Knowledge

Photoelasticity

Source 📝

1072: 795: 20: 232: 1036: 33: 204:, in the field. At the same time, much development occurred in the field – great improvements were achieved in technique, and the equipment was simplified. With refinements in the technology, photoelastic experiments were extended to determining three-dimensional states of stress. In parallel to developments in experimental technique, the first phenomenological description of photoelasticity was given in 1890 by 1047:
condition is achieved when the thickness of the prototype is much smaller as compared to dimensions in the plane. Thus one is only concerned with stresses acting parallel to the plane of the model, as other stress components are zero. The experimental setup varies from experiment to experiment. The two basic kinds of setup used are plane polariscope and circular polariscope.
263:
photoelasticity integrated with high-speed photography is utilized to investigate fracture behavior in materials. Another important application of the photoelasticity experiments is to study the stress field around bi-material notches. Bi-material notches exist in many engineering application like welded or adhesively bonded structures.
1090:
are added to the experimental setup of the plane polariscope. The first quarter-wave plate is placed in between the polarizer and the specimen and the second quarter-wave plate is placed between the specimen and the analyzer. The effect of adding the quarter-wave plate after the source-side polarizer
1063:
and a light source. The light source can either emit monochromatic light or white light depending upon the experiment. First the light is passed through the first polarizer which converts the light into plane polarized light. The apparatus is set up in such a way that this plane polarized light then
1050:
The working principle of a two-dimensional experiment allows the measurement of retardation, which can be converted to the difference between the first and second principal stress and their orientation. To further get values of each stress component, a technique called stress-separation is required.
1014:
For materials that do not show photoelastic behavior, it is still possible to study the stress distribution. The first step is to build a model, using photoelastic materials, which has geometry similar to the real structure under investigation. The loading is then applied in the same way to ensure
1046:
Photoelasticity can describe both three-dimensional and two-dimensional states of stress. However, examining photoelasticity in three-dimensional systems is more involved than two-dimensional or plane-stress system. So the present section deals with photoelasticity in a plane stress system. This
262:
embedded in an elastic medium. In the former case, the problem is nonlinear due to the contacts between bricks, while in the latter case the elastic solution is singular, so that numerical methods may fail to provide correct results. These can be obtained through photoelastic techniques. Dynamic
814:. Upon the application of stresses, photoelastic materials exhibit the property of birefringence, and the magnitude of the refractive indices at each point in the material is directly related to the state of stresses at that point. Information such as maximum 1098:
The basic advantage of a circular polariscope over a plane polariscope is that in a circular polariscope setup we only get the isochromatics and not the isoclinics. This eliminates the problem of differentiating between the isoclinics and the isochromatics.
958:
are the first and second principal stresses, respectively. The retardation changes the polarization of transmitted light. The polariscope combines the different polarization states of light waves before and after passing the specimen. Due to optical
219:– made possible by light-emitting diodes – continuous monitoring of structures under load became possible. This led to the development of dynamic photoelasticity, which has contributed greatly to the study of complex phenomena such as 1064:
passes through the stressed specimen. This light then follows, at each point of the specimen, the direction of principal stress at that point. The light is then made to pass through the analyzer and we finally get the fringe pattern.
456: 1455:
Kramer, Sharlotte; Beiermann, Brett; Davis, Douglas; Sottos, Nancy; White, Scott; Moore, Jeffrey (2013). "Characterization of Mechanochemically Active Polymers Using Combined Photoelasticity and Fluorescence Measurements".
919: 1026:
Isochromatics are the loci of the points along which the difference in the first and second principal stress remains the same. Thus they are the lines which join the points with equal maximum shear stress magnitude.
663: 1067:
The fringe pattern in a plane polariscope setup consists of both the isochromatics and the isoclinics. The isoclinics change with the orientation of the polariscope while there is no change in the isochromatics.
251:. Digitization of polariscopy enables fast image acquisition and data processing, which allows its industrial applications to control quality of manufacturing process for materials such as glass and polymer. 1181:
Brewster, David (1816). "On the communication of the structure of doubly refracting crystals to glass, muriate of soda, fluor spar, and other substances, by mechanical compression and dilatation".
1489:
Fernandes, Cláudio P.; Glantz, Per-Olof J.; Svensson, Stig A.; Bergmark, Anders (2003). "Reflection photoelasticity: A new method for studies of clinical mechanics in prosthetic dentistry".
325: 1006: 1150:"Experiments on the depolarisation of light as exhibited by various mineral, animal, and vegetable bodies, with a reference of the phenomena to the general principles of polarisation" 1725: 362: 549: 772: 702: 495: 732: 782:. Although the symmetric photoelastic tensor is most commonly defined with respect to mechanical strain, it is also possible to express photoelasticity in terms of the 778:. From either definition, it is clear that deformations to the body may induce optical anisotropy, which can cause an otherwise optically isotropic material to exhibit 522: 1095:
passing through the sample. The analyzer-side quarter-wave plate converts the circular polarization state back to linear before the light passes through the analyzer.
576: 1797:
Solaguren-Beascoa Fernández, M.; Alegre Calderón, J.M.; Bravo Díez, P.M.; Cuesta Segura, I.I. (2010). "Stress-separation techniques in photoelasticity: A review".
243:
Photoelasticity has been used for a variety of stress analyses and even for routine use in design, particularly before the advent of numerical methods, such as
1697:
Ayatollahi, M.R.; Mirsayar, M.M.; Dehghany, M. (2011). "Experimental determination of stress field parameters in bi-material notches using photoelasticity".
266:
For example, some elements of Gothic cathedrals previously thought decorative were first proved essential for structural support by photoelastic methods.
775: 196:, became a standard text on the subject. Between 1930 and 1940, many other books appeared on the subject, including books in Russian, German and French. 806:, as exhibited by certain transparent materials. Birefringence is a phenomenon in which a ray of light passing through a given material experiences two 370: 833:
and each component experiences a different refractive index due to the birefringence. The difference in the refractive indices leads to a relative
851: 1077:
The same device functions as a plane polariscope when quarter wave plates are taken aside or rotated so their axes parallel to polarization axes
1011:
which depends on relative retardation. By studying the fringe pattern one can determine the state of stress at various points in the material.
584: 259: 1402:
Ajovalasit, A.; Petrucci, G.; Scafidi, M. (2012). "RGB photoelasticity applied to the analysis of membrane residual stress in glass".
1051:
Several theoretical and experimental methods are utilized to provide additional information to solve individual stress components.
258:
Photoelasticity can successfully be used to investigate the highly localized stress state within masonry or in proximity of a
97: 1473: 1299: 69: 1240:
Fresnel, Augustin-Jean (2021). "Note on the double refraction of compressed glass". Translated by Putland, Gavin Richard.
841:
materials, where two-dimensional photoelasticity is applicable, the magnitude of the relative retardation is given by the
212:
as the description by Pockels only considered the effect of mechanical strain on the optical properties of the material.
1317:"Ueber die durch einseitigen Druck hervorgerufene Doppelbrechung regulärer Krystalle, speciell von Steinsalz und Sylvin" 76: 1627:
Noselli, G.; Dal Corso, F.; Bigoni, D. (2010). "The stress intensity near a stiffener disclosed by photoelasticity".
1611: 281: 116: 1023:
Isoclinics are the loci of the points in the specimen along which the principal stresses are in the same direction.
50: 1865: 960: 83: 973: 54: 330: 65: 205: 1662:
Shukla, A. (2001). "High-speed fracture studies on bimaterial interfaces using photoelasticity—a review".
1845: 735: 181: 1860: 829:
passes through a photoelastic material, its electromagnetic wave components are resolved along the two
826: 176:. Experimental frameworks were developed at the beginning of the twentieth century with the works of 142: 1266: 239:
model. Isochromatic fringe patterns around a steel platelet in a photo-elastic two-part epoxy resin.
527: 741: 671: 464: 1796: 1108: 248: 43: 1841:
Laboratory for Physical Modeling of Structures and Photoelasticity (University of Trento, Italy)
707: 1835: 1123: 500: 1233: 1253: 1092: 818:
and its orientation are available by analyzing the birefringence with an instrument called a
173: 90: 1460:. Conference Proceedings of the Society for Experimental Mechanics Series. pp. 167–78. 1576: 1537: 1411: 1363: 1328: 554: 236: 185: 1015:
that the stress distribution in the model is similar to the stress in the real structure.
8: 1730: 177: 1580: 1541: 1423: 1415: 1367: 1332: 1870: 1814: 1679: 1644: 1437: 1291: 1198: 1039:
Photoelastic experiment showing the internal stress distribution inside the cover of a
830: 704:
is the symmetric part of the photoelastic tensor (the photoelastic strain tensor), and
150: 138: 1588: 1549: 1502: 1818: 1683: 1607: 1506: 1469: 1295: 1202: 794: 130: 1648: 1458:
Application of Imaging Techniques to Mechanics of Materials and Structures, Volume 4
1441: 1071: 1806: 1706: 1671: 1636: 1584: 1545: 1498: 1461: 1427: 1419: 1371: 1336: 1287: 1241: 1190: 1161: 1113: 810:. The property of birefringence (or double refraction) is observed in many optical 807: 451:{\displaystyle \Delta (\varepsilon ^{-1})_{ij}=P_{ijk\ell }\partial _{k}u_{\ell }} 1875: 1710: 1465: 1118: 244: 193: 19: 1375: 1228:
Reprinted in H. de Senarmont, E. Verdet, and L. Fresnel (eds.),
838: 783: 165: 1640: 1526:"Localized stress percolation through dry masonry walls. Part I – Experiments" 1854: 1746:
Physical Properties of Crystals: Their Representation by Tensors and Matrices
1675: 1565:"Localized stress percolation through dry masonry walls. Part II – Modelling" 1340: 1216:
Fresnel, Augustin (1822). "Note sur la double réfraction du verre comprimé".
834: 803: 779: 197: 169: 1354:
Nelson, D. F.; Lax, M. (1970). "New Symmetry for Acousto-Optic Scattering".
914:{\displaystyle \Delta ={\frac {2\pi t}{\lambda }}C(\sigma _{1}-\sigma _{2})} 231: 208:, however this was proved inadequate almost a century later by Nelson & 1810: 1510: 1245: 1194: 1166: 1149: 963:
of the two waves, a fringe pattern is revealed. The number of fringe order
815: 1128: 837:
retardation between the two components. Assuming a thin specimen made of
819: 216: 1432: 1087: 1040: 275: 209: 146: 1604:
Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability
1035: 798:
Tension lines in a plastic protractor seen under cross-polarized light
658:{\displaystyle \Delta (\varepsilon ^{-1})_{ij}=p_{ijk\ell }s_{k\ell }} 1060: 252: 162: 1726:"The Canary: Michael Lewis on Chris Mark of the Department of Labor" 1316: 172:. That diagnosis was confirmed in a direct refraction experiment by 32: 1564: 1525: 220: 327:
with respect to the deformation (the gradient of the displacement
811: 551:
denotes differentiation with respect to the Cartesian coordinate
255:
utilizes photoelasticity to analyze strain in denture materials.
161:
The photoelastic phenomenon was first discovered by the Scottish
1282:
Leven, M.M.; Frocht, M.M., eds. (1969). "Vita Max Mark Frocht".
1488: 1840: 1696: 1454: 578:. For isotropic materials, this definition simplifies to 1401: 1183:
Philosophical Transactions of the Royal Society of London
1154:
Philosophical Transactions of the Royal Society of London
1759:
Properties of Materials: Anisotropy, Symmetry, Structure
16:
Change in optical properties of a material due to stress
1626: 1799:
The Journal of Strain Analysis for Engineering Design
1664:
The Journal of Strain Analysis for Engineering Design
976: 854: 802:
The experimental procedure relies on the property of
744: 710: 674: 587: 557: 530: 503: 467: 373: 333: 284: 57:. Unsourced material may be challenged and removed. 1030: 1000: 913: 766: 726: 696: 657: 570: 543: 516: 489: 450: 356: 319: 168:, who immediately recognized it as stress-induced 149:and is often used to experimentally determine the 524:is the linear displacement from equilibrium, and 1852: 1836:University of Cambridge Page on Photoelasticity. 23:Plastic utensils in a photoelasticity experiment 1018: 320:{\displaystyle \Delta (\varepsilon ^{-1})_{ij}} 278:the change in the inverse permittivity tensor 1562: 1523: 1081: 1209: 1086:In a circular polariscope setup two quarter- 1281: 497:is the fourth-rank photoelasticity tensor, 1563:Bigoni, Davide; Noselli, Giovanni (2010). 1524:Bigoni, Davide; Noselli, Giovanni (2010). 1054: 1001:{\displaystyle N={\frac {\Delta }{2\pi }}} 789: 1431: 1353: 1165: 924:where Δ is the induced retardation, 117:Learn how and when to remove this message 1569:European Journal of Mechanics – A/Solids 1530:European Journal of Mechanics - A/Solids 1180: 1147: 1070: 1034: 793: 230: 18: 1314: 1239: 1215: 200:published the classic two volume work, 1853: 1661: 1601: 357:{\displaystyle \partial _{\ell }u_{k}} 1723: 1230:Oeuvres complètes d'Augustin Fresnel 269: 55:adding citations to reliable sources 26: 1724:Lewis, Michael (3 September 2024). 235:Photoelastic model to validate the 13: 1761:, Oxford University Press, 2005. 1748:, Oxford University Press, 1957. 1404:Measurement Science and Technology 1292:10.1016/B978-0-08-012998-3.50005-7 985: 855: 588: 532: 429: 374: 335: 285: 14: 1887: 1829: 1774:3rd ed., McGraw-Hill Inc., 1991 1629:International Journal of Fracture 1589:10.1016/j.euromechsol.2009.10.013 1550:10.1016/j.euromechsol.2009.10.009 1392:. J. Wiley and Sons, London, 1965 1075:Transmission Circular Polariscope 1059:The setup consists of two linear 1218:Annales de Chimie et de Physique 260:rigid line inclusion (stiffener) 31: 1790: 1777: 1764: 1751: 1738: 1717: 1690: 1655: 1620: 1595: 1556: 1517: 1482: 1031:Two-dimensional photoelasticity 226: 215:With the advent of the digital 141:of a material under mechanical 42:needs additional citations for 1606:. Cambridge University Press. 1448: 1395: 1382: 1347: 1308: 1275: 1174: 1141: 944:is the vacuum wavelength, and 908: 882: 608: 591: 394: 377: 305: 288: 1: 1772:Experimental Stress Analysis, 1770:Dally, J.W. and Riley, W.F., 1503:10.1016/s0109-5641(02)00019-2 1424:10.1088/0957-0233/23/2/025601 1321:Annalen der Physik und Chemie 1286:. Pergamon. pp. xi–xii. 1134: 544:{\displaystyle \partial _{l}} 1711:10.1016/j.matdes.2011.06.002 1466:10.1007/978-1-4419-9796-8_21 1019:Isoclinics and isochromatics 767:{\displaystyle P_{ijk\ell }} 738:. The antisymmetric part of 697:{\displaystyle p_{ijk\ell }} 490:{\displaystyle P_{ijk\ell }} 153:distribution in a material. 7: 1102: 940:is the specimen thickness, 831:principal stress directions 190:Treatise on Photoelasticity 10: 1892: 1846:Build your own polariscope 1376:10.1103/PhysRevLett.24.379 1093:circularly polarized light 1082:Circular polariscope setup 727:{\displaystyle s_{k\ell }} 156: 145:. It is a property of all 1641:10.1007/s10704-010-9502-9 517:{\displaystyle u_{\ell }} 137:describes changes in the 1785:Digital Photoelasticity, 1676:10.1243/0309324011512658 1341:10.1002/andp.18902750313 1148:Brewster, David (1815). 932:stress-optic coefficient 1356:Physical Review Letters 1109:Acousto-optic modulator 1055:Plane polariscope setup 790:Experimental principles 192:, published in 1930 by 1866:Mechanical engineering 1811:10.1243/03093247JSA583 1699:Materials & Design 1261:Cite journal requires 1246:10.5281/zenodo.4706835 1232:, vol. 1 (1866), 1195:10.1098/rstl.1816.0011 1167:10.1098/rstl.1815.0004 1124:Photoelastic modulator 1078: 1043: 1002: 915: 799: 768: 728: 698: 659: 572: 545: 518: 491: 452: 358: 321: 240: 24: 1074: 1038: 1003: 916: 797: 769: 729: 699: 660: 573: 571:{\displaystyle x_{l}} 546: 519: 492: 453: 359: 322: 234: 174:Augustin-Jean Fresnel 22: 1315:Pockels, F. (1890). 974: 852: 742: 708: 672: 585: 555: 528: 501: 465: 371: 364:) is described by 331: 282: 186:University of London 51:improve this article 1731:The Washington Post 1602:Bigoni, D. (2012). 1581:2010EuJMA..29..299B 1542:2010EuJMA..29..291B 1416:2012MeScT..23b5601A 1368:1970PhRvL..24..379N 1333:1890AnP...275..440P 276:dielectric material 1079: 1044: 998: 911: 808:refractive indices 800: 764: 724: 694: 655: 568: 541: 514: 487: 448: 354: 317: 241: 139:optical properties 25: 1861:Materials science 1475:978-1-4419-9528-5 1301:978-0-08-012998-3 996: 877: 784:mechanical stress 776:roto-optic tensor 270:Formal definition 249:boundary elements 206:Friedrich Pockels 131:materials science 127: 126: 119: 101: 66:"Photoelasticity" 1883: 1823: 1822: 1794: 1788: 1787:Springer, 2000 1781: 1775: 1768: 1762: 1755: 1749: 1742: 1736: 1735: 1721: 1715: 1714: 1694: 1688: 1687: 1659: 1653: 1652: 1624: 1618: 1617: 1599: 1593: 1592: 1560: 1554: 1553: 1521: 1515: 1514: 1491:Dental Materials 1486: 1480: 1479: 1452: 1446: 1445: 1435: 1399: 1393: 1386: 1380: 1379: 1351: 1345: 1344: 1312: 1306: 1305: 1279: 1273: 1270: 1264: 1259: 1257: 1249: 1225: 1213: 1207: 1206: 1178: 1172: 1171: 1169: 1145: 1114:Electrostriction 1007: 1005: 1004: 999: 997: 995: 984: 934: 933: 920: 918: 917: 912: 907: 906: 894: 893: 878: 873: 862: 843:stress-optic law 774:is known as the 773: 771: 770: 765: 763: 762: 733: 731: 730: 725: 723: 722: 703: 701: 700: 695: 693: 692: 664: 662: 661: 656: 654: 653: 641: 640: 619: 618: 606: 605: 577: 575: 574: 569: 567: 566: 550: 548: 547: 542: 540: 539: 523: 521: 520: 515: 513: 512: 496: 494: 493: 488: 486: 485: 457: 455: 454: 449: 447: 446: 437: 436: 427: 426: 405: 404: 392: 391: 363: 361: 360: 355: 353: 352: 343: 342: 326: 324: 323: 318: 316: 315: 303: 302: 147:dielectric media 122: 115: 111: 108: 102: 100: 59: 35: 27: 1891: 1890: 1886: 1885: 1884: 1882: 1881: 1880: 1851: 1850: 1832: 1827: 1826: 1795: 1791: 1782: 1778: 1769: 1765: 1756: 1752: 1743: 1739: 1722: 1718: 1705:(10): 4901–08. 1695: 1691: 1660: 1656: 1635:(1–2): 91–103. 1625: 1621: 1614: 1600: 1596: 1561: 1557: 1522: 1518: 1487: 1483: 1476: 1453: 1449: 1400: 1396: 1390:Photoelasticity 1387: 1383: 1352: 1348: 1313: 1309: 1302: 1284:Photoelasticity 1280: 1276: 1262: 1260: 1251: 1250: 1234:pp. 713–18 1214: 1210: 1179: 1175: 1146: 1142: 1137: 1119:Mechanochromism 1105: 1091:is that we get 1084: 1076: 1057: 1033: 1021: 988: 983: 975: 972: 971: 957: 950: 931: 930: 902: 898: 889: 885: 863: 861: 853: 850: 849: 792: 749: 745: 743: 740: 739: 715: 711: 709: 706: 705: 679: 675: 673: 670: 669: 646: 642: 627: 623: 611: 607: 598: 594: 586: 583: 582: 562: 558: 556: 553: 552: 535: 531: 529: 526: 525: 508: 504: 502: 499: 498: 472: 468: 466: 463: 462: 442: 438: 432: 428: 413: 409: 397: 393: 384: 380: 372: 369: 368: 348: 344: 338: 334: 332: 329: 328: 308: 304: 295: 291: 283: 280: 279: 272: 245:finite elements 229: 202:Photoelasticity 194:Cambridge Press 159: 135:photoelasticity 123: 112: 106: 103: 60: 58: 48: 36: 17: 12: 11: 5: 1889: 1879: 1878: 1873: 1868: 1863: 1849: 1848: 1843: 1838: 1831: 1830:External links 1828: 1825: 1824: 1789: 1776: 1763: 1757:R.E. Newnham, 1750: 1737: 1716: 1689: 1654: 1619: 1612: 1594: 1575:(3): 299–307. 1555: 1516: 1481: 1474: 1447: 1394: 1388:Frocht, M.M., 1381: 1346: 1307: 1300: 1274: 1272: 1271: 1263:|journal= 1238:Translated as 1236: 1208: 1173: 1139: 1138: 1136: 1133: 1132: 1131: 1126: 1121: 1116: 1111: 1104: 1101: 1083: 1080: 1056: 1053: 1032: 1029: 1020: 1017: 1009: 1008: 994: 991: 987: 982: 979: 967:is denoted as 955: 948: 922: 921: 910: 905: 901: 897: 892: 888: 884: 881: 876: 872: 869: 866: 860: 857: 825:When a ray of 791: 788: 761: 758: 755: 752: 748: 721: 718: 714: 691: 688: 685: 682: 678: 666: 665: 652: 649: 645: 639: 636: 633: 630: 626: 622: 617: 614: 610: 604: 601: 597: 593: 590: 565: 561: 538: 534: 511: 507: 484: 481: 478: 475: 471: 459: 458: 445: 441: 435: 431: 425: 422: 419: 416: 412: 408: 403: 400: 396: 390: 387: 383: 379: 376: 351: 347: 341: 337: 314: 311: 307: 301: 298: 294: 290: 287: 271: 268: 228: 225: 223:of materials. 166:David Brewster 158: 155: 125: 124: 107:September 2022 39: 37: 30: 15: 9: 6: 4: 3: 2: 1888: 1877: 1874: 1872: 1869: 1867: 1864: 1862: 1859: 1858: 1856: 1847: 1844: 1842: 1839: 1837: 1834: 1833: 1820: 1816: 1812: 1808: 1804: 1800: 1793: 1786: 1780: 1773: 1767: 1760: 1754: 1747: 1741: 1733: 1732: 1727: 1720: 1712: 1708: 1704: 1700: 1693: 1685: 1681: 1677: 1673: 1670:(2): 119–42. 1669: 1665: 1658: 1650: 1646: 1642: 1638: 1634: 1630: 1623: 1615: 1613:9781107025417 1609: 1605: 1598: 1590: 1586: 1582: 1578: 1574: 1570: 1566: 1559: 1551: 1547: 1543: 1539: 1536:(3): 291–98. 1535: 1531: 1527: 1520: 1512: 1508: 1504: 1500: 1497:(2): 106–17. 1496: 1492: 1485: 1477: 1471: 1467: 1463: 1459: 1451: 1443: 1439: 1434: 1429: 1425: 1421: 1417: 1413: 1410:(2): 025601. 1409: 1405: 1398: 1391: 1385: 1377: 1373: 1369: 1365: 1362:(8): 379–80. 1361: 1357: 1350: 1342: 1338: 1334: 1330: 1327:(3): 440–69. 1326: 1322: 1318: 1311: 1303: 1297: 1293: 1289: 1285: 1278: 1268: 1255: 1247: 1243: 1237: 1235: 1231: 1227: 1226: 1223: 1219: 1212: 1204: 1200: 1196: 1192: 1188: 1184: 1177: 1168: 1163: 1159: 1155: 1151: 1144: 1140: 1130: 1127: 1125: 1122: 1120: 1117: 1115: 1112: 1110: 1107: 1106: 1100: 1096: 1094: 1089: 1073: 1069: 1065: 1062: 1052: 1048: 1042: 1037: 1028: 1024: 1016: 1012: 992: 989: 980: 977: 970: 969: 968: 966: 962: 954: 947: 943: 939: 935: 927: 903: 899: 895: 890: 886: 879: 874: 870: 867: 864: 858: 848: 847: 846: 844: 840: 836: 832: 828: 823: 821: 817: 813: 809: 805: 804:birefringence 796: 787: 785: 781: 780:birefringence 777: 759: 756: 753: 750: 746: 737: 736:linear strain 719: 716: 712: 689: 686: 683: 680: 676: 650: 647: 643: 637: 634: 631: 628: 624: 620: 615: 612: 602: 599: 595: 581: 580: 579: 563: 559: 536: 509: 505: 482: 479: 476: 473: 469: 443: 439: 433: 423: 420: 417: 414: 410: 406: 401: 398: 388: 385: 381: 367: 366: 365: 349: 345: 339: 312: 309: 299: 296: 292: 277: 274:For a linear 267: 264: 261: 256: 254: 250: 246: 238: 233: 224: 222: 218: 213: 211: 207: 203: 199: 198:Max M. Frocht 195: 191: 188:. Their book 187: 183: 179: 175: 171: 170:birefringence 167: 164: 154: 152: 148: 144: 140: 136: 132: 121: 118: 110: 99: 96: 92: 89: 85: 82: 78: 75: 71: 68: –  67: 63: 62:Find sources: 56: 52: 46: 45: 40:This article 38: 34: 29: 28: 21: 1802: 1798: 1792: 1784: 1783:Ramesh, K., 1779: 1771: 1766: 1758: 1753: 1745: 1740: 1729: 1719: 1702: 1698: 1692: 1667: 1663: 1657: 1632: 1628: 1622: 1603: 1597: 1572: 1568: 1558: 1533: 1529: 1519: 1494: 1490: 1484: 1457: 1450: 1407: 1403: 1397: 1389: 1384: 1359: 1355: 1349: 1324: 1320: 1310: 1283: 1277: 1254:cite journal 1229: 1221: 1217: 1211: 1186: 1182: 1176: 1157: 1153: 1143: 1097: 1085: 1066: 1058: 1049: 1045: 1025: 1022: 1013: 1010: 964: 961:interference 952: 945: 941: 937: 929: 925: 923: 842: 824: 816:shear stress 801: 667: 460: 273: 265: 257: 242: 227:Applications 214: 201: 189: 182:L.N.G. Filon 160: 134: 128: 113: 104: 94: 87: 80: 73: 61: 49:Please help 44:verification 41: 1433:10447/61842 1220:. Série 2. 1129:Polarimetry 1088:wave plates 820:polariscope 217:polariscope 143:deformation 1855:Categories 1744:J.F. Nye, 1189:: 156–78. 1135:References 1061:polarizers 1041:Jewel case 178:E.G. Coker 77:newspapers 1871:Mechanics 1819:208518298 1684:137504535 1224:: 376–83. 1203:108782967 1160:: 29–53. 993:π 986:Δ 900:σ 896:− 887:σ 875:λ 868:π 856:Δ 839:isotropic 760:ℓ 720:ℓ 690:ℓ 651:ℓ 638:ℓ 600:− 596:ε 589:Δ 533:∂ 510:ℓ 483:ℓ 444:ℓ 430:∂ 424:ℓ 386:− 382:ε 375:Δ 340:ℓ 336:∂ 297:− 293:ε 286:Δ 253:Dentistry 237:stiffener 163:physicist 1805:: 1–17. 1649:56221414 1511:12543116 1442:53600215 1103:See also 812:crystals 221:fracture 1577:Bibcode 1538:Bibcode 1412:Bibcode 1364:Bibcode 1329:Bibcode 928:is the 734:is the 157:History 91:scholar 1876:Optics 1817:  1682:  1647:  1610:  1509:  1472:  1440:  1298:  1201:  668:where 461:where 151:stress 93:  86:  79:  72:  64:  1815:S2CID 1680:S2CID 1645:S2CID 1438:S2CID 1199:S2CID 835:phase 827:light 98:JSTOR 84:books 1608:ISBN 1507:PMID 1470:ISBN 1296:ISBN 1267:help 951:and 180:and 70:news 1807:doi 1707:doi 1672:doi 1637:doi 1633:166 1585:doi 1546:doi 1499:doi 1462:doi 1428:hdl 1420:doi 1372:doi 1337:doi 1325:275 1288:doi 1242:doi 1191:doi 1187:106 1162:doi 1158:105 247:or 210:Lax 184:of 129:In 53:by 1857:: 1813:. 1803:45 1801:. 1728:. 1703:32 1701:. 1678:. 1668:36 1666:. 1643:. 1631:. 1583:. 1573:29 1571:. 1567:. 1544:. 1534:29 1532:. 1528:. 1505:. 1495:19 1493:. 1468:. 1436:. 1426:. 1418:. 1408:23 1406:. 1370:. 1360:24 1358:. 1335:. 1323:. 1319:. 1294:. 1258:: 1256:}} 1252:{{ 1222:20 1197:. 1185:. 1156:. 1152:. 936:, 845:: 822:. 786:. 133:, 1821:. 1809:: 1734:. 1713:. 1709:: 1686:. 1674:: 1651:. 1639:: 1616:. 1591:. 1587:: 1579:: 1552:. 1548:: 1540:: 1513:. 1501:: 1478:. 1464:: 1444:. 1430:: 1422:: 1414:: 1378:. 1374:: 1366:: 1343:. 1339:: 1331:: 1304:. 1290:: 1269:) 1265:( 1248:. 1244:: 1205:. 1193:: 1170:. 1164:: 990:2 981:= 978:N 965:N 956:2 953:σ 949:1 946:σ 942:λ 938:t 926:C 909:) 904:2 891:1 883:( 880:C 871:t 865:2 859:= 757:k 754:j 751:i 747:P 717:k 713:s 687:k 684:j 681:i 677:p 648:k 644:s 635:k 632:j 629:i 625:p 621:= 616:j 613:i 609:) 603:1 592:( 564:l 560:x 537:l 506:u 480:k 477:j 474:i 470:P 440:u 434:k 421:k 418:j 415:i 411:P 407:= 402:j 399:i 395:) 389:1 378:( 350:k 346:u 313:j 310:i 306:) 300:1 289:( 120:) 114:( 109:) 105:( 95:· 88:· 81:· 74:· 47:.

Index



verification
improve this article
adding citations to reliable sources
"Photoelasticity"
news
newspapers
books
scholar
JSTOR
Learn how and when to remove this message
materials science
optical properties
deformation
dielectric media
stress
physicist
David Brewster
birefringence
Augustin-Jean Fresnel
E.G. Coker
L.N.G. Filon
University of London
Cambridge Press
Max M. Frocht
Friedrich Pockels
Lax
polariscope
fracture

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.