Knowledge

Photocathode

Source đź“ť

1216: 20: 383: 202: 1021:
The coating releases electrons much more readily than the underlying metal, allowing it to detect the low-energy photons in infrared radiation. The lens transmits the radiation from the object being viewed to a layer of coated glass. The photons strike the metal surface and transfer electrons to its
977:
Photocathodes divide into two broad groups; transmission and reflective. A transmission type is typically a coating upon a glass window in which the light strikes one surface and electrons exit from the opposite surface. A reflective type is typically formed on an opaque metal electrode base, where
905:
Many photocathodes require excellent vacuum conditions to function and will become "poisoned" when exposed to contaminates. Additionally, using the photocathodes in high current applications will slowly damage the compounds as they are exposed to ion back-bombardment. These effects are quantified
91:
is a unitless number that measures the sensitivity of the photocathode to light. It is the ratio of the number of electrons emitted to the number of incident photons. This property depends on the wavelength of light being used to illuminate the photocathode. For many applications, QE is the most
811:
An equivalent definition of MTE is the temperature of electrons emitted in vacuum. The MTE of electrons emitted from commonly used photocathodes, such as polycrystalline metals, is limited by the excess energy (the difference between the energy of the incident photons and the photocathode's work
1384:
Yamamoto, N., Yamamoto, M., Kuwahara, M., Sakai, R., Morino, T., Tamagaki, K., Mano, A., Utsu, A., Okumi, S., Nakanishi, T., Kuriki, M., Bo, C., Ujihara, T., & Takeda, Y. (2007). Thermal emittance measurements for electron beams produced from bulk and superlattice negative electron affinity
892:
Due to conservation of transverse momentum and energy in the photoemission process, the MTE of a clean, atomically-ordered, single crystalline photocathode is determined by the material's band structure. An ideal band structure for low MTEs is one that does not allow photoemission from large
1170:
facilities where polarized electrons are required. One of the important property of GaAs photocathode is, it can achieve Negative Electron Affinity due to Cs deposition on the surface. However GaAs is very delicate and loses Quantum Efficiency(QE) due to couple of damage mechanism. Ion Back
812:
function) provided to the electrons. To limit MTE, photocathodes are often operated near the photoemission threshold, where the excess energy tends to zero. In this limit, the majority of photoemission comes from the tail of the Fermi distribution. Therefore, MTE is thermally limited to
914:
For many years the photocathode was the only practical method for converting light to an electron current. As such it tends to function as a form of 'electric film' and shared many characteristics of photography. It was therefore the key element in opto-electronic devices, such as
738: 896:
Outside of accelerator physics, MTE and thermal emittance play a role in the resolution of proximity-focused imaging devices that use photocathodes. This is important for applications such as image intensifiers, wavelength converters, and the now obsolete image tubes.
978:
the light enters and the electrons exit from the same side. A variation is the double reflection type, where the metal base is mirror-like, causing light that passed through the photocathode without causing emission to be bounced back for a second try. This mimics the
985:
The effectiveness of a photocathode is commonly expressed as quantum efficiency, that being the ratio of emitted electrons vs. impinging quanta (of light). The efficiency varies with construction as well, as it can be improved with a stronger electric field.
378:{\displaystyle {\text{QE}}={\frac {N_{\text{electron}}}{N_{\text{photon}}}}={\frac {I\cdot E_{\text{photon}}}{P_{\text{laser}}\cdot e}}\approx {\frac {{\overset {}{I}}\cdot 1240}{{\underset {}{P_{\text{laser}}}}\cdot {\underset {}{\lambda _{\text{laser}}}}}}} 742:
Because of the scaling of transverse emittance with MTE, it is sometimes useful to write the equation in terms of a new quantity called the thermal emittance. The thermal emittance is derived from MTE using the following equation.
1421:
Siddharth Karkare, S., Adhikari, G., Schroeder, W. A., Nangoi, J. K., Arias, T., Maxson, J., and Padmore, H. (2020). “Ultracold Electrons via Near-Threshold Photoemission from Single-Crystal Cu(100)." Phys. Rev. Lett. 125, 054801.
804: 582: 628: 396:(MTE) and thermal emittance are popular metrics for this. The MTE is the variance of the transverse momentum in a direction along the photocathode's surface and is most commonly reported in units of milli-electron volts. 965:
is broadly applied in today's manufacturing of photocathode. By using a substrate with matched lattice parameters, crystalline photocathodes can be made and electron beams can come out from the same position in lattice's
463: 1359:
Bazarov, I. V., Dunham, B. M., Li, Y., Liu, X., Ouzounov, D. G., Sinclair, C. K., Hannon, F., & Miyajima, T. (2008). Thermal emittance and response time measurements of negative electron affinity photocathodes.
906:
by the lifetime of the photocathode. Cathode death is modeled as a decaying exponential as a function of either time or emitted charge. Lifetime is then the time constant of the exponential.
1201:
and UV rays but not to visible light and are therefore referred to as solar blind. Cs-Te is insensitive to wavelengths longer than 320 nm, and Cs-I to those longer than 200 nm.
1035:. This was the first compound photocathode material, developed in 1929. Sensitivity from 300 nm to 1200 nm. Since Ag-O-Cs has a higher dark current than more modern materials, 957:
technology. Since most cathodes are sensitive to air the construction of photocathodes typically occurs after the enclosure has been evacuated. In operation the photocathode requires an
1155:
applications. The long wavelength response can be extended to 930 nm by a special photocathode activation processing. With the broadened response, this is sometimes referred to as
195: 168: 141: 489: 516: 621: 748: 523: 840: 867: 1010:
Although a plain metallic cathode will exhibit photoelectric properties, the specialized coating greatly increases the effect. A photocathode usually consists of
401: 1584:
Pierce, D. T.; Celotta, R. J.; Wang, G.-C.; Unertl, W. N.; Galejs, A.; Kuyatt, C. E.; Mielczarek, S. R. (April 1980). "The GaAs spin polarized electron source".
887: 114: 1120:
since it can withstand temperatures up to 175 Â°C. At room temperatures, this photocathode operates with very low dark current, making it ideal for use in
1166:). This photocathode material covers a wider spectral response range than multialkali, from ultraviolet to 930 nm. GaAs photocathodes are also used in 1178:). Extended sensitivity in the infrared range compared to GaAs. Moreover, in the range between 900 nm and 1000 nm, InGaAs has a much better 808:
It is most often expressed in the ratio um/mm to express the growth of emittance in units of um as the laser spot grows (measured in units of mm).
23:
Cs-K-Sb photocathode centered on a Molybdenum plug (a) after growth in the preparation chamber and (b) after transfer into the photoinjector
1147:. The multialkali photocathode has a wide spectral response from the ultraviolet to near infrared region. It is widely used for broad-band 733:{\displaystyle {\overset {}{\varepsilon }}\approx {\overset {}{\sigma _{x}}}{\sqrt {\frac {\overset {}{\text{MTE}}}{511\times 10^{6}}}}} 1335:
Bradley, D. J., Allenson, M. B., & Holeman, B. R. (1977). The transverse energy of electrons emitted from GaAs photocathodes.
1471:
Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
1675:
Grames, J.; Suleiman, R.; Adderley, P. A.; Clark, J.; Hansknecht, J.; Machie, D.; Poelker, M.; Stutzman, M. L. (2011-04-20).
1568: 1259: 1237: 1465:
Siggins, T; Sinclair, C; Bohn, C; Bullard, D; Douglas, D; Grippo, A; Gubeli, J; Krafft, G. A; Yunn, B (2001-12-21).
1230: 1440:
Martinelli, R. U. (1973). Effects of Cathode Bumpiness on the Spatial Resolution of Proximity Focused Image Tubes.
999: 1736: 56: 995: 173: 1085:
Sb-K-Cs). Spectral response range similar to the Sb-Cs photocathode, but with higher sensitivity and lower
92:
important property as the photocathodes are used solely for converting photons into an electrical signal.
945:
has reduced the use of photocathodes to cases where they still remain superior to semiconductor devices.
146: 1431:
Parzyck et al. (2022). “Single-Crystal Alkali Antimonide Photocathodes.” Phys. Rev. Lett. 128, 114801.
119: 1752: 1677:"Charge and fluence lifetime measurements of a dc high voltage GaAs photogun at high average current" 1466: 1182:
than Ag-O-Cs. With special manufacturing techniques this photocathode can operate up to 1700 nm.
1661: 1727: 1299:"A photoemission model for low work function coated metal surfaces and its experimental validation" 1224: 392:
For some applications, the initial momentum distribution of emitted electrons is important and the
474: 1175: 1039:
tubes with this photocathode material are nowadays used only in the infrared region with cooling.
494: 1560: 1554: 589: 1739:
Basics and Applications and a list of EIA "S" spectral-response designations on pages 21 and 88
1241: 1086: 994:
The surface of photocathodes can be characterized by various surface sensitive techniques like
962: 393: 1648: 1190: 1179: 1098: 815: 1688: 1627:"The optimization of (Cs,O) activation of NEA photocathode - IEEE Conference Publication". 1593: 1525: 1478: 1310: 1297:
Jensen, Kevin L.; Feldman, Donald W.; Moody, Nathan A.; O’Shea, Patrick G. (15 June 2006).
1167: 1163: 845: 36: 8: 1731: 920: 52: 40: 1692: 1597: 1529: 1482: 1314: 471:
of the beam which is the area in phase space occupied by the electrons. The emittance (
1636: 1473:. FEL2000: Proc. 22nd Int. Free Electron Laser Conference and 7th F EL Users Workshop. 1094: 872: 99: 88: 1490: 1706: 1609: 1564: 1494: 1348: 1148: 916: 72: 1640: 1696: 1628: 1601: 1533: 1486: 1449: 1394: 1369: 1344: 1318: 1055: 51:
electron beams. Electron beams generated with photocathodes are commonly used for
1701: 1676: 1152: 1121: 1036: 979: 924: 799:{\displaystyle \varepsilon _{\text{th}}={\sqrt {\frac {\text{MTE}}{m_{e}c^{2}}}}} 64: 1512:
Mamun, M. A.; Hernandez-Garcia, C.; Poelker, M.; Elmustafa, A. A. (2015-06-01).
577:{\displaystyle \varepsilon =\sigma _{x}{\sqrt {\frac {\text{MTE}}{m_{e}c^{2}}}}} 1632: 1194: 971: 967: 958: 468: 48: 19: 1022:
rear side. The freed electrons are then collected to produce the final image.
623:
is the rest mass of an electron. In commonly used units, this is as follows.
1746: 1710: 1613: 1498: 1410: 1015: 935: 458:{\displaystyle {\text{MTE}}={\frac {\langle p_{\perp }^{2}\rangle }{2m_{e}}}} 44: 1117: 1090: 1011: 491:) can be calculated from MTE and the laser spot size on the photocathode ( 467:
In high brightness photoinjectors, the MTE helps to determine the initial
1453: 954: 16:
Surface which converts light into electrons via the photoelectric effect
942: 1605: 1538: 1513: 1398: 1373: 1322: 1514:"Correlation of CsK2Sb photocathode lifetime with antimony thickness" 1511: 1467:"Performance of a DC GaAs photocathode gun for the Jefferson lab FEL" 1198: 1132: 1109: 1078: 928: 387: 68: 60: 1298: 934:
Phototubes have been used for years in movie projectors to read the
1136: 1113: 1074: 1066: 1062: 1043: 941:
The more recent development of solid state optical devices such as
1089:
than Sb-Cs. They have sensitivity well matched to the most common
1186: 1140: 1082: 1070: 1047: 59:. Photocathodes are also commonly used as the negatively charged 1409:
Musumeci et al. (2018). “Advances in Bright Electron Sources.”
1128: 1105: 32: 1171:
Bombardment is one of the main cause of GaAs cathode QE decay.
953:
Photocathodes operate in a vacuum, so their design parallels
1674: 1464: 961:
with a nearby positive anode to assure electron emission.
919:
like the orthicon and vidicon, and in image tubes such as
1556:
A Technological History of Motion Pictures and Television
1296: 96:
Quantum efficiency may be calculated from photocurrent (
1583: 1051: 1681:
Physical Review Special Topics: Accelerators and Beams
875: 848: 818: 751: 631: 592: 526: 497: 477: 404: 205: 176: 149: 122: 102: 1058:
and is mainly used in reflection-mode photocathodes.
881: 861: 834: 798: 732: 615: 576: 510: 483: 457: 388:Mean Transverse Energy (MTE) and Thermal Emittance 377: 189: 162: 135: 108: 1104:High temperature bialkali or low noise bialkali ( 1744: 889:is the temperature of electrons in the solid. 931:were used for motion detectors and counters. 434: 416: 1559:. University of California Press. pp.  1116:, Na-K-Sb). This material is often used in 1411:https://doi.org/10.1016/j.nima.2018.03.019 83: 31:is a surface engineered to convert light ( 1700: 1537: 1260:Learn how and when to remove this message 1093:materials and so are frequently used for 1025: 1552: 1223:This article includes a list of general 18: 190:{\displaystyle \lambda _{\text{laser}}} 78: 1745: 1285:An engineering guide to photoinjectors 63:in a light detection device such as a 1337:Journal of Physics D: Applied Physics 1287:. CreateSpace Independent Publishing. 1283:Rao, T., & Dowell, D. H. (2013). 1279: 1277: 1209: 1197:). These materials are sensitive to 996:scanning tunneling microscopy (STM) 989: 13: 1229:it lacks sufficient corresponding 39:. Photocathodes are important in 14: 1764: 1721: 1274: 163:{\displaystyle E_{\text{photon}}} 143:), and either the photon energy ( 1586:Review of Scientific Instruments 1214: 1000:X-ray photoelectron spectroscopy 518:) using the following equation. 197:) using the following equation. 136:{\displaystyle P_{\text{laser}}} 1668: 1620: 1577: 1546: 1505: 1458: 1050:) has a spectral response from 948: 1434: 1425: 1415: 1403: 1378: 1353: 1329: 1290: 869:is the Boltzmann constant and 704: 696: 682: 671: 649: 638: 366: 358: 336: 328: 301: 293: 57:ultrafast electron diffraction 1: 1730:Basics and Applications from 1702:10.1103/physrevstab.14.043501 1491:10.1016/S0168-9002(01)01596-0 1205: 893:transverse momentum states. 43:where they are utilised in a 484:{\displaystyle \varepsilon } 7: 1143:, Na-K-Sb-Cs), also called 1005: 938:on the edge of movie film. 900: 511:{\displaystyle \sigma _{x}} 35:) into electrons using the 10: 1769: 1737:RCA Technical Manual PT-60 1633:10.1109/IVESC.2004.1414231 1553:Fielding, Raymond (1983). 1387:Journal of Applied Physics 1362:Journal of Applied Physics 1349:10.1088/0022-3727/10/1/013 1303:Journal of Applied Physics 616:{\displaystyle m_{e}c^{2}} 1309:(12): 124905–124905–19. 1244:more precise citations. 1176:indium gallium arsenide 909: 170:) or laser wavelength ( 84:Quantum Efficiency (QE) 1656:Cite journal requires 1099:scintillation counters 1026:Photocathode materials 963:Molecular beam epitaxy 883: 863: 836: 835:{\displaystyle k_{B}T} 800: 734: 617: 578: 512: 485: 459: 394:mean transverse energy 379: 191: 164: 137: 110: 24: 1728:Photomultiplier Tubes 1180:signal-to-noise ratio 1031:Ag-O-Cs, also called 884: 864: 862:{\displaystyle k_{B}} 837: 801: 735: 618: 579: 513: 486: 460: 380: 192: 165: 138: 111: 22: 1454:10.1364/AO.12.001841 1164:gallium(II) arsenide 873: 846: 816: 749: 629: 590: 524: 495: 475: 402: 203: 174: 147: 120: 100: 79:Important Properties 53:free electron lasers 37:photoelectric effect 1732:Hamamatsu Photonics 1693:2011PhRvS..14d3501G 1598:1980RScI...51..478P 1530:2015APLM....3f6103M 1483:2001NIMPA.475..549S 1315:2006JAP....99l4905J 433: 41:accelerator physics 1149:spectrophotometers 1095:ionizing radiation 923:, converters, and 879: 859: 832: 796: 730: 613: 574: 508: 481: 455: 419: 375: 370: 340: 187: 160: 133: 106: 89:Quantum efficiency 25: 1606:10.1063/1.1136250 1539:10.1063/1.4922319 1399:10.1063/1.2756376 1374:10.1063/1.2838209 1323:10.1063/1.2203720 1270: 1269: 1262: 982:on many mammals. 882:{\displaystyle T} 794: 793: 770: 759: 728: 727: 708: 702: 694: 686: 680: 653: 647: 572: 571: 548: 453: 408: 373: 364: 354: 346: 334: 324: 316: 305: 299: 279: 269: 257: 236: 233: 223: 209: 184: 157: 130: 109:{\displaystyle I} 73:image intensifier 47:to generate high 1760: 1753:Electrochemistry 1715: 1714: 1704: 1672: 1666: 1665: 1659: 1654: 1652: 1644: 1624: 1618: 1617: 1581: 1575: 1574: 1550: 1544: 1543: 1541: 1509: 1503: 1502: 1462: 1456: 1438: 1432: 1429: 1423: 1419: 1413: 1407: 1401: 1382: 1376: 1357: 1351: 1333: 1327: 1326: 1294: 1288: 1281: 1265: 1258: 1254: 1251: 1245: 1240:this article by 1231:inline citations 1218: 1217: 1210: 1118:oil well logging 990:Characterization 974:electron beams. 888: 886: 885: 880: 868: 866: 865: 860: 858: 857: 841: 839: 838: 833: 828: 827: 805: 803: 802: 797: 795: 792: 791: 790: 781: 780: 768: 767: 766: 761: 760: 757: 739: 737: 736: 731: 729: 726: 725: 724: 707: 703: 700: 692: 691: 690: 689: 687: 685: 681: 678: 669: 668: 659: 654: 652: 648: 645: 633: 622: 620: 619: 614: 612: 611: 602: 601: 583: 581: 580: 575: 573: 570: 569: 568: 559: 558: 546: 545: 544: 542: 541: 517: 515: 514: 509: 507: 506: 490: 488: 487: 482: 464: 462: 461: 456: 454: 452: 451: 450: 437: 432: 427: 414: 409: 406: 384: 382: 381: 376: 374: 372: 371: 369: 365: 362: 356: 355: 352: 341: 339: 335: 332: 326: 325: 322: 313: 306: 304: 300: 297: 288: 285: 280: 278: 271: 270: 267: 260: 259: 258: 255: 242: 237: 235: 234: 231: 225: 224: 221: 215: 210: 207: 196: 194: 193: 188: 186: 185: 182: 169: 167: 166: 161: 159: 158: 155: 142: 140: 139: 134: 132: 131: 128: 116:), laser power ( 115: 113: 112: 107: 1768: 1767: 1763: 1762: 1761: 1759: 1758: 1757: 1743: 1742: 1724: 1719: 1718: 1673: 1669: 1657: 1655: 1646: 1645: 1626: 1625: 1621: 1582: 1578: 1571: 1551: 1547: 1510: 1506: 1463: 1459: 1439: 1435: 1430: 1426: 1420: 1416: 1408: 1404: 1385:photocathodes. 1383: 1379: 1358: 1354: 1334: 1330: 1295: 1291: 1282: 1275: 1266: 1255: 1249: 1246: 1236:Please help to 1235: 1219: 1215: 1208: 1153:photon counting 1122:photon counting 1097:measurement in 1037:photomultiplier 1028: 1008: 992: 951: 917:TV camera tubes 912: 903: 874: 871: 870: 853: 849: 847: 844: 843: 823: 819: 817: 814: 813: 786: 782: 776: 772: 771: 765: 756: 752: 750: 747: 746: 720: 716: 709: 699: 695: 688: 677: 670: 664: 660: 658: 644: 637: 632: 630: 627: 626: 607: 603: 597: 593: 591: 588: 587: 564: 560: 554: 550: 549: 543: 537: 533: 525: 522: 521: 502: 498: 496: 493: 492: 476: 473: 472: 446: 442: 438: 428: 423: 415: 413: 405: 403: 400: 399: 390: 361: 357: 351: 347: 345: 331: 327: 321: 317: 315: 314: 296: 292: 287: 286: 284: 266: 262: 261: 254: 250: 243: 241: 230: 226: 220: 216: 214: 206: 204: 201: 200: 181: 177: 175: 172: 171: 154: 150: 148: 145: 144: 127: 123: 121: 118: 117: 101: 98: 97: 95: 86: 81: 65:photomultiplier 17: 12: 11: 5: 1766: 1756: 1755: 1741: 1740: 1734: 1723: 1722:External links 1720: 1717: 1716: 1667: 1658:|journal= 1619: 1592:(4): 478–499. 1576: 1569: 1545: 1504: 1477:(1): 549–553. 1457: 1442:Applied Optics 1433: 1424: 1414: 1402: 1377: 1352: 1343:(1), 111–125. 1328: 1289: 1272: 1271: 1268: 1267: 1222: 1220: 1213: 1207: 1204: 1203: 1202: 1195:caesium iodide 1183: 1172: 1160: 1125: 1102: 1059: 1040: 1027: 1024: 1016:work functions 1014:with very low 1007: 1004: 991: 988: 968:Brillouin zone 959:electric field 950: 947: 911: 908: 902: 899: 878: 856: 852: 831: 826: 822: 789: 785: 779: 775: 764: 755: 723: 719: 715: 712: 706: 698: 684: 676: 673: 667: 663: 657: 651: 643: 640: 636: 610: 606: 600: 596: 567: 563: 557: 553: 540: 536: 532: 529: 505: 501: 480: 449: 445: 441: 436: 431: 426: 422: 418: 412: 389: 386: 368: 360: 350: 344: 338: 330: 320: 312: 309: 303: 295: 291: 283: 277: 274: 265: 253: 249: 246: 240: 229: 219: 213: 180: 153: 126: 105: 85: 82: 80: 77: 15: 9: 6: 4: 3: 2: 1765: 1754: 1751: 1750: 1748: 1738: 1735: 1733: 1729: 1726: 1725: 1712: 1708: 1703: 1698: 1694: 1690: 1687:(4): 043501. 1686: 1682: 1678: 1671: 1663: 1650: 1642: 1638: 1634: 1630: 1623: 1615: 1611: 1607: 1603: 1599: 1595: 1591: 1587: 1580: 1572: 1570:9780520050648 1566: 1562: 1558: 1557: 1549: 1540: 1535: 1531: 1527: 1524:(6): 066103. 1523: 1519: 1518:APL Materials 1515: 1508: 1500: 1496: 1492: 1488: 1484: 1480: 1476: 1472: 1468: 1461: 1455: 1451: 1447: 1443: 1437: 1428: 1418: 1412: 1406: 1400: 1396: 1393:(2), 024904. 1392: 1388: 1381: 1375: 1371: 1368:(5), 054901. 1367: 1363: 1356: 1350: 1346: 1342: 1338: 1332: 1324: 1320: 1316: 1312: 1308: 1304: 1300: 1293: 1286: 1280: 1278: 1273: 1264: 1261: 1253: 1243: 1239: 1233: 1232: 1226: 1221: 1212: 1211: 1200: 1196: 1192: 1188: 1185:Cs-Te, Cs-I ( 1184: 1181: 1177: 1173: 1169: 1165: 1161: 1158: 1154: 1150: 1146: 1142: 1138: 1134: 1130: 1127:Multialkali ( 1126: 1124:applications. 1123: 1119: 1115: 1111: 1107: 1103: 1100: 1096: 1092: 1088: 1084: 1080: 1076: 1072: 1068: 1064: 1060: 1057: 1053: 1049: 1045: 1041: 1038: 1034: 1030: 1029: 1023: 1019: 1017: 1013: 1012:alkali metals 1003: 1001: 997: 987: 983: 981: 975: 973: 969: 964: 960: 956: 946: 944: 939: 937: 932: 930: 926: 922: 918: 907: 898: 894: 890: 876: 854: 850: 829: 824: 820: 809: 806: 787: 783: 777: 773: 762: 753: 744: 740: 721: 717: 713: 710: 674: 665: 661: 655: 641: 634: 624: 608: 604: 598: 594: 584: 565: 561: 555: 551: 538: 534: 530: 527: 519: 503: 499: 478: 470: 465: 447: 443: 439: 429: 424: 420: 410: 397: 395: 385: 348: 342: 318: 310: 307: 289: 281: 275: 272: 263: 251: 247: 244: 238: 227: 217: 211: 198: 178: 151: 124: 103: 93: 90: 76: 74: 70: 66: 62: 58: 54: 50: 46: 45:photoinjector 42: 38: 34: 30: 21: 1684: 1680: 1670: 1649:cite journal 1622: 1589: 1585: 1579: 1555: 1548: 1521: 1517: 1507: 1474: 1470: 1460: 1445: 1441: 1436: 1427: 1417: 1405: 1390: 1386: 1380: 1365: 1361: 1355: 1340: 1336: 1331: 1306: 1302: 1292: 1284: 1256: 1250:October 2008 1247: 1228: 1156: 1144: 1091:scintillator 1087:dark current 1032: 1020: 1009: 993: 984: 976: 970:to get high 952: 949:Construction 940: 936:sound tracks 933: 921:intensifiers 913: 904: 895: 891: 810: 807: 745: 741: 625: 585: 520: 466: 398: 391: 199: 94: 87: 29:photocathode 28: 26: 1448:(8), 1841. 1242:introducing 1168:accelerator 955:vacuum tube 943:photodiodes 1225:references 1206:References 1073:Sb-Rb-Cs, 1061:Bialkali ( 972:brightness 929:phototubes 925:dissectors 49:brightness 1711:1098-4402 1614:0034-6748 1499:0168-9002 1199:vacuum UV 1191:telluride 1133:potassium 1110:potassium 1079:potassium 927:. Simple 754:ε 714:× 675:μ 662:σ 656:≈ 642:μ 635:ε 535:σ 528:ε 500:σ 479:ε 469:emittance 435:⟩ 425:⊥ 417:⟨ 349:λ 343:⋅ 308:⋅ 282:≈ 273:⋅ 248:⋅ 179:λ 69:phototube 61:electrode 1747:Category 1641:25911728 1174:InGaAs ( 1137:antimony 1114:antimony 1075:antimony 1067:rubidium 1063:antimony 1044:antimony 1006:Coatings 901:Lifetime 842:, where 222:electron 55:and for 1689:Bibcode 1594:Bibcode 1526:Bibcode 1479:Bibcode 1311:Bibcode 1238:improve 1187:caesium 1141:caesium 1083:caesium 1071:caesium 1056:visible 1048:caesium 1042:Sb-Cs ( 33:photons 1709:  1639:  1612:  1567:  1497:  1227:, but 1162:GaAs ( 1129:sodium 1106:sodium 980:retina 586:where 256:photon 232:photon 156:photon 1637:S2CID 353:laser 333:watts 323:laser 268:laser 183:laser 129:laser 1707:ISSN 1662:help 1610:ISSN 1565:ISBN 1495:ISSN 1157:S-25 1151:and 1145:S-20 998:and 910:Uses 311:1240 298:amps 71:and 1697:doi 1629:doi 1602:doi 1561:360 1534:doi 1487:doi 1475:475 1450:doi 1395:doi 1391:102 1370:doi 1366:103 1345:doi 1319:doi 1054:to 1033:S-1 769:MTE 711:511 701:meV 693:MTE 547:MTE 407:MTE 1749:: 1705:. 1695:. 1685:14 1683:. 1679:. 1653:: 1651:}} 1647:{{ 1635:. 1608:. 1600:. 1590:51 1588:. 1563:. 1532:. 1520:. 1516:. 1493:. 1485:. 1469:. 1446:12 1444:, 1389:, 1364:, 1341:10 1339:, 1317:. 1307:99 1305:. 1301:. 1276:^ 1193:, 1052:UV 1018:. 1002:. 758:th 718:10 363:nm 208:QE 75:. 67:, 27:A 1713:. 1699:: 1691:: 1664:) 1660:( 1643:. 1631:: 1616:. 1604:: 1596:: 1573:. 1542:. 1536:: 1528:: 1522:3 1501:. 1489:: 1481:: 1452:: 1397:: 1372:: 1347:: 1325:. 1321:: 1313:: 1263:) 1257:( 1252:) 1248:( 1234:. 1189:- 1159:. 1139:- 1135:- 1131:- 1112:- 1108:- 1101:. 1081:- 1077:- 1069:- 1065:- 1046:- 877:T 855:B 851:k 830:T 825:B 821:k 788:2 784:c 778:e 774:m 763:= 722:6 705:] 697:[ 683:] 679:m 672:[ 666:x 650:] 646:m 639:[ 609:2 605:c 599:e 595:m 566:2 562:c 556:e 552:m 539:x 531:= 504:x 448:e 444:m 440:2 430:2 421:p 411:= 367:] 359:[ 337:] 329:[ 319:P 302:] 294:[ 290:I 276:e 264:P 252:E 245:I 239:= 228:N 218:N 212:= 152:E 125:P 104:I

Index


photons
photoelectric effect
accelerator physics
photoinjector
brightness
free electron lasers
ultrafast electron diffraction
electrode
photomultiplier
phototube
image intensifier
Quantum efficiency
mean transverse energy
emittance
TV camera tubes
intensifiers
dissectors
phototubes
sound tracks
photodiodes
vacuum tube
electric field
Molecular beam epitaxy
Brillouin zone
brightness
retina
scanning tunneling microscopy (STM)
X-ray photoelectron spectroscopy
alkali metals

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑