 4884: 4844: 4831: 4830: 4818: 4807: 4806: 4762: 4756: 4755: 4753: 4721: 4715: 4714: 4704: 4693:10.1039/b513480c 4664: 4658: 4657: 4618:Nature Materials 4613: 4604: 4603: 4569: 4554:Nature Materials 4549: 4536: 4535: 4533: 4532: 4516: 4510: 4509: 4484:(6): 1001–1016. 4469: 4463: 4462: 4437:(8): 1484–1491. 4422: 4416: 4415: 4387: 4381: 4380: 4357: 4351: 4350: 4324: 4322:cond-mat/0609211 4300: 4294: 4293: 4265: 4259: 4258: 4202: 4191: 4190: 4172: 4136: 4130: 4129: 4123: 4115: 4105: 4065: 4059: 4058: 4014: 4008: 4007: 4005: 4003: 3997: 3990: 3982: 3976: 3975: 3973: 3971: 3956: 3950: 3949: 3939: 3937:10.1256/qj.04.94 3907: 3901: 3900: 3897:10.1063/1.555947 3872: 3866: 3865: 3853: 3847: 3846: 3812: 3792: 3786: 3785: 3784: 3778: 3740: 3731: 3730: 3704: 3664: 3658: 3657: 3623: 3599: 3593: 3592: 3559:(5550): 2335–8. 3548: 3542: 3541: 3530:10.2307/20022754 3513: 3507: 3506: 3500: 3492: 3482: 3442: 3433: 3432: 3409:Acta Crystallogr 3392: 3383: 3382: 3346: 3340: 3339: 3337: 3335: 3322:Dutch, Stephen. 3319: 3313: 3312: 3276: 3270: 3269: 3241: 3224: 3221: 3192:Machine learning 3039:Molecular clouds 3027:Peter Jenniskens 2919:hydrogen storage 2791:, also known as 2705: 2703: 2702: 2697: 2689: 2684: 2679: 2674: 2554:phase transition 2490: 2470: 2421: 2417: 2076: 2075: 1610:Debye relaxation 1526:specific gravity 1511: 1314:refractive index 1245: 1244: 1229: 1227: 1226: 1221: 1195: 1194: 1182: 1145: 1143: 1142: 1137: 1129: 1128: 1116: 1102: 1101: 1082: 1080: 1079: 1074: 1024: 1022: 1021: 1016: 1014: 1013: 1001: 987: 986: 971: 957: 956: 936: 934: 933: 928: 926: 925: 917: 911: 910: 902: 887: 870: 835: 831: 829: 828: 823: 812: 786: 785: 773: 750: 749: 727: 725: 724: 719: 714: 713: 701: 687: 686: 682: 666: 655: 654: 650: 630: 626: 619: 612: 604: 602: 601: 596: 588: 586: 585: 572: 557: 546: 527: 525: 524: 519: 483: 472:residual entropy 416: 414: 404: 369: 367: 366: 363: 360: 338:Ice, water, and 326:Heat and entropy 310:would take on a 177:wurtzite lattice 91:states of matter 59: 56: 50: 27: 19: 12478: 12477: 12473: 12472: 12471: 12469: 12468: 12467: 12438: 12437: 12436: 12431: 12390: 12357: 12321: 12275: 12215: 12147: 12096: 12090: 11961:Albedo feedback 11949: 11863: 11849:Amorphous solid 11837: 11820: 11815: 11730:Quanta Magazine 11696: 11658: 11637: 11613: 11611:Further reading 11608: 11607: 11562: 11558: 11511: 11507: 11458: 11454: 11444: 11442: 11435: 11431: 11421: 11419: 11407: 11403: 11366: 11362: 11345: 11341: 11310: 11306: 11269: 11265: 11255: 11253: 11243: 11239: 11229: 11227: 11216: 11212: 11203: 11201: 11192: 11190: 11186: 11163: 11154: 11144: 11142: 11134: 11133: 11129: 11097: 11091: 11087: 11048: 11041: 11002: 10998: 10961:(7018): 731–3. 10951: 10947: 10910: 10906: 10869: 10865: 10816: 10812: 10775: 10771: 10734: 10730: 10707: 10703: 10672: 10668: 10663: 10659: 10618: 10614: 10565: 10561: 10522: 10518: 10510: 10487: 10481: 10472: 10461: 10454: 10423: 10419: 10380: 10376: 10339: 10335: 10304: 10295: 10264: 10260: 10230: 10225: 10221: 10179: 10173: 10164: 10154: 10152: 10125: 10119: 10115: 10105: 10103: 10088: 10084: 10055: 10040: 10000: 9994: 9990: 9934: 9929: 9925: 9894: 9890: 9880: 9878: 9877:on 29 July 2012 9849:(24): 11376–9. 9835: 9831: 9800: 9796: 9786: 9784: 9769: 9765: 9755: 9753: 9738: 9734: 9681: 9677: 9640: 9636: 9605: 9601: 9570: 9566: 9514: 9507: 9503: 9466: 9462: 9446: 9439: 9435: 9403: 9397: 9393: 9355: 9350: 9346: 9299: 9295: 9288: 9272: 9268: 9260: 9253: 9247: 9243: 9227: 9226: 9176: 9172: 9156: 9155: 9105: 9101: 9085: 9084: 9042: 9038: 8981: 8977: 8932: 8928: 8918: 8916: 8908:Langin, Katie. 8906: 8902: 8893: 8891: 8873: 8866: 8851: 8842: 8823: 8816: 8781:Phys. Rev. Lett 8776: 8770: 8766: 8757: 8755: 8737: 8730: 8677: 8668: 8660: 8656: 8621:Phys. Rev. Lett 8616: 8610: 8606: 8543: 8536: 8520: 8519: 8513: 8511: 8504: 8500: 8445: 8436: 8378: 8374: 8313: 8309: 8252: 8248: 8199: 8195: 8138: 8134: 8124: 8122: 8106: 8102: 8063: 8059: 8004: 8000: 7961: 7957: 7926: 7922: 7877: 7873: 7826: 7822: 7783: 7779: 7770: 7766: 7729: 7718: 7687: 7683: 7634: 7630: 7600: 7596: 7591: 7587: 7556: 7552: 7521: 7517: 7490:Physics Letters 7486: 7482: 7472: 7470: 7469:on 14 July 2014 7466: 7443: 7440: 7433: 7429: 7386: 7382: 7340: 7333: 7329: 7297: 7293: 7251: 7247: 7205: 7201: 7171: 7167: 7133: 7129: 7095: 7091: 7049: 7045: 7025: 7021: 6995: 6991: 6965: 6961: 6909: 6905: 6871: 6867: 6833: 6829: 6787: 6783: 6767: 6766: 6716: 6709: 6694: 6685: 6640: 6631: 6572: 6561: 6542: 6529: 6466: 6445: 6436: 6434: 6425: 6424: 6417: 6360: 6356: 6346: 6310: 6306: 6296: 6252: 6245: 6235: 6233: 6218: 6214: 6198: 6197: 6149: 6145: 6126: 6109: 6062: 6055: 6050: 6046: 6027: 6023: 5968: 5964: 5949: 5945: 5938:Popular Science 5930: 5926: 5887: 5883: 5852: 5845: 5814: 5810: 5763: 5756: 5747: 5746: 5742: 5687: 5683: 5646: 5642: 5623: 5619: 5609: 5605: 5584:(13): 441–558. 5574: 5570: 5535: 5531: 5512: 5508: 5477: 5473: 5454: 5447: 5399: 5395: 5376: 5372: 5353: 5349: 5330: 5323: 5313: 5311: 5309: 5289: 5272: 5230: 5226: 5187: 5183: 5154:(6006): 76–78. 5144: 5140: 5091: 5084: 5045: 5034: 5024: 5022: 5010: 5006: 4993: 4992: 4988: 4949: 4945: 4892: 4888: 4859:(5173): 753–6. 4845: 4834: 4819: 4810: 4763: 4759: 4722: 4718: 4665: 4661: 4614: 4607: 4550: 4539: 4530: 4528: 4517: 4513: 4470: 4466: 4423: 4419: 4412: 4388: 4384: 4358: 4354: 4301: 4297: 4266: 4262: 4203: 4194: 4137: 4133: 4117: 4116: 4066: 4062: 4015: 4011: 4001: 3999: 3995: 3988: 3984: 3983: 3979: 3969: 3967: 3960:"SI base units" 3958: 3957: 3953: 3908: 3904: 3873: 3869: 3854: 3850: 3793: 3789: 3779: 3741: 3734: 3665: 3661: 3600: 3596: 3549: 3545: 3524:(13): 441–558. 3514: 3510: 3494: 3493: 3454: 3450: 3443: 3436: 3406: 3402: 3398: 3393: 3386: 3347: 3343: 3333: 3331: 3324:"Ice Structure" 3320: 3316: 3277: 3273: 3242: 3238: 3233: 3228: 3227: 3222: 3218: 3213: 3123: 3083: 3070: 3057: 3036: 3003: 2975: 2959: 2955: 2899: 2892: 2888: 2884: 2834: 2830: 2819: 2814: 2798: 2786: 2774: 2762: 2753: 2748: 2733: 2729: 2725: 2721: 2683: 2673: 2671: 2668: 2667: 2640: 2610: 2558:computer models 2511: 2510: 2509: 2508: 2500: 2499: 2498: 2491: 2483: 2482: 2471: 2460: 2453: 2449: 2445: 2441: 2437: 2428: 2419: 2418:10 m; 2.40 2415: 2405: 2393: 2389: 2385: 2381: 2377: 2373: 2352: 2333: 2313: 2285: 2281: 2277: 2259: 2247: 2240: 2236: 2232: 2225: 2218: 2214: 2201: 2190: 2186: 2181:internal energy 2161: 2153: 2148: 2139: 2114: 2110: 2104: 2096: 2092: 2088: 2083: 2073: 2071: 2060: 2042: 2029: 2012: 2005: 1932:, which allows 1897: 1893: 1774: 1762: 1745: 1726: 1681:1.16 g/cm 1638: 1509: 1470: 1454:NA (amorphous) 1429:NA (amorphous) 1403:NA (amorphous) 1400:1.06±0.06 g cm 1372:NA (amorphous) 1369:0.94 g/cm 1335: 1324: 1311: 1307: 1274: 1236: 1190: 1186: 1178: 1152: 1149: 1148: 1124: 1120: 1112: 1097: 1093: 1091: 1088: 1087: 1047: 1044: 1043: 1031: 1009: 1005: 997: 979: 975: 967: 952: 948: 946: 943: 942: 918: 913: 912: 903: 892: 891: 883: 866: 849: 846: 845: 833: 808: 781: 777: 769: 745: 741: 739: 736: 735: 709: 705: 697: 678: 674: 670: 662: 646: 642: 638: 636: 633: 632: 628: 624: 621: 617: 614: 610: 581: 568: 567: 565: 563: 560: 559: 555: 552: 544: 534: 489: 486: 485: 482: 479: 476: 460: 449: 439: 425: 412: 410: 403:5987 J/mol 402: 399:heat of melting 364: 361: 358: 357: 355: 354:was defined as 328: 296: 272:liquid nitrogen 248:crystal lattice 236:amorphous solid 232: 225: 213: 206: 174: 150: 141: 115: 107: 60: 54: 51: 44: 32:This article's 28: 17: 12: 11: 5: 12476: 12466: 12465: 12460: 12455: 12450: 12433: 12432: 12430: 12429: 12418: 12407: 12395: 12392: 12391: 12389: 12388: 12386:Snowball Earth 12383: 12378: 12376:Little Ice Age 12373: 12367: 12365: 12359: 12358: 12356: 12355: 12350: 12345: 12340: 12335: 12329: 12327: 12323: 12322: 12320: 12319: 12314: 12309: 12304: 12299: 12294: 12289: 12283: 12281: 12277: 12276: 12274: 12273: 12268: 12263: 12258: 12253: 12248: 12243: 12238: 12233: 12227: 12225: 12221: 12220: 12217: 12216: 12214: 12213: 12208: 12203: 12198: 12193: 12188: 12186:Figure skating 12183: 12178: 12173: 12168: 12163: 12157: 12155: 12149: 12148: 12146: 12145: 12140: 12135: 12130: 12125: 12120: 12115: 12110: 12104: 12098: 12092: 12091: 12089: 12088: 12083: 12078: 12073: 12068: 12063: 12058: 12053: 12048: 12043: 12038: 12033: 12028: 12023: 12018: 12008: 12003: 11998: 11993: 11988: 11983: 11978: 11973: 11971:Circle or disc 11968: 11963: 11957: 11955: 11951: 11950: 11948: 11947: 11942: 11937: 11932: 11927: 11922: 11917: 11912: 11902: 11897: 11892: 11887: 11882: 11877: 11871: 11869: 11865: 11864: 11862: 11861: 11856: 11851: 11845: 11843: 11839: 11838: 11825: 11822: 11821: 11814: 11813: 11806: 11799: 11791: 11785: 11784: 11779: 11774: 11769: 11766:phase diagrams 11755: 11745: 11735: 11720: 11695: 11694:External links 11692: 11691: 11690: 11684: 11679: 11662: 11656: 11650:. OUP Oxford. 11647:Physics of Ice 11641: 11635: 11620: 11612: 11609: 11606: 11605: 11556: 11505: 11462:Nature Physics 11452: 11429: 11401: 11380:(2): 361–365. 11360: 11339: 11304: 11298:10.1086/510017 11283:(1): L57–L60. 11263: 11237: 11210: 11184: 11152: 11127: 11108:(2): 367–383. 11085: 11058:(E1): E01012. 11039: 10996: 10945: 10904: 10898:10.1086/312098 10863: 10850:10.1086/323304 10810: 10769: 10748:(2): 126–136. 10728: 10701: 10682:(2): 719–739. 10666: 10657: 10644:10.1086/185730 10612: 10589:10.1086/176585 10559: 10516: 10470: 10452: 10417: 10390:(1): 177–189. 10374: 10353:(2): 481–489. 10333: 10328:10.1086/172065 10293: 10274:(3): 367–379. 10258: 10239:(E11): 25809. 10228: 10219: 10190:(2): 397–406. 10162: 10113: 10082: 10038: 10011:(2): 129–228. 9988: 9932: 9923: 9888: 9829: 9810:(6): 554–558. 9794: 9763: 9732: 9675: 9634: 9599: 9564: 9512: 9501: 9460: 9444: 9433: 9391: 9353: 9344: 9293: 9287:978-1429218122 9286: 9266: 9241: 9170: 9099: 9036: 8975: 8946:(2): 515–523. 8926: 8900: 8864: 8840: 8814: 8787:(12): 125508. 8764: 8728: 8693:(3): 297–302. 8686:Nature Physics 8666: 8654: 8604: 8534: 8498: 8434: 8372: 8307: 8246: 8193: 8148:(10): 105701. 8132: 8100: 8057: 7998: 7955: 7920: 7871: 7820: 7793:(10): 104506. 7777: 7764: 7716: 7681: 7628: 7609:(2): 165–173. 7598: 7594: 7585: 7550: 7515: 7496:(4): 291–292. 7480: 7438: 7427: 7380: 7338: 7327: 7291: 7245: 7199: 7165: 7127: 7089: 7043: 7019: 6989: 6959: 6903: 6865: 6827: 6795:Nature Physics 6781: 6707: 6683: 6629: 6559: 6527: 6443: 6415: 6354: 6304: 6243: 6212: 6143: 6107: 6053: 6044: 6021: 5962: 5943: 5924: 5897:(2): 567–580. 5881: 5843: 5808: 5773:(10): 104109. 5754: 5740: 5681: 5640: 5617: 5603: 5568: 5549:(5): 706–715. 5529: 5506: 5471: 5445: 5393: 5370: 5347: 5321: 5307: 5270: 5224: 5181: 5138: 5115:10.1086/176585 5082: 5032: 5004: 4986: 4959:(4): 1232–41. 4943: 4921:10.1086/178220 4906:(2): 1104–13. 4886: 4832: 4808: 4757: 4730:Env. Res. Lett 4716: 4679:(1): 186–192. 4659: 4624:(6): 586–587. 4605: 4560:(6): 663–668. 4537: 4511: 4464: 4417: 4410: 4393:Physics of Ice 4382: 4361:Pauling, Linus 4352: 4295: 4260: 4192: 4131: 4060: 4009: 3977: 3951: 3902: 3883:(3): 515–527. 3867: 3848: 3803:(19): 195701. 3787: 3732: 3679:(10): 104503. 3659: 3614:(13): 136002. 3594: 3543: 3508: 3465:(18): 185505. 3452: 3448: 3434: 3415:(6): 644–648. 3404: 3400: 3396: 3384: 3341: 3314: 3271: 3252:(2): 567–580. 3235: 3234: 3232: 3229: 3226: 3225: 3215: 3214: 3212: 3209: 3122: 3119: 3082: 3079: 3069: 3066: 3056: 3053: 3035: 3032: 3002: 2999: 2974: 2971: 2957: 2953: 2898: 2897:Human industry 2895: 2890: 2886: 2882: 2832: 2828: 2817: 2812: 2809:hydrogen bonds 2801:global climate 2796: 2784: 2772: 2760: 2752: 2749: 2747: 2744: 2731: 2727: 2723: 2719: 2695: 2692: 2687: 2682: 2677: 2638: 2622:Raman spectrum 2609: 2606: 2502: 2501: 2492: 2485: 2484: 2475:electric field 2472: 2465: 2464: 2463: 2462: 2461: 2459: 2456: 2451: 2447: 2443: 2439: 2435: 2427: 2424: 2403: 2391: 2387: 2383: 2379: 2378:) and water (H 2375: 2371: 2351: 2348: 2331: 2311: 2283: 2279: 2275: 2258: 2255: 2246: 2243: 2238: 2234: 2230: 2223: 2216: 2212: 2199: 2188: 2184: 2160: 2157: 2151: 2147: 2144: 2138: 2135: 2112: 2108: 2103: 2100: 2094: 2090: 2086: 2082: 2079: 2058: 2041: 2038: 2028: 2025: 2022: 2021: 2018: 2016: 2014: 2010: 2007: 2003: 2000: 1997: 1993: 1992: 1989: 1987: 1985: 1982: 1979: 1976: 1972: 1971: 1968: 1965: 1962: 1959: 1953: 1950: 1946: 1945: 1938:graphene oxide 1926: 1923: 1921: 1918: 1911: 1908: 1904: 1903: 1895: 1891: 1884: 1882: 1879: 1876: 1870: 1867: 1863: 1862: 1859: 1857: 1855: 1852: 1849: 1846: 1842: 1841: 1834: 1831: 1829: 1826: 1823: 1820: 1816: 1815: 1812: 1809: 1807: 1804: 1801: 1798: 1794: 1793: 1782: 1779: 1776: 1772: 1765: 1760: 1755: 1752: 1748: 1747: 1743: 1737: 1732: 1730: 1728: 1724: 1721: 1718: 1714: 1713: 1710: 1707: 1705: 1702: 1696: 1693: 1689: 1688: 1685: 1682: 1679: 1676: 1670: 1667: 1663: 1662: 1659: 1656: 1654: 1651: 1648: 1645: 1641: 1640: 1636: 1633: 1630: 1627: 1624: 1621: 1618: 1614: 1613: 1606: 1603: 1600: 1597: 1591: 1588: 1584: 1583: 1576: 1571: 1568: 1565: 1562: 1559: 1555: 1554: 1551: 1548: 1546: 1543: 1537: 1534: 1530: 1529: 1518: 1513: 1507: 1504: 1498: 1495: 1491: 1490: 1488: 1483: 1481: 1475: 1468: 1465: 1462: 1458: 1457: 1455: 1452: 1449: 1446: 1440: 1437: 1433: 1432: 1430: 1427: 1424: 1421: 1415: 1412: 1408: 1407: 1404: 1401: 1398: 1391: 1388: 1385: 1381: 1380: 1373: 1370: 1367: 1364: 1362: 1359: 1355: 1354: 1347: 1344: 1341: 1338: 1333: 1328: 1325: 1322: 1318: 1317: 1309: 1305: 1298: 1295: 1292: 1289: 1278: 1275: 1272: 1268: 1267: 1264: 1261: 1258: 1255: 1252: 1249: 1235: 1232: 1219: 1216: 1213: 1210: 1207: 1204: 1201: 1198: 1193: 1189: 1185: 1181: 1177: 1174: 1171: 1168: 1165: 1162: 1159: 1156: 1135: 1132: 1127: 1123: 1119: 1115: 1111: 1108: 1105: 1100: 1096: 1072: 1069: 1066: 1063: 1060: 1057: 1054: 1051: 1030: 1027: 1012: 1008: 1004: 1000: 996: 993: 990: 985: 982: 978: 974: 970: 966: 963: 960: 955: 951: 924: 921: 916: 909: 906: 901: 898: 895: 890: 886: 882: 879: 876: 873: 869: 865: 862: 859: 856: 853: 821: 818: 815: 811: 807: 804: 801: 798: 795: 792: 789: 784: 780: 776: 772: 768: 765: 762: 759: 756: 753: 748: 744: 717: 712: 708: 704: 700: 696: 693: 690: 685: 681: 677: 673: 669: 665: 661: 658: 653: 649: 645: 641: 622: 615: 594: 591: 584: 579: 576: 571: 553: 533: 530: 517: 514: 511: 508: 505: 502: 499: 496: 493: 480: 477: 458: 438: 435: 423: 419:hydrogen bonds 327: 324: 308:superionic ice 295: 292: 284:Classification 231: 228: 223: 211: 204: 189:hydrogen bonds 172: 148: 140: 137: 114: 111: 105: 79:Roman numerals 77:of water. The 62: 61: 41:the key points 31: 29: 22: 15: 9: 6: 4: 3: 2: 12475: 12464: 12461: 12459: 12456: 12454: 12451: 12449: 12446: 12445: 12443: 12428: 12424: 12419: 12417: 12408: 12406: 12397: 12396: 12393: 12387: 12384: 12382: 12379: 12377: 12374: 12372: 12369: 12368: 12366: 12364: 12360: 12354: 12351: 12349: 12346: 12344: 12341: 12339: 12336: 12334: 12331: 12330: 12328: 12324: 12318: 12315: 12313: 12310: 12308: 12305: 12303: 12300: 12298: 12295: 12293: 12290: 12288: 12285: 12284: 12282: 12278: 12272: 12269: 12267: 12264: 12262: 12259: 12257: 12254: 12252: 12249: 12247: 12244: 12242: 12239: 12237: 12234: 12232: 12229: 12228: 12226: 12224:Constructions 12222: 12212: 12209: 12207: 12204: 12202: 12201:Speed skating 12199: 12197: 12194: 12192: 12189: 12187: 12184: 12182: 12179: 12177: 12174: 12172: 12169: 12167: 12164: 12162: 12159: 12158: 12156: 12154: 12150: 12144: 12141: 12139: 12136: 12134: 12131: 12129: 12126: 12124: 12121: 12119: 12116: 12114: 12111: 12109: 12106: 12105: 12102: 12099: 12093: 12087: 12084: 12082: 12079: 12077: 12074: 12072: 12069: 12067: 12064: 12062: 12059: 12057: 12054: 12052: 12049: 12047: 12044: 12042: 12039: 12037: 12034: 12032: 12029: 12027: 12024: 12022: 12019: 12016: 12012: 12009: 12007: 12004: 12002: 11999: 11997: 11994: 11992: 11989: 11987: 11984: 11982: 11979: 11977: 11974: 11972: 11969: 11967: 11964: 11962: 11959: 11958: 11956: 11952: 11946: 11943: 11941: 11938: 11936: 11933: 11931: 11928: 11926: 11923: 11921: 11918: 11916: 11913: 11910: 11906: 11903: 11901: 11898: 11896: 11893: 11891: 11888: 11886: 11883: 11881: 11878: 11876: 11873: 11872: 11870: 11866: 11860: 11857: 11855: 11852: 11850: 11847: 11846: 11844: 11840: 11836: 11832: 11829: 11823: 11819: 11812: 11807: 11805: 11800: 11798: 11793: 11792: 11789: 11783: 11780: 11778: 11775: 11773: 11770: 11767: 11763: 11759: 11756: 11753: 11749: 11746: 11743: 11739: 11736: 11732: 11731: 11726: 11721: 11717: 11713: 11709: 11708: 11703: 11698: 11697: 11688: 11685: 11683: 11680: 11676: 11672: 11668: 11663: 11659: 11657:9780191581342 11653: 11649: 11648: 11642: 11638: 11636:9780521112307 11632: 11628: 11627: 11621: 11618: 11615: 11614: 11601: 11597: 11592: 11587: 11583: 11579: 11575: 11571: 11567: 11560: 11552: 11548: 11543: 11538: 11534: 11530: 11526: 11522: 11521: 11516: 11509: 11501: 11497: 11493: 11489: 11485: 11481: 11476: 11471: 11467: 11463: 11456: 11440: 11433: 11418: 11417: 11412: 11405: 11396: 11391: 11387: 11383: 11379: 11375: 11371: 11364: 11355: 11350: 11343: 11335: 11331: 11327: 11323: 11319: 11315: 11308: 11299: 11294: 11290: 11286: 11282: 11278: 11274: 11267: 11252: 11251:New Scientist 11248: 11241: 11225: 11221: 11214: 11199: 11195: 11188: 11180: 11176: 11172: 11168: 11161: 11159: 11157: 11141: 11137: 11131: 11123: 11119: 11115: 11111: 11107: 11103: 11096: 11089: 11081: 11077: 11073: 11069: 11065: 11061: 11057: 11053: 11046: 11044: 11035: 11031: 11027: 11023: 11019: 11015: 11011: 11007: 11000: 10992: 10988: 10984: 10980: 10976: 10972: 10968: 10964: 10960: 10956: 10949: 10940: 10935: 10931: 10927: 10923: 10919: 10915: 10908: 10899: 10894: 10890: 10886: 10882: 10878: 10874: 10867: 10859: 10855: 10851: 10847: 10843: 10839: 10834: 10829: 10825: 10821: 10814: 10805: 10800: 10796: 10792: 10788: 10784: 10780: 10773: 10764: 10759: 10755: 10751: 10747: 10743: 10739: 10732: 10724: 10720: 10716: 10712: 10705: 10697: 10693: 10689: 10685: 10681: 10677: 10670: 10661: 10654: 10650: 10645: 10640: 10636: 10632: 10628: 10624: 10616: 10608: 10604: 10599: 10594: 10590: 10586: 10582: 10578: 10574: 10570: 10563: 10555: 10551: 10547: 10543: 10539: 10535: 10531: 10527: 10520: 10509: 10505: 10501: 10497: 10493: 10486: 10479: 10477: 10475: 10466: 10459: 10457: 10448: 10444: 10440: 10436: 10432: 10428: 10421: 10413: 10409: 10405: 10401: 10397: 10393: 10389: 10385: 10378: 10369: 10364: 10360: 10356: 10352: 10348: 10344: 10337: 10329: 10325: 10321: 10317: 10313: 10309: 10302: 10300: 10298: 10289: 10285: 10281: 10277: 10273: 10269: 10262: 10254: 10250: 10246: 10242: 10238: 10234: 10223: 10214: 10213:1721.1/114323 10209: 10205: 10201: 10197: 10193: 10189: 10185: 10178: 10171: 10169: 10167: 10151: 10147: 10143: 10139: 10135: 10131: 10130:Physics Today 10124: 10117: 10101: 10097: 10093: 10086: 10077: 10072: 10068: 10064: 10060: 10053: 10051: 10049: 10047: 10045: 10043: 10034: 10030: 10026: 10022: 10018: 10014: 10010: 10006: 9999: 9992: 9984: 9980: 9976: 9972: 9968: 9964: 9960: 9956: 9951: 9946: 9942: 9938: 9927: 9919: 9915: 9911: 9907: 9903: 9899: 9892: 9876: 9872: 9868: 9864: 9860: 9856: 9852: 9848: 9844: 9840: 9833: 9825: 9821: 9817: 9813: 9809: 9805: 9798: 9782: 9778: 9774: 9767: 9751: 9747: 9743: 9736: 9728: 9724: 9720: 9716: 9711: 9706: 9702: 9698: 9694: 9690: 9686: 9679: 9670: 9665: 9661: 9657: 9653: 9649: 9645: 9638: 9630: 9626: 9622: 9618: 9614: 9610: 9603: 9595: 9591: 9587: 9583: 9579: 9575: 9568: 9560: 9556: 9551: 9546: 9541: 9536: 9532: 9528: 9524: 9520: 9516: 9505: 9497: 9493: 9488: 9483: 9479: 9475: 9471: 9464: 9456: 9452: 9448: 9437: 9429: 9425: 9421: 9417: 9413: 9409: 9402: 9395: 9387: 9383: 9379: 9375: 9371: 9367: 9363: 9359: 9348: 9340: 9336: 9332: 9328: 9324: 9320: 9316: 9312: 9308: 9304: 9297: 9289: 9283: 9279: 9278: 9270: 9259: 9252: 9245: 9237: 9231: 9223: 9219: 9214: 9209: 9205: 9201: 9197: 9193: 9189: 9185: 9181: 9174: 9166: 9160: 9152: 9148: 9143: 9138: 9134: 9130: 9126: 9122: 9118: 9114: 9110: 9103: 9095: 9089: 9081: 9077: 9072: 9067: 9063: 9059: 9055: 9051: 9047: 9040: 9032: 9028: 9024: 9020: 9015: 9010: 9006: 9002: 8998: 8994: 8990: 8986: 8979: 8971: 8967: 8962: 8957: 8953: 8949: 8945: 8941: 8937: 8930: 8915: 8911: 8904: 8890: 8886: 8882: 8878: 8871: 8869: 8860: 8856: 8849: 8847: 8845: 8836: 8832: 8828: 8821: 8819: 8810: 8806: 8802: 8798: 8794: 8790: 8786: 8782: 8775: 8768: 8754: 8750: 8746: 8742: 8735: 8733: 8724: 8720: 8716: 8712: 8708: 8704: 8700: 8696: 8692: 8688: 8687: 8682: 8675: 8673: 8671: 8663: 8658: 8650: 8646: 8642: 8638: 8634: 8630: 8626: 8622: 8615: 8608: 8600: 8596: 8591: 8586: 8582: 8578: 8574: 8570: 8565: 8560: 8556: 8552: 8548: 8541: 8539: 8530: 8524: 8509: 8502: 8494: 8490: 8485: 8480: 8475: 8470: 8466: 8462: 8458: 8454: 8450: 8443: 8441: 8439: 8430: 8426: 8422: 8418: 8414: 8410: 8406: 8402: 8397: 8392: 8388: 8384: 8376: 8368: 8364: 8359: 8354: 8350: 8346: 8342: 8338: 8334: 8330: 8326: 8322: 8318: 8311: 8303: 8299: 8295: 8291: 8287: 8283: 8279: 8275: 8270: 8265: 8261: 8257: 8250: 8242: 8238: 8234: 8230: 8226: 8222: 8217: 8212: 8208: 8204: 8197: 8189: 8185: 8181: 8177: 8173: 8169: 8165: 8161: 8156: 8151: 8147: 8143: 8136: 8121: 8117: 8116: 8111: 8104: 8096: 8092: 8088: 8084: 8080: 8076: 8072: 8068: 8061: 8053: 8049: 8044: 8039: 8034: 8029: 8025: 8021: 8017: 8013: 8009: 8002: 7994: 7990: 7986: 7982: 7978: 7974: 7970: 7966: 7959: 7951: 7947: 7943: 7939: 7935: 7931: 7924: 7916: 7912: 7907: 7906:10.1038/16594 7902: 7898: 7894: 7890: 7886: 7882: 7875: 7867: 7863: 7859: 7855: 7851: 7847: 7843: 7839: 7835: 7831: 7824: 7816: 7812: 7808: 7804: 7800: 7796: 7792: 7788: 7781: 7774: 7768: 7759: 7754: 7750: 7746: 7742: 7738: 7734: 7727: 7725: 7723: 7721: 7712: 7708: 7704: 7700: 7696: 7692: 7685: 7677: 7673: 7669: 7665: 7661: 7657: 7652: 7647: 7644:(2): 024302. 7643: 7639: 7632: 7624: 7620: 7616: 7612: 7608: 7604: 7589: 7581: 7577: 7573: 7569: 7565: 7561: 7554: 7546: 7542: 7538: 7534: 7530: 7526: 7519: 7511: 7507: 7503: 7499: 7495: 7491: 7484: 7465: 7461: 7457: 7453: 7449: 7442: 7431: 7423: 7419: 7415: 7411: 7407: 7403: 7399: 7395: 7391: 7384: 7376: 7372: 7368: 7364: 7360: 7356: 7352: 7348: 7347: 7342: 7331: 7322: 7318: 7314: 7310: 7306: 7302: 7295: 7288: 7284: 7280: 7276: 7272: 7268: 7264: 7260: 7256: 7249: 7242: 7238: 7234: 7230: 7226: 7222: 7218: 7214: 7210: 7203: 7196: 7192: 7188: 7184: 7180: 7176: 7169: 7162: 7158: 7154: 7150: 7146: 7142: 7138: 7131: 7124: 7120: 7116: 7112: 7108: 7104: 7100: 7093: 7086: 7082: 7078: 7074: 7070: 7066: 7062: 7058: 7054: 7047: 7040: 7036: 7032: 7031: 7023: 7016: 7012: 7008: 7004: 7000: 6993: 6986: 6982: 6978: 6974: 6970: 6963: 6956: 6952: 6948: 6944: 6940: 6936: 6931: 6926: 6922: 6918: 6914: 6907: 6900: 6896: 6892: 6888: 6884: 6880: 6876: 6869: 6862: 6858: 6854: 6850: 6846: 6842: 6838: 6831: 6824: 6820: 6816: 6812: 6808: 6804: 6800: 6796: 6792: 6785: 6777: 6771: 6763: 6759: 6754: 6749: 6745: 6741: 6737: 6733: 6729: 6725: 6721: 6714: 6712: 6703: 6699: 6692: 6690: 6688: 6679: 6675: 6670: 6665: 6661: 6657: 6653: 6649: 6645: 6638: 6636: 6634: 6625: 6621: 6617: 6613: 6609: 6605: 6601: 6597: 6593: 6589: 6585: 6581: 6577: 6570: 6568: 6566: 6564: 6555: 6551: 6547: 6540: 6538: 6536: 6534: 6532: 6523: 6519: 6514: 6509: 6505: 6501: 6497: 6493: 6488: 6483: 6479: 6475: 6471: 6464: 6462: 6460: 6458: 6456: 6454: 6452: 6450: 6448: 6432: 6428: 6422: 6420: 6411: 6407: 6403: 6399: 6395: 6391: 6387: 6383: 6378: 6373: 6369: 6365: 6358: 6350: 6343: 6339: 6334: 6329: 6325: 6321: 6320: 6315: 6308: 6300: 6293: 6289: 6285: 6281: 6277: 6273: 6269: 6265: 6261: 6257: 6250: 6248: 6231: 6227: 6223: 6216: 6208: 6202: 6194: 6190: 6186: 6182: 6178: 6174: 6170: 6166: 6162: 6158: 6154: 6147: 6139: 6135: 6131: 6124: 6122: 6120: 6118: 6116: 6114: 6112: 6103: 6099: 6095: 6091: 6087: 6083: 6079: 6075: 6071: 6067: 6060: 6058: 6048: 6040: 6036: 6032: 6025: 6017: 6013: 6008: 6003: 5998: 5993: 5989: 5985: 5981: 5977: 5973: 5966: 5958: 5954: 5947: 5939: 5935: 5928: 5920: 5916: 5912: 5908: 5904: 5900: 5896: 5892: 5885: 5877: 5873: 5869: 5865: 5861: 5857: 5850: 5848: 5839: 5835: 5831: 5827: 5823: 5819: 5812: 5804: 5800: 5796: 5792: 5788: 5784: 5780: 5776: 5772: 5768: 5761: 5759: 5750: 5744: 5736: 5732: 5727: 5722: 5717: 5712: 5708: 5704: 5700: 5696: 5692: 5685: 5676: 5671: 5667: 5663: 5659: 5655: 5651: 5644: 5636: 5632: 5628: 5621: 5614: 5613: 5607: 5599: 5595: 5591: 5587: 5583: 5579: 5572: 5564: 5560: 5556: 5552: 5548: 5544: 5540: 5533: 5525: 5521: 5517: 5510: 5502: 5498: 5494: 5490: 5487:(3907): 861. 5486: 5482: 5475: 5467: 5463: 5459: 5452: 5450: 5441: 5437: 5433: 5429: 5425: 5421: 5417: 5413: 5409: 5405: 5397: 5389: 5385: 5381: 5374: 5366: 5362: 5358: 5351: 5343: 5339: 5335: 5328: 5326: 5310: 5308:9780199587711 5304: 5300: 5296: 5295: 5287: 5285: 5283: 5281: 5279: 5277: 5275: 5266: 5262: 5258: 5254: 5250: 5246: 5242: 5238: 5234: 5228: 5220: 5216: 5212: 5208: 5204: 5200: 5196: 5192: 5185: 5177: 5173: 5169: 5165: 5161: 5157: 5153: 5149: 5142: 5134: 5130: 5125: 5120: 5116: 5112: 5108: 5104: 5100: 5096: 5089: 5087: 5078: 5074: 5070: 5066: 5062: 5058: 5054: 5050: 5043: 5041: 5039: 5037: 5021: 5020: 5015: 5008: 5000: 4996: 4990: 4982: 4978: 4974: 4970: 4966: 4962: 4958: 4954: 4947: 4939: 4935: 4931: 4927: 4922: 4917: 4913: 4909: 4905: 4901: 4897: 4890: 4882: 4878: 4874: 4870: 4866: 4862: 4858: 4854: 4850: 4843: 4841: 4839: 4837: 4828: 4824: 4817: 4815: 4813: 4804: 4800: 4796: 4792: 4788: 4784: 4780: 4776: 4772: 4768: 4761: 4752: 4747: 4743: 4739: 4736:(2): 025008. 4735: 4731: 4727: 4720: 4712: 4708: 4703: 4698: 4694: 4690: 4686: 4682: 4678: 4674: 4670: 4663: 4655: 4651: 4647: 4643: 4639: 4635: 4631: 4627: 4623: 4619: 4612: 4610: 4601: 4597: 4593: 4589: 4585: 4581: 4577: 4573: 4568: 4563: 4559: 4555: 4548: 4546: 4544: 4542: 4526: 4522: 4515: 4507: 4503: 4499: 4495: 4491: 4487: 4483: 4479: 4475: 4468: 4460: 4456: 4452: 4448: 4444: 4440: 4436: 4432: 4428: 4421: 4413: 4407: 4403: 4399: 4395: 4394: 4386: 4378: 4374: 4370: 4366: 4362: 4356: 4348: 4344: 4340: 4336: 4332: 4328: 4323: 4318: 4315:(9): 092202. 4314: 4310: 4306: 4299: 4291: 4287: 4283: 4279: 4275: 4271: 4264: 4256: 4252: 4248: 4244: 4240: 4236: 4232: 4228: 4224: 4220: 4216: 4212: 4208: 4201: 4199: 4197: 4188: 4184: 4180: 4176: 4171: 4166: 4162: 4158: 4154: 4150: 4146: 4142: 4135: 4127: 4121: 4113: 4109: 4104: 4099: 4095: 4091: 4087: 4083: 4079: 4075: 4071: 4064: 4056: 4052: 4048: 4044: 4040: 4036: 4032: 4028: 4024: 4020: 4013: 3994: 3987: 3981: 3965: 3961: 3955: 3947: 3943: 3938: 3933: 3929: 3925: 3921: 3917: 3913: 3906: 3898: 3894: 3890: 3886: 3882: 3878: 3871: 3863: 3859: 3852: 3844: 3840: 3836: 3832: 3828: 3824: 3820: 3816: 3811: 3806: 3802: 3798: 3791: 3783: 3776: 3772: 3768: 3764: 3760: 3756: 3752: 3748: 3747: 3739: 3737: 3728: 3724: 3720: 3716: 3712: 3708: 3703: 3702:11573/1440448 3698: 3694: 3690: 3686: 3682: 3678: 3674: 3670: 3663: 3655: 3651: 3647: 3643: 3639: 3635: 3631: 3627: 3622: 3617: 3613: 3609: 3605: 3598: 3590: 3586: 3582: 3578: 3574: 3570: 3566: 3562: 3558: 3554: 3547: 3539: 3535: 3531: 3527: 3523: 3519: 3512: 3504: 3498: 3490: 3486: 3481: 3476: 3472: 3468: 3464: 3460: 3456: 3441: 3439: 3430: 3426: 3422: 3418: 3414: 3410: 3391: 3389: 3380: 3376: 3372: 3368: 3364: 3360: 3356: 3352: 3345: 3329: 3325: 3318: 3310: 3306: 3302: 3301:10.1038/19480 3298: 3294: 3290: 3286: 3282: 3275: 3267: 3263: 3259: 3255: 3251: 3247: 3240: 3236: 3220: 3216: 3208: 3206: 3201: 3197: 3193: 3189: 3185: 3181: 3176: 3174: 3173: 3168: 3162: 3160: 3156: 3152: 3148: 3143: 3141: 3137: 3133: 3129: 3118: 3114: 3112: 3108: 3103: 3098: 3096: 3092: 3088: 3078: 3076: 3065: 3063: 3052: 3048: 3045: 3040: 3031: 3028: 3024: 3020: 3018: 3017:cryovolcanism 3012: 3009: 2998: 2994: 2991: 2987: 2986:near-infrared 2982: 2980: 2970: 2967: 2963: 2949: 2947: 2946:physisorption 2943: 2939: 2938:chemisorption 2935: 2934:liquification 2931: 2926: 2924: 2920: 2916: 2911: 2906: 2904: 2894: 2879: 2877: 2873: 2869: 2865: 2861: 2856: 2854: 2849: 2845: 2840: 2838: 2827:Besides ice I 2825: 2823: 2810: 2806: 2802: 2794: 2793:ice-phase-one 2790: 2787:(pronounced: 2782: 2769: 2757: 2743: 2740: 2735: 2715: 2713: 2709: 2693: 2690: 2685: 2680: 2675: 2665: 2661: 2657: 2651: 2647: 2645: 2636: 2630: 2627: 2623: 2619: 2615: 2605: 2604:in May 2019. 2603: 2599: 2595: 2591: 2587: 2582: 2580: 2576: 2572: 2567: 2564: 2559: 2555: 2551: 2547: 2543: 2539: 2534: 2532: 2528: 2524: 2520: 2519:hydrogen ions 2516: 2506: 2496: 2489: 2480: 2476: 2469: 2455: 2433: 2423: 2422:10 in). 2413: 2409: 2401: 2397: 2368: 2366: 2356: 2347: 2345: 2341: 2337: 2329: 2325: 2321: 2315: 2308: 2304: 2299: 2297: 2296:ferroelectric 2293: 2287: 2273: 2269: 2265: 2254: 2252: 2251:ferroelectric 2242: 2227: 2220: 2210: 2205: 2196: 2194: 2182: 2173: 2165: 2156: 2143: 2134: 2131: 2127: 2121: 2117: 2099: 2078: 2068: 2062: 2056: 2052: 2047: 2033: 2019: 2017: 2015: 2008: 2001: 1998: 1995: 1994: 1990: 1988: 1986: 1983: 1980: 1977: 1974: 1973: 1969: 1966: 1963: 1960: 1958: 1954: 1951: 1948: 1947: 1943: 1939: 1935: 1931: 1927: 1924: 1922: 1919: 1916: 1912: 1909: 1906: 1905: 1901: 1889: 1885: 1883: 1880: 1877: 1875: 1871: 1868: 1865: 1864: 1860: 1858: 1856: 1853: 1850: 1847: 1844: 1843: 1839: 1835: 1833:Orthorhombic 1832: 1830: 1827: 1824: 1821: 1818: 1817: 1813: 1810: 1808: 1805: 1802: 1799: 1796: 1795: 1791: 1787: 1783: 1780: 1777: 1770: 1766: 1764: 1756: 1753: 1750: 1749: 1741: 1740:Ferroelectric 1738: 1736: 1733: 1731: 1729: 1722: 1719: 1716: 1715: 1711: 1708: 1706: 1703: 1701: 1697: 1694: 1691: 1690: 1686: 1683: 1680: 1677: 1675: 1671: 1668: 1665: 1664: 1660: 1657: 1655: 1652: 1649: 1646: 1643: 1642: 1634: 1631: 1628: 1625: 1622: 1619: 1616: 1615: 1611: 1607: 1604: 1601: 1598: 1596: 1592: 1589: 1586: 1585: 1581: 1577: 1575: 1572: 1569: 1566: 1563: 1560: 1557: 1556: 1552: 1550:Rhombohedral 1549: 1547: 1544: 1542: 1538: 1535: 1532: 1531: 1527: 1523: 1519: 1517: 1514: 1512:(at 350 MPa) 1508: 1505: 1503: 1499: 1496: 1493: 1492: 1489: 1487: 1484: 1482: 1480: 1476: 1474: 1466: 1463: 1460: 1459: 1456: 1453: 1450: 1447: 1445: 1441: 1438: 1435: 1434: 1431: 1428: 1425: 1422: 1420: 1416: 1413: 1410: 1409: 1405: 1402: 1399: 1396: 1393:NA (requires 1392: 1389: 1386: 1383: 1382: 1378: 1374: 1371: 1368: 1365: 1363: 1360: 1357: 1356: 1352: 1349:A metastable 1348: 1345: 1342: 1339: 1337: 1329: 1326: 1320: 1319: 1315: 1303: 1299: 1296: 1293: 1290: 1288:) (freezing) 1287: 1283: 1279: 1276: 1270: 1269: 1265: 1263:Crystal form 1262: 1259: 1256: 1253: 1250: 1247: 1246: 1243: 1241: 1231: 1214: 1208: 1205: 1202: 1199: 1191: 1183: 1179: 1175: 1169: 1166: 1160: 1157: 1154: 1133: 1130: 1125: 1117: 1113: 1109: 1103: 1098: 1094: 1084: 1067: 1064: 1061: 1055: 1052: 1049: 1035: 1026: 1025:, as before. 1010: 1002: 998: 994: 988: 983: 980: 972: 968: 964: 958: 953: 949: 938: 922: 919: 907: 904: 888: 880: 877: 871: 867: 863: 857: 854: 851: 843: 840:and R is the 839: 819: 813: 809: 805: 799: 796: 793: 790: 787: 782: 774: 770: 766: 760: 757: 754: 751: 746: 742: 733: 728: 715: 710: 702: 698: 694: 688: 683: 679: 675: 667: 663: 659: 651: 647: 643: 639: 608: 592: 589: 577: 574: 549: 541: 539: 538:Linus Pauling 529: 512: 509: 506: 500: 497: 494: 491: 473: 468: 455: 451: 448: 444: 434: 430: 427: 420: 408: 400: 391: 387: 385: 381: 377: 373: 372:absolute zero 353: 349: 345: 341: 332: 323: 321: 317: 313: 309: 300: 291: 289: 285: 281: 276: 273: 269: 265: 261: 257: 253: 249: 245: 241: 240:rapid cooling 237: 230:Amorphous ice 227: 221: 217: 208: 200: 198: 194: 190: 186: 182: 178: 170: 169:Linus Pauling 166: 163:The accepted 157: 145: 136: 134: 130: 125: 120: 110: 102: 100: 96: 92: 88: 87:phases of ice 80: 76: 75:phase diagram 72: 68: 58: 48: 42: 40: 35: 30: 26: 21: 20: 12211:Tour skating 12011:Frost flower 11842:Major phases 11777:HDA in space 11758:Glassy Water 11728: 11705: 11670: 11646: 11625: 11573: 11569: 11559: 11524: 11518: 11508: 11465: 11461: 11455: 11443:. Retrieved 11432: 11420:. Retrieved 11414: 11404: 11377: 11373: 11363: 11342: 11317: 11313: 11307: 11280: 11276: 11266: 11254:. Retrieved 11240: 11228:. Retrieved 11213: 11202:. Retrieved 11187: 11170: 11166: 11143:. Retrieved 11139: 11130: 11105: 11101: 11088: 11055: 11051: 11009: 11005: 10999: 10958: 10954: 10948: 10921: 10917: 10907: 10880: 10876: 10866: 10823: 10819: 10813: 10786: 10782: 10772: 10745: 10741: 10731: 10714: 10710: 10704: 10679: 10675: 10669: 10660: 10626: 10622: 10615: 10572: 10568: 10562: 10529: 10525: 10519: 10495: 10491: 10464: 10433:(1): 51–61. 10430: 10426: 10420: 10387: 10383: 10377: 10350: 10346: 10336: 10311: 10307: 10271: 10267: 10261: 10236: 10232: 10222: 10187: 10183: 10155:19 September 10153:. Retrieved 10136:(6): 40–46. 10133: 10129: 10116: 10104:. Retrieved 10095: 10085: 10066: 10062: 10008: 10004: 9991: 9940: 9936: 9926: 9901: 9897: 9891: 9879:. Retrieved 9875:the original 9846: 9842: 9832: 9807: 9803: 9797: 9785:. Retrieved 9776: 9766: 9754:. Retrieved 9745: 9735: 9692: 9688: 9678: 9651: 9647: 9637: 9615:(1): 51–61. 9612: 9608: 9602: 9577: 9573: 9567: 9522: 9518: 9504: 9480:(1): 60–76. 9477: 9473: 9463: 9450: 9436: 9411: 9407: 9394: 9361: 9357: 9347: 9306: 9302: 9296: 9276: 9269: 9258:the original 9244: 9230:cite journal 9187: 9183: 9173: 9159:cite journal 9116: 9112: 9102: 9088:cite journal 9053: 9049: 9039: 8996: 8992: 8978: 8943: 8939: 8929: 8917:. Retrieved 8913: 8903: 8892:. Retrieved 8880: 8858: 8826: 8784: 8780: 8767: 8756:. Retrieved 8744: 8690: 8684: 8657: 8624: 8620: 8607: 8554: 8550: 8512:. Retrieved 8501: 8456: 8452: 8386: 8382: 8375: 8324: 8320: 8310: 8259: 8255: 8249: 8206: 8202: 8196: 8145: 8141: 8135: 8125:13 September 8123:. Retrieved 8113: 8103: 8070: 8066: 8060: 8015: 8011: 8001: 7968: 7964: 7958: 7933: 7929: 7923: 7888: 7884: 7874: 7833: 7829: 7823: 7790: 7786: 7780: 7772: 7767: 7740: 7736: 7694: 7690: 7684: 7641: 7637: 7631: 7606: 7602: 7588: 7563: 7559: 7553: 7528: 7524: 7518: 7493: 7489: 7483: 7471:. Retrieved 7464:the original 7451: 7447: 7430: 7389: 7383: 7350: 7344: 7330: 7304: 7300: 7294: 7262: 7258: 7248: 7216: 7212: 7202: 7186: 7182: 7175:Loerting, T. 7168: 7144: 7140: 7130: 7106: 7102: 7092: 7060: 7056: 7046: 7029: 7022: 7006: 7002: 6992: 6976: 6972: 6962: 6920: 6916: 6906: 6882: 6878: 6868: 6844: 6840: 6830: 6798: 6794: 6784: 6770:cite journal 6727: 6723: 6702:Live Science 6701: 6651: 6647: 6583: 6579: 6549: 6480:(1): 13394. 6477: 6473: 6435:. Retrieved 6433:. 2015-03-27 6430: 6367: 6363: 6357: 6323: 6317: 6307: 6259: 6255: 6236:11 September 6234:. Retrieved 6226:Science News 6225: 6215: 6201:cite journal 6160: 6156: 6146: 6133: 6069: 6065: 6047: 6034: 6024: 5979: 5975: 5965: 5946: 5937: 5927: 5894: 5890: 5884: 5859: 5855: 5821: 5817: 5811: 5770: 5766: 5743: 5698: 5694: 5684: 5657: 5653: 5643: 5630: 5620: 5611: 5606: 5581: 5577: 5571: 5546: 5542: 5532: 5519: 5509: 5484: 5480: 5474: 5461: 5407: 5403: 5396: 5383: 5373: 5360: 5350: 5337: 5312:. Retrieved 5293: 5240: 5236: 5227: 5194: 5190: 5184: 5151: 5147: 5141: 5098: 5094: 5052: 5048: 5023:. Retrieved 5017: 5007: 4998: 4989: 4956: 4952: 4946: 4903: 4899: 4889: 4856: 4852: 4827:Live Science 4826: 4770: 4766: 4760: 4733: 4729: 4719: 4676: 4672: 4662: 4621: 4617: 4557: 4553: 4529:. Retrieved 4524: 4514: 4481: 4477: 4467: 4434: 4430: 4420: 4392: 4385: 4368: 4364: 4355: 4312: 4308: 4298: 4273: 4269: 4263: 4214: 4210: 4152: 4148: 4134: 4120:cite journal 4077: 4073: 4063: 4022: 4018: 4012: 4000:. Retrieved 3993:the original 3980: 3968:. Retrieved 3954: 3919: 3915: 3905: 3880: 3876: 3870: 3861: 3851: 3800: 3796: 3790: 3750: 3744: 3676: 3672: 3662: 3611: 3607: 3597: 3556: 3552: 3546: 3521: 3517: 3511: 3497:cite journal 3462: 3458: 3412: 3408: 3354: 3350: 3344: 3332:. Retrieved 3328:the original 3317: 3284: 3280: 3274: 3249: 3245: 3239: 3219: 3196:close-packed 3177: 3172:Cat's Cradle 3170: 3163: 3144: 3124: 3115: 3107:tiger stripe 3099: 3084: 3075:50000 Quaoar 3071: 3058: 3049: 3037: 3025: 3021: 3013: 3004: 2995: 2983: 2976: 2950: 2927: 2907: 2900: 2880: 2857: 2841: 2826: 2805:liquid water 2792: 2788: 2778: 2738: 2736: 2716: 2707: 2659: 2655: 2652: 2648: 2643: 2631: 2611: 2601: 2583: 2568: 2535: 2512: 2429: 2369: 2361: 2343: 2339: 2335: 2327: 2323: 2319: 2316: 2306: 2300: 2294:rather than 2288: 2271: 2267: 2260: 2248: 2228: 2221: 2209:triple point 2197: 2178: 2149: 2140: 2126:reproducibly 2125: 2122: 2118: 2105: 2084: 2063: 2043: 1956: 1873: 1758: 1735:Orthorhombic 1699: 1673: 1594: 1540: 1522:permittivity 1501: 1486:Rhombohedral 1472: 1443: 1418: 1331: 1280:273.15  1237: 1234:Known phases 1085: 1040: 939: 729: 550: 542: 535: 532:Calculations 464: 450: 431: 428: 396: 344:triple point 340:water vapour 337: 322:properties. 307: 305: 280:hyperuniform 277: 263: 233: 209: 201: 181:tessellating 162: 123: 118: 116: 103: 86: 84: 52: 36: 34:lead section 12381:Pleistocene 12095:Ice-related 12006:Frost heave 11940:Stalactites 11744:'s website. 11445:24 December 11230:January 23, 10883:(1): L101. 10629:: L27–L30, 9190:(1): 3162. 9119:(1): 1128. 7743:(16): n/a. 7531:(5): 1442. 6730:(1): 1129. 6431:ZME Science 5982:(1): 3161. 5767:APS Physics 5314:December 6, 5294:Ice Physics 4527:(in German) 3149:as well as 2973:Outer space 2962:molar ratio 2930:compression 2531:ionic water 2515:crystallize 2432:heavy water 1934:water vapor 1907:Square ice 1811:Monoclinic 1781:Tetragonal 1769:gigapascals 1684:Tetragonal 1658:Tetragonal 1605:Tetragonal 1395:shear force 1294:0.917 g/cm 1029:Refinements 415: J/mol 397:The latent 384:picoseconds 260:outer space 220:tetrahedral 12458:Cryosphere 12453:Glaciology 12442:Categories 12427:Wiktionary 12371:Glaciology 12326:Other uses 12196:Ice racing 12191:Ice hockey 12166:Iceboating 12097:activities 11868:Formations 11859:Superionic 11617:Ice phases 11475:2103.09035 11441:. Llnl.gov 11422:5 February 11204:2018-04-22 10924:(2): L43. 10789:(5): 122. 10063:Challenges 9950:1503.01830 9184:Nat Commun 9113:Nat Commun 8985:Loerting T 8894:2018-02-13 8758:2019-05-13 8564:1909.03400 8557:(1): 464. 8514:2022-09-11 8396:1607.04794 8269:1801.03812 8216:1507.02665 8120:Condé Nast 7039:1752797359 6930:1701.05398 6724:Nat Commun 6487:1607.07617 6437:2018-05-02 5025:4 February 4702:2429/33770 4567:1907.02915 4531:2021-02-18 4276:(8): 515. 4141:Loerting T 4074:Nat Commun 3621:1705.09961 3231:References 2860:inclusions 2848:deposition 2644:disordered 2523:conductive 2400:metastable 2249:Ice XI is 2055:liquid air 1975:Ice XVIII 1967:Hexagonal 1881:0.81 g/cm 1629:1.65 g/cm 1602:1.31 g/cm 1574:Monoclinic 1524:at 117. A 1516:Tetragonal 1327:1943/2020 1297:Hexagonal 1277:10,500 BC 441:See also: 268:micrometer 218:with near 133:metastable 129:metastable 12448:Water ice 12138:Sculpture 11954:Phenomena 11500:232240463 11354:1007.1792 11334:1520-6106 11080:140162310 10653:0004-637X 10607:122950585 10412:121008219 9727:206662912 9654:: 78–82. 9031:195764029 8889:0362-4331 8753:1059-1028 8723:256703104 8421:0021-9606 8349:2045-2322 8294:0021-9606 8241:0009-2614 8155:0906.2489 8087:1520-6106 7993:121266617 7915:204990667 7676:102581583 7287:245597764 6624:256768272 6377:1412.7498 5919:0021-9606 5803:247530544 5501:0036-8075 5432:0021-9606 5133:122950585 4795:0028-0836 4654:218913209 4600:195820566 4506:0370-1328 4459:0022-2488 4347:1098-0121 4255:256504172 4239:0036-8075 4080:: 16189. 4002:6 January 3970:31 August 3946:122365938 3810:1009.4722 3727:221746507 3711:0021-9606 3455:O Ice Ih" 3180:ice giant 3159:Enaiposha 3153:(such as 3102:Enceladus 3081:Icy moons 2789:ice one h 2781:biosphere 2691:× 2681:× 2635:deuterium 2598:ice giant 2581:lattice. 2505:conductor 2477:, H ions 2426:Cubic ice 1949:Ice XVII 1797:Ice XIII 1644:Ice VIII 1608:Exhibits 1580:molecules 1510:1.16 g/cm 1316:of 1.31. 1302:biosphere 1209:⁡ 1170:× 1161:⁡ 1104:× 1065:± 1056:⁡ 959:× 920:− 905:− 889:⋅ 858:⁡ 800:⁡ 761:⁡ 510:± 501:⁡ 443:Ice rules 380:superheat 99:amorphous 39:summarize 12405:Category 12363:Ice ages 12317:Yakhchāl 12297:Icehouse 12123:Climbing 12118:Blocking 12113:Blasting 12031:Hair ice 11981:Crystals 11712:Archived 11600:22127059 11551:21343921 11224:Archived 11198:Archived 11145:25 April 11034:10348736 10983:15592406 10858:35561353 10508:Archived 10498:: 1009. 10231:O ice". 10100:Archived 10069:(1): 3. 9975:25912948 9935:O ice". 9881:22 April 9871:15268170 9787:12 March 9781:Archived 9756:March 8, 9750:Archived 9719:29590042 9559:23236184 9496:25380218 9386:17748273 9331:15758996 9222:34039987 9151:33602946 9080:31972078 9023:31257365 8987:(2019). 8970:30713649 8940:Chem Sci 8859:Phys.org 8809:15903935 8649:10038311 8599:32015342 8523:cite web 8493:31182582 8429:27908115 8367:27375120 8302:29960300 8188:13999983 8180:19792330 8095:16853726 8052:21321232 7950:97894870 7866:31673433 7858:22009223 7815:21405174 7473:24 April 7422:38999963 7414:11847334 7241:21946782 7085:96109290 7035:ProQuest 6955:13662778 6947:28323429 6861:26595233 6823:54544973 6762:33602936 6678:29780552 6648:Chem Sci 6616:31068720 6522:27819265 6402:25810206 6342:19585976 6284:25503235 6230:Archived 6193:44522271 6185:16556840 6102:44522271 6094:16556840 6016:34039991 5735:16591242 5598:20022754 5440:33832256 5265:59485355 4981:11542399 4938:33622340 4930:11539415 4881:11539186 4711:16482260 4646:32461682 4592:32015533 4247:36730416 4187:51969440 4179:30101255 4143:(2018). 4112:29923547 4047:16407948 3964:Archived 3843:15761164 3835:21231184 3775:19624212 3719:32933306 3654:44864111 3646:29341697 3589:43859537 3581:11743196 3538:20022754 3489:30444387 3379:17741864 3182:planets 3167:ice-nine 3095:Callisto 3091:Ganymede 2915:desorbed 2864:diamonds 2795:). Ice I 2783:is ice I 2730:O into D 2646:ice VI. 2546:diamonds 2350:Ice XVII 2204:hydrogen 1996:Ice XIX 1915:graphene 1866:Ice XVI 1840:doping. 1819:Ice XIV 1751:Ice XII 1617:Ice VII 1494:Ice III 1346:Diamond 1312:. Has a 1304:is ice I 1284:(0  1260:Density 1240:Bridgman 467:hydrogen 320:metallic 55:May 2024 12287:Cutting 12261:Pykrete 12181:Cycling 12176:Curling 12171:Cricket 12143:Skating 12133:Rafting 12128:Fishing 12108:Bathing 12051:Nucleus 12036:Jacking 12015:sea ice 12013: ( 11945:Volcano 11909:calving 11907: ( 11905:Iceberg 11900:Glacier 11762:Science 11716:YouTube 11578:Bibcode 11576:: 563. 11529:Bibcode 11480:Bibcode 11382:Bibcode 11285:Bibcode 11256:7 April 11175:Bibcode 11110:Bibcode 11060:Bibcode 11014:Bibcode 11006:Science 10991:4334385 10963:Bibcode 10926:Bibcode 10885:Bibcode 10838:Bibcode 10791:Bibcode 10750:Bibcode 10719:Bibcode 10717:: 659. 10684:Bibcode 10631:Bibcode 10577:Bibcode 10575:: 389. 10554:4306842 10534:Bibcode 10500:Bibcode 10435:Bibcode 10392:Bibcode 10355:Bibcode 10316:Bibcode 10314:: 353. 10276:Bibcode 10241:Bibcode 10192:Bibcode 10138:Bibcode 10106:30 July 10033:2741633 10025:3043536 9983:7736338 9955:Bibcode 9906:Bibcode 9851:Bibcode 9812:Bibcode 9746:Science 9697:Bibcode 9689:Science 9656:Bibcode 9617:Bibcode 9582:Bibcode 9550:3535660 9527:Bibcode 9416:Bibcode 9366:Bibcode 9358:Science 9339:4427815 9311:Bibcode 9213:8155070 9192:Bibcode 9142:7892819 9121:Bibcode 9071:7008458 9001:Bibcode 8961:6334492 8914:Science 8789:Bibcode 8715:1542614 8695:Bibcode 8629:Bibcode 8590:6997176 8569:Bibcode 8484:6600908 8461:Bibcode 8401:Bibcode 8358:4931510 8329:Bibcode 8274:Bibcode 8221:Bibcode 8160:Bibcode 8043:3048133 8020:Bibcode 7973:Bibcode 7893:Bibcode 7838:Bibcode 7795:Bibcode 7745:Bibcode 7699:Bibcode 7656:Bibcode 7611:Bibcode 7597:O ice I 7568:Bibcode 7533:Bibcode 7498:Bibcode 7394:Bibcode 7390:Science 7375:4265919 7355:Bibcode 7309:Bibcode 7267:Bibcode 7221:Bibcode 7149:Bibcode 7111:Bibcode 7065:Bibcode 6887:Bibcode 6803:Bibcode 6753:7893076 6732:Bibcode 6669:5942039 6608:1568026 6588:Bibcode 6513:5103070 6492:Bibcode 6410:4462633 6382:Bibcode 6292:4464711 6264:Bibcode 6165:Bibcode 6157:Science 6074:Bibcode 6066:Science 6007:8154907 5984:Bibcode 5899:Bibcode 5864:Bibcode 5826:Bibcode 5795:1989084 5775:Bibcode 5703:Bibcode 5662:Bibcode 5551:Bibcode 5481:Science 5412:Bibcode 5245:Bibcode 5219:4274283 5199:Bibcode 5176:4241205 5156:Bibcode 5103:Bibcode 5101:: 389. 5077:4265281 5057:Bibcode 4961:Bibcode 4908:Bibcode 4861:Bibcode 4853:Science 4803:4180631 4775:Bibcode 4738:Bibcode 4681:Bibcode 4626:Bibcode 4572:Bibcode 4486:Bibcode 4439:Bibcode 4327:Bibcode 4278:Bibcode 4219:Bibcode 4211:Science 4157:Bibcode 4103:6026910 4082:Bibcode 4055:4404036 4027:Bibcode 3924:Bibcode 3885:Bibcode 3815:Bibcode 3755:Bibcode 3681:Bibcode 3626:Bibcode 3561:Bibcode 3553:Science 3467:Bibcode 3451:O and D 3417:Bibcode 3403:O Ice I 3399:O and D 3359:Bibcode 3351:Science 3334:12 July 3309:4382067 3289:Bibcode 3254:Bibcode 3188:Neptune 3155:Awohali 3134:and on 3132:Neptune 3121:Planets 2872:mineral 2739:in-situ 2708:in situ 2656:in situ 2608:Ice XIX 2479:diffuse 2408:helical 2146:Ice VII 2128:; when 1925:Square 1900:tension 1845:Ice XV 1717:Ice XI 1666:Ice IX 1587:Ice VI 1533:Ice IV 1461:Ice II 1377:viscous 1068:0.00015 1062:1.50685 836:is the 376:changed 368:⁠ 356:⁠ 288:glasses 175:is the 71:Log-lin 12420:  12409:  12398:  12292:Icebox 12251:Palace 12236:Bridge 12153:Sports 12071:Slurry 12046:Needle 11996:Frazil 11915:Icicle 11875:Anchor 11752:Nature 11707:Seeker 11654:  11633:  11598:  11549:  11498:  11332:  11102:Icarus 11078:  11032:  10989:  10981:  10955:Nature 10856:  10676:Icarus 10651:  10605:  10552:  10526:Nature 10410:  10184:Icarus 10031:  10023:  9981:  9973:  9869:  9725:  9717:  9557:  9547:  9494:  9384:  9337:  9329:  9303:Nature 9284:  9220:  9210:  9149:  9139:  9078:  9068:  9029:  9021:  8968:  8958:  8919:17 May 8887:  8827:Nature 8807:  8751:  8721:  8713:  8647:  8597:  8587:  8491:  8481:  8427:  8419:  8365:  8355:  8347:  8300:  8292:  8239:  8186:  8178:  8093:  8085:  8050:  8040:  7991:  7948:  7913:  7885:Nature 7864:  7856:  7813:  7674:  7420:  7412:  7373:  7346:Nature 7285:  7239:  7083:  7037:  6953:  6945:  6859:  6821:  6760:  6750:  6676:  6666:  6622:  6614:  6606:  6580:Nature 6520:  6510:  6408:  6400:  6364:Nature 6340:  6290:  6282:  6256:Nature 6191:  6183:  6100:  6092:  6014:  6004:  5917:  5801:  5793:  5733:  5726:300465 5723:  5596:  5499:  5438:  5430:  5305:  5263:  5217:  5191:Nature 5174:  5148:Nature 5131:  5075:  5049:Nature 4999:Nature 4979:  4936:  4928:  4879:  4801:  4793:  4767:Nature 4709:  4652:  4644:  4598:  4590:  4504:  4457:  4408:  4345:  4253:  4245:  4237:  4185:  4177:  4110:  4100:  4053:  4045:  4019:Nature 3944:  3841:  3833:  3773:  3725:  3717:  3709:  3652:  3644:  3587:  3579:  3536:  3487:  3377:  3307:  3281:Nature 3205:carbon 3184:Uranus 3157:, and 3147:Europa 3140:Charon 3128:Uranus 3093:, and 3087:Europa 3055:Comets 2910:adsorb 2876:mantle 2624:, and 2602:Nature 2550:lasers 2257:Ice XV 2159:Ice XI 2102:Ice IV 2040:Ice II 1942:helium 1920:10GPa 1786:sphere 1709:Cubic 1692:Ice X 1632:Cubic 1561:1900s 1558:Ice V 1361:1930s 1248:Phase 832:where 730:Using 629:2 = 16 365:273.16 352:kelvin 350:. The 185:oxygen 119:higher 113:Theory 12343:Cream 12333:Chips 12312:Trade 12246:Igloo 12241:Hotel 12161:Bandy 12086:Storm 12076:Slush 12066:Shuga 12061:Shove 12021:Glaze 12001:Frost 11976:Clear 11966:Black 11935:Spike 11930:Sheet 11895:Field 11835:water 11831:state 11828:solid 11764:, on 11760:from 11750:from 11496:S2CID 11470:arXiv 11349:arXiv 11098:(PDF) 11076:S2CID 10987:S2CID 10854:S2CID 10828:arXiv 10603:S2CID 10550:S2CID 10511:(PDF) 10488:(PDF) 10408:S2CID 10180:(PDF) 10126:(PDF) 10029:S2CID 10001:(PDF) 9979:S2CID 9945:arXiv 9723:S2CID 9404:(PDF) 9335:S2CID 9261:(PDF) 9254:(PDF) 9027:S2CID 8777:(PDF) 8745:Wired 8719:S2CID 8617:(PDF) 8559:arXiv 8391:arXiv 8264:arXiv 8211:arXiv 8184:S2CID 8150:arXiv 8115:Wired 7989:S2CID 7946:S2CID 7911:S2CID 7862:S2CID 7672:S2CID 7646:arXiv 7467:(PDF) 7444:(PDF) 7418:S2CID 7371:S2CID 7283:S2CID 7081:S2CID 6951:S2CID 6925:arXiv 6819:S2CID 6620:S2CID 6482:arXiv 6406:S2CID 6372:arXiv 6288:S2CID 6189:S2CID 6098:S2CID 5799:S2CID 5594:JSTOR 5261:S2CID 5215:S2CID 5172:S2CID 5129:S2CID 5073:S2CID 4934:S2CID 4799:S2CID 4650:S2CID 4596:S2CID 4562:arXiv 4317:arXiv 4251:S2CID 4183:S2CID 4051:S2CID 3996:(PDF) 3989:(PDF) 3942:S2CID 3839:S2CID 3805:arXiv 3723:S2CID 3650:S2CID 3616:arXiv 3585:S2CID 3534:JSTOR 3305:S2CID 3211:Notes 3136:Pluto 3111:Titan 2495:anode 2414:(6.10 2390:and H 2229:Ice I 2072:0.000 1999:2018 1978:2019 1952:2016 1910:2014 1869:2014 1848:2009 1822:2006 1800:2006 1767:0.55 1754:1996 1720:1972 1669:1968 1647:1966 1620:1937 1590:1912 1536:1900 1497:1900 1464:1900 1439:1996 1414:1984 1387:2023 1351:cubic 1321:Ice I 1271:Ice I 1215:1.504 256:metal 124:below 95:water 12353:Pack 12348:Cube 12338:Core 12307:Pick 12280:Work 12271:Road 12266:Rink 12256:Pier 12081:Snow 12056:Rime 12041:Névé 12026:Hail 11986:Firn 11890:Dune 11885:Cave 11826:The 11742:LSBU 11652:ISBN 11631:ISBN 11596:PMID 11547:PMID 11447:2010 11424:2018 11330:ISSN 11258:2012 11232:2010 11147:2024 11030:PMID 10979:PMID 10649:ISSN 10157:2012 10108:2012 10021:PMID 9971:PMID 9883:2012 9867:PMID 9789:2018 9758:2018 9715:PMID 9555:PMID 9492:PMID 9382:PMID 9327:PMID 9282:ISBN 9236:link 9218:PMID 9165:link 9147:PMID 9094:link 9076:PMID 9019:PMID 8966:PMID 8921:2024 8885:ISSN 8805:PMID 8749:ISSN 8711:OSTI 8645:PMID 8595:PMID 8529:link 8489:PMID 8425:PMID 8417:ISSN 8363:PMID 8345:ISSN 8298:PMID 8290:ISSN 8237:ISSN 8176:PMID 8127:2009 8091:PMID 8083:ISSN 8048:PMID 7854:PMID 7811:PMID 7475:2012 7410:PMID 7237:PMID 6943:PMID 6857:PMID 6776:link 6758:PMID 6674:PMID 6612:PMID 6604:OSTI 6518:PMID 6398:PMID 6338:PMID 6280:PMID 6238:2009 6207:link 6181:PMID 6090:PMID 6012:PMID 5915:ISSN 5791:OSTI 5731:PMID 5497:ISSN 5436:PMID 5428:ISSN 5316:2014 5303:ISBN 5027:2023 4977:PMID 4926:PMID 4877:PMID 4791:ISSN 4707:PMID 4642:PMID 4588:PMID 4502:ISSN 4455:ISSN 4406:ISBN 4343:ISSN 4243:PMID 4235:ISSN 4175:PMID 4126:link 4108:PMID 4043:PMID 4004:2019 3972:2012 3831:PMID 3771:PMID 3715:PMID 3707:ISSN 3642:PMID 3577:PMID 3503:link 3485:PMID 3375:PMID 3336:2017 3186:and 3138:and 3130:and 2956:to H 2837:halo 2660:i.e. 2338:and 2320:Pmmn 2310:HClO 2307:i.e. 2074:0545 1477:300 881:3.37 513:0.02 507:1.50 465:The 445:and 93:for 85:The 12231:Bar 11991:Fog 11925:Sea 11920:Jam 11880:Cap 11833:of 11818:Ice 11740:at 11586:doi 11537:doi 11488:doi 11390:doi 11378:184 11322:doi 11318:102 11293:doi 11281:652 11118:doi 11106:129 11068:doi 11056:109 11022:doi 11010:284 10971:doi 10959:432 10934:doi 10922:422 10893:doi 10881:519 10846:doi 10824:122 10799:doi 10787:145 10758:doi 10746:328 10715:286 10692:doi 10680:201 10639:doi 10627:355 10593:hdl 10585:doi 10573:401 10542:doi 10530:344 10496:290 10443:doi 10400:doi 10363:doi 10351:271 10324:doi 10312:401 10284:doi 10249:doi 10237:103 10208:hdl 10200:doi 10188:193 10146:doi 10071:doi 10013:doi 9963:doi 9914:doi 9902:976 9859:doi 9847:120 9820:doi 9808:294 9705:doi 9693:359 9664:doi 9652:127 9625:doi 9590:doi 9545:PMC 9535:doi 9523:109 9482:doi 9424:doi 9374:doi 9362:211 9319:doi 9307:434 9208:PMC 9200:doi 9137:PMC 9129:doi 9066:PMC 9058:doi 9009:doi 8956:PMC 8948:doi 8831:doi 8797:doi 8703:doi 8637:doi 8585:PMC 8577:doi 8479:PMC 8469:doi 8457:116 8409:doi 8387:145 8353:PMC 8337:doi 8282:doi 8260:148 8229:doi 8207:637 8168:doi 8146:103 8075:doi 8071:109 8038:PMC 8028:doi 8016:108 7981:doi 7938:doi 7934:102 7901:doi 7889:397 7846:doi 7803:doi 7791:134 7753:doi 7707:doi 7695:972 7664:doi 7619:doi 7576:doi 7541:doi 7506:doi 7456:doi 7402:doi 7363:doi 7351:330 7317:doi 7275:doi 7263:789 7229:doi 7191:doi 7187:106 7157:doi 7119:doi 7073:doi 7061:218 7011:doi 7007:107 6981:doi 6935:doi 6895:doi 6849:doi 6845:120 6811:doi 6748:PMC 6740:doi 6664:PMC 6656:doi 6596:doi 6584:569 6508:PMC 6500:doi 6390:doi 6368:519 6328:doi 6324:113 6272:doi 6260:516 6173:doi 6161:311 6082:doi 6070:311 6002:PMC 5992:doi 5907:doi 5872:doi 5834:doi 5783:doi 5771:105 5721:PMC 5711:doi 5670:doi 5586:doi 5559:doi 5489:doi 5485:166 5420:doi 5408:154 5253:doi 5207:doi 5195:384 5164:doi 5152:314 5119:hdl 5111:doi 5099:455 5065:doi 5053:310 4969:doi 4957:107 4916:doi 4904:473 4869:doi 4857:265 4783:doi 4771:188 4746:doi 4697:hdl 4689:doi 4634:doi 4580:doi 4494:doi 4447:doi 4398:doi 4373:doi 4335:doi 4286:doi 4227:doi 4215:379 4165:doi 4098:PMC 4090:doi 4035:doi 4023:439 3932:doi 3920:131 3893:doi 3823:doi 3801:105 3763:doi 3751:131 3697:hdl 3689:doi 3677:153 3634:doi 3612:119 3569:doi 3557:294 3526:doi 3475:doi 3463:121 3425:doi 3413:B50 3367:doi 3355:115 3297:doi 3285:398 3262:doi 3064:1. 2966:sII 2932:or 2824:). 2586:MPa 2571:GPa 2006:); 1902:). 1838:HCl 1479:MPa 1471:); 1184:729 1176:730 1167:1.5 1134:729 413:911 409:is 401:is 282:. 12444:: 11727:. 11710:. 11704:. 11673:. 11669:. 11594:. 11584:. 11572:. 11568:. 11545:. 11535:. 11523:. 11517:. 11494:. 11486:. 11478:. 11466:17 11464:. 11413:. 11388:. 11376:. 11372:. 11328:. 11316:. 11291:. 11279:. 11275:. 11249:. 11196:. 11171:37 11169:. 11155:^ 11138:. 11116:. 11104:. 11100:. 11074:. 11066:. 11054:. 11042:^ 11028:. 11020:. 11008:. 10985:. 10977:. 10969:. 10957:. 10932:. 10920:. 10916:. 10891:. 10879:. 10875:. 10852:. 10844:. 10836:. 10822:. 10797:. 10785:. 10781:. 10756:. 10744:. 10740:. 10713:. 10690:. 10678:. 10647:, 10637:, 10625:, 10601:. 10591:. 10583:. 10571:. 10548:. 10540:. 10528:. 10506:. 10494:. 10490:. 10473:^ 10455:^ 10441:. 10431:72 10429:. 10406:. 10398:. 10388:94 10386:. 10361:. 10349:. 10345:. 10322:. 10310:. 10296:^ 10282:. 10272:56 10270:. 10247:. 10235:. 10206:. 10198:. 10186:. 10182:. 10165:^ 10144:. 10134:56 10132:. 10128:. 10098:. 10094:. 10065:. 10061:. 10041:^ 10027:. 10019:. 10009:21 10007:. 10003:. 9977:. 9969:. 9961:. 9953:. 9941:17 9939:. 9912:. 9900:. 9865:. 9857:. 9845:. 9841:. 9818:. 9806:. 9779:. 9775:. 9748:. 9744:. 9721:. 9713:. 9703:. 9691:. 9687:. 9662:. 9650:. 9646:. 9623:. 9613:72 9611:. 9588:. 9578:71 9576:. 9553:. 9543:. 9533:. 9521:. 9517:. 9515:"" 9490:. 9478:17 9476:. 9472:. 9453:. 9449:. 9445:sd 9422:. 9412:96 9410:. 9406:. 9380:. 9372:. 9360:. 9333:. 9325:. 9317:. 9305:. 9232:}} 9228:{{ 9216:. 9206:. 9198:. 9188:12 9186:. 9182:. 9161:}} 9157:{{ 9145:. 9135:. 9127:. 9117:12 9115:. 9111:. 9090:}} 9086:{{ 9074:. 9064:. 9054:11 9052:. 9048:. 9025:. 9017:. 9007:. 8997:21 8995:. 8991:. 8964:. 8954:. 8944:10 8942:. 8938:. 8912:. 8883:. 8879:. 8867:^ 8857:. 8843:^ 8829:. 8817:^ 8803:. 8795:. 8785:94 8783:. 8779:. 8747:. 8743:. 8731:^ 8717:. 8709:. 8701:. 8691:14 8689:. 8683:. 8669:^ 8643:. 8635:. 8625:60 8623:. 8619:. 8593:. 8583:. 8575:. 8567:. 8555:11 8553:. 8549:. 8537:^ 8525:}} 8521:{{ 8487:. 8477:. 8467:. 8455:. 8451:. 8437:^ 8423:. 8415:. 8407:. 8399:. 8385:. 8361:. 8351:. 8343:. 8335:. 8323:. 8319:. 8296:. 8288:. 8280:. 8272:. 8258:. 8235:. 8227:. 8219:. 8205:. 8182:. 8174:. 8166:. 8158:. 8144:. 8118:. 8112:. 8089:. 8081:. 8069:. 8046:. 8036:. 8026:. 8014:. 8010:. 7987:. 7979:. 7969:80 7967:. 7944:. 7932:. 7909:. 7899:. 7887:. 7883:. 7860:. 7852:. 7844:. 7834:13 7832:. 7809:. 7801:. 7789:. 7751:. 7741:38 7739:. 7735:. 7719:^ 7705:. 7693:. 7670:. 7662:. 7654:. 7642:74 7640:. 7617:. 7607:47 7605:. 7574:. 7564:45 7562:. 7539:. 7529:32 7527:. 7504:. 7492:. 7452:49 7450:. 7446:. 7416:. 7408:. 7400:. 7369:, 7361:, 7349:, 7343:, 7315:. 7305:99 7303:. 7281:, 7273:, 7261:, 7257:, 7235:, 7227:, 7217:13 7215:, 7211:, 7185:, 7181:, 7155:, 7145:38 7143:, 7139:, 7117:, 7105:, 7101:, 7079:, 7071:, 7059:, 7055:, 7005:, 7001:, 6977:71 6975:, 6971:, 6949:, 6941:, 6933:, 6919:, 6915:, 6893:, 6883:75 6881:, 6877:, 6855:, 6843:, 6839:, 6817:, 6809:, 6799:14 6797:, 6793:, 6772:}} 6768:{{ 6756:. 6746:. 6738:. 6728:12 6726:. 6722:. 6710:^ 6700:. 6686:^ 6672:. 6662:. 6650:. 6646:. 6632:^ 6618:. 6610:. 6602:. 6594:. 6582:. 6578:. 6562:^ 6552:. 6548:. 6530:^ 6516:. 6506:. 6498:. 6490:. 6476:. 6472:. 6446:^ 6429:. 6418:^ 6404:. 6396:. 6388:. 6380:. 6366:. 6336:. 6322:. 6316:. 6286:. 6278:. 6270:. 6258:. 6246:^ 6228:. 6224:. 6203:}} 6199:{{ 6187:. 6179:. 6171:. 6159:. 6155:. 6136:. 6132:. 6110:^ 6096:. 6088:. 6080:. 6068:. 6056:^ 6037:. 6033:. 6010:. 6000:. 5990:. 5980:12 5978:. 5974:. 5955:. 5936:. 5913:. 5905:. 5895:58 5893:. 5870:. 5860:48 5858:. 5846:^ 5832:. 5822:45 5820:. 5797:. 5789:. 5781:. 5769:. 5757:^ 5729:. 5719:. 5709:. 5699:52 5697:. 5693:. 5668:. 5656:. 5652:. 5633:. 5629:. 5592:. 5582:47 5580:. 5557:. 5547:22 5545:. 5541:. 5522:. 5518:. 5495:. 5483:. 5464:. 5460:. 5448:^ 5434:. 5426:. 5418:. 5406:. 5386:. 5382:. 5363:. 5359:. 5340:. 5336:. 5324:^ 5297:. 5273:^ 5259:. 5251:. 5239:. 5213:. 5205:. 5193:. 5170:. 5162:. 5150:. 5127:. 5117:. 5109:. 5097:. 5085:^ 5071:. 5063:. 5051:. 5035:^ 5016:. 4997:. 4975:. 4967:. 4955:. 4932:. 4924:. 4914:. 4902:. 4898:. 4875:. 4867:. 4855:. 4851:. 4835:^ 4825:. 4811:^ 4797:. 4789:. 4781:. 4769:. 4744:. 4732:. 4728:. 4705:. 4695:. 4687:. 4675:. 4671:. 4648:. 4640:. 4632:. 4622:19 4620:. 4608:^ 4594:. 4586:. 4578:. 4570:. 4558:19 4556:. 4540:^ 4523:. 4500:. 4492:. 4482:84 4480:. 4476:. 4453:. 4445:. 4433:. 4429:. 4404:. 4369:57 4367:. 4341:. 4333:. 4325:. 4313:75 4311:. 4307:. 4284:. 4272:. 4249:. 4241:. 4233:. 4225:. 4213:. 4209:. 4195:^ 4181:. 4173:. 4163:. 4153:20 4151:. 4147:. 4122:}} 4118:{{ 4106:. 4096:. 4088:. 4076:. 4072:. 4049:. 4041:. 4033:. 4021:. 3940:. 3930:. 3918:. 3914:. 3891:. 3881:23 3879:. 3860:. 3837:. 3829:. 3821:. 3813:. 3799:. 3769:. 3761:. 3749:. 3735:^ 3721:. 3713:. 3705:. 3695:. 3687:. 3675:. 3671:. 3648:. 3640:. 3632:. 3624:. 3610:. 3606:. 3583:. 3575:. 3567:. 3555:. 3532:. 3522:47 3520:. 3499:}} 3495:{{ 3483:. 3473:. 3461:. 3457:. 3437:^ 3423:. 3411:. 3387:^ 3373:. 3365:. 3353:. 3303:. 3295:. 3283:. 3260:. 3250:58 3248:. 3142:. 3089:, 3019:. 2990:μm 2960:O 2925:. 2855:. 2714:. 2620:, 2444:sd 2434:(D 2367:. 2268:Cc 2241:. 2061:. 2013:) 1944:. 1917:) 1792:. 1746:. 1727:) 1639:. 1612:. 1397:) 1336:) 1286:°C 1230:. 1206:ln 1158:ln 1083:. 1053:ln 937:. 855:ln 797:ln 758:ln 668:16 625:/2 618:/2 556:/2 540:. 528:. 498:ln 411:50 386:. 348:Pa 290:. 193:pm 12017:) 11911:) 11810:e 11803:t 11796:v 11733:. 11718:. 11677:. 11660:. 11639:. 11602:. 11588:: 11580:: 11574:2 11553:. 11539:: 11531:: 11525:2 11502:. 11490:: 11482:: 11472:: 11449:. 11426:. 11398:. 11392:: 11384:: 11357:. 11351:: 11336:. 11324:: 11301:. 11295:: 11287:: 11260:. 11234:. 11207:. 11181:. 11177:: 11149:. 11124:. 11120:: 11112:: 11082:. 11070:: 11062:: 11036:. 11024:: 11016:: 10993:. 10973:: 10965:: 10942:. 10936:: 10928:: 10901:. 10895:: 10887:: 10860:. 10848:: 10840:: 10830:: 10807:. 10801:: 10793:: 10766:. 10760:: 10752:: 10725:. 10721:: 10698:. 10694:: 10686:: 10641:: 10633:: 10609:. 10595:: 10587:: 10579:: 10556:. 10544:: 10536:: 10502:: 10449:. 10445:: 10437:: 10414:. 10402:: 10394:: 10371:. 10365:: 10357:: 10330:. 10326:: 10318:: 10290:. 10286:: 10278:: 10255:. 10251:: 10243:: 10229:2 10216:. 10210:: 10202:: 10194:: 10159:. 10148:: 10140:: 10110:. 10079:. 10073:: 10067:8 10035:. 10015:: 9985:. 9965:: 9957:: 9947:: 9933:2 9920:. 9916:: 9908:: 9885:. 9861:: 9853:: 9826:. 9822:: 9814:: 9791:. 9760:. 9729:. 9707:: 9699:: 9672:. 9666:: 9658:: 9631:. 9627:: 9619:: 9596:. 9592:: 9584:: 9561:. 9537:: 9529:: 9513:c 9498:. 9484:: 9457:. 9447:" 9430:. 9426:: 9418:: 9388:. 9376:: 9368:: 9354:c 9341:. 9321:: 9313:: 9290:. 9238:) 9224:. 9202:: 9194:: 9167:) 9153:. 9131:: 9123:: 9096:) 9082:. 9060:: 9033:. 9011:: 9003:: 8972:. 8950:: 8923:. 8897:. 8861:. 8837:. 8833:: 8811:. 8799:: 8791:: 8761:. 8725:. 8705:: 8697:: 8651:. 8639:: 8631:: 8601:. 8579:: 8571:: 8561:: 8531:) 8517:. 8495:. 8471:: 8463:: 8431:. 8411:: 8403:: 8393:: 8369:. 8339:: 8331:: 8325:6 8304:. 8284:: 8276:: 8266:: 8243:. 8231:: 8223:: 8213:: 8190:. 8170:: 8162:: 8152:: 8129:. 8097:. 8077:: 8054:. 8030:: 8022:: 7995:. 7983:: 7975:: 7952:. 7940:: 7917:. 7903:: 7895:: 7868:. 7848:: 7840:: 7817:. 7805:: 7797:: 7761:. 7755:: 7747:: 7713:. 7709:: 7701:: 7678:. 7666:: 7658:: 7648:: 7625:. 7621:: 7613:: 7599:h 7595:2 7582:. 7578:: 7570:: 7547:. 7543:: 7535:: 7512:. 7508:: 7500:: 7494:9 7477:. 7458:: 7439:h 7424:. 7404:: 7396:: 7378:. 7365:: 7357:: 7339:2 7325:. 7323:. 7319:: 7311:: 7277:: 7269:: 7231:: 7223:: 7193:: 7159:: 7151:: 7121:: 7113:: 7107:3 7075:: 7067:: 7013:: 6983:: 6937:: 6927:: 6921:8 6897:: 6889:: 6851:: 6813:: 6805:: 6778:) 6764:. 6742:: 6734:: 6704:. 6680:. 6658:: 6652:9 6626:. 6598:: 6590:: 6556:. 6524:. 6502:: 6494:: 6484:: 6478:7 6440:. 6412:. 6392:: 6384:: 6374:: 6344:. 6330:: 6294:. 6274:: 6266:: 6240:. 6209:) 6195:. 6175:: 6167:: 6140:. 6104:. 6084:: 6076:: 6041:. 6018:. 5994:: 5986:: 5959:. 5940:. 5921:. 5909:: 5901:: 5878:. 5874:: 5866:: 5840:. 5836:: 5828:: 5805:. 5785:: 5777:: 5751:. 5737:. 5713:: 5705:: 5678:. 5672:: 5664:: 5658:7 5637:. 5600:. 5588:: 5565:. 5561:: 5553:: 5526:. 5503:. 5491:: 5468:. 5442:. 5422:: 5414:: 5390:. 5367:. 5344:. 5318:. 5267:. 5255:: 5247:: 5241:3 5221:. 5209:: 5201:: 5178:. 5166:: 5158:: 5135:. 5121:: 5113:: 5105:: 5079:. 5067:: 5059:: 5029:. 4983:. 4971:: 4963:: 4940:. 4918:: 4910:: 4883:. 4871:: 4863:: 4829:. 4805:. 4785:: 4777:: 4754:. 4748:: 4740:: 4734:3 4713:. 4699:: 4691:: 4683:: 4677:8 4656:. 4636:: 4628:: 4602:. 4582:: 4574:: 4564:: 4534:. 4508:. 4496:: 4488:: 4461:. 4449:: 4441:: 4435:7 4414:. 4400:: 4379:. 4375:: 4349:. 4337:: 4329:: 4319:: 4292:. 4288:: 4280:: 4274:1 4257:. 4229:: 4221:: 4189:. 4167:: 4159:: 4128:) 4114:. 4092:: 4084:: 4078:9 4057:. 4037:: 4029:: 4006:. 3974:. 3948:. 3934:: 3926:: 3899:. 3895:: 3887:: 3864:. 3845:. 3825:: 3817:: 3807:: 3777:. 3765:: 3757:: 3729:. 3699:: 3691:: 3683:: 3656:. 3636:: 3628:: 3618:: 3591:. 3571:: 3563:: 3540:. 3528:: 3505:) 3491:. 3477:: 3469:: 3453:2 3449:2 3431:. 3427:: 3419:: 3405:h 3401:2 3397:2 3381:. 3369:: 3361:: 3338:. 3311:. 3299:: 3291:: 3268:. 3264:: 3256:: 3105:" 2958:2 2954:2 2952:H 2944:( 2891:h 2887:h 2883:h 2833:c 2829:h 2818:h 2813:h 2797:h 2785:h 2773:h 2761:h 2732:2 2728:2 2724:2 2720:2 2694:1 2686:2 2676:2 2658:( 2639:2 2507:. 2497:. 2452:2 2448:2 2440:2 2436:2 2420:× 2416:× 2412:Å 2404:h 2392:2 2388:2 2384:2 2380:2 2376:2 2372:0 2344:P 2340:c 2336:b 2332:1 2330:2 2328:P 2324:P 2312:4 2284:1 2282:2 2280:1 2278:2 2276:1 2274:2 2272:P 2239:h 2235:c 2231:c 2224:h 2217:h 2213:h 2200:h 2193:K 2189:h 2185:h 2152:h 2113:4 2109:4 2095:4 2091:4 2087:4 2059:h 2011:h 2004:h 1896:h 1892:c 1773:h 1761:h 1744:h 1725:c 1637:t 1469:h 1334:h 1323:c 1310:c 1306:h 1282:K 1273:h 1218:) 1212:( 1203:R 1200:= 1197:) 1192:2 1188:) 1180:/ 1173:( 1164:( 1155:R 1131:= 1126:6 1122:) 1118:2 1114:/ 1110:1 1107:( 1099:6 1095:6 1071:) 1059:( 1050:R 1011:N 1007:) 1003:2 999:/ 995:3 992:( 989:= 984:N 981:2 977:) 973:2 969:/ 965:1 962:( 954:N 950:6 923:1 915:K 908:1 900:l 897:o 894:m 885:J 878:= 875:) 872:2 868:/ 864:3 861:( 852:R 834:k 820:, 817:) 814:2 810:/ 806:3 803:( 794:R 791:n 788:= 783:N 779:) 775:2 771:/ 767:3 764:( 755:k 752:= 747:0 743:S 716:. 711:N 707:) 703:2 699:/ 695:3 692:( 689:= 684:2 680:/ 676:N 672:) 664:/ 660:6 657:( 652:2 648:/ 644:N 640:6 623:N 616:N 611:6 593:6 590:= 583:) 578:2 575:4 570:( 554:N 545:N 516:) 504:( 495:R 492:= 481:0 478:S 459:h 424:h 362:/ 359:1 224:h 212:h 205:h 173:h 149:h 106:h 57:) 53:( 43:.

Index


lead section
summarize
provide an accessible overview

Log-lin
phase diagram
Roman numerals
states of matter
water
amorphous
metastable
metastable


crystal structure
Linus Pauling
wurtzite lattice
tessellating
oxygen
hydrogen bonds
pm
tetrahedral angle
hexagonal symmetry
tetrahedral
amorphous solid
rapid cooling
glass transition temperature
crystal lattice
physical vapor deposition

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.